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We calculate the low-energy elementary excitations of a Bose-Einstein condensate in an effective magnetic
field. The field is created by the interplay between light beams carrying orbital angular momentum and the
trapped atoms �G. Juzeliūnas et al., Phys. Rev. A 71, 053614 �2005��. We examine the role of the homoge-
neous magnetic field, familiar from studies of rotating condensates, and also investigate spectra for vector
potentials with a more general radial dependence. We discuss the instabilities which arise and how these may
be manifested.
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I. INTRODUCTION

Quantum degenerate gases are in many ways the ideal
quantum many-body system. In an experimental situation
they afford an unprecedented level of control over the system
parameters, such as the strength �and even sign� of the inter-
action between the atoms, the geometry of the external trap
and the properties of the lattice in which the atoms are
loaded. It is no surprise therefore that Bose-Einstein conden-
sates �BECs� and degenerate Fermi gases are often used as a
laboratory to study a host of phenomena from many different
areas of physics. This is especially true in condensed matter
physics; for example, ultracold atoms in an optical lattice can
be studied using the Hubbard model �1�. Similarly, a system
of trapped fermions tightly confined in one direction invites
obvious comparisons with the two-dimensional �2D� electron
gas �2�.

Without doubt, some of the most striking effects in solid
state physics are observed when an external magnetic field is
applied to a collection of charged particles. Well-known ex-
amples include the quantum Hall effects in 2D electron gases
and the Meissner effect in type-II superconductors. As the
atoms forming quantum gases are electrically neutral, it is
not obvious at a first glance how they might be used to study
such effects.

The solution lies in the ability to create artificial magnetic
fields. For example, rotating the system and studying it in the
rotating frame is analogous to studying charged particles in a
homogeneous magnetic field �3–5�. Alternatively, lasers can
be used to alter the state-dependent tunneling amplitudes of
atoms in an optical lattice to simulate an effective magnetic
flux �6–8�.

A recent proposal involves the adiabatic motion of
lambda-type three level atoms interacting with laser fields
which create a nondegenerate dark state, that is, an eigenstate
of the atom-laser interaction. It has been shown that if the
atoms interact with a pair of laser beams possessing a rela-
tive orbital angular momentum �9,10�, then an effective vec-

tor potential appears in the effective equation for the atomic
wave function �11,12�. The corresponding effective magnetic
field created is entirely dependent on the form of the incident
light, so that by appropriately choosing the light’s phase and
intensity we can control both the strength and shape �homo-
geneous or inhomogeneous� of the effective magnetic field.
The inherent flexibility of the system allows for wide-
ranging studies into the magnetic properties of both degen-
erate Bose and Fermi gases, and could provide insight into
gauge theories in general.

It is therefore pertinent to gain an understanding of how
the fundamental properties of the gas may be modified in the
presence of artificial magnetic fields. A complete analysis
must include the excitations, which determine the dynamical
behavior of the system under weak perturbation and are cru-
cial in determining its superfluid properties. Of particular
interest are the lowest energy �or elementary� excitations,
which are collective in nature. In this paper we calculate the
spectra for a trapped 2D BEC in both homogenous and non-
homogeneous magnetic fields, which are created as de-
scribed in Ref. �11�. Two-dimensional quantum gases have
recently attracted a considerable interest in connection with
the Kosterlitz-Thouless transition �13� and the quantum Hall
effect in clouds of ultracold atoms �see Ref. �2�, and refer-
ences therein�.

The paper is organized as follows. In Sec. II a brief de-
scription of the model is given and in Sec. III we outline how
the excitations are calculated. As the interaction between the
light and atoms introduces two effective potentials—a vector
potential and also a scalar potential—and both have a signifi-
cant role to play in the dynamics and excitations, we present
our results in two parts. In Sec. IV we assume the external
trap has been chosen to counteract the effect of the additional
effective trap so that the potential felt by the atoms is com-
pletely harmonic. This allows us to isolate the role of the
magnetic field alone on the excitations. Then in Sec. V we
include the full effective trapping potential terms and study

PHYSICAL REVIEW A 76, 053626 �2007�

1050-2947/2007/76�5�/053626�8� ©2007 The American Physical Society053626-1

http://dx.doi.org/10.1103/PhysRevA.76.053626


the excitations numerically. Finally in Sec. VI we discuss
and summarize the main results.

