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We investigate the electronic transport in a quantum wire with localized Rashba interaction. The Rashba
field forms quasibound states that couple to the continuum states with an opposite spin direction. The presence
of this Rashba dot causes Fano-like antiresonances and dips in the wire’s linear conductance. The Fano line
shape arises from the interference between the direct transmission channel along the wire and the hopping
through the Rashba dot. Due to the confinement, we predict the observation of large charging energies in the
local Rashba region, which lead to Coulomb-blockade effects in the transport properties of the wire. Impor-
tantly, the Kondo regime can be achieved with a proper tuning of the Rashba interaction, giving rise to an
oscillating linear conductance for a fixed occupation of the Rashba dot.

DOI: 10.1103/PhysRevB.76.035307 PACS number�s�: 73.23.�b, 71.70.Ej, 72.15.Qm, 75.20.Hr

I. INTRODUCTION

The high degree of functionality of spin-based electronic
devices has attracted much attention due to promising appli-
cations in quantum and classical computations.1 Use of spins
to store and carry classical information has been proven to be
both faster and less power consuming than the conventional
technology based on the control of the charge. Besides, spin-
1 /2 systems are genuine two-level systems and, therefore,
natural building blocks for quantum computation.2 These
features have motivated the emergence of an exciting area of
research termed spintronics.

Two-dimensional �2D� semiconductors are appropriate
materials to accomplish spintronic applications since they
offer the possibility of electric control of spins via tunable
spin-orbit interactions. The tuning is achieved with electric
fields induced by external gates coupled to the
semiconductor.3 A prominent contribution to spin-orbit ef-
fects in 2D electron gases of narrow-gap semiconductors
�typically, InAs materials� is the Rashba interaction.4 This is
caused by an asymmetry in the potential, defining the quan-
tum well in the direction perpendicular to the 2D electron
gas. The control of the Rashba coupling strength opens the
possibility of investigating 2D systems with spatially modu-
lated Rashba fields such as those having constant Rashba
strength in a semiplane,5 a stripe,6 or an island.7–11 Less
known are the effects of a local Rashba field on the electron-
electron interaction. Our aim is to examine how sensitive the
charging energy of a quasi-one-dimensional �quasi-1D�
Rashba region is to changes of the spin-orbit strength and the
consequences in the transport properties.

The Rashba Hamiltonian reads

HR =
1

2�
���,py��x − ��,px��y� , �1�

where � is the strength, while p� and �x,y,z are the 2D mo-
mentum operator and the Pauli matrices, respectively. The
anticommutators in Eq. �1� ensure a Hermitian HR when � is

spatially nonuniform. For strictly 1D systems, the precession
term in Eq. �1�, �� , px��y for transport along x, leads to the
formation of bound states.11 These bound states acquire a
finite lifetime in quasi-1D systems, where the term �� , py��x

couples adjacent subbands with opposite spin directions.12 In
a quantum wire, these subbands arise from the parabolic con-
finement of the 2D gas. Therefore, a local Rashba interaction
in a quantum wire has two main effects, namely, �i� it forms
bound states in each subband and �ii� it broadens these
bound states due to coupling with adjacent subbands. Here-
after, we refer to the quasibound states as Rashba dots.11

In this work, we are interested in the transport properties
of a quantum wire with a local Rashba interaction in the
presence of Coulomb repulsion. As we have partially antici-
pated, the physical scenario is governed by the interference
between a direct �nonresonant� transmission channel with a
path that passes through the Rashba dot, leading to the for-
mation of Fano resonances,11,13 as shown in Fig. 1�a�. Due to
the confinement of the electron motion within the Rashba
dot, our calculations show that the Coulomb interaction be-
comes, in fact, very large �see Fig. 1�b��. Thus, it is possible
to observe charging effects where the transport through the
Rashba dot is governed by Coulomb blockade. Furthermore,
a proper combination of gates leads to a very strong coupling
of a singly occupied Rashba dot to the continuum states. In
this case and when the Coulomb interaction is sufficiently
large, the Kondo effect14,15 takes place at very low tempera-
tures. Then, the localized spin in the Rashba dot forms a
many-body singlet state with the continuum electron spins
and, hence, is screened. This occurs at energies kBT lower
than the Kondo energy scale kBTK, which is the binding en-
ergy of the many-body singlet state.14,15 It manifests itself as
a quasiparticle resonance, namely, a peak of width kBTK of
the local density of states at the Fermi energy �EF�. Experi-
ments have been able to observe Kondo effects in quantum
dots,16 its most remarkable signature being the unitary limit
of the linear conductance at kBT=0, i.e., G0=2e2 /�.15 In our
case, the Kondo resonance that forms in the Rashba dot de-
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structively interferes with the nonresonant transmitting
mode, giving rise to an oscillatory G0.

