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Winding Number Instability in the Phase-Turbulence Regime
of the Complex Ginzburg-Landau Equation
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We give a statistical characterization of states with nonzero winding number in the phase turbulence
(PT) regime of the one-dimensional complex Ginzburg-Landau equation. We find that states with
winding numbers larger than critical ones are unstable in the sense that they decay to states with
smaller winding numbers. The transition from phase to defect turbulence is interpreted as an ergodicity
breaking transition which occurs when the range of stable winding numbers vanishes. Asymptotically
stable states which are not spatiotemporally chaotic are described within the PT regime of a nonzero
winding number. [S0031-9007(96)00561-3]
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Spatiotemporal complex dynamics [1,2] is one of the
present focuses of research in nonlinear phenomena. Much
effort has been devoted to the characterization of different
dynamical phases and transitions between them for model
equations such as the complex Ginzburg-Landau equa-
tion (CGLE) [1,3–11]. One of the main questions driving
these studies is whether concepts brought from statistical
mechanics can be useful for describing complex nonequi-
librium systems [3,12]. In this paper we give a characteri-
zation of the spatiotemporal configurations that occur in the
phase turbulence (PT) regime of the CGLE (described be-
low), for a finite system, in terms of a global wave number.
This quantity plays the role of an order parameter classi-
fying different phases. We show that in the PT regime
there is an instability such that a conservation law for the
global wave number occurs only for wave numbers within
a finite range that depends on the point in parameter space.
Our study is statistical in the sense that averages over en-
sembles of initial conditions are used. Our results allow a
characterization of the transition from PT to defect or am-
plitude turbulence (DT) (another known dynamical regime
of the CGLE) in terms of the range of conserved global
wave numbers: As one moves in parameter space, within
the PT regime and towards the DT regime, this range be-
comes smaller. The transition is identified with the point
in parameter space at which such a stable range disappears.

The CGLE is an amplitude equation for a complex field
Asx, td describing universal features of the dynamics of
extended systems near a Hopf bifurcation [1,7]

≠tA  A 1 s1 1 ic1d=2A 2 s1 1 ic2d jAj2A . (1)

Binary fluid convection [13], transversally extended lasers
[14], chemical turbulence [15], and bluff body wakes [16],
among other systems, can be described by the CGLE
in the appropriate parameter range. We will restrict
ourselves in this paper to the one-dimensional case, that
is A  Asx, td, with x [ f0, Lg. For this situation a
major step towards the analysis of phases and phase

transitions in (1) was the identification [3–5] of different
chaotic regimes in different regions of the parameter
spacefc1, c2g (see Fig. 1). Equation (1) has plane-wave
solutions Ak 

p
1 2 k2eikx with k [ f21, 1g. When

c1c2 . 21 there is a range of wave numbersf2kE , kEg
such that the plane-wave solutions with wave numbers
in this range are linearly stable. They become unstable
outside this range (the Eckhaus instability [6]). The limit
of this rangekE approaches zero as the productc1c2
approaches21, so that the range of stable plane waves
vanishes by approaching from below the linec1c2  21
(the Benjamin-Feir or Newell line, labeled BF in Fig. 1).
Above that line no plane wave is stable and different
turbulent states exist. The authors of [3–5] identified
three different regimes in different regions above the
BF line (Fig. 1): PT, DT, and bichaos. Among these
regimes, the transition between PT and DT has received
special attention [3,10,17]. In spite of the fact that
there are some indications that this transition can be ill
defined in theL ! ` limit [5,9,10], the PT regime is

FIG. 1. Regions of the parameterfc1, c2g space for the CGLE
displaying different kinds of regular and chaotic behavior.
Lines L1, L3 were determined in [3–5].
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robustly observed for any finite size system and for finite
observation times, with the transition to DT appearing
at a quite well-defined line (L1 in Fig. 1) [9]. In the
DT region the modulusjAj of A  jAjeif becomes zero
at some instants and places (calleddefects), so that the
phasef becomes undefined and the winding number
n ; 1

2p

RL
0 ≠xfdx changes value during evolution. In

contrast, dynamics maintains the modulus ofA far from
zero in the PT region, so thatn is thought to be a
constant of motion there. A global wave number of the
configuration can be defined ask ; 2pnyL. In the
bichaos regime one may observe either DT, PT, or a
coexistence of them depending on the initial conditions
[5]. These different regimes were originally identified
from the analysis of the space-time density ofdefects. If
this picture is correct, one can speculate that the transition
between DT and PT would be a kind of ergodicity
breaking transition [18] as in other systems described
by statistical mechanics. DT would correspond to a
“disordered” phase andn classifies different “ordered”
phases in PT. However, we note that most studies of the
PT regime have considered in detail only the case ofn 
0. In fact the phase diagram in Fig. 1 was constructed for
this case. In order to provide a better understanding of the
PT-DT transition we undertake in this Letter a systematic
study of PT configurations withn fi 0 .