II. THE MODEL

We consider a system of three-level atoms characterized
by two hyperfine ground levels �1� and �2� and an electroni-
cally excited level �3� interacting with two copropagating
resonant laser beams in an electromagnetically induced
transparency �EIT� configuration �Fig. 1�. The probe beam,
which has coupling strength �p and is allowed to have an-
gular momentum l� per photon along the z axis, drives the
transition �1�→ �2�, while the control beam has coupling
strength �c and is concerned with the transition �2�→ �3�.
These absorption paths destructively interfere to suppress
transitions to level �3�, driving the atoms to the dark state
superposition of levels �1� and �2�: �D�= �1�−��2�

�1+���2
, where �

=
�p

�c
= �

�p

�c
�eiS and S is the relative phase between the probe

and control beam. If the atoms in the dark state form a BEC,
then the coupling between the light and the atoms introduces
an effective vector potential into the mean-field equation for
the atomic wave function � �11�:

i�
��

�t
=

1

2M
�i� � + A�2� + V�r�� + g���2� , �1�

where

A = − �
���2

1 + ���2
� S �2�

and

V = Vext +
�2

2M

���2��S�2 + ������2

�1 + ���2�2 �3�

are, respectively, the effective vector and trapping potentials.
The external trapping potential for the dark state atoms is

Vext =
V1 + ���2V2

�1 + ���2�2 , �4�

where Vj is the trapping potential for the atoms in hyperfine
state j �j=1,2�. The atomic interactions, which involve col-

lisions between atoms both of the same and of different elec-
tronic state, can be described by a single parameter �11�

g =
g11 + 2g12���2 + g22���4

�1 + ���2�2 . �5�

Here, gij =
4��2aij

M , where aij is the s-wave scattering length
between atoms in the levels i and j �i , j=1,2�: ajj is the
scattering length of atoms in the same electronic state and
a12=a21 corresponds to collisions between atoms in different
electronic states. Note that in general the interactions can
depend on position since � is position dependent. However,
if � is small or alternatively if the interspecies and intraspe-
cies scattering lengths are equal then g is approximately con-
stant throughout the condensate. We shall assume this to be
the case for the remainder of this paper.

For the purposes of our analysis it is convenient rewrite
Eq. �1� in the form

i�
��

�t
= �−

�2

2M
�2 + Ṽ + g���2 +

i�

M
A · �	� , �6�

where Ṽ�r�=V+ �A�2
2M . For the examples considered � ·A=0 so

this equation is equivalent to Eq. �1�.
As can clearly be seen from Eq. �2�, a nonvanishing ef-

fective magnetic field is created if there is relative orbital
angular momentum between the two light beams, such that
the phase of the dimensionless ratio � is given by S= l�,
where � is the azimuthal angle. The shape of the effective
vector potential is controlled by the intensity ratio of the
probe and control beams. We choose ���2= �

�p

�c
�2=�0� r

R
��+1,

where the dimensionless parameter �0 is the ratio of probe to
control beam at a characteristic radius r=R which is chosen
to be larger than the radius of the trapped cloud. The exact
forms of the resultant effective vector and trapping potential
are then

A = −
�l

R

�0� r

R
	�

1 + �0� r

R
	�+1e� �7�

and

Ṽ = Vext +
�2

2MR2


l2 +
1

4
�� + 1�2��0� r

R
	�−1


1 + �0� r

R
	�+1�2

+
�2

2MR2

l2�0
2� r

R
	2�


1 + �0� r

R
	�+1�2 . �8�

In order for the adiabatic dynamics to hold, so that the
atoms remain in the dark state for a typical BEC lifetime,
requires, typically, the ratio ���2	1 and hence �0	1 �11�. If
�0
1 we can safely replace Eqs. �7� and �8� by the approxi-
mate potentials

FIG. 1. �Color online� Method for creating effective magnetic
fields in degenerate atomic gases. On the left is the level scheme for
the �-type atoms interacting with the resonant probe beam �p and
control beam �c. On the right is a schematic representation of the
experimental setup with the two light beams incident on the cloud
of atoms. The effective magnetic field is generated if there is rela-
tive angular momentum between the beams. This will occur, for
example, if the probe field is of the form �p�eil�, where each
probe photon carries an orbital angular momentum �l along the
propagation axis z, and �c is independent of the azimuthal angle.
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A = −
�l

R
�0� r

R
	�

e�, �9�

Ṽ = Vext +
�2

2MR2
l2 +
1

4
�� + 1�2��0� r

R
	�−1

−
�2

2MR2 l2�0
2� r

R
	2�

, �10�

and the effective interaction strength �Eq. �5�� is constant
throughout the cloud gg11. We obtain Eqs. �9� and �10�
simply by expanding Eqs. �7� and �8� and neglecting all
higher order terms in �0, except of course the second term on
the right-hand side of Eq. �10�, because this is multiplied by
an l which can in principle be arbitrarily large.