This work considers the transport properties of a quantum
wire with a localized Rashba region, including charging and
correlation effects. Section II presents the model of Hamil-
tonian developed to describe this system. Section III is de-
voted to investigate the linear conductance across the quan-
tum wire with the localized Rashba interaction. The results
derived from our calculations are shown in Sec. III. Finally,
the main conclusions of our work are summarized in Sec. IV.

II. MODEL

In this section, we discuss the model Hamiltonian that
describes a quantum wire with a localized Rashba interac-
tion. As emphasized, the Rashba interaction plays the role of
both �i� the attractive potential and �ii� the coupling to the
continuum states. Each subband couples with at least one
bound state �Rashba dot�, splitting off the higher subband.
For simplicity, we consider an energy range in the first pla-
teau, �1�E��2, with ��= ��−1/2���0 being the energy of
the transversal modes ��0 defines the confinement strength of
the quasi-1D system�. The bound state energy 	0=�2+	b lies
within the first plateau because of its negative binding energy
	b. Thus, the first subband consists of a continuum of states
and the second subband provides the bound state, which is
coupled to the first subband states with opposite spin. As a
consequence, the transport can occur through two different
paths: �i� via the quasibound state �through the Rashba dot
described by an Anderson-like Hamiltonian� or �ii� via a non-
resonant path through the continuum states of the first sub-
band. The Hamiltonian reads

H = �
�k�

	�kc�k�
† c�k� + �

k�

�Weis�
cLk�
† cRk� + H.c.�

+ �
�

	0d�
†d� + Un�n�̄ + �

�k�

�V0c�k�
† d�̄ + H.c.� . �2�

We choose the spin quantization axis along the Rashba field
�the y axis for propagation along x�. d�

† creates an electron
with spin �= ↑ ,↓ in the Rashba dot �n�=d�

†d� is the Rashba
dot occupation per spin �� and cL�R�k�

† creates a continuum
electron with k wave vector and spin � in the left �right� side
of the Rashba dot. Both electronic states are coupled via the
hopping amplitude V0. We note that this hopping originates
from the Rashba interaction only,11 and that this qualitatively
differs from the coupling via tunnel barriers as in conven-
tional quantum dot models. We define the signs s↑,↓= ±1 and
�̄ indicates reverse spins. U is the on-site Coulomb interac-
tion in the Rashba dot. Depending on the strength of U,
which we calculate below, charging and correlation effects
can be present. We note that the Hamiltonian �2� presents a
great similarity with that describing the electronic transport
in a closed Aharanov-Bohm �AB� interferometer with a
quantum dot in one of its arms.17–20 Nevertheless, there are
two important differences. First, the phases of the hopping
amplitudes W in Eq. �2� depend on the spin index. Such
spin-dependent phases have been shown to give rise to spin
polarization in interferometer setups.21 Second, each hopping
process through the dot is associated with a spin-flip event.
Spin-flip interactions have been recently considered in
strongly correlated quantum dots22 but mainly dealing with
intradot spin-flip scattering. Spin-flip assisted tunneling has
received much less attention.21,23

In the usual Anderson Hamiltonian, spin is conserved dur-
ing tunneling and this leads to Kondo correlations at low
temperatures. We now show that, despite the fact that Eq. �2�
involves spin-flip hopping due to the Rashba interaction, the
Kondo effect also manifests itself in this system. For simplic-
ity, let us neglect the nonresonant path in the following dis-
cussion �W=0�. We first perform a Schrieffer-Wolff transfor-
mation to the Rashba dot Hamiltonian. The resulting
Hamiltonian,

HK� = J���Sxs��
x − Sys��

y − Szs��
z � , �3�

is equivalent to the usual Kondo Hamiltonian

HK = �
��

J��S� · s���, �4�

where the spin of the Rashba dot S� interacts antiferromag-
netically �J���0� with the spin density of the delocalized
electrons s���=
��

† �� ��
�� �
��=�kc�k� are the conduction
field operators at the Rashba dot site�. To see this, we can
perform a unitary transformation to convert HK� into HK;
namely, we perform a rotation of � around the x axis in the
localized spin space, keeping the delocalized spins un-
changed, i.e.,

