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We study a coevolution voter model on a complex network. A mean-field approximation reveals an
absorbing transition from an active to a frozen phase at a critical value pc �

��2
��1 that only depends on the

average degree � of the network. In finite-size systems, the active and frozen phases correspond to a
connected and a fragmented network, respectively. The transition can be seen as the sudden change in the
trajectory of an equivalent random walk at the critical point, resulting in an approach to the final frozen
state whose time scale diverges as �� jpc � pj�1 near pc.
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The dynamics of collective phenomena in a system of
interacting units depends on both the topology of the net-
work of interactions and the interaction rule among con-
nected units. The effects of these two ingredients on the
emergent phenomena in a fixed network have been exten-
sively studied. However, in many instances, both the struc-
ture of the network and the dynamical processes on it
evolve in a coupled manner [1,2]. In particular, in the
dynamics of social systems (Refs. [1,3–5] and references
therein), the network of interactions is not an exogenous
structure, but it evolves and adapts driven by the changes in
the state of the nodes that form the network. In recent
models implementing this type of coevolution dynamics
[2,4–12] a transition is often observed from a phase where
all nodes are in the same state forming a single connected
network to a phase where the network is fragmented into
disconnected components, each composed by nodes in the
same state [13].

In this Letter we address the question of how generic this
type of transition is and the mechanism behind it. For this
purpose, we introduce a minimal model of interacting
binary state nodes that incorporates two basic features
shared by many models displaying a fragmentation tran-
sition: (i) two or more absorbing states in a fixed connected
network, and (ii) a rewiring rule that does not increase the
number of links between nodes in the opposite state. The
state dynamics consists of nodes copying the state of a
random neighbor, while the network dynamics results from
nodes dropping their links with opposite-state neighbors
and creating new links with randomly selected same-state
nodes. This model can be thought of as a coevolution
version of the voter model [14] in which agents may select
their interacting partners according to their states. It has the
advantage of being analytically tractable and allows a
fundamental understanding of the network fragmentation,
explaining the transition numerically observed in related
models [5,8–12]. The mechanism responsible for the tran-
sition is the competition between two internal time scales,
happening at a critical value that controls the relative ratio
of these scales.

We consider a network with N nodes. Initially, each
node is endowed with a state �1 or �1 with the same
probability 1=2, and it is randomly connected to exactly �
neighbors, forming a network called degree-regular ran-
dom graph. In a single time step (see Fig. 1), a node i with
state Si and one of its neighbors j with state Sj are chosen
at random, then: (1) if Si � Sj nothing happens. (2) if Si �

Sj, then with probability p, i detaches its link to j and
attaches it to a randomly chosen node a such that Sa � Si
and a is not already connected to i; and with probability
1� p, i adopts j’s state.

The rewiring probability p measures the rate at which
the network evolves compared to the rate at which the
states of the nodes change; the extreme values correspond
to a fixed network (p � 0), and to only rewiring (p � 1).

Link dynamics.—The evolution of the system can be
described by the densities of two different types of links:
links connecting nodes with different states or active links
and links between nodes in the same state or inert links.
Note that an update (either rewire or copy) only occurs
when an active link is chosen.

In Fig. 1 we describe the possible changes in the global
density of active links � and their probabilities in a single
time step, when a node of degree k is chosen. We denote by
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FIG. 1. Update events and the associated changes in the den-
sity of active links � and the link magnetization m � ��� �
��� when two neighbors i and j with states Si � s and Sj � �s
are chosen (s � �1).
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n the number of active links connected to node i before the
update. With probability n=k an active link i� j is ran-
domly selected. Then with probability p the link i� j is
rewired and becomes the inert (link i� a), giving a local
change of active links �n � �1 and a global density
change of �� � � 2

�N , where �N=2 is the total number
of links, � � hki �

P
kkPk�t� is the number of links per

node or average degree and Pk�t� is the node degree
distribution at time t. [Even though Pk�t� depends on
time, given that the network is constantly evolving, � is
constant because the total number of links is conserved at
each time step. Furthermore, simulations show that Pk�t�
has a narrow shape with a maximum at�, as expected from
the random nature of the rewiring]. With probability (1�
p) node i flips its state changing the state of links around it
from active to inert and vice versa, and leading to �n �
k� 2n and �� � 2�k�2n�

�N . Assembling these factors, the
change in the average density of active links in a single
time step of interval dt � 1

N is described by the master
equation
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where Bn;k is the probability that n active links are con-
nected to a node of degree k, and hnik and hn2ik are the first
and the second moments of Bn;k, respectively. In a mean-
field (MF) spirit, in which the system is considered to be
homogeneous, we approximate the probability that a given
link is active by the average density �. Then Bn;k becomes
the binomial distribution with first and second moments
hnik � �k and hn2ik � �k� �2k�k� 1�. Replacing these
expressions in Eq. (1) we obtain a closed equation for the
time evolution of �

 

d�
dt
�

2�
�
��1� p���� 1��1� 2�� � 1	: (2)

Equation (2) has two stationary solutions. For p < pc, the
stable solution is

 �s 
 ��p� �
�1� p���� 1� � 1

2�1� p���� 1�
; (3)

corresponding to an active steady state with a constant
fraction of active links in the system, while for p > pc
the stable solution �s � 0 corresponds to an absorbing
state where all links are inert. Thus, the MF approach
predicts an absorbing transition (see Fig. 2) from an active
to a frozen phase at a critical value

 pc �
�� 2

�� 1
: (4)

A stationary state in the active phase, characterized by a
density ��p� � pc�p

2�1�p� of active links, is composed by links

continuously being rewired (evolving network) and nodes
flipping their states. For p � 0 (original voter model), the
value ��0� � ��2

2���1� agrees very well with the numerical
values of the voter dynamics in different random graphs
[15,16]. In the frozen phase, final states correspond to a
fixed network where connected nodes have the same state
and no more evolution is possible. The transition is con-
tinuous, with the order parameter �s changing continu-
ously at pc. Close and below the transition point, �s
scales as (pc � p); thus, the MF critical exponent is 1.

In order to obtain an insight about the structure of the
network in both phases we introduce ��� (���) as the
density of links connecting two nodes with states �1
(�1). It can be shown that ��� (���) is related to � and
the density �� (��) of � (�) nodes by

 ��� � �� � �=2; ��� � �� � �=2: (5)

Because of the conservation of the ensemble average of��
and �� for the voter model dynamics, we have that �� �
�� � 1=2, and therefore, ��� � ��� �

1
2 �1� ��. In the

active phase the continuous rewiring of links keeps the
network connected in a single component, i.e., a set of
connected nodes. But, in the frozen phase only inert links
are present and in the same proportion (��� � ��� �
1=2); thus, we expect the formation of two large discon-
nected components with opposite state (see Fig. 2).
Therefore, the MF description reveals a fragmentation
transition in the stationary structure of the network, asso-
ciated with the absorbing transition at pc.

Final states in a finite system.—The previous MF ap-
proach predicts a transition in the limit of an infinite large
network. However, for any value of p, due to fluctuations, a
finite-size network eventually reaches an absorbing state
composed by inert links only. We studied the structure of
the network in the final state by performing numerical
simulations of the dynamics starting with a degree-regular
random graph with connectivity � � 4 and letting the
system evolve until it was frozen. In Fig. 3(a) we plot the
average size of the largest network component S in the final
configuration for networks with N � 250, 1000, and
4000 nodes. We observe that S is very close to N for values
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FIG. 2. Stationary density of active links �s and the two types
of inert links ��� and ��� vs the rewiring probability p as
described by the mean-field theory for a network with average
degree � � 4. The critical point pc separates an active from a
frozen phase.
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of p below a transition point pc ’ 0:38, indicating that the
network forms a single component [17]. Above pc the
network gets disconnected into two large components
and a set of components of size much smaller than N,
giving a value of S ’ N=2.

To compare simulations with MF results, we calculated
the stationary density of active links in surviving runs �surv.
As we show in Fig. 3(d), �surv monotonically decreases
with p, becoming sharper with increasing system and
indicating a transition from an active to a frozen phase as
predicted by the MF theory. In the active phase, �surv

reaches a steady value larger than zero and independent
on the system size N, while in the frozen phase �surv

vanishes in the thermodynamic limit. The critical point
for the active-frozen transition pc ’ 0:38 calculated from
Fig. 3(d) is roughly the same as for the fragmentation
transition [Fig. 3(a)], suggesting that the active and frozen
phases observed in infinite large systems correspond to the
connected and disconnected phases, respectively, in finite
systems. The MF critical point pc � 2=3 calculated using
Eq. ([17]) with � � 4 differs from the numerical value
pc ’ 0:38 [Figs. 3(a) and 3(d)] due to correlations appear-
ing in the rewiring process. These correlations, that are not
taken into account in the analytical approximation, make
the moments hnik and hn2ik different from the analytical
values �k and �k� �2k�k� 1�, respectively. These devi-
ations have the overall effect of decreasing the observed
critical point respect to the theoretical one.

Approach to the absorbing states.—So far, we have
shown that a finite network under the coevolving dynamics
experiments a fragmentation transition as the rewiring rate
is increased. We now unveil the mechanism of this tran-

sition by studying the evolution of the system to the frozen
state.