The freedom to choose the form of the spatially varying
effective magnetic field relies on the ability to shape the
intensities and phases of the incident laser beams. Recent
advances in light beam shaping, using, for instance, spatial
light modulators, makes it possible to consider truly exotic
light beams �14�. The tightly confined or two-dimensional
gas offers in this respect a clear simplification: shaping a
light beam in a plane is much less restrictive than in three
dimensions, although 3D light shaping is certainly possible.

III. CALCULATING THE EXCITATIONS

We calculate the excitations of this system by considering
small time-dependent variations of the condensate wavefunc-
tion around the ground state ��r�, writing the wave function
as

��r,t� = ���r� + u�r�e−i�t − v*�r�ei�t�e−it/�. �11�

Substituting this into Eq. �6� and keeping only linear terms in
u and v we obtain two coupled equations analogous to the
Bogoliubov–de Gennes equations �15�

�L0 −
�m

M

A

r
	u + g���2�2u − v� = � + E�u , �12�

�L0 +
�m

M

A

r
	v + g���2�2v − u� = � − E�v , �13�

where L0= −�2

2M �2+ Ṽ and the �nonvortex� ground state satis-
fies

�L0 + g���2�� = � . �14�

These are the equations we solve to calculate the eigenfre-
quencies � and eigenenergies E=�� of the excitation modes
u and v, which satisfy the normalization condition

� dr�uaub
* − vavb

*� = �ab. �15�

In deriving Eqs. �12�–�14� we have allowed the excita-
tions to have angular momentum m� �where m
=0, ±1, ±2, . . .� by transforming u and v such that u
→ueim� and v→veim�. We assume that the ground state �
=��r� only; this is equivalent to saying that � does not cor-

respond to a vortical state. Note that a more rigorous ap-
proach for deriving the excitation equations would be to di-
agonalize the many body Hamiltonian in the Bogoliubov
approximation, expressing the fluctuation operator in terms
of quasiparticle operators �16�. The resultant equations which
must be solved are identical to Eqs. �12� and �13�.

The excitation spectrum of Eqs. �12� and �13� can be cal-
culated in the spirit of the Thomas-Fermi approximation
where the effective trap potential �which we assume to have
a harmonic ��r2� component� and the repulsive mean-field
interactions provide the dominant energy scales. In this re-
gime nmaxg���t, where nmax is the maximum conden-
sate density. We rescale the radial coordinates as �= r

L and

R̃= R
L , where L= � 2

m�t
2 �1/2 is the characteristic length scale of

the harmonically trapped condensate with trap frequency �t.
Introducing the dimensionless eigenenergies ��=

E�

��t
and the

dimensionless density n̄= ���2
nmax

, we can rewrite our equations
as

L0d
u + �2u − v�n̄ = 
1 + 2��� + �

mAd

�
	�u , �16�

L0d
v + �2v − u�n̄ = 
1 − 2��� + �

mAd

�
	�v , �17�

L0d
� + n̄� = � , �18�

with L0d
=−�2�2+ Ṽd, where, in the Thomas-Fermi regime,

the parameter �=
��t

2 
1 will allow for further simplification

of Eqs. �16�–�18�. The subscript d in Ṽd and Ad denotes that
dimensionless units are being used.

Equations �16�–�18� are reduced to two fourth order dif-
ferential equations after introducing the functions f±=u±v
and substituting n̄ from Eq. �18�:

1 − Ṽd

� +
�mAd

�

�− �2f+ + f+
�2�

�
	 +

�2

2 �− �2� 1

� +
�mAd

�
�

��− �2f+ + f+
�2�

�
	�

+
�2

2 � 3

� +
�mAd

�

�− �2f+ + f+
�2�

�
	�2�

� �
= 2�� +

�mAd

�
	 f+ �19�

and
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− �2� 1 − Ṽd

� +
�mAd

�
� f− +

1 − Ṽd

� +
�mAd

�

f−
�2�

�

+
�2

2 �− �2� 1

� +
�mAd

�
��− �2f− + 3f−

�2�

�
	�

+
�2

2 �� 1

� +
�mAd

�
��− �2f− + 3f−

�2�

�
	��2�

�
	�

= 2�� +
�mAd

�
	 f−. �20�

In the Thomas-Fermi approximation, we neglect the ki-
netic energy term �2�2� in Eq. �18� to obtain the wave func-
tion