Sy�z� → − Sy�z�, Sx → Sx. �5�

In this way, we transform HK� into HK.
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FIG. 1. �a� �Color online� �a� Linear conductance G0 of a non-
interacting quantum wire as a function of the Fermi energy EF �in
units of ��0� with �=1 �in units of �0=�� /m�0� and different
Rashba strengths � �in units of ��0�0�. A dip forms close to the
onset of the second plateau. It follows from the formation of a
quasibound state, which couples to the conduction subband �see
inset in �b� for a sketch�, giving rise to a Fano line shape in G0. Both
the position and broadening of the dip are tuned with �. �b� Charg-
ing energy U normalized to the coupling broadening � as a function
of � for different �. Data sets are obtained using a perturbative
expression and LSDA for e2 /�l0=��0.
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Physically, the system we consider is characterized by just
two parameters: �, the intensity of the Rashba field, and �,
the length where this is active in the quantum wire �see inset
of Fig. 1�b��. Importantly, the parameters governing the
Hamiltonian �2�, U	U�� ,��, V0	V0�� ,��, W	W�� ,��,
and 
�� ,��, can be externally controlled by changing both �
and �. The Rashba phase 
=k��, with k�=m� /�2, is the
total phase gained by an electron traveling from the left to
the right side of the Rashba dot.

III. LINEAR CONDUCTANCE

Once we have established, in the previous section, that in
a quantum wire with a localized Rashba interaction Kondo
physics can arise, now we derive the transport properties for
such a system.

The electrical current is derived from the time derivative
of the quantum occupation of the conduction electrons on the
left side of the Rashba dot:

IL = ed
NL�/dt = �ie/��
�H,NL�� , �6�

where NL=�k�cLk�
† cLk�. In terms of the nonequilibrium

Green functions GLR�
� = i
cRk�

† cLk�� and Gd�̄,L�
� = i
cLk�

† d�̄�, the
current reads

IL =
2e

h
Re�

k�
� d	�Weis�
GLR�

� �	� + V0Gd�̄,L�
� �	�� . �7�

After some algebra, the current traversing the system can be
written in terms of the transmission as

I = 
 e

h
��

�
� d	T��	��fL�	� − fR�	�� , �8�

where fL�R� is the left �right� Fermi function and the trans-
mission reads

T��	� = Tb + 2�TbRb cos�s�
��̃ReGd�̄
r �	�

− �̃��1 − Tb cos2�s�
�� − Tb�ImGd�̄
r �	� . �9�

In Eq. �9�,

Tb = 4x2/�1 + x2�2 �Rb = 1 − Tb� �10�

is the background transmission with x=�W� �� is the den-

sity of states �DOS� of the conduction electrons�, and �̃
=� / �1+x2� with �=�V0

2�. Gd�
r is the retarded Green func-

tion for the Rashba dot. This Green function is determined
by calculating its self-energy, which takes into account the
single-particle self-energy due to tunneling and the many-
body effects enclosed in the interacting self-energy �int�	�:

Gd�
r �	� =

1

	 − 	0� + i�̃ − �int�	�
. �11�

Notice that Eq. �9� is equivalent to the transmission obtained
in Refs. 19 and 20 for the closed AB interferometer since

cos�s�
� = cos�
�, Gd�
r = Gd�̄

r , �12�

whenever the spin degeneracy is not broken. In linear re-
sponse, the conductance is just

G0 	 lim
V→0

dI

dV
=

2e2

h
T�EF� . �13�

The spin-degenerate transmission at the Fermi energy T�EF�
can be written in an extended Fano form as

T�EF� = Tb

�� + q�2

�2 + 1
, �14�

with a complex Fano parameter

q =� 1

Tb
��Rb cos 
 + i sin 
� , �15�

and

� =
2�EF − 	0 − Re�int�EF��

�̃ − Im�int�EF�
. �16�

Importantly, q is complex even though the Rashba interac-
tion is time-reversal invariant. This is in clear contrast with
the Aharanov-Bohm case, where the complex Fano factor is
usually attributed to the broken time-reversal symmetry by
the magnetic field.24 Therefore, further investigation should
be necessary to clarify the general conditions for the appear-
ance of a complex Fano factor.25

A. Zero temperature: Friedel-Langreth sum rule

At kBT=0, the quasiparticles in an interacting system �a
Fermi liquid� possess an infinite lifetime, meaning that the
imaginary part of the interacting self-energy vanishes, i.e.,
Im�int�EF�=0. According to this, the Friedel-Langreth sum
rule26 relates the scattering phase shift �, picked up by the
electrons when hopping, with the total quantum occupation

n�=��
n�� of the interacting system,

� =
�
n�

2
. �17�

The quantum occupation for the interacting system at T=0
can be easily obtained in terms of �,


n� =
2

�
cot−1 � . �18�

As a consequence, the transmission at the Fermi level, T�EF�,
can be cast in terms of � only. Moreover, in the pure Kondo
regime, the dot level is renormalized by the interactions and
pinned at the Fermi energy, i.e.,

