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Abstract

We introduce a high-dimensional symplectic map, modeling a large system, to analyze the interplay between single-

particle chaotic dynamics and particles interactions in thermodynamic systems. We study the initial growth of the

Boltzmann entropy, SB, as a function of the coarse-graining resolution (the late stage of the evolution is trivial, as the

system is subjected to no external drivings). We show that a characteristic scale emerges, and that the behavior of SB vs t,

at variance with the Gibbs entropy, does not depend on the resolution, as far as it is finer than this scale. The interaction

among particles is crucial to achieve this result, while the rate of entropy growth, in its early stage, depends essentially on

the single-particle chaotic dynamics. It is possible to interpret the basic features of the dynamics in terms of a suitable

Markov approximation.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical mechanics was founded by Maxwell, Boltzmann and Gibbs for the equilibrium description of
systems with a very large number of particles. Boltzmann and Gibbs are often considered the champions of
two different points of view about statistical mechanics: this vulgata takes Gibbs as the founder of the
ensemble approach, and Boltzmann as the promoter of a dynamical theory based on the ergodic hypothesis.
Consequently, modern textbooks [1] use Gibbs’s terminology for the ensembles (i.e., microcanonical,
canonical and grandcanonical), although both ergodicity and ensembles are Boltzmann’s inventions
(cf. Refs. [2–5]).
e front matter r 2007 Elsevier B.V. All rights reserved.
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There is an unanimous consensus on the statistical description of thermodynamic equilibrium states by
means of a suitable ensemble, i.e., a probability density, reqðXÞ, in the G phase space. In particular, S

G
¼

�k
B

R
reqðXÞ ln reqðXÞdX is universally recognized as the equilibrium thermodynamic entropy, Seq. On the

contrary, a consistent definition of non-equilibrium entropy remains an open problem. In the following and in
Section 2, we summarize well known facts about this subject, in order to introduce the perspective of the
present paper, and to set our notation. Two main points of view can be identified in this context.

The ‘‘Gibbsian’’ one [6] considers as a fundamental object an ensemble of points in G, with density rðX; 0Þ,
representing the distribution of microstates compatible with the initial non-equilibrium macroscopic
conditions. To overcome the effects of the Liouville theorem, one performs a coarse-graining of the phase
space, introduces a coarse-grained version of the density, rcgðX; 0Þ, and obtains a coarse-grained entropy
Scgð0Þ ¼ �k

B

R
rcgðX; 0Þ ln rcgðX; 0ÞdX. The Hamiltonian evolution of the initial microstates can lead rcgðX; tÞ

to an equilibrium distribution whose entropy will be the evolved ScgðtÞ.
The difficulties with the ‘‘phase space coarse-graining’’ recipe are as old as the recipe itself, and they may be

well represented by a sentence adapted from Jaynes [7]: ‘‘Any really satisfactory demonstration of the second
law must therefore be based on a different approach than coarse-graining’’, since the variation of Scg ‘‘is
due only to the artificial coarse-graining operation and it cannot therefore have any physical significancey’’
(note that this statement concerns the ‘‘artificial’’ phase space coarse-graining, not all forms of coarse-
graining). Or else, as Mackey writes [8]: ‘‘Experimentally, if entropy increases to a maximum only because
we have reversible mixing dynamics and coarse graining due to measurement imprecision, then the rate of
convergence of the entropy (and all other thermodynamic variables) to equilibrium should become slower as
measurement techniques improve. Such phenomena have not been observed.’’

In the ‘‘Boltzmannian’’ point of view [4], one defines the (Boltzmann) entropy, SB, with reference to a single
macroscopic system and to the values of the macroscopic variables, identifying its macrostate M. One takes
SB ¼ k

B
ln jMj, where kB is the Boltzmann’ s constant and jMj is the phase space volume occupied by

the microstates with the same macrostate. Now one follows the dynamics of one allowed microstate and the
evolution it induces on ln jMj. One would like to obtain that, for ‘‘almost’’ all the initial microstates, the
induced behavior of SB conforms to the laws of thermodynamics. For instance, in the case of a dilute gas, a
useful macroscopic variable to define the thermodynamic state of the system, is the one-particle distribution
function f ðq; p; tÞ, obtained by an appropriate coarse-graining in the m-space. In this case (and only in
this case) the logarithm of the volume occupied by the compatible microstates is well approximated by:
�N

R
f ðq; p; tÞ ln f ðq; p; tÞdqdp. So, for a dilute gas, the Boltzmann entropy takes the form:

SB ¼ �Nk
B

Z
f ðq; p; tÞ ln f ðq; p; tÞdqdp (1)

and is expected to increase, according to the Boltzmann equation, as Lanford [9] demonstrated to be true, in a
suitable limit.1

Differently from the phase space description, which requires one ensemble of many identical systems, in
order to do the statistics, in the m-space description the statistics concerns the particles of a single system.
Therefore, while the G-space statistics can be built for systems of any number of particles, even just one,
the m-space statistics requires the single system under consideration to be made of a large number of particles.