�TF = �nmax�1 − Ṽd�, �TF � 0, �21�

which can readily be substituted into Eqs. �19� and �20�.
When considering the low-energy excitations, with wave
functions that vary over a scale comparable with the size of
the condensate, we must for consistency also neglect terms
proportional to �2 in Eqs. �19� and �20�. Then, applying the

ansatz f±=C±
��+

�mAd

�
�1/2� 1−Ṽd

�+
�mAd

�
�± 1

2 Q�� ,��, we derive in the

Thomas-Fermi regime the equation for the excitations of a
2D condensate with effective magnetic field

− �1 − Ṽd�1/2�̃2��1 − Ṽd�1/2Q� − �1 − Ṽd�
�2�TF

�TF
Q

= 2�� +
�mAd

�
	2

Q . �22�

The relation between the normalization constants C+ and C−
can be obtained from Eqs. �16�, �17�, and �22�:

C− = �C+. �23�

IV. HARMONIC EFFECTIVE TRAPPING POTENTIAL

A. Homogeneous magnetic field

By a judicious choice of external trapping potential, a

purely harmonic effective trap can be obtained, such that Ṽ
= 1

2 M�tr
2 �11�. If the ratio of control to probe intensity in the

transversal plane is of the form ��2 � �r2, then the exponent �
in Eq. �9� is 1. The effective vector potential is then

A = −
�l�0

R2 rê�, �24�

corresponding to a uniform magnetic field in the z direction,
i.e., B=��A=−

2�l�0

R2 êz. In this case, the solution of Eq. �22�
is of the form W=xm/2P�x�eim�, where x=�2 and the radial
function P�x� is the solution of the hypergeometric equation

x�1 − x�
d2P

dx2 + ��m + 1� − �m + 2�x�
dP

dx

+ �1

2
�2 − ��0lm� −

m

2
	P�x� = 0. �25�

For a physically well-behaved solution, we require P�x�
to be convergent at x=0 and converge as x→1. This yields
the spectrum

En,m = ��t�2n2 + 2n�m� + 2n + �m��1/2 +
�2

MR2�0lm ,

�26�

where n is the number of radial nodes and m the angular
momentum quantum number. This spectrum is of the same
form as that found by Ho and Ma �17� for the two-
dimensional cloud, except for the shift term proportional to
�0lm which arises due to the effective magnetic field. The
uniform effective magnetic field is thus shown to induce a
Zeeman-like shift on the energy levels, decreasing the exci-
tation energy when l and m are opposite in sign and increas-
ing it when they are the same �see Fig. 2�. The actual mode
observed should be interpreted as a superposition of the �
and −m modes, as the effective magnetic field induces a
rotation in modes with m�0. For example, if we excite the
m= ±1 dipole mode �which corresponds to a sloshing motion
along one axis� by a sudden displacement of the trap and
then switch on the effective magnetic field, the mode will
start to precess at the effective cyclotron frequency due to the
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α0�

ω
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ω
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2
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α0�

ω
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t

FIG. 2. Numerical results for the ratio of the surface mode �n
=0� excitation frequency to the trap frequency �t, plotted as a func-
tion of the effective magnetic field strength �0l for different vector
potentials with radial exponent �. A harmonic trapping potential is
used. The lines correspond to the five lowest energy surface exci-
tations, starting with the m=0 case �Goldstone mode� represented
by the lowest frequency mode at �0l=0, through m=1,2 ,3 until
m=4, the highest frequency mode at �0l=0. Each mode exhibits an
energetic instability beyond a critical �0l. The mode frequencies are
purely real, so the system is dynamically stable when the vector and
trapping potentials are radially symmetric. A full description of the
numerical method is given in Sec. V.
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additional force proportional to v�B, where v is the veloc-
ity. The observation of such a rotation in experiment could
be used to verify that the effective magnetic field is indeed
present in the setup.

Let us also highlight that as a result of our choice of
external trap, the spectrum of Eq. �26� matches that of a
rotating condensate when studied in the rotating frame, with
rotation frequency given by �=

��0l

MR2 . The stability properties
of this system have been studied extensively �see, e.g., Refs.
�18–20��.

