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Abstract The problem of social consensus is approached from the @etigp of
nonlinear dynamics of interacting agents in a complex ngkwSome basic con-
cepts, such as dynamical metastability, are discussee ifnaework of the proto-
type voter model. In the context of Axelrod’s model for thesdimination of culture
we describe a co-evolutionary dynamics formulation witberg results on group
formation and nonequilibrium network fragmentation andorabination transi-
tions.

1 Introduction

Nonlinear dynamics includes a set of concepts, tools andrgephenomena that are
being successfully applied to understand complex behafioatural systems and
man made devices. From this understanding new designs fooirad technology
are constantly being proposed. The study of social dynafimunsthis perspective of
nonlinear phenomena is a relatively new scientific chakeattracting an increasing
number of researchers coming from different disciplinagt &@so here, the under-
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standing of basic mechanisms operating in the nonlineaalsoteractions should
pave the way to innovative proposals to handle conflictsrayis the man made
system which is a society.

Collective phenomena emerge from the nonlinear interastiof individual
agents. The existence of thresholds or transitions bettweecollective states re-
flect an underlying nonlinear dynamics. A general class efadaollective phe-
nomena fall within what is termed consensus problems: Tlestipn is to establish
when the dynamics of a set of interacting agents that cansehamong several op-
tions (political vote, opinion, language, cultural feasiretc.) leads to a consensus
in one of these options, or when a state with several coagistbcial options pre-
vails. The former is an ordered state, while the latter itedah polarized state. An
important issue is to identify nonlinear mechanisms prauye polarized state in
spite of general convergent dynamics. The interaction anagents has two differ-
ent ingredients. The first is the mechanism by which agetgsant: the interaction
rule. It can be an imitation mechanism, a social pressurehargsm (following a
majority of neighbors), following a leader, etc. The secargtedient is the social
network, that is, who interacts with whom. The process affation of complex so-
cial networks is itself a nonlinear process. It turns out tha fact that a consensus
is reached or not depends on nontrivial ways on both ingnéslie

In this paper we address the consensus problem from thegfaiigw of nonlin-
ear interactions in complex networks. We first consider ttotgtype voter model
[1, 2] of imitation dynamics for agents with two possible iops. We describe a
phenomena of dynamic metastability that occurs in compétwarks of high di-
mensionality. There are long lived polarized states in Wisigatial domains of the
two options coexist. Secondly, we consider a model propbgédelrod [3] for the
dissemination of culture. This model can be considered asltvariable elabora-
tion of the voter model dynamics. This model, in a fixed netwof interactions,
exhibits a nonequilibrium transition between the ordened jpolarized states for a
critical value of the parameter measuring initial cultudsdersity. We analyze here
how this phenomena is modified when there is coupled dynafmiesvolution) of
the state of the agents and the links defining the social m&tWidis results in a
complex dynamics of group formation with nonequilibriuntwerk fragmentation
and recombination transitions.

2 Voter Model

The voter model is a stochastic model originated in the nma#ttieal literature [1, 2]
recently considered in a variety of situations [6, 7, 8, 9, It0s defined by a set
of agents with two possible opinions or spigs= +1 located at the nodes of a
network. The elementary dynamical step im@de-update dynamics consists in
randomly choosing one node and assigning to it the opiniospio value, of one of
its neighbors, also chosen at random. A neighbor is definad agent connected to
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the one being considered by a link of the network. This irtoa rule implements
a simple mechanism of social imitation.

The voter model dynamics has two absorbing states, comegpgpto situations
in which all the spins have converged to the- 1 or to thes = —1 consensus states.
The ordering dynamics is stochastic and driven by inteafamise. A standard order
parameter to describe the ordering process [6, 7] is theageeof the interface
densityp, defined as the density of links connecting nodes with diffiespin value.
In a disordered configuration with randomly distributednsp ~ 1/2, while for
a completely ordered system= 0. In regular lattices of dimensionality< 2 the
system orders. This means that, in an infinite large systeengtis a coarsening
process with unbounded growth of spatial domains of one@fwlo opinions. The
asymptotic regime of approach to the ordered state is cteaized ind = 1 by a

power law(p) ~ t*%, while for the critical dimensiod = 2 a logarithmic decay is
found(p) ~ (Int)~1 [4, 6]. Here the averagg) is an ensemble average.