One has to note that the two entropies are equivalent at equilibrium while in non-equilibrium situations, in
principle, they test different features of a given system. The Gibbs entropy concerns the spreading in phase
space of the initial ensemble of microstates, which is selected by the interesting macroscopic observables.
In this picture, the time evolution of these observables plays no role. Differently, the Boltzmann entropy
concerns the evolution of phase space volumes, as determined directly by the evolution of the interesting
observables.

The debate on Boltzmann entropy, Gibbs entropy and irreversibility has been renewed by a paper of
Lebowitz [4].
1One should observe that the system must be specified in terms of macroscopic variables, which implies that a different Boltzmann

entropy could be defined, by considering different observables. The particles density is the most appropriate quantity in our case, and we

concentrate only on that, since this is not expected to make any qualitative difference in our arguments.
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The aim of our paper is to contribute to the understanding of the role of coarse-graining procedures, and of
deterministic chaos, in non-equilibrium statistical mechanics. Specifically, we consider the problem of the
onset of entropy growth; that is, we address the following question: for a non-equilibrium system, with given
initial values of the Gibbs and Boltzmann entropies SGð0Þ and SBð0Þ, at what times t do SGðtÞ and SBðtÞ begin
to vary? How do the coarse-grainings in either G- or m-spaces affect these events? In the recent years very
interesting results in ensemble theory à la Gibbs have been obtained by means of Lorentz type models [10,11].
These results, in particular, show that, after the process of Gibbs entropy variation started, its asymptotic time
behavior is not sensible to the performed coarse-graining. We underline that we are here interested in the very
initial stage of the process, where these results do not apply. Moreover we discuss the entropy evolution in an
isolated system, where there is no stationary entropy production.

For a system consisting of N non-interacting particles, a one-particle density, f ðq; p; tÞ, can be seen as a
phase space distribution, rðq; p; tÞ, of an ensemble of N single-particle systems. The coordinates and velocities
of the N particles represent one state of a system, in a 6N-dimensional G-space, by which one builds a
distribution in a six-dimensional m-space. However, they represent also N independent states in the
six-dimensional G-space of single-particle systems. Although conceptually different, f and r are the same
function in this case, evolve in the same way, hence the corresponding Boltzmann and Gibbs entropies
also evolve in the same way, and there is no intrinsic evolution of ZniðtÞ ¼ �kB

R
f ðq; p; tÞ ln f ðq; p; tÞdqdp

¼ �kB

R
rðq; p; tÞ ln rðq; p; tÞdqdp. Indeed, if a coarse-graining is performed either in m- or G-space, the time

evolution of the coarse-grained Zni can be delayed further and further by taking finer and finer partitions. The
fact is that, in this case, a non-arbitrary evolution of the entropy can only be produced by the integration away
of the uninteresting variables (defined once the interesting ones are chosen) from the m-density, i.e., by
performing a ‘‘trivial partition’’ of the m-space [8].

It is known [12,13] that a form of irreversibility may be found in chaotic systems of non-interacting
particles. Indeed, free particles in a box homogenize their spatial coordinates; and in irregularly shaped boxes
their velocity distribution can become isotropic; but a relaxation of velocities to a Maxwellian is impossible, in
the absence of interactions. Thus, such systems may describe, for some aspects, highly rarefied gases, or
Knudsen gases in an irregular container.2

When all the canonical variables in the m-space are interesting, we can no more make entropy grow by
hiding some variable: particles must interact to obtain a growth. With interactions, f ðq; p; tÞ recovers its
meaning of one-particle density, and loses its similarity with a Gibbs ensemble. We show that a characteristic
scale emerges in the m-space of interacting chaotic particle systems, which can be interpreted as the scale at
which the ‘‘diffusive’’ small scale behavior, due to the interactions, smoothes the fragmented structures created
by the chaotic dynamics. This implies that the growth of SB becomes independent of the resolution, as long as
the observation scale is finer than the characteristic one. But to achieve this, it is of fundamental importance
that the number of particles be large, i.e., that the one-particle distribution describes a macroscopic system.

