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Abstract: Semiconductor ring lasers display a variety of dynamical
regimes originating from the nonlinear competition between the clock-
wise and counter-clockwise propagating modes. In particular, for large
pumping the system has a bistable regime in which two stationary quasi-
unidirectional counter-propagating modes coexist. Bistability is induced
by cross-gain saturation of the two counter-propagating modes being
stronger than the self-saturation and can be used for data storage when the
semiconductor ring laser is addressed with an optical pulse. In this work we
study the response time when an optical pulse is injected in order to make
the system switch from one mode to the counter-propagating one. We also
determine the optimal pulse energy to induce switching.
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1. Introduction

Ring lasers have been the subject of a large amount of experimental and theoretical investiga-
tions [1], ranging from fundamental studies of their non-linear dynamics [2, 3, 4], to practi-
cal applications as the ring laser gyroscope [5]. Recently,circular Semiconductor Ring Lasers
(SRLs) have been investigated due to their peculiar two-mode dynamical properties arising
from the nonlinear interaction between the clockwise (CW) and counter-clockwise (CCW)
propagating modes [6]. For practical applications it is necessary to be able to extract the light
from the system which can be done using for example a y-junction output coupler [7]. The
output coupler itself induces further interaction betweenthe two counter-propagating modes.
Therefore, to properly model the dynamics of this system, itis necessary to take this backscat-
tering into account. A suitable dynamical model was introduced in Ref. [8] and its parameters
were carefully fitted from the experimental results. Close to the laser threshold both modes
coexist with the same stationary power. Increasing the pump, the system enters in oscillatory
regime in which the intensity of both modes oscillates in antiphase. Finally for larger pumps
the system enters in a bistable regime in which two stationary quasi-unidirectional counter-
propagating modes coexist [8]. Bistable operation has beendemonstrated in several structures
beyond circular SRL [8], such as triangular SRL [9], double SRL sharing the same active ele-
ment [10], and passive silicon rings [11, 12]. Recently, thestudy of bistability in a tandem of
two SRLs [13] unveiled highly appealing features for applications in all-optical switching and
optical memories.

However, while most of the previous studies have focused on the characterization of the
stationary states of the system there is a lack of studies about the transient response of SRL
when it is addressed with an optical pulse. Therefore, little is known about the intensity or
the duration required for the pulse in order to induce a successful switching. Neither the time it
takes the system to switch from one mode to the counterpropagating one has been characterized.
These issues are extremely relevant for the envisioned applications.

In this work we study the response of a SRL operating in the bistable regime when a coherent
optical pulse is injected in order to induce a switch from oneof the quasi-unidirectional mode
to the counter-propagating one. We include the presence of spontaneous emission noise in our
modeling. We perform a statistical analysis of the time it takes the system to start emitting in
the other mode after the pulse has been applied (switching time). We also analyze the energy
the pulse should have in order to induce switching. Furthermore, pulses of several shapes are
considered to elucidate that, in order to induce switching,the relevant characteristic of the pulse
is its integrated energy rather than its amplitude or duration.

2. Model

The theoretical analysis of the two-mode ring laser is basedon a set of dimensionless semi-
classical Lamb equations for the two (slowly varying) complex amplitudes of the counter-
propagating fieldsE1 Clockwise (CW mode) andE2 Counter Clockwise (CCW mode), which
has provided a good quantitative description of the two-mode dynamics in SRLs [7, 8]. The
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equations read:

Ė1,2 =
(1+ iα)

2

[

N(1−s|E1,2|
2−c|E2,1|

2)−1
]

E1,2

−(kd + ikc)E2,1 +
τp

τin
F1,2(t)+

√

β τpNζ1,2(t) (1)

whereα accounts for phase-amplitude coupling and the self and cross saturation coefficients
are given bysandc, respectively; the parameterskd andkc represent the dissipative and conser-
vative components of the backscattered field, respectively. The termF1,2(t) represents resonant
(zero-detuning) optical injection in the two modes, and it will be used to trigger the switching.
Formally, this term is introduced according to the standardtheory of injection in semiconductor

Fig. 1. Geometry of the SRL device and the injection scheme.

