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Abstract The problem of social consensus is approached from the perspective of
nonlinear dynamics of interacting agents in a complex network. Some basic con-
cepts, such as dynamical metastability, are discussed in the framework of the proto-
type voter model. In the context of Axelrod’s model for the dissemination of culture
we describe a co-evolutionary dynamics formulation with recent results on group
formation and nonequilibrium network fragmentation and recombination transi-
tions.

1 Introduction

Nonlinear dynamics includes a set of concepts, tools and generic phenomena that are
being successfully applied to understand complex behaviorof natural systems and
man made devices. From this understanding new designs for improved technology
are constantly being proposed. The study of social dynamicsfrom this perspective of
nonlinear phenomena is a relatively new scientific challenge attracting an increasing
number of researchers coming from different disciplines. But also here, the under-
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standing of basic mechanisms operating in the nonlinear social interactions should
pave the way to innovative proposals to handle conflicts arising in the man made
system which is a society.

Collective phenomena emerge from the nonlinear interactions of individual
agents. The existence of thresholds or transitions betweentwo collective states re-
flect an underlying nonlinear dynamics. A general class of social collective phe-
nomena fall within what is termed consensus problems: The question is to establish
when the dynamics of a set of interacting agents that can choose among several op-
tions (political vote, opinion, language, cultural features, etc.) leads to a consensus
in one of these options, or when a state with several coexisting social options pre-
vails. The former is an ordered state, while the latter is called a polarized state. An
important issue is to identify nonlinear mechanisms producing a polarized state in
spite of general convergent dynamics. The interaction among agents has two differ-
ent ingredients. The first is the mechanism by which agents interact: the interaction
rule. It can be an imitation mechanism, a social pressure mechanism (following a
majority of neighbors), following a leader, etc. The secondingredient is the social
network, that is, who interacts with whom. The process of formation of complex so-
cial networks is itself a nonlinear process. It turns out that the fact that a consensus
is reached or not depends on nontrivial ways on both ingredients.

In this paper we address the consensus problem from the pointof view of nonlin-
ear interactions in complex networks. We first consider the prototype voter model
[1, 2] of imitation dynamics for agents with two possible options. We describe a
phenomena of dynamic metastability that occurs in complex networks of high di-