We conclude that:
(a)
2T

dom
the onset of entropy variation in the Gibbs case has no intrinsic meaning; indeed, it can be delayed at will
in time, since it depends on an arbitrary choice (the size of the graining) that is external to the dynamics.
This is the same both for interacting and non-interacting systems, as well as for large or small systems.
(b)
 The Boltzmann entropy (at least the particular case we consider) begins to change at an intrinsic time that
is fixed by the dynamics. This requires a large system of interacting particles (otherwise one falls back in
the Gibbs case).
Various of these ideas have been previously addressed. See, for instance, Ref. [16] for the graining in phase
space induced by a graining in m-space and the choice of macro-variables, and for the relation between the
one-particle distribution function of interacting and of non-interacting particle systems. Here we express these
ideas in a quantitative form, besides reporting the discovery of the characteristic scale in the m-space of
interacting systems.
he lack of interactions imparts very interesting (cf. Refs. [14,15]) properties to such gases. Their behavior, like in Knudsen gases, is

inated by the collisions with the walls of the container.
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In Section 2 we briefly summarize basic facts about Gibbs and Boltzmann entropies. In Section 3 we
introduce a high-dimensional symplectic map simulating a large system, consisting of weakly interacting
chaotic subsystems, and we show the behavior of the Boltzmann entropy SB vs time. The main result is that,
for interacting subsystems, SB is independent of the details of the coarse-graining in m-space, if the graining is
sufficiently fine: an intrinsic graining scale is found in m-space. The interactions are absolutely necessary for
this result; however, it is remarkable that some numerical aspects of SB (e.g. its slope not too far after the
growth started) depend only on the chaotic properties of the single subsystem. In Section 4 we interpret our
results through a mechanism similar to that of decoherence in the semiclassical limit of quantum mechanics.
Conclusions and perspectives are given in Section 5.
2. On the Gibbs and Boltzmann entropy

Consider a Hamiltonian system of N particles, whose microscopic states are described by vectors XðtÞ in the
phase space G. Denoting by rðXÞdX the probability for a state to be found in the phase space volume dX, one
defines the Gibbs entropy as

SGðfrgÞ ¼ �kB

Z
rðXÞ ln rðXÞdX, (2)

where kB is the Boltzmann’s constant. The time evolution Xð0Þ ! XðtÞ is ruled by Hamilton’s equations, hence
SG is constant in time, by Liouville’s theorem. Nevertheless, a coarse-graining by cells of size D in G leads to an
increase of the coarse-grained Gibbs entropy3

SGðt;DÞ ¼ �kB

X
i

pDði; tÞ ln pDði; tÞ, (3)

where the coarse-grained probability pDði; tÞ is given by

pDði; tÞ ¼

Z
Li;D

rðX; tÞdX (4)

and Li;D is the cell of linear size D, centered at XðiÞ. For chaotic systems with initial probability distribution
supported on a small region of linear size s, simple arguments (see Appendix A) suggest that, after a short
transient time tl, for some time SGðt;DÞ increases linearly:

SGðt;DÞ � SGð0;DÞ ’
0; totl;

hKSðt� tlÞ; tlotote;

(
(5)

where hKS is the Kolmogorov–Sinai entropy of the system,

tl�
1

l1
ln

s
D

� �
, (6)

l1 is the first Lyapunov exponent and te is the time when the linear regime ends. As pointed out, the prediction
of Eq. (5) is limited to times which are not too long, so that the saturation regime is not involved; moreover it
is not always correct: it holds only if intermittency effects are negligible (see Appendix A and Ref. [17] for
more details on Eqs. (5) and (6)).

Consider now Boltzmann’s viewpoint, for a system of N weakly interacting particles. A one-body
probability distribution function f ðq; p; tÞ (the probability density of finding a particle in a given volume of the
single-particle space m) can be introduced without any reference to an ensemble of macroscopically identical
systems, each represented by a different point in G-space. Indeed, let us consider one single system made of a
large number N of identical particles, in a d-dimensional physical space, let us introduce a cell size D in the
m-space and let be NbD�2d , so that each cell contains a statistically relevant number of particles. Then, the
3SGðt;DÞ is the discretization of SG , by cells of size D, except for an additive term kB ln D. At fixed D, this term is constant and not

relevant for the entropy variations in time.
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one-particle coarse-grained distribution is defined by

f Dðq
ðjÞ; pðkÞ; tÞ ¼

1

N

XN

i¼0

Y 1�
2jqðjÞ � qiðtÞj

D

� �
Y 1�

2jpðkÞ � piðtÞj

D

� �
, (7)

where YðzÞ is the Heaviside step function and qðjÞ, pðkÞ are the coordinates of the center of each cell Cjk having
linear size D, and volume D2d , in the appropriate units. This m-space function suitably identifies a macrostate
for a dilute gas whose volume DG in phase space is related to the Boltzmann entropy by