laser [14, 15],τp is the photon lifetime andτin the flight time in the ring cavity. The practical
implementation of the optical injection is sketched in Fig.1. The last term of Eq.(1) represents
spontaneous emission noise;β = 5 · 10−3 ns−1 represents the fraction of the spontaneously
emitted photons coupled to mode 1 or 2.ζ1,2 are two independent complex Gaussian random
numbers, with zero mean〈ζi(t)〉 = 0 and correlation〈ζi(t)ζ ∗

j (t
′)〉 = 2δi j δ (t − t ′). The carrier

densityN obeys the rate equation for semiconductor lasers,

Ṅ = γ
[

µ −N−N(1−s|E1|
2−c|E2|

2)|E1|
2−N(1−s|E2|

2−c|E1|
2)|E2|

2] (2)

whereµ is the dimensionless pump (µ ∼ 1 at laser threshold). In the set (1)-(2) the dimension-
less time is rescaled by the photon lifetimeτp. The parameterγ is the ratio ofτp over the carrier
lifetime τs.

3. Steady state solution and bistability

In order to perform a steady state analysis, we study the set of Eq. (1)-(2) without the optical
injection and spontaneous emission terms. The equation (1)becomes:

Ė1,2 =
(1+ iα)

2

[

N(1−s|E1,2|
2−c|E2,1|

2)−1
]

E1,2− (kd + ikc)E2,1 (3)

We consider a SRL with 2-µm-wide single-transverse-mode ridge waveguides in a double-
quantum-well GaAs/AlGaAs structure with 1-mm ring radius.The estimated parameter values
for this device are [7]:α = 3.5, s= 0.005,c = 0.01, kc = 0.0044,kd = 0.000327,γ = 0.002,
τp = 10 ps andτin = 0.6 ps.

The stationary solutions of the set (2)-(3) can be expressedin the form E1,2 =
Q1,2exp(iωt + iφ1,2), and the corresponding value forN. Fig. 2 shows the bifurcation dia-
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Fig. 2. Bifurcation diagram for the field intensitiesQ2
1,2(t). Symbols indicate the extrema

of the field intensities in the oscillatory regime: open circle (square) represent the maxima
(minima) of bothQ2

1(t) andQ2
2(t). The stable steady states are denoted by thick black lines,

and unstable steady states by grey dashed lines.

gram for the parameters considered here. Atµ ∼ 1 laser oscillation takes place. The presence
of dissipative backscattering (kd) favors the presence of two steady state symmetric solutions
(Q1 = Q2 = Q) just above threshold, despite the presence of strong cross-saturation between
the two modes [7]. These two symmetric steady states have thesame field amplitude and carrier
inversion:

Q2 =
N−1+kd

(c+s)N
(4)

N =
µ

1+2Q2−2(c+s)Q4 (5)

but they differ in the relative phase between the CW and CCW modes (Φ = φ2 − φ1). The
In-Phase Symmetric Solution (IPSS) corresponds toΦ = 0 while the Out-of-Phase Symmetric
Solution (OPSS) corresponds toΦ = π. Since we are considering a positive value ofkd, the
OPSS is the stable symmetric solution. The OPSS solution exists for any value of the pump
above the threshold. However, it is not always stable. In Fig. 2 we have plotted the OPSS with
a solid black line from the laser threshold toµ ∼ 1.5. At this current the OPSS is destabilized
to a Hopf bifurcation. We have indicated the unstable OPSS with a straight grey dashed line.
The Hopf bifurcation leads to the emergence of a oscillatorybehavior in which the CW and the
CCW modes coexist. The intensity of both modes oscillate with the same amplitude but are in
antiphase. The oscillations are driven by the conservativepart of the back-scattering coefficient
kc, and represent a dynamic competition between the two counterpropagating modes. We have
determined the limit cycle from numerical integration of Eq. (2)-(3). We represent the maxima
(minima) of the oscillating modal intensities by open circles (squares). This oscillatory behavior
is stable up toµ ∼ 2.6.