Intuition might indicate that consensus should be reachem rfficiently modi-
fying a regular network by introducing random links that nent far away nodes of
the network (that is, creating a small-world network [11f]furns out that this intu-
ition is wrong. For networks with random connections (arsbdbr regular lattices
with d > 2), the voter dynamics does not order the system in the theéynsomic
limit of large systems [5, 7, 8, 10]. Starting from a randortiéh condition and af-
ter an initial transient, the system falls in a partially @reld dynamical metastable
state. After the initial transienp fluctuates randomly around an average plateau
valueé which gives the characteristic linear dimension of an cgdetomain of one
of the two options. In a finite system the metastable statea fiage lifetime: a finite
size fluctuation takes the system from the metastable stateet of the two ordered
absorbing states. In this process the fluctuation ordersytsEm ang changes
from its metastable plateau valueo= 0 (see Fig. 1). Note that these dynamical
metastable states are different from frozen states thatr@ven in finite systems in
other dynamical models.

Fig. 1 Interface density evo-
lution for several realizations
of voter model dynamics in a
random network.
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Such metastable states can be characterized within a méhafigroximation
focusing on the link dynamics. One finds that for a random ogtwand in the limit
of infinite system size

(k) —2
ST 1)
2((k) —1)

where(k) is the average degree of the network, that is the averageenwhheigh-
bors of a node. This result [21] establishes a one paramateryt in which the
degree of order reached by the system is determined on{ly)bg any random net-
work. Fig. 2 checks this result against numerical simufatitor different random
networks. The exponential random network is constructeich #se Barabasi net-
work [12] but with random instead of preferential attachingfimew nodes, there-
fore it has an exponential degree distribution. In the EfB&nyi network every
pair of nodes is connected by a link with probabiljty giving a Poisson degree
distribution with average connectivitk) = Np.

&=

3 Axelrod Mode

One of the crucial and yet unanswered questions in the seahces is: if people
become more similar in their beliefs, attitudes and behaagothey interact, why
doesn't this interaction lead to homogeneity? [3].

To answer this question, social scientists have been pirgpesrious mecha-
nisms. A few years ago Robert Axelrod introduced a model 3} explores the
competition between consensus and polarization, in amptteo describe how the
culture disseminates within a society. He proposed a mésimaim which people
become more alike when they interact (social influence)asn§tance in the voter
model [1, 2], but now with the possibility that the tendeneygbnverge stops before
it reaches completion. It also incorporates the idea thdhpes with more similari-
ties interact more frequently than those with less sintiEgi(homophily).



Collective Phenomena in Complex Social Networks 5

The “culture” of an individual is defined as a setffdifferent attributes, each
of which can assume one of possible traits, and they describe the individual's
features. For instance, folF = 3 features and| = 4 traits per feature, we could
have:

1. Language: English, Spanish, French, Hebrew;
2. Religion: Protestant, Catholic, Muslim, Jewish;
3. Food preference: pasta, meat, vegetables, tofu.

The basic mechanism is that neighbors who share at leaseah&é are more
likely to interact, after which they agree on another feafuireviously not shared,
thus becoming even more similar; while neighbors with nauess in common do
not interact.

This model has attracted the attention of many statisticgsigists due to its rich
dynamics and non-trivial behavior. It belongs to the cldsstachastic models that,
started from a given initial state, may or may not reach theseasus state. This
gives rise to its most intriguing feature: an order-disonden-equilibrium phase
transition as we shall explain.

3.1 Model definition and results on a square lattice

The mathematical model consists of a population of indialdiocated at the nodes
of a 2D square lattice that can interact only with its firstrfoaighbors. The culture

of an individuali is represented by af-component arra(],,f (f =1,2...,F) where

each component can take onecpdifferent vaIues((;,f =0,1...,q—1). There are,
thereforegF different possible states or type of individuals.

At each time step one individualis chosen at random, and then it randomly
picks one of its neighborg). Then one featurd is chosen randomly: 'ltif #+ ij

nothing happens but ﬁ?if = ij another featuréd’ among the non-shared ones is

chosen randomly and individuiehdopts individual'y feature Cif/ = C-f/). This last

step is equivalent to makirigand j interact with a probability equal to the fraction

of features that they shane/F, wherem=y%_; Ocf f is theiroverlapandd is the
(!

