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Winding Number Instability in the Phase-Turbulence Regime
of the Complex Ginzburg-Landau Equation
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We give a statistical characterization of states with nonzero winding number in the phase turbulence
(PT) regime of the one-dimensional complex Ginzburg-Landau equation. We find that states with
winding numbers larger than critical ones are unstable in the sense that they decay to states with
smaller winding numbers. The transition from phase to defect turbulence is interpreted as an ergodicity
breaking transition which occurs when the range of stable winding humbers vanishes. Asymptotically
stable states which are not spatiotemporally chaotic are described within the PT regime of a nonzero
winding number. [S0031-9007(96)00561-3]

PACS numbers: 05.45.+b, 05.70.Ln, 82.40.Bj

Spatiotemporal complex dynamics [1,2] is one of thetransitions in (1) was the identification [3—5] of different
present focuses of research in nonlinear phenomena. Mudhaotic regimes in different regions of the parameter
effort has been devoted to the characterization of differenépacec;, c»] (see Fig. 1). Equation (1) has plane-wave
dynamical phases and transitions between them for modeblutions A, = /1 — k2¢™** with k € [—1,1]. When
equations such as the complex Ginzburg-Landau equasc, > —1 there is a range of wave numbdrskr, kg ]
tion (CGLE) [1,3-11]. One of the main questions driving such that the plane-wave solutions with wave numbers
these studies is whether concepts brought from statisticath this range are linearly stable. They become unstable
mechanics can be useful for describing complex nonequieutside this range (the Eckhaus instability [6]). The limit
librium systems [3,12]. In this paper we give a characteri-of this rangekz approaches zero as the produgt;
zation of the spatiotemporal configurations that occur in theapproaches-1, so that the range of stable plane waves
phase turbulence (PT) regime of the CGLE (described beranishes by approaching from below the ling, = —1
low), for a finite system, in terms of a global wave number.(the Benjamin-Feir or Newell line, labeled BF in Fig. 1).
This quantity plays the role of an order parameter classiAbove that line no plane wave is stable and different
fying different phases. We show that in the PT regimeturbulent states exist. The authors of [3-5] identified
there is an instability such that a conservation law for thehree different regimes in different regions above the
global wave number occurs only for wave numbers withinBF line (Fig. 1): PT, DT, and bichaos. Among these
a finite range that depends on the point in parameter spacegimes, the transition between PT and DT has received
Our study is statistical in the sense that averages over especial attention [3,10,17]. In spite of the fact that
sembles of initial conditions are used. Our results allow ahere are some indications that this transition can be ill
characterization of the transition from PT to defect or am-defined in theL — o limit [5,9,10], the PT regime is
plitude turbulence (DT) (another known dynamical regime
of the CGLE) in terms of the range of conserved global
wave numbers: As one moves in parameter space, within
the PT regime and towards the DT regime, this range be-
comes smaller. The transition is identified with the point
in parameter space at which such a stable range disappears

The CGLE is an amplitude equation for a complex field
A(x, 1) describing universal features of the dynamics of
extended systems near a Hopf bifurcation [1,7]
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Binary fluid convection [13], transversally extended lasers
[14], chemical turbulence [15], and bluff body wakes [16], :
among other systems, can be described by the CGLE o~ . w w .

in the appropriate parameter range. We will restrict 1e 12 08 e, 706 03 00

ourselves in this paper to the one-dimensional case, thais ;1 Regions of the parameter;, c,] space for the CGLE

is A= A(x,1), with x €[0,L]. For this situation a displaying different kinds of regular and chaotic behavior.
major step towards the analysis of phases and phadénesL,, L; were determined in [3-5].
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robustly observed for any finite size system and for finitefixed system sizd. = 512. The initial condition in our
observation times, with the transition to DT appearingsimulation is a plane wave of the desired winding number,
at a quite well-defined lineZ( in Fig. 1) [9]. In the slightly perturbed by a white Gaussian random field. The
DT region the modulugA| of A = |Ale’® becomes zero initial evolution of the spatial power spectrum is well
at some instants and places (calléefect}, so that the described by the linear stability analysis around the initial
phase ¢ becomes undefined and the winding numbemplane wave: Typically the perturbation grows mostly
v = % [é d,¢dx changes value during evolution. In around the most unstable wave numbers identified from
contrast, dynamics maintains the modulusdofar from  such linear analysis. After some time the system reaches
zero in the PT region, so that is thought to be a a state similar to ther = 0 PT, except for a nonzero
constant of motion there. A global wave number of theaverage velocity of the chaotically traveling pulses. We
configuration can be defined @s=27v/L. In the call this stateriding PT. Its spatial power spectrum is
bichaos regime one may observe either DT, PT, or &road and unsteady, with the more active wave numbers
coexistence of them depending on the initial conditiondocated around the one determined by the initial winding
[5]. These different regimes were originally identified number. We observe that when this winding number is
from the analysis of the space-time densitydefects If ~ small, it remains constant in time, and the system either
this picture is correct, one can speculate that the transitiofemains in theriding PT state or approaches one of
between DT and PT would be a kind of ergodicity the more regular asymptotic states that will be described
breaking transition [18] as in other systems describedbelow. If|v|is initially too high, the competition between
by statistical mechanics. DT would correspond to awave numbers leads to phase slips that redu¢entil a
“disordered” phase and classifies different “ordered” Value inside an allowed range is reached. Then the system
phases in PT. However, we note that most studies of thevolves as before.
PT regime have considered in detail only the case ef We present in Fig. 2 the temporal evolution ofr),
0. In fact the phase diagram in Fig. 1 was constructed fothe average o#(r) over 50 independent realizations of
this case. In order to provide a better understanding of ththe random perturbation added to the initial plane wave
PT-DT transition we undertake in this Letter a systematidor a fixed point in parameter space. The variance among
study of PT configurations witlr # 0 . the sample of 50 realizations is also shown. Three initial

Typical configurations of the PT state of zero winding valuesy; of the winding number are showr(t) typically
number consist of pulses i/, corresponding to phase presents a decay from to the final winding number.
sinks, that travel and collide rather irregularly on top of aThe decay is found to take place in a characteristic time
k = 0 unstable background wave (that is, a uniform oscil-7 that we quantify as the time for which half of the jump
lation) [3,5]. The phase of these configurations stronglyin » has been attained. Figure 3 shoiys for different
resembles solutions of the Kuramoto-Shivashinsky (KSyalues ofy;. The different curves correspond to different
equation. Quantitative agreement has been found betweamlues ofc, with fixed ¢;. Similar results were obtained
the » = 0 PT states of the CGLE and solutions of thefor ¢, fixed and varying:;. 7 increases with an apparent
KS equation near the BF line [10]. The more obviousdivergence as,; approaches a particular valuge which
effect of a nonzerov is the appearance of a uniform is a function ofc; andc,. We estimate thig, by fitting
drift added to the irregular motion of the pulses. In ad-linearly the data forl /7. Other fits involving nontrivial
dition, Chaté [4,5] reported an earlier breakdown of the
PT regime wherny # 0. Our results below show that not 20
all the winding numbers are in fact allowed in the PT re-  15F-i- .
gion at long times. PT states with too largd are only ;
transients and decay to states within a band of allowec™
winding numbers. The width of this band shrinks to zero
when approaching the ling,. In addition we find that the
allowed nonzero winding number states are not of a single
type. We have identified three basic types of asymptotic
states forr # 0, which we describe below. o

In order to study the dynamics of states with#= 0 we
have performed simulations extensively covering the PT
region of parameters of Fig. 1. Only a small part of the !
simulations is shown here, and the rest will be reported 500 1000 1500 2000
Efjr\:\éger;eé o\r?é?tigﬁ(sa an()jsigggzgifrt(;ilr C;C(J(i:ir\g::t)r/] i%e[;rc:%_ G. 2. (a) Temporal evolution af(z) for three different ini-

. ’ ; ) ial winding numbersy; = 19 (solid), 15 (dotted),10 (dashed).

Spatial resolution was typically 512 modes, with runs of., = 2.1, ¢, = —0.75. (b) Winding number standard devi-
up to 4096 modes to confirm the results. We work atationo.
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g ] local wave number independent of position cannot be
ooto . defined because of noise, while for phase turbulent waves
Ve 1 the disorder is generated by the system dynamics. The
0008 °f 5 comparison is also instructive because it can be shown
0 ] that, for the one-dimensional stochastic case, there is
-0.90 -0.80 -0.70 —0.60 —0.50 il
* 0.006 cs ] no true long range order, and therefore no true phase
= ] transition in the infinite size limit [20]. But for finite
0.004 ] sizes and finite observation times, well-defined effective
transitions and even critical exponents can be introduced
8 1 [19]. The PT-DT transition in the CGLE can be an
0.002 effective transition of this kind. In order to further
i characterize the robustness of the effective transition an
0.000 I 1 I | 1 . .
0 5 10 15 20 25 20 analysis of system size effects should be performed.

v Preliminary results indicate that the obtained for each

FIG. 3. Inverse of the characteristic time for winding number(cl’CZ) point grows linearly with system sizé, as it

relaxation as a function of the initial winding number. The Should happen for a well-defined extensive quantity.
value of ¢, is fixed (; = 2.1) and ¢, varies from near the Finally, we consider the nature of the asymptotic states

BF line (c; = —1/2.1) to the L, line (c; = —0.9). Different  allowed within the band of “stable?. We have numeri-
symbols correspond to, = —0.6 (+), c2 = 0.7 (*), c2 = cally found three basic types of states in the PT region of
s_hodzvss (tﬁg’ccr%tic:al_vx?if di(nAg)’nﬁrr]r?biezr/E %Of?ugt)ibn?é INSet  harameters with nonzema Figure 4 shows in gray levels
' the value 0fd, ¢ (x, r) as a function ofc andz. The state
shown in the top left is the familiar [5]ding PT,which is
similar to the PT usually seen for = 0 (wiggling pulses
critical exponents have been tried, but they do not improvén the gradient of the phase) except for a systematic drift
the simpler linear one in a significant manner. A veryin a direction determined by. The other two states do
similar value ofv,. is obtained by simply determining the not show spatiotemporal chaos. They can be described as
value ofv; below whichy () does not change in any of the the motion in time of a spatially rigid pattern on the top of
realizations. Values of. from some of the simulations a plane wave (withk # 0) background and with periodic
are in the inset of Fig. 3.r. vanishes ag, approaches boundary conditions. The state shown in the top right con-
the transition lineL; (or L3 when passing through the sists of equidistant pulses traveling uniformly. They are
bichaos region). For example, the linear fitting of thethe quasiperiodic states described in [6]. The state shown
data in the inset of Fig. 3 and extrapolation towards zeran the bottom left, which we callrozen turbulencegon-
v. reproduces the value fdt, of [3,5] (c; = —0.9 for  sists of pulses uniformly traveling on a plane wave back-
¢; = 2.1) within the fitting error inc, of £0.02. ground, as in the quasiperiodic case, but now the pulses are
The winding number instability found here in the PT not equidistant from each other. The spatial power spec-
region is strikingly similar to the Eckhaus instability trum is shown for this latter case. It is a broad spectrum
of traveling waves below the BF line of Fig. 1 [6]: in the sense that the inverse of its width, which gives a
There is a range of allowed winding numbers such thameasure of the correlation length, is small compared with
configurations outside this range undergo phase slipthe system size. This is due to the irregular positions of
until an allowed» is reached. The difference is that the pulses. In addition, the spectrum is constant in time,
below the BF line, the attractor for each stableis a  which makes this frozen state different from riding PT and
traveling plane wave of wave numbér whereas each reflects that the pattern moves rigidly. The existence of the
v, or an equivalent global wave number, characterizeswo states with no spatiotemporal chaos (quasiperiodic and
phase turbulent attractors above the BF line. The alloweétozen turbulence) described above can be understood by
range of traveling waves shrinks to zero when,c;)  analyzing the phase equation valid near the BF instability.
approaches the BF from below, whereas above BF, thie the case of a nonzere it contains terms breaking the
allowed » range shrinks to zero when approaching theleft-right symmetry [6,21], and it is known as a Kawahara
L, line from the right. In this picture, the transition PT- equation [22]. Its uniformly traveling solutions are related
DT appears as thBF line associated with an Eckhaus- to the rigidly propagating patterns of Figs. 1(b) and 1(c).
like instability for phase turbulent waves. Such winding These solutions can be analyzed with the tools of Shilnikov
number instability gives rise to a transition between statetheory [23]. The details will be discussed elsewhere.
of different global wave numbers, but none of these states In addition to the pure three basic states, there are
is a perfect traveling wave (TW) state with a well-definedconfigurations in which they coexist at different places of
uniform wave number. The transition is thus reminiscenspace, giving rise to a kind oftermittentconfiguration,
of the one observed for an Eckhaus instability in thesome of them already observed in [4]. The main results
presence of stochastic noise [19]. In the latter case eeported here, that is the existence of an Eckhaus-like
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