We now turn back to the OPSS solution, which although it is unstable its further bifurcations
are important for the behavior at large pump values. Atµ ∼ 2.0, two unstable asymmetric solu-
tions emerge at a pitchfork bifurcation from the unstable OPSS and they coexist with the stable
limit cycle. We have obtained the asymmetric steady states by solving the right hand sides of
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Eq. (2)-(3) equated to zero with a Newton-Raphson method. These two stationary states con-
sist in laser emission mainly concentrated in one propagation direction, i.e. quasi Clockwise
(qCW) or quasi Counterclockwise (qCCW). In the qCW steady state the CW intensity takes
a value on the upper branch while the CCW intensity takes a value in the lower branch. The
qCCW steady state corresponds to the opposite situation. The contrast factor between the two

modesC = |E1|
2−|E2|

2

|E1|2+|E2|2
increases withµ from the pitchfork bifurcation. Because the asymmet-

ric stationary states are initially unstable, we have plotted them with grey dashed lines from
µ ∼ 2.0 up to µ ∼ 2.6. At this current value the stable limit cycle loses its stability and the
asymmetric stationary solution becomes stable (denoted assolid lines). For high pump values,
the strong cross-saturation between the two counterpropagating waves tends to favor the quasi-
unidirectional behavior. In this regime the device shows bistability between the two asymmetric
solutions, and we refer to it as thebistable regime. This bistability between counterpropagating
modes can be used for data storage when the SRL is addressed with an optical pulse. In the
next section, we quantify the speed of and the necessary pulse energy to achieve successful
data storage. We should note that as the cross-saturation parameterc tends tos the pitchfork
bifurcation moves towards infinite pumping values. Therefore, a large cross-saturation value is
required to have bistability.

4. Switching

In the bistable regime, if no injection is applied, the system relaxes to one of the two counter-
propagating quasi-unidirectional stable states (qCW and qCCW) discussed in the previous sec-
tion. Applying a pulse whose propagation direction is the opposite to the one of the dominating
mode, it is possible to induce a switching from the original steady state to the other one. We
chose as an optical trigger a pulse of the formF1,2 = Aexp(−t/τ), characterized by the pulse
amplitudeA, and the pulse decay timeτ. The trigger amplitudeA is in general complex, due
to the (constant) dephasing accumulated by the external field in the optical wave guide outside
the laser cavity. However, it is known that such associated phase does not affect the injection
properties [15], and we assumeA to be real.
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Fig. 3. Time traces of the dynamic variables under pulsed optical injection operation condi-
tions. Upper panel: dimensionless trigger amplitude|F1(t)| (blue), and|F2(t)| (red). Middle
panel: dimensionless SRL modal amplitudes|E1(t)| (blue), and|E2(t)| (red). Lower panel:
carrier. The trigger characteristics:A = 0.1, τ = 0.1T, T = 10 ns.µ = 3.0, corresponding
to C∼ 0.85.
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We have numerically integrated Eqs (1)-(2) through the second order Heun algorithm [16].
The optical injection was a stream of 1000 trigger pulses (alternating the CW and CCW) at a
constant rate of 0.1 GHz to generate the statistics. Numerical simulation (see Fig. 3) show that
if the system is in the qCW (qCCW) state and a CCW (CW) pulse is applied, a switching occurs
to the qCCW (qCW) state if the switching energy exceeds a critical amount. The carriers show
relaxation oscillations which are triggered by the pulse. In the regime we are operating these
oscillations, which damp with a time constant of∼ 1 ns, die at the end of the pulse. However,
for very short trigger pulses (τ/T < 0.01) the oscillations may persist after the pulse ends (∼
1.5 ns). When a pulse is applied the response of the system is very fast. This allows for high
speed optical data storage. However, please note that the time the system takes to reach the
steady state after the switching event is longer than the response or switching time. This will
limit the time between consecutive successful switching events. In this work, we concentrate
only on characterizing the switching event.