Kronecker delta function.

The model posses two competing features that lead to a velydsinamical
behavior. On the one hand, the interactions between nesiggtbors lead to more
similarity producing the formation of same-culture donsgi®n the other hand,
the incompatibility constrained between totally differeeighbors prevents global
consensus.

For a finite population, the system eventually freezes inrdigoration that de-
pends org. For smallg, the system coarsens as the neighbors tend to share the same
culture and it freezes in a state where the average size ddipest monocultural
region (Syax) is similar to the system sizZd (monocultural phase) (see fig. 3). As
g is increased beyond a critical valge (Swax)/N suddenly drops to zero meaning



Fig. 3 Average size of the
largest cultural domaifSpax)
vs q for F = 10 features and
system sizeN = 900 (cir-
cles),N = 1600 (squares) and
N = 2500 (diamonds). The
transition at the critical point
Jc =~ 55 becomes sharper as
the system size increases.

that in the final state all the regions have a size much smtalégrN (multicultural
phase).

3.2 The model in a co-evolving network

In section 3.1 we presented the original version of the madaetre individuals are
assumed to interact always with the same neighbors. Hoywead+life experience
shows that people have a tendency to select their integaptirntners according to
their evolving social preferences. In this section we preaeversion of the model
in which the interacting neighborhood of individuals chasgvith time. Individuals
drop their ties with incompatible partners and form new tigh other like-minded
individuals.

Individuals are located at the nodes of a degree-regulphgrdnere every node
has exactlyk) neighbors, and they initially take values for the featuteaadom
from 0 tog— 1. In a Monte Carlo step, an individuiahnd one of its neighborsare
randomly chosen. If their overlapis larger than zero they interact with probability

Fig. 4 Node degree distribu- F e 0q=5

tion P(k) of the co-evolving 02l OGN B i
network in the final frozen ) <«<q=13000

state for a system with = 10 i e

features, population size 015 B8 f(k<ko)= &) <ok |

N = 10* and various values
of g. The system starts from 0.1,
random network with aver-
age degreék) = 4. P(k) is
very similar to a Poissonian
(sketched in empty squares
for comparison) for all values
of g. k

P(K)
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m/F (as in the original model) and, in case of an interactionotrerlap is increased
by one. However, if the overlap is zero, theiemoves its link toj and attaches it to
a randomly chosen nodevith the condition that was not already a neighbor of

Due to the random rewiring dynamics the original networlkcglyi evolves into
a random graph with a Poisson degree distribution with @eetmnnectivity(k).
This distribution is conserved until the system freezes {igg 4).

Even though the node degree distribution seems to be indepeong, the struc-
ture of the network in the final frozen state dramaticallyetegs ong. During the
evolution nodes are grouped in different communities withiiduals sharing some
features. Thus the network gets disconnected in differetwark components of
like-minded individuals. Inside a component there are gtsaips of nodes with the
same state, that we call domains.

In order to characterize the final structure of the networlceleulated the aver-
age size of the largest compon&ats a function ol for simulations on a population
of N = 2500 individuals and = 3 features (fig. 5).

We observe that there are two transitions in the absorbatg:sa fragmentation
transition from phaséto phasd| and a recombination transition from phdseo
phaselll. In phased andll, the system is frozen and composed by a set of dis-
connected components whose size depends on the degregabfdiviersity q. For
values ofg smaller than a critical valug. ~ 85 (phasé), Sis similar to the system
sizeN (figs. 6-a and 6-b), while fog aboveq. (phasell), Sis much smaller than
N (fig. 6-c). In analogy to the characterization of non-edpilim phase transitions,
we defineqc as the the value off where the fluctuations i reach a maximum
value. The critical valuglc ~ 85 in this co-evolving network is larger that the cor-
responding valuel; ~ 55 obtained in a fixed 2D square lattice (Fig. 3). When
is above a transition poirt* (phaselll), the system reaches a dynamically active
configuration with many small domains. These domains hare@eerlap between
them and they are interconnected by links making up a lartygank component
compared to the system size, as we observe in fig. 6-d. Abewestheq* ~ % the