	0 + Re�int�EF� = EF, �19�

giving rise to the Kondo resonance. As a result, the occupa-
tion per spin in the pure Kondo regime does not fluctuate and
remains constant: 
n��=1/2. This fact implies that the linear
conductance has a simple form:20

G0 =
2e2

h
�1 − Tb cos2 
� . �20�

Unlike the AB interferometer where 
 is constant, now the
phase changes with the Rashba intensity. This means that
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while the Kondo regime for the AB interferometer shows a
globally reduced linear conductance, independently of the
gate position,19,20,27 for the Rashba dot the hallmark of the
Kondo effect consists of an oscillating G0 with �, due to the
variation of 
.

B. Finite temperature

For finite kBT, the Friedel-Langreth sum rule does not
hold and the Green function for the Rashba dot has to be
derived explicitly. For that purpose, we make use of the
equation-of-motion technique.28 This method is based on dif-
ferentiating the dot Green function with respect to time gen-
erating higher-order Green functions that are approximated
following a truncation scheme. Here, we choose Lacroix’s
approximation,28 which goes beyond mean-field theory to
include Kondo correlations, evaluating the self-energies in
the wide-band limit:

Gd�
r �	� =

1 − 
n�̄�

	 − 	0 − �0 − �int
�1� +


n��
	 − 	0 − U − �0 − �int

�2� ,

�21�

where

�0 = − i�̃�1 − ix cos 
� , �22�

�int
�1��	� =

U�̄�	�

	 − 	0 − U − �0 − �̄1

, �23�

�int
�2��	� = −

U��1 − �̄�	��

	 − 	0 − �0 − �̄1

. �24�

By defining

��	� = ��1

2
− i�

	 − �2	0 + U�
2�

� − �
1

2
− i�

	

2�
� − i� ,

�25�

where � is the digamma function, D is the bandwidth for

the DOS in the leads, and �=1/kBT, we have �̄�	�
= ��̃ /����	��1+�x cos 
�. Here, �̄1=−2i�̃�1+x cos 
�. Us-
ing this result for the Rashba dot Green function in Eq. �9�,
we can calculate the linear conductance and explore both the
Coulomb blockade and the Kondo regimes.

IV. RESULTS

For a noninteracting quantum wire �U=0� with a local
Rashba region �see inset in Fig. 1�, G0 versus EF is shown in
Fig. 1�a� for three different values of �. Here, the formation
of the Rashba dot can be seen in the appearance of an anti-
resonance located at the end of the first plateau.11 Our next
question is about the strength of U and how this can affect
the previous results. With a finite U, the transport through a
singly occupied quantum dot is blockaded due to the energy
cost required to charge the dot with another electron. To
overcome this situation and restore the transport, the band

bottom of the dot must be pulled down by applying an ex-
ternal gate. For the present case of a Rashba dot, the same
effect is accomplished by increasing �. This is the so-called

Coulomb-blockade regime that arises whenever U��̃
�kBT. At very low temperatures kBT�kBTK, the Kondo ef-
fect occurs because of a strong U in a quantum dot strongly
coupled to the leads.14 In this regime, the formation of a
singlet state between the itinerant electrons and the localized
electron in the quantum dot opens a channel of unitary
transmission.15 In our system, we check that these two re-
gimes can be reached for typical values of �. Figure 1�b�
displays a calculation of U /� obtained from two different
approaches. First, we use a perturbative expression,

Upert = −
e2

�
� dr�dr�

��0�r���2��0�r���2

�r� − r��
, �26�

where �0�r�� is the wave function of the induced bound state
by the Rashba interaction and � is the material permittivity.
In this way, U is the bare Coulomb interaction, which does
not include screening effects due to the presence of the rest
of the charges. To perform a more realistic calculation of U
taking into account screening effects, we employ the stan-
dard local spin-density approximation �LSDA�.29 In spite of
the different approaches used to determine U, one clearly
sees that both calculations lead to similar results for U. In-
deed, U is quite large. This means that the effects of a finite
U cannot be ignored and, as a result, this changes dramati-
cally the transport properties of this system. Notice that for
��0, our calculation for U fails since the wave function in
the Rashba dot is now well extended along the quantum wire
and not only in the Rashba region. In that case, the on-site

interaction becomes very weak U / �̃→0 and the noninteract-
ing theory11 can be safely applied. Hereafter, we consider
only situations where the Rashba coupling takes values in the
range ��0.5–1 �see Fig. 1�b��.