The solutions of Eq. �25� are the Jacobi polynomials
Pn

��m�,0��1−2x� and from Eqs. �15� and �23� we obtain

f± = 
2n + �m� + 1

L2 �1/2
��1 − �2�
��0� �±1/2

���m�Pn
��m�,0��1 − 2�2�eim�, �27�

where ��0�= �2n2+2n�m�+2n+ �m��1/2 is the spectrum when
no vector potential is present.

B. Vector potential for which the magnetic field is zero

If instead the ratio of the control and probe beam intensi-
ties were constant ��=1� we would obtain the vector poten-
tial

A = − ��0
l

r
ê� �28�

in which case B=�ÃA=0 so that the effective magnetic
field is zero throughout the cloud �in the same way that a
velocity field proportional to 1 /r around a vortex still satis-
fies the irrotationality criterion for Bose-Einstein condensa-
tion�. An approximate energy spectrum can be derived by
treating the effective potential as a small perturbation in Eq.
�22�, noting that this treatment breaks down as r→0. The
effective vector potential plays the role of an additional cen-
trifugal potential. The solution of Eq. �22� is of the form W

=x1/2�m2+4��0lmP�x�eim�, where x=�2 and P�x� is governed
by a hypergeometric equation which admits a physical solu-
tion convergent at the origin and as x→1 only if

1

2
�2 − ��0lm� − �n +

1

2
	�m2 + 4��0lm� = n2 + n , �29�

from which we can obtain the excitation spectrum by solving
for �. In the perturbative regime where ���0l


�m�
4 we find

En,m = ��t���0� +
��t

2
�0l�m + �2n + 1�sgn�m��	 , �30�

where sgn�m�= +1,−1,0 for m positive, negative, or 0, re-
spectively. This is a somewhat crude approximation but, nev-
ertheless, it yields an insightful result: The effective vector
potential has significance even if the corresponding effective
magnetic field seen by the atoms is zero, reminiscent of the
Aharanov-Bohm effect. This significance is manifested in a
shift in excitation energy levels for all modes with angular
momentum �m�0�, and the magnitude of the shift now also
depends on n, the number of radial nodes. We might specu-

late that the origin of the dependence on sgn�m� may have a
topological interpretation.

C. Inhomogeneous magnetic field

We can also use a perturbative approach on Eq. �22� to
calculate the first order energy shift due to vector potentials
with ��1, which correspond to inhomogeneous effective
magnetic fields. The eigenfunctions and eigenvalues of the

unperturbed Hermitian Hamiltionian Ĥ�0�= �1−�2��2−2�
�
��

are those of the harmonically trapped BEC when no effective
magnetic field is present: Q�0�=�mPn

��m�,0��1−2�2�eim� and
��0�= �2n2+2n�m�+2n+ �m��1/2, where ��0� is degenerate with
respect to the sign of m. The first order energy corrections
due to the perturbation H�=�m�A�=

�m�0l

R̃2
� �

R̃
��−1 are the solu-

tions of the secular equation

�H++� − �r
�1� H+−�

H−+� H−−� − �r
�1� � = 0

with H±±� =�r�Q±
�0� �H��Q±

�0��, where � or � denotes the sign
of m, and the constant �r can be determined using Eqs. �15�
and �23�. The off-diagonal terms vanish, allowing us to ex-
press the first order energy shift �E=E�1�−E�0� of the surface
modes �n=0� as

�E =
�2�0lm

MR2

2��m� + 1�
�2�m� + � + 1�

, �31�

which is plotted in Fig. 3. The perturbative results agree well
with our numerical calculations for the lowest energy exci-
tations but breaks down as we increase n and m as would be
expected since these excitations are no longer slowly varying
in space.

In contrast to the case of homogeneous effective magnetic
fields we note that the magnitude of the energy shift depends

analytic
numerical

1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

0.06

ν

∆
ω
/ω

t

m=1 (perturbative)

m=1 (numerical)

m=2 (perturbative)

m=2 (numerical)

FIG. 3. �Color online� Frequency shifts for the m=1 and m=2
modes due to the presence of the effective magnetic field as a func-
tion of �, the radial exponent in the vector potential �Eq. �9��. The
numerical results are obtained using Eqs. �16�–�18� and the pertur-
bative results correspond to Eq. �31�. All frequency shifts are in
units of the harmonic trap frequency �t, and the parameters used
were �0l=−1 and �2=0.001, which describes a condensate well in
the Thomas-Fermi regime.
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on the radial node index n. The effective magnetic field does
not, however, affect the purely compressional �n�0,m=0�
modes with zero angular momentum.