We represent the state of the system as a point (m, �) in
the 2 dimensional space, where the coordinates are the link
magnetization m � ��� � ��� and the density of active
links, respectively. When a node of degree k connected to n
active links is chosen, the possible changes in m and � and
their respective probabilities are those described in Fig. 1.
In the (m, �) space, the system undergoes a random walk
(RW) inside the triangle 0 � �� jmj � 1, whose bounda-
ries follow from the constraint relation ��� � ��� � � �
1. The system reaches an absorbing configuration and stops
evolving when the RW hits either one of the fixed points
(�1, 0) or (1,0) (all nodes in state� or�, respectively) or a
point on the fixed line � � 0 (frozen mixture of � and �
nodes). At the point (�1, 0) [(1,0)] only �� (��) links
are present, the network is composed by a giant compo-
nent, and the system is in the connected phase. Points on
the line � � 0 and close to point (0,0) correspond to a
frozen network with similar number of �� and �� links
arranged in two large � and � components (disconnected
phase).

In Fig. 4 we plot trajectories of the RW in one realization
for different values of p. For p < pc ’ 0:38, the motion of
the RW has two stages. In the first and very short stage, the
RW travels along the m ’ 0 axis from the starting point
(m ’ 0, � ’ 1=2) to the point (m ’ 0, � ’ �p) that corre-
sponds to the steady state �s � �p in infinite large systems
(see right inset of Fig. 4). In the second and long stage, the
RW diffuses on the m direction, corresponding to the
fluctuations of � down the steady state �s � �p, until it
hits either point m � �1 or m � 1 [see Fig. 3(b)]. We
observe in Fig. 4 that the motion of the RW is not com-
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FIG. 4 (color online). Typical trajectories of the random walk
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pletely random but its trajectory fluctuates around a curve
described by

 �p�m� � �p�1�m2�: (6)

The origin of this relation is that both � and m can be
expressed as functions of ��. As we observe in the left
inset of Fig. 4, during one realization the ratio �

����
fluc-

tuates around the constant value 4�p. Then, using Eq. (5)
we obtain � � 4�p���1� ��� and m � ��� � ��� �
2�� � 1, from where we arrive to Eq. (6) by eliminating
��. For p > pc, the bias to the � � 0 line makes the RW
hit a point close to the origin (see the p � 0:4 trajectory in
Fig. 4). Simulations show that for a fixed value p < pc, the
amplitude of the fluctuations of the RW’s trajectory around
its mean value �p�m� vanishes as N increases. Thus, in-
creasing N has the effect of increasing the probability that
the RW reaches one of the end pointsm � �1 before it hits
the line � � 0, and therefore, most realizations end in a
single component. Eventually, in the large N limit, the RW
has three absorbing points: either point (�1,0) or (1,0)
(single component network) when p < pc, and point
(0,0) (two components network) when p > pc.

Convergence times.—A magnitude of interest is the
average time � to reach an absorbing state. For p < pc,
the m coordinate of the walker performs a 1D symmetric
random walk with an average jumping interval and its
probability that scale as 1=N and �� �, respectively. To
reach one of the end points m � �1 the RW needs to
attempt an average of N2=� steps, and given that the
time increases by 1=N in each attempt, we find that ��
N=�. From Eq. (2) for p * pc, � decays as ��t� �
��e4�t=�. The system freezes at a time � for which ���� �
1=�N, then ��� �

4� ln����N�. Using the MF approxi-
mation ��p� � �pc � p� close to pc, we obtain that ��
N�pc � p�

�1 as p! p�c and �� �p� pc�
�1�

ln���p� pc�N	 as p! p�c ; thus, the convergence to the
final state slows down at the critical point [see Fig. 3(c)].

Summary and conclusions.—In summary, the coevolu-
tion mechanism on the voter model induces a fragmenta-
tion transition that is a consequence of the competition
between the copying and the rewiring dynamics. In the
connected active phase, the system falls in a dynamical
steady state with a finite fraction of active links. The slow
and permanent rewiring of these links keeps the network
evolving and connected until by a finite-size fluctuation the
system reaches the fully ordered state (all nodes in the
same state) and freezes in a single component. In the frozen
phase, the fast rewiring dynamics quickly leads to the
fragmentation of the network into two components, before
the system becomes fully ordered.

The similarity between the mean-field equation for the
density of active links in the coevolution voter model
[Eq. (2)] and the one for the density of infected sites in
the contact process [19], suggests that our model could

belong to the directed percolation universality class.
However, both models seem not to be equivalent given
that our model possesses many absorbing states (any point
on the � � 0 line of Fig. 4), unlike the contact process
where there is a single absorbing state characterized by the
absence of infected sites. We believe that our results pro-
vide a new insight in the ongoing discussion about models
with infinitely many absorbing states [20].
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