First, we analyze the effect of a finite U that carries this
system into the Coulomb-blockade regime for kBT�kBTK,

and the Kondo regime when −U+EF+ �̃�	0�EF− �̃ and
kBT�kBTK. Typically, in a conventional quantum dot, the
charging energies for observing correlation effects are in the
range of 0.5–1 meV, with tunneling couplings lying be-
tween 100 and 300 �eV.16 This implies the ratio U /�
�3–10, which can easily be achieved in our device �see Fig.
1�b��.

Figure 2 displays G0 versus 	0 /U for two different values
of � calculated in the Hartree-Fock approximation,28 where
�int

�1��	�=�int
�2��	�=0 in Eq. �21�, neglecting in this way the

correlation effects in the leads. As we mentioned before, �
plays the role of the gate voltage and controls the level po-
sition 	0 /� that depends at the same time on �. The upper
inset of Fig. 2 shows such dependence for �=1 and �=2. At
these level positions �or their corresponding values of � and
��, G0 consists of two asymmetric Fano resonances located
approximately at

	0
�1� � − �0 = ��̃/2�x cos 
 ,

LÓPEZ, SÁNCHEZ, AND SERRA PHYSICAL REVIEW B 76, 035307 �2007�

035307-4



	0
�2� � − U − �0 = − U + ��̃/2�x cos 
 . �27�

These two antiresonances �the resonance at 	0�EF is seen in
Fig. 2 only partially because 	0

�1��0 for that value of 	0�
arise from the interference between the nonresonant path
with the two resonances corresponding to the degenerate
points, in which the transport through the Rashba dot is en-
ergetically allowed. At these points, the dot occupation 
n��
fluctuates from 0 to 1/2 for values of the gate close to 	0

�1�

and from 1/2 to 1 at values close to 	0
�2�, as seen in the lower

inset of Fig. 2. Remarkably, the position of the Fano reso-
nances is not very sensitive to a change in � since this only

changes the Rashba phase 
=k��. We recall that U��̃ and
that, typically, for quantum wires x�1 �Tb�1�. However,
we anticipate that in the Kondo regime a change in � dra-
matically modifies G0.

Our results for the Kondo regime in the kBT=0 limit are
shown in Fig. 3�a�. One might naively think that the “pla-
teau” seen in Fig. 2 between Coulomb-blockade resonances
�which amounts to a “valley” in a quantum dot� should de-
crease due to destructive interference with the nonresonant
path, i.e.,

G0 =
2e2

h
�1 − Tb cos2 
� � 0 for Tb � 1, �28�

as occurs in the AB interferometer.19,20 Nevertheless, we see
that G0 versus 	0 /U for �=1 has a strong dependence on the
gate voltage. The dependence is stronger for �=2. This is

due to the fact that 
 is an implicit function of 	0 through �.
To confirm this, we plot in Fig. 3�b� G0 as a function of � for
values of �=1,2. Clearly, G0 in the Kondo plateau is an
oscillatory function of �, with the number of oscillations of
G0 being proportional to �. Finally, in Fig. 3�c� we show the
total transmission when 	0 /�=−1.5 for different background
transmissions, using the expression of the Rashba dot Green
function given by Eq. �21� that includes Kondo correlations.
We see that the Kondo effect arises as a Fano-like resonance
pinned at �EF due to its interference with the nonresonant
path. As Tb is enhanced, the Kondo dip is shifted toward
higher transmission values. This demonstrates that the T de-
pends not only on U and �̃ but also on the details of the
nonresonant channel via the self-energy.

V. CONCLUSIONS

In short, a quantum wire with a local Rashba field can
sustain a Kondo resonance, since a quasibound state emerges
from the higher subband due to the Rashba interaction. This
state is spin degenerate, it strongly couples with the con-
tinuum, and our results show that considerable repulsion en-
ergy results from charging the dot. The conductance reso-
nances in the Coulomb-blockade regime have a Fano form,
while in the strong coupling regime, we predict an oscillating
G0 as a function of the Rashba strength. We hope that our
work sheds light on the relative influence of spin-orbit and
electron-electron interactions in nanostructures.
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sions �from bottom to top: x=0.8, 0.85, 0.9, and 0.95� for �=1,
	0=−1.5�, U=7�, and kBT=0.05�.
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