The observed shift on the excitation energy levels is re-
duced as we increase the exponent term � in the vector po-
tential from 1. This is not surprising as the radial coordinate
� is �1 and therefore for larger � the effective magnetic field
becomes more concentrated at the edge and permeates less to
the center of the cloud. As a consequence, the critical �0l for
energetic instabilities to occur increases as the exponent � is
increased. However, the perturbative treatment is valid only
for E�1�

�E 
1 and so cannot be used to predict energetic insta-
bilities. These instabilities can be inferred from the numeri-
cal calculations of the spectra shown in Fig. 2. In Fig. 4, we
plot for the first six surface modes the critical value of �0l,
that is, the strength of effective magnetic field at which the
excitation energy becomes negative. The critical values for
the higher surface modes, which are localized towards the
surface of the cloud ��=1�, are approximately equal for �
=1,2 ,3 ,4. This reflects the fact that the effective magnetic
field is the same to first order in an expansion around �=1
for all ��1, in the region where the high m modes are lo-
calized. A full description of the numerical method used to
calculate the mode frequencies and instabilities is given in
the next section.

V. FULL EFFECTIVE TRAPPING POTENTIAL INDUCED
BY THE LIGHT

We now present the results of numerical calculations used
to determine the excitations when the only assumption we
make of our external trap is that it is harmonic, and include
the additional effective trapping potential due to the interac-
tion with the light and atoms. For realistic parameter values,
with l�1 and �0�1, the effect of the trapping potential
induced by light eclipses that of the effective magnetic field,
with profound implications for the excitation spectra.

The exception is the case where �=1. If �0 is small, then
the vector potential approximated by Eq. �9� corresponds to a

homogeneous magnetic field. The second term in Eq. �10�
represents a uniform shift in the chemical potential through-
out the cloud–an effect we can ignore by setting the effective
trap minimum to zero–while the third term shifts the har-
monic trap frequency downwards. The spectrum is then the
same as Eq. �26� except that we replace the trap potential �t
such that

�t → 
�t
2 − ���0l

MR2	2�1/2
. �32�

The spectrum exhibits energetic instabilities above a criti-
cal angular momentum of the light l, as in Sec. IV. However,
this is not the case for ��1. In Fig. 5 we plot the dispersion
curves obtained for �=1,2 ,3 ,4. An analytical approach is no
longer possible when ��1, corresponding to an inhomoge-
neous effective magnetic field, and/or if the intensity ratio of
the control and probe beam is such that the inequality �0

1 is violated. In these cases we calculate the excitations
solving Eqs. �16�–�18� numerically using the exact expres-
sions for the potentials �Eqs. �7� and �8��. First, we solve the
radial version of Eq. �18� imposing first derivatives equal to
zero at r=0 and r=L, with L the domain size. To do so we
discretize the space and solve the set of coupled ordinary
differential equations using a Newton method in which the
derivatives are computed in Fourier space �21,22�. Solving
Eqs. �16� and �17� then reduces to finding the eigenvalues of
the discretized matrix associated to the linear problem �16�
and �17�. For ��2 the mode frequencies only decrease to
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FIG. 4. Critical values of �0l for the eight lowest surface modes
with mode index m, for effective magnetic fields with �=1,2 ,3 ,4.
At its critical value a given mode m is energetically unstable.
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FIG. 5. Numerical results for the ratio of the surface mode �n
=0� excitation frequency to the trap frequency �t, plotted as a func-
tion of the effective magnetic field strength �0l for different vector
potentials with radial exponent �. The trapping potential given by
Eq. �8� is used. The lines correspond to the five lowest energy
surface excitations, starting with the m=0 case represented by the
lowest frequency mode at �0l=0, through m=1,2 ,3 until m=4, the
highest frequency mode at �0l=0. Only the �=1 case exhibits en-

ergetic instabilities. Here �0=0.5, �2=0.001, and R̃=1. The number
of grid points used was 128 and the system size was L=2.56
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some value above zero until an intermediate value of l, above
which they increase monotonically with l.