Typical configurations of the PT state of zero winding
number consist of pulses injAj, corresponding to phase
sinks, that travel and collide rather irregularly on top of a
k  0 unstable background wave (that is, a uniform oscil-
lation) [3,5]. The phase of these configurations strongly
resembles solutions of the Kuramoto-Shivashinsky (KS)
equation. Quantitative agreement has been found between
the n  0 PT states of the CGLE and solutions of the
KS equation near the BF line [10]. The more obvious
effect of a nonzeron is the appearance of a uniform
drift added to the irregular motion of the pulses. In ad-
dition, Chaté [4,5] reported an earlier breakdown of the
PT regime whenn fi 0. Our results below show that not
all the winding numbers are in fact allowed in the PT re-
gion at long times. PT states with too largejnj are only
transients and decay to states within a band of allowed
winding numbers. The width of this band shrinks to zero
when approaching the lineL1. In addition we find that the
allowed nonzero winding number states are not of a single
type. We have identified three basic types of asymptotic
states forn fi 0, which we describe below.

In order to study the dynamics of states withn fi 0 we
have performed simulations extensively covering the PT
region of parameters of Fig. 1. Only a small part of the
simulations is shown here, and the rest will be reported
elsewhere. We use a pseudospectral code with periodic
boundary conditions and second-order accuracy in time.
Spatial resolution was typically 512 modes, with runs of
up to 4096 modes to confirm the results. We work at

fixed system sizeL  512. The initial condition in our
simulation is a plane wave of the desired winding number,
slightly perturbed by a white Gaussian random field. The
initial evolution of the spatial power spectrum is well
described by the linear stability analysis around the initial
plane wave: Typically the perturbation grows mostly
around the most unstable wave numbers identified from
such linear analysis. After some time the system reaches
a state similar to then  0 PT, except for a nonzero
average velocity of the chaotically traveling pulses. We
call this stateriding PT. Its spatial power spectrum is
broad and unsteady, with the more active wave numbers
located around the one determined by the initial winding
number. We observe that when this winding number is
small, it remains constant in time, and the system either
remains in theriding PT state or approaches one of
the more regular asymptotic states that will be described
below. If jnj is initially too high, the competition between
wave numbers leads to phase slips that reducejnj until a
value inside an allowed range is reached. Then the system
evolves as before.

We present in Fig. 2 the temporal evolution ofnstd,
the average ofnstd over 50 independent realizations of
the random perturbation added to the initial plane wave
for a fixed point in parameter space. The variance among
the sample of 50 realizations is also shown. Three initial
valuesni of the winding number are shown.nstd typically
presents a decay fromni to the final winding numbernf .
The decay is found to take place in a characteristic time
t that we quantify as the time for which half of the jump
in n has been attained. Figure 3 shows1yt for different
values ofni. The different curves correspond to different
values ofc2 with fixed c1. Similar results were obtained
for c2 fixed and varyingc1. t increases with an apparent
divergence asni approaches a particular valuenc which
is a function ofc1 andc2. We estimate thisnc by fitting
linearly the data for1yt. Other fits involving nontrivial

FIG. 2. (a) Temporal evolution ofnstd for three different ini-
tial winding numbersni  19 (solid), 15 (dotted),10 (dashed).
c1  2.1, c2  20.75. (b) Winding number standard devi-
ation s.
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FIG. 3. Inverse of the characteristic time for winding number
relaxation as a function of the initial winding number. The
value of c1 is fixed (c1  2.1) and c2 varies from near the
BF line (c2  21y2.1) to the L1 line (c2 ø 20.9). Different
symbols correspond toc2  20.6 (1), c2  20.7 (p), c2 
20.75 (e), c2  20.8 (n), and c2  20.83 (h). The inset
shows the critical winding number (nc) as a function ofc2.

critical exponents have been tried, but they do not improve
the simpler linear one in a significant manner. A very
similar value ofnc is obtained by simply determining the
value ofni below whichnstd does not change in any of the
realizations. Values ofnc from some of the simulations
are in the inset of Fig. 3.nc vanishes asc2 approaches
the transition lineL1 (or L3 when passing through the
bichaos region). For example, the linear fitting of the
data in the inset of Fig. 3 and extrapolation towards zero
nc reproduces the value forL1 of [3,5] (c2 ø 20.9 for
c1  2.1) within the fitting error inc2 of 60.02.