SB ¼ kB log DG. (8)

In the case at hand, SB can be well approximated by

SB ¼ �NkB

X
j;k

f Dðq
ðjÞ; pðkÞÞ ln f Dðq

ðjÞ; pðkÞÞ, (9)

where terms dependent on D and N have been disregarded. The Boltzmann entropy for these systems can also
be written as

SBðtÞ ¼ �NkB

Z
f ðq; p; tÞ ln f ðq; p; tÞdqdp, (10)

where f is the regular m-space probability distribution, obtained in the N !1, D! 0 limit of Eq. (7).
For dilute systems under the hypothesis of molecular chaos, the celebrated Boltzmann’s H-theorem holds:

dSB

dt
X0. (11)

The validity of the molecular chaos hypothesis has been demonstrated for the class of dilute systems in the
Grad limit, where N !1 and the interaction range goes to zero in order to keep the total cross-section
constant [9,18].

Some textbooks connect Boltzmann’s and Gibbs’s approaches noticing that in dilute systems

rðX; tÞ ’
YN
j¼1

f ðqj ; pj ; tÞ, (12)

hence SG ’ SB. But this is only partially justified. There are at least two important conceptual differences
between the two approaches:
�
 Gibbs’ point of view is based on the ensemble, i.e., on an abstract collection of identical systems, and does
not depend on the number of particles of which each system is made. Differently, Boltzmann’s approach
does not require an ensemble of copies of the same system, but needs Nb1, in order to compute f ðq; p; tÞ for
the single system.

�
 The Gibbs entropy deals with the G-space, and necessitates a coarse-graining procedure in order to avoid
the consequences of the Liouville theorem and grow in an irreversible evolution. Boltzmann’s graining of
the m-space is introduced to deal with a smooth empirical distribution and to define a macrostate, so the
entropy can grow despite the Liouville theorem.

Thus, (12) must be interpreted cum grano salis, lest one is mislead by (11) into believing that the Gibbs
entropy (2) grows. In the following, we show that, for long enough times and non-vanishing interactions,
the growth of SB does not depend on the cell size, while this is not so for non-interacting systems.

3. The Boltzmann entropy of a chaotic system

3.1. The discrete time model

Consider a system of Nb1 non-interacting particles moving in a periodic array of fixed convex scatterers,
with which they collide elastically. The position of the scatterers should avoid the presence of collisionless
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trajectories, i.e., the horizon should be finite. It is well established that such a system, known as the Lorentz
gas,4 is chaotic and displays asymptotic diffusion. The Gibbs entropy of such a system obeys SGðtÞ ¼ SGð0Þ,
while the coarse-grained entropy increases linearly with t, for t4tl (before saturation). It is easy to see that
hKS ¼ Nh1, where h1 is the Kolmogorov–Sinai entropy of a single particle, and SB ¼ SG ¼ constant, because
the particles are independent, and the probability distribution in phase space factorizes in N identical terms.

Quite different is the case of interacting particles, as for the generalization of the Lorentz gas of Ref. [19],
where particles are not point-like, but have a finite size and collide with the scatterers, as well as with each
other. The study of such a system, for a large number of particles, is very expensive from a computational
point of view. Therefore, we propose a system of coupled symplectic maps as a substitute for the particle
system, which shares its main features, considering a two-dimensional map, with one ‘‘coordinate’’ and
one ‘‘momentum’’, in place of each particle. We introduce a form of interaction among these ‘‘particles’’,
requiring that:
�

ac
in the absence of interactions, the single-particle dynamics in the corresponding m-space be chaotic and
volume preserving;

�
 in the presence of interactions, the dynamics of the whole system, described by the vector X ¼ ðQ;PÞ,
Q ¼ ðq1; . . . ; qnÞ, P ¼ ðp1; . . . ; pnÞ, be symplectic and volume preserving in the G-space.

The symplectic map is defined by

qi ¼ qGðQ0;PÞ=qpi mod1;

p0i ¼ qGðQ0;PÞ=qq0i mod1

(
(13)

where the generating function GðQ0;PÞ is given by

GðQ0;PÞ ¼ Q0P�
jPj2

2
�

k

2p

XN

i¼0

XNS

j¼0

cos½2pðq0i � Y jÞ� �
�

4p

XN

i¼0

XM=2

n¼�M=2

cos½2pðq0i � q0iþnÞ� (14)

with qi; pi 2 ½0; 1�. To make the numerical simulations faster, we assume that each ‘‘particle’’ interacts with a
limited number M of other ‘‘particles’’, NS is the number of fixed ‘‘obstacles’’ having positions Y j, which play
the role of the convex scatterers in the Lorentz gas, and N is the number of ‘‘particles’’. The parameters k and
� represent the interaction strength between particles and obstacles and among particles, respectively. If
k ¼ � ¼ 0 the particles are free. The functional form of G is reminiscent of the standard map, which is a
paradigm of symplectic dynamics. The boundary conditions on the variables are periodic, and the interactions
do not present discontinuities at the boundaries. Substituting Eq. (14) into (13), one finds:

q0i ¼ qi þ pi mod1;

p0i ¼ pi þ k
PNS

j¼0

sin½2pðq0i � Y jÞ� þ �
PM=2

n¼�ðM=2Þ

sin½2pðq0i � q0iþnÞ�mod1:

8>><
>>: (15)

Since the system is symplectic, the dynamics described by the points ðQ;PÞ will preserve volumes in phase
space.

3.2. Numerical results

In the following, we calculate the one-particle distribution for a given cell size (cf. Eq. (7)), as a function of
time. Then, we study the growth with time of the corresponding Boltzmann entropy per particle, defined by

Zðt;DÞ ¼ �kB

X
j;k

f Dðq
ðjÞ; pðkÞ; tÞ log f Dðq

ðjÞ; pðkÞ; tÞ (16)
4In Lorentz’s original model, the moving particles were considered in thermal equilibrium with the scatterers, which is impossible to

hieve without energy exchanges between scatterers and particles, as in the present model.
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by varying the interaction strength � and the cell size D. In our computations, where we set kB ¼ 1 for
convenience, there are no a priori assumptions such as the hypothesis of molecular chaos; the quantity
f Dðq; p; tÞ evolves according to the exact dynamics.

As discussed in the Introduction and in Section 2, (16) is correct (in the sense that it is linked to the interesting
volume of phase space) only in the case of dilute systems. For systems, whose potential energy is not a tiny fraction
of the total, it has been proposed [16,20] that a similar relation may still be used, with the prescription to count only
microstates corresponding to a fixed total energy E. Even for non-interacting systems the quantity (16)
characterizes the extension of the macrostate in phase space, provided that the empirical distribution f D is a good
approximation of a particle density f ðq; p; tÞ. This requires DbN�1=2d , which allows (16) to be close to (8).

We choose NS and k (both related to the single-particle chaotic behavior) in such a way that the Lyapunov
exponent of the single-particle dynamics is not too large, and there are no KAM tori, which constitute barriers
for the transport. In particular NS ¼ 103 and k ¼ 0:017 realize this requirement. The obstacle positions are
selected at random, with a uniform p.d.f. An example of a trajectory in the one-particle ðq; pÞ space, for
N ¼ 107, is shown in Fig. 1. The result is that the Lyapunov exponent is l � 0:162. We perform simulations
with different values of � and, for initial non-equilibrium condition, we take a cloud of points distributed
according to a Gaussian of r.m.s.d s ¼ 0:01, having the point ðq; pÞ ¼ ð1

4
; 1
2
Þ as a center (we checked that this

point is far enough from the regular islands, see Fig. 1). At each time, we compute the differences between the
entropy per particle and its initial value at several resolutions D:

dSðt;DÞ ¼ Zðt;DÞ � Zð0;DÞ. (17)

We begin with � ¼ 0. The entropy growth shown in Fig. 2 is only due to the discretization procedure, since the
equation ruling the evolution of f ðq; p; tÞ obeys the Liouville theorem. This means that the ‘‘true’’ Boltzmann
entropy for D! 0 is constant in time. As shown in Fig. 2, the curves of the entropy differences as functions of
time stay constant up to a time tl depending on D. After this transient, and for a certain time interval, the slope
of dSðt;DÞ is practically the same for all curves and is approximately given by hKS (see Eq. (5)). Looking at the
curves of the entropy differences as functions of D, Fig. 3, it is possible to extrapolate the behavior for D! 0:
far from the saturation (for small times) and for D not too large, these curves go correctly to zero when D! 0,
and are well fitted by a power law:

dSðt;DÞ / D2. (18)

This suggests that the relevant parameter for understanding the finite resolution behavior of the entropy
differences is the cell area D2. For t4tl, one has

dSðt;DÞ ¼ a logðDÞ þ b. (19)

The behavior of Eqs. (18) and (19) is consistent with Eq. (5), taking into account that the rate of entropy
growth after tl is generally different from the Lyapunov exponent, leading to aa1 [17]. As noted in the
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Introduction, when � ¼ 0 the behaviors of SB and SG are the same, because the given one-particle density,
f ðq; p; tÞ, obtained from N non-interacting particles, is nothing but the density, rðq; p; tÞ, describing a Gibbs
ensemble of N single-particle systems.

Fig. 2 seems to imply that a suitable coarse-graining procedure allows the entropy to increase, after a certain
time, in spite of Liouville’s theorem. Such a growth would have been an intrinsic property of the dynamics if it
had been associated with an intrinsic graining scale, but the only intrinsic scale of a non-interacting system is
lc�N�1=2d (in the present case d ¼ 1). However, lc cannot be used to define the coarse-grained Boltzmann
entropy, because there is no statistics on that scale. The correct derivation of the Boltzmann entropy requires
that N !1 while D! 0, in such a way that D stays much larger than lc. This is the extrapolation of Fig. 3,
where one can see how the effect of Liouville’s theorem on SG is restored. That this picture is correct, is proved
by Fig. 4 for the entropy growth as a function of D, with different values of N. Indeed, in Fig. 4, one observes
that the curves for different N collapse to a unique curve which tends to zero, both at short and long times, if
Dblc. In other words, if the cells are occupied by a statistically relevant number of particles, the behavior of
the entropy is unique and shows no evolution in time. In the following, we fix N ¼ 107, that is large enough for
our range of D values.

Consider now the ‘‘interacting’’ case, i.e., �40. Figs. 5 and 6 show that dSðt;DÞ does not extrapolate
anymore to zero when D! 0, and for small (fixed) times, they are well fitted by

dSðt;DÞ � c0 þ c1D2. (20)
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After a characteristic time depending on �, t�ð�Þ, the entropy shows a weak (logarithmic) dependence on D and
correctly extrapolates to a finite value for D! 0 (see Fig. 7).

Let us now summarize and comment on the previous results:
(a)
 For non-interacting systems ð� ¼ 0Þ, because of the absence of an intrinsic graining scale (except for lc,
which cannot be used), the growth of dSðt;DÞ reflects the properties of the observation tools, i.e., the
statement that dS ’ 0 for tttlðDÞ and that dS ’ lðt� tlðDÞÞ for t\tlðDÞ, has a ‘‘subjective’’ character.
Since tl increases as D decreases, not only does the value of the entropy depend on the coarse-graining, but
the entropy growth depends (for ‘‘small’’ t) on the resolution scale, as noticed also in Ref. [21].
(b)
 For weakly interacting systems, there is an effective cell size D�ð�; lÞ, such that dSðt;DÞ does not depend on
D, if DoD�ð�; lÞ. Here, the entropy growth is objective, i.e., the limit for D! 0 of dSðt;DÞ exists, is finite,
hence is an intrinsic property of the system (cf. Fig. 6).
(c)
 The role of chaos in the limit of vanishing coupling is relevant: the slope of dSðt;DÞ, for intermediate values
of t, is given by the Lyapunov exponent; but the existence of an effective cell size D�ð�; lÞ and the
corresponding t�ð�; lÞ depends on the coupling strength �, and on l.
(d)
 In the evaluation of Eqs. (7) and (16), no assumptions, such as the hypothesis of molecular chaos or of
system’s dilution, are made. Mathematically, we can define the entropy of a distribution as in Eq. (16) in
full generality. However, we consider only the weakly interacting limit of small �, for the physical reason
that only in such a case does this entropy represent the Boltzmann entropy and does it afford a proper
thermodynamic meaning.
(e)
 For small values of �, the time evolution of f ðq; p; tÞ differs from the case � ¼ 0 only on very small scales; in
other words, the coupling is necessary for the ‘‘genuine’’ growth of the entropy, but it does not have any
dramatic effect on f ðq; p; tÞ at scales D\D�. Indeed, as shown in Fig. 8, the non-interacting and the weakly
interacting cases do not appear to be so different, in terms of the one-particle phase space distribution.
4. Interpretation of the results

Because the number of particles is large in our simulations, one may expect the effect of the interaction on
each particle to be described by a kind of thermal bath. The single-particle dynamics can then be mimicked by
chaotic dynamics (corresponding to the symplectic map of Eq.(15) with � ¼ 0) coupled to a noise term whose
strength is Oð�Þ:

qiðtþ 1Þ ¼ qiðtÞ þ piðtÞmod1;

piðtþ 1Þ ¼ piðtÞ þ k
P

j

sin½2pðqiðtþ 1Þ � Y jÞ� þ
ffiffiffiffiffiffiffi
2D
p

xiðtÞmod1;

8<
: (21)
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where the xi are i.i.d. Gaussian variables with zero mean and unitary variance, i.e.,

hxiðtÞi ¼ 0; hxiðtÞxjðt
0Þi ¼ dt;t0di;j. (22)

This amounts to assume that f ðq; p; tÞ evolves according to a discrete time Fokker–Planck equation. If each
particle gives an uncorrelated contribution to the noise term, one can roughly estimate the diffusion coefficient
D as M�2=4. This heuristic estimate is well supported by numerical simulations of (15): the quantity dSðt;DÞ
practically does not change at varying M and �, keeping M�2 constant.

In this framework, one can introduce a characteristic time tc, defined as the time in which the scale of the
noise induced diffusion reaches the smallest scale originated by the deterministic chaotic dynamics [22]. The so
defined tc would correspond to t�ð�; lÞ introduced above. Consequently, noting that the characteristic lengths
of noise and of chaos go as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�2t=2

p
and s expð�ltÞ, respectively, tc may be estimated from the following

transcendent equation:

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mtc=2

p
¼ s expð�ltcÞ. (23)

This holds on the spatial scales already reached by the diffusion process:

�
ffiffiffiffiffiffiffiffiffiffiffiffi
Mt=2

p
4D, (24)

beyond which the value of the entropy still depends on the size of D (i.e., the curves SBðDÞ display the behavior
SBðt;DÞ�D2). For example, in the case with � ¼ 10�4, s ¼ 0:01, M ¼ 100 and l ¼ 0:162, one obtains tc ’ 9,
and, in agreement with our interpretation, for t49, all the curves in Fig. 7 present the same slope compatible
with the Lyapunov exponent l.
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As a numerical check of the consistency of this modelization, we studied system (21), and compared the
results with a given D with those of the deterministic system of Eq. (15) with

� ¼ �eq � 2

ffiffiffiffiffiffi
D

M

r
. (25)

The results, shown in Figs. 9 and 10, are qualitatively similar to the deterministic interacting case (15),
confirming the validity of the approach.

A similar reasoning leads to the decoherence mechanism proposed by Zurek and Paz [23] for the
semiclassical limit of quantum mechanics. We note that rather subtle conceptual points are present in the
decoherence process for the semiclassical limit. This is so because two theories are involved (classical and
quantum mechanics) with very different ontological status (deterministic and non-deterministic, respectively).
In our case, roughly speaking, we mimic the first equation of the BBGKY hierarchy of a dilute system,
consisting of weakly interacting chaotic particles, with a suitable Fokker–Planck equation.

5. Conclusions and perspectives

We have studied the initial stage of the entropy evolution in a system of weakly coupled chaotic subsystems,
which can be considered as a model of weakly interacting particles in an environment with convex obstacles.
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In the non-interacting limit the behavior of the Boltzmann entropy strongly depends on the coarse-graining
resolution (the cell size D). Since the only characteristic length is lc, which must be much smaller than D, the
growth of Sðt;DÞ cannot be considered an intrinsic property of the system. By contrast, in the weakly
interacting case the short time behavior of the Boltzmann entropy becomes independent of the observation
scale, assuming an intrinsic character: that is, for DoD�ð�; lÞ, one observes a well defined shape of dSðtÞ vs t.
Also, in the early stage of entropy variation for t\t�ð�; lÞ, dSðtÞ increases roughly linearly, with a slope given
by the Kolmogorov–Sinai entropy of the single (non-interacting) chaotic system. Summarizing, the interaction
is necessary for an effective cell size D� and for the time evolution of the Boltzmann entropy to be ‘‘objective’’
instead of ‘‘subjective’’, while other numerical aspects, like the slope of dSðtÞ for t\t�, are effectively
determined only by the degree of chaos in the single subsystems. In addition, the effect of the weak coupling
among the chaotic subsystems can be successfully modeled by a noise term, which allows us to estimate the
value of t�ð�; lÞ.

Let us now comment on the relevance of these results for the case of point-like particles in an environment
made of very heavy particles. If the ‘‘obstacles’’ were not infinitely massive, the independent particles would
exchange energy with them, like photons in a black body cavity. The photons do not interact with each other,
but interact with the walls, reach a thermal equilibrium with them, and acquire a temperature. A similar
behavior has been obtained in the Lorentz-like model of Ref. [24]. In our framework, this would amount to set
the interaction � to zero, and to switch on an interaction between particles and obstacles which now are
allowed to move. Denoting with Y J and W J the coordinate and the momentum of the Jth obstacle, one
can generalize (13) introducing a suitable interaction among the ‘‘light’’ particles and the heavy obstacles. The
G-space is now given by ðQ;Y;P;WÞ. Then, the ‘‘light’’ particles are indirectly coupled with each other, as in
Ref. [24]; the heavy particles play the role of interaction carrier particles and essentially we fall back in the case
considered in this paper. Clearly, an interaction carried by heavy particles will be very weak and will involve
very small scales, which are difficult to observe in numerical simulations; nevertheless, there are no reasons
to expect any conceptual difference from the scenario described in the present paper, which is consistent with
that of Ref. [24].
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Appendix A. On the connection between chaos and Gibbs entropy

Consider a deterministic dynamical law

X! TtX (A.1)

(where X is a D-dimensional vector) and a probability density rðX; tÞ, that gives a distribution of states of the
system throughout its phase space at a time t. The Gibbs entropy of r is given by

SGðrtÞ ¼ �

Z
rðX; tÞ ln½rðX; tÞ�dX. (A.2)

If Jðx; tÞ is the Jacobian of (A.1), a straightforward computation yields

SGðrtÞ ¼ SGðr0Þ þ
Z

rðX; tÞ ln jJðX; tÞjdX. (A.3)

Of course, in the case of volume conserving evolutions, one has: SGðrtÞ ¼ SGðr0Þ. Therefore in order to have
an entropy variation one needs a coarse-graining.

Let us consider a hyper-cubic partition and let us define the probability pDði; tÞ to find the state of the system
in the cell i at time t:

pDði; tÞ ¼

Z
Li;D

rðX; tÞdX, (A.4)
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where Li;D is the region singled out by the ith cell. The D-coarse-grained Gibbs entropy is

SGðt;DÞ ¼ �
X

i

pDði; tÞ ln pDði; tÞ.

If one considers a distribution of initial conditions differing from zero only on a region of linear size s,
one can give an argument to suggest that, after a transient and for a time not too long,

SGðt;DÞ ¼ SGð0;DÞ þ hKSt. (A.5)

To obtain Eq. (A.5) one can argue as follows. Assume that the system has m positive Lyapunov exponents and
that rðX; 0Þ is localized around Xcð0Þ. In a suitable reference system (with the axes along the eigendirections of
the Lyapunov exponents), if rðX; 0Þ has a Gaussian shape, rðX; tÞ, for some times, is still well approximated by
a Gaussian with variances

s2j ðtÞ ¼ s2j ð0Þ expf2lj tg (A.6)

therefore:

rðX; tÞ ’
YD

j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2j ðtÞ

q e�ðX j�X c
j ðtÞÞ

2=2s2j ðtÞ, (A.7)

where XcðtÞ is the state evolved from Xcð0Þ. From this, in the fine-grained case, one gets

SðrtÞ ¼ Sðr0Þ þ
X

j

ln
sjðtÞ

sjð0Þ
¼ Sðr0Þ þ

XD

j¼1

lj t.

It is clear that SGðrtÞ ¼ SGðr0Þ if the phase space volume is conserved. Considering now the coarse-grained
probability (A.4), along the directions of the negative Lyapunov exponents (mþ 1;mþ 2; . . .), for a long
enough t one has that

skðtÞ�se�jlkjtpD. (A.8)

In a Hamiltonian system the Lyapunov exponents pair, i.e., lD ¼ �l1; lD�1 ¼ �l2; . . .; therefore the phase
space volume conservation can be no more verified if

tXtl�
1

l1
ln

s
D
. (A.9)

This implies that

pDði; tÞ ’
Ym
j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2j ðtÞ

q e�ðX
ðiÞ
j
�X c

j ðtÞÞ
2=2s2j ðtÞ

if (A.9) holds. Therefore SGðt;DÞ ¼ SGð0;DÞ as long as tptl while for larger times one obtains

SGðt;DÞ ¼ SGð0;DÞ þ
Xm

j¼1

lj t.

With the aid of the Pesin’s formula

hKS ¼
X
li40

li, (A.10)

Eq. (A.5) follows.
Of course, the transition from (A.3) to (A.5) is allowed by the fact that, in the presence of a coarse-graining,

the contracting eigendirections (corresponding to the negative values of the Lyapunov exponents) cannot
balance the effects of the expanding ones.
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