Fig. 5 Average relative size
of the largest network com-
ponent (circles) and largest
domain (Syax) (solid line)

in the stationary configura-
tion vsq, for F = 3 features,
N = 2500, averaged over 400
realizations. The vertical lines
at gc = 85 andg* = 1875
indicate the transition points
between the different phases.
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Fig. 6 Network structure in the final frozen configuration in phésg= 3 (a),q= 20 (b) and in
phasdl: q= 100 (c) forN = 400. (d) Snapshot of the network in the stationary activdigaration
(phasd 1) for g = 500.

initial number of pairs of nodes with at least one featuredmmon is smaller than
the number of links in the system.

The nature of both transitions can be understood by studji@glynamical ap-
proach of the system to the final state in the three phasef2@kfr details).

3.2.1 Changingtherewiringrate

In the previous section we assumed that when a pair of nodbszeio overlap

is chosen, the link between them is always rewired. We novsiden the case in
which the rewiring happens with probability Varying p is equivalent to change
the relative time scales at which the copy and the rewiringadyics occur. In the
limit of p going to zero we expect the system to behave as in the origixeltod
model, where the network is fixed. On the other limit, whpeis one we recover the
co-evolving model studied before. Thus, we should see teatrainsition pointc
shifts to higher values af asp is increased from zero. Fig. 7 shows that the critical
point for values op above 01 is very close to the critical valyg ~ 85 forthep=1
case, wherSis measured at a fixed time= 10°. To investigate this dependence,
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Fig. 7 Relative size of the
largest domain vg for values
of the rewiring probability
p=0,10%5%x10"5,0.1 and
1 from left to right,N = 1026
andF = 3 featuresS was
measured for every value of
at the same observation time 0

T =105

0.2

we calculateds for fixed g = 20 in the connected phasgand for three different
observation times. As we observe in fig. 8, for a fixed ti®&\ is close to zero for
very small values op and it increases up /N ~ 0.9 for larger values op when
the observation times are= 10% andt = 101, However this transition i seems
to disappear wheB is measured at longer times £ 10'3). We expect that if we
wait long enough the size of the largest component wouldrdsevalueS/N ~ 0.9
for any value ofp above zero. The last result means that there is a discotytiinui
the critical valuege at p = 0. For anyp > 0, the behavior oS as a function ofj is
essentially the same in the long time limit.

3.3 Summary

The voter model for opinion formation exhibits a non-triviynamical behavior
that depends on the spatial dimension of the interactingar&tof voters. In a finite
network the system always reaches the consensus state fine e fluctuations.
However, in infinite large networks, the consensus dependb® dimension. For

Fig. 8 Relative size of the
largest domain vs the rewiring
probability p for N = 1024,

F =3,q=20 and observation
timest = 108 (squares),

T = 10! (diamonds) and

T = 103 (circles). For a
long enough observation
time, (Syax)/N approaches
to the value(Smax)/N ~ 0.9
independent on the value pf
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d <2 consensus is always reached in a characteristic timeepatdis ond. Ford >
2, including random networks, the system reaches a stajictate where the two
opinions coexist. This state is characterized by the aeevafiie of the stationary
density of interfaces that monotonically increases withdkierage connectivity of
the network.

The Axelrod model for the dissemination of culture is an @uibly rich non-
equilibrium model that posses a quite interesting nonlidgaamics and it is simple
enough to be treated with traditional statistical physicdg. A phase transition from
an ordered to a disordered phase is found when the degreialfdiversity in the
population is increased above a critical value. When a adaéionary dynamics is
added to the model, the order-disorder transition stillgeays but at a larger value
dc- The network remains connected belqwy but it disintegrates in multiple small
components abowvg. (fragmentation). There is also a second transition at a much
larger valueq* where a giant network component grows agaimas increased
aboveq* (recombination). We have also found that changing the iewiate does
not affect the final result on co-evolution, it just adds aera¥l time scale to the
system. The robustness of the co-evolving model was cheickg®] under the
influence of an external noise. While in a fixed network theitzoid of a small
amount of noise has the effect of ordering the system, in avod¢ing network
the diversity is sustained even under the influence of a ssm&dinal noise; i.e, the
co-evolving Axelrod model is robust.
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