VI. SUMMARY AND DISCUSSION OF MAIN RESULTS

In the studies of BECs subject to an external rotation–
equivalent to applying a homogeneous effective magnetic
field–the presence of instabilities in the excitation spectra has
been shown to play a crucial role in determining the evolu-
tion of the condensate, particularly with respect to the nucle-
ation of vortices. There are two types of instability which
ought to be considered. Dynamic instabilities are associated
with a complex excitation energy and departure from the
initial configuration due to interaction effects. The energetic
instability relates to the existence of excitations with nega-
tive energy, so that in the presence of dissipation the system
can lower its energy by going into an “anomolous” mode,
and is a prerequisite for dynamical instability �23�. The dy-
namical instability has been credited as the primary mecha-
nism for vortex nucleation in the rotating trap experiments
�18�. It has also been argued that while the dynamic instabil-
ity helps induce vortex nucleation, the actual penetration of
vortices in to the bulk is a consequence of the energetic
instability �20�.

The excitation spectra studied in this paper, both analyti-
cally and numerically do not exhibit any dynamic instabili-
ties in that we do not observe a critical effective magnetic
field at which the excitation energy becomes complex. Due
to the increased complexity of adding an inhomogeneous
effective magnetic field, however, we have restricted our-
selves to consider trapping configurations which are radially
symmetric, but dynamical instabilities will only be observed
with the introduction of an anisotropic trap �18�. Results of
numerical simulations �24�, to be published separately, show
that with the inclusion of trap anisotropy vortex nucleation
occurs in a window of dynamical instability close to �0lcrit
for the relevant surface mode. This is a feature for both ho-
mogeneous and inhomogenous effective magnetic fields.

In fully symmetric and asymmetric traps, energetic insta-
bilities, by contrast, occur readily. For all the vector poten-
tials considered in Sec. IV the numerical results display en-
ergetic instabilities beyond a critical field strength
proportional to �0l. As we increase the radial exponent � in
the vector potential we in turn must significantly increase the
probe beam angular momentum before the instability can be
observed. When the full effective trapping potential is in-
cluded the �=1 case exhibits an energetic instability but in
the vast majority of parameter space those for ��1 do not.
Only in the region where the maximum intensity ratio �0
approaches 1 do we observe instabilities in the low-energy
modes. However, it is in this region the adiabatic dynamics

most easily breaks down �11� and the model described in
Sec. II may become invalid.

Another important feature of the spectra calculated in
Secs. IV and V is the accidental degeneracies, which occur
where the mode frequencies intersect in Figs. 2 and 5. Spec-
tral degeneracies are known to cause significant enhance-
ment of nonlinear effects �25�, including mode coupling and
frequency shifting. The implications for the condensate evo-
lution depend on whether the effective magnetic field is
switched on instantly or its strength is adiabatically ramped
up to a final value. For example, a condensate in a slightly
elliptic trap subject to a homogeneous effective magnetic
field naturally undergoes m=2 quadrupole oscillations, but
the higher order modes exhibit dynamic instability �18�,
eventually leading to vortex nucleation. To properly account
for the mode coupling we would need to move beyond
Bogoliubov–de Gennes theory which does not account for
interactions between the degenerate modes �16�.

With inclusion of the full effective trap induced by the
interaction with the light we reach a scenario where there are
no accidental degeneracies as � is increased beyond 1. The
vector potential appearing in the Bogoliubov–de Gennes
equations is less important in determining the excitation fre-
quencies in comparison with the effective trap. A direct mea-
sure of the contribution of the vector potential is the splitting
of the � and −m modes. For the potentials with ��2 studied
in Sec. V, we find that the splitting is typically �5% of the
actual mode frequency if no effective magnetic field were
present. This is in stark contrast to Sec. IV where the split-
ting can easily exceed twice the mode frequency causing an
energetic instability for realistic parameter values.

In this paper we have deliberately paid particular attention
to the surface modes �n=0, m�0�, which are naturally ex-
cited by adding the effective magnetic field to an anisotrop-
ically trapped condensate �24�. For the inhomogeneous effec-
tive magnetic fields considered, vortex nucleation will be
inhibited due to the dominance of the trapping potential in-
duced by the light. In general, it is the ratio of the cyclotron
frequency to the effective trapping frequency which drives
the dynamics of the system, and both of these depend on �0l.
It is therefore often desirable to introduce a counter potential
to act against the additional trapping terms due to the inter-
action with the light, as described in Sec. IV.
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