The winding number instability found here in the PT
region is strikingly similar to the Eckhaus instability
of traveling waves below the BF line of Fig. 1 [6]:
There is a range of allowed winding numbers such that
configurations outside this range undergo phase slips
until an allowedn is reached. The difference is that
below the BF line, the attractor for each stablen is a
traveling plane wave of wave numberk, whereas each
n, or an equivalent global wave number, characterizes
phase turbulent attractors above the BF line. The allowed
range of traveling waves shrinks to zero whensc1, c2d
approaches the BF from below, whereas above BF, the
allowed n range shrinks to zero when approaching the
L1 line from the right. In this picture, the transition PT-
DT appears as theBF line associated with an Eckhaus-
like instability for phase turbulent waves. Such winding
number instability gives rise to a transition between states
of different global wave numbers, but none of these states
is a perfect traveling wave (TW) state with a well-defined
uniform wave number. The transition is thus reminiscent
of the one observed for an Eckhaus instability in the
presence of stochastic noise [19]. In the latter case a

local wave number independent of position cannot be
defined because of noise, while for phase turbulent waves
the disorder is generated by the system dynamics. The
comparison is also instructive because it can be shown
that, for the one-dimensional stochastic case, there is
no true long range order, and therefore no true phase
transition in the infinite size limit [20]. But for finite
sizes and finite observation times, well-defined effective
transitions and even critical exponents can be introduced
[19]. The PT-DT transition in the CGLE can be an
effective transition of this kind. In order to further
characterize the robustness of the effective transition an
analysis of system size effects should be performed.
Preliminary results indicate that thenc obtained for each
sc1, c2d point grows linearly with system sizeL, as it
should happen for a well-defined extensive quantity.

Finally, we consider the nature of the asymptotic states
allowed within the band of “stable”n. We have numeri-
cally found three basic types of states in the PT region of
parameters with nonzeron. Figure 4 shows in gray levels
the value of≠xfsx, td as a function ofx andt. The state
shown in the top left is the familiar [5]riding PT,which is
similar to the PT usually seen forn  0 (wiggling pulses
in the gradient of the phase) except for a systematic drift
in a direction determined byn. The other two states do
not show spatiotemporal chaos. They can be described as
the motion in time of a spatially rigid pattern on the top of
a plane wave (withk fi 0) background and with periodic
boundary conditions. The state shown in the top right con-
sists of equidistant pulses traveling uniformly. They are
the quasiperiodic states described in [6]. The state shown
in the bottom left, which we callfrozen turbulence,con-
sists of pulses uniformly traveling on a plane wave back-
ground, as in the quasiperiodic case, but now the pulses are
not equidistant from each other. The spatial power spec-
trum is shown for this latter case. It is a broad spectrum
in the sense that the inverse of its width, which gives a
measure of the correlation length, is small compared with
the system size. This is due to the irregular positions of
the pulses. In addition, the spectrum is constant in time,
which makes this frozen state different from riding PT and
reflects that the pattern moves rigidly. The existence of the
two states with no spatiotemporal chaos (quasiperiodic and
frozen turbulence) described above can be understood by
analyzing the phase equation valid near the BF instability.
In the case of a nonzeron it contains terms breaking the
left-right symmetry [6,21], and it is known as a Kawahara
equation [22]. Its uniformly traveling solutions are related
to the rigidly propagating patterns of Figs. 1(b) and 1(c).
These solutions can be analyzed with the tools of Shilnikov
theory [23]. The details will be discussed elsewhere.

In addition to the pure three basic states, there are
configurations in which they coexist at different places of
space, giving rise to a kind ofintermittentconfiguration,
some of them already observed in [4]. The main results
reported here, that is the existence of an Eckhaus-like
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instability for phase-turbulent waves, the identification of
the transition PT-DT with the vanishing of the range of
stable winding numbers, and the coexistence of different
kinds of PT attractors should in principle be observed
in systems for which PT and DT regimes above a Hopf
bifurcation are known to exist [16]. We note in addition
that the experimental observation of what seems to be an
Eckhaus instability for nonregular waves has been already
reported in [24].

FIG. 4. Spatiotemporal evolution of≠xfsx, td with time run-
ning upwards andx in the horizontal direction. The lighter grey
corresponds to the maximum value of≠xfsx, td and the darker
grey corresponds to the minimum value. Different scales of
grey are used in each case in order to see the significant struc-
tures. (a) Last102 time units of a run104 time units long for a
riding PT state atc1  2.1 andc2  20.83. The initial condi-
tion was a TW withni  20 that decayed tonf  21 after a
short time. (b) Last102 time units of a run105 time units long
for a quasiperiodic state. The initial condition is random noise
with an amplitude of 0.05.c1  2.0 andc2  20.8. (c) Last
102 time units of a run104 time units long for a frozen turbu-
lence state. The initial condition is a TW ofni  12 that de-
cayed tonf  6 after a short time.c1  1.75 andc2  20.8.
(d) Spatial power spectrumSsqd as a function of wave num-
ber for the frozen turbulence configuration shown in (c). This
specimen is constant in time.
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