We have computed the mean normalized cross-correlation betweenP1 = |E1|
2 andP2 = |E2|

2,
evaluated at a time delay equal to the trigger period T, that is

X(T) =
1

P̄1P̄2

1
Tmax

∫ Tmax

0
P1(t)P2(t −T)dt (6)

whereTmax = 1000T is the total integration time,̄P1 ∼ µ − 1 is the average values of the
intensity |E1|

2 when the (solitary) qCW mode is active (the same holds for theCCW mode
intensity P̄2). Note that the normalization procedure that we use allowsX(T) to be slightly
larger than one, due to the power injected by the trigger. If all the trigger pulses induce a
switchingX(T) ∼ 1, whereas if some switching events failX(T) decreases and approaches to
zero if no switchings occur. We have computed the value ofX(T) for different values of the
trigger amplitude and decay time, and the result is shown in Fig. 4. The numerical simulations
show that the shape of the pulse is not critical for the switching to occur, being the relevant
magnitude its energy, given byε =

∫ ∞
0 |F1,2|

2dt = A2 τ/2. Figure 4 shows that a transition to
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Fig. 4. Cross-correlation functionX(T), given by Eq. (6), versus the dimensionless trigger
amplitudeA and the pulse decay timeτ normalized to the pulse repetition rateT = 10 ns.
Parameters as in Fig. 3. Colorbar indicates values of the cross-correlation function.

successful switching events occurs in correspondence of aniso-energy curve for the trigger
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pulse, corresponding to a minimum (critical) switching energy εc ∼ 10f J, which has been
calculated assuming 100 mW of optical power inside the cavity, in agreement with the output
optical power and coupler efficiency measured in real devices. With the same data, and after
each pulse is applied, we calculate the time it takes the system to reach one half of the value
of the intensity of the final state (̄P1,2). This time (tR from now on) is an estimation of the
response time of the system to the trigger pulse, and characterizes the switching speed (see
Fig. 5). Due to the presence of noise,tR undergoes a statistic distribution, that we characterize

through its mean value< tR > and varianceσR =
√

< t2
R > − < tR >2 for different values of

the trigger energy. From Fig. 5 we can determine the optimal energy of the optical pulse. For
pulses with energies lower than 5 fJ the response time diverges, so one should avoid using
such pulses. Increasing the energy of the pulse beyond 5 fJ produces a very limited decrease of
the switching time, so there is little advantage in using stronger pulses. Therefore the optimal
energy of the pulse seems to be around 5 fJ. At this optimal point the switching time is found
to be below 100 ps. This result is practically independent ofthe trigger shape. The values of the
error bars, corresponding toσR, are comprised inside the symbol sizes which indicates that, for
the parameter we have considered, the fluctuations in the switching time are very small. The
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Fig. 5. Statistics of the response timetR vs dimensionless trigger pulse amplitudeA. dots:

mean value< tR >; error barsσR =
√

< t2
R > − < tR >2 for differentτ/T. Parameters as

in Fig. 3.

obtained response time is throughout much shorter than the inverse of the relaxation oscillation
frequency (τrel.ox = f−1

rel.ox, where frel.ox = 1
2πτp

√

γ(µ −1) ∼ 1GHz) for our parameter values.
This accounts for the fact that the switching itself represents an energy redistribution between
the two states of the electric field, where field-medium energy exchange processes do not come
significantly into play during the switching.

5. Conclusion

In conclusion, we have theoretically investigated the emergence of a bistable regime in a two-
mode model for a SRL. The bistability takes place between twocounter-propagating quasi-
unidirectional solutions for the electric field, which wellabove threshold are stable solutions
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due to the cross-saturation mechanism in the gain. In this bistable regime we have analyzed
the switching from one quasi-unidirectional solution to the counter-propagating one induced
by the injection of a coherent optical pulse, in view of the possible implementation of a single
SRL as an optically addressable memory element. We have found that the switching time of
the system depends mainly on the energy of the pulse rather than on its amplitude or duration.
For pulses of energy around 5 fJ the switching time is below 100 ps. It turns out that pulses of
this energy are about optimal in the sense that the switchingtime diverges for weaker pulses
and there is limited advantage in using stronger pulses (for50 fJ pulses the switching time
reduces to about 20 ps). These values are robust against spontaneous emission noise and rather
insensitive to the trigger shape (e.g. we have obtained similar results for square or gaussian
pulses). These values are expected to scale down with the device radius, due to the consequent
decreasing of the cavity flight time. In principle, faster (psor sub-ps) time scales would require
more sophisticated (e.g. traveling-wave) modeling approach, and will be the subject of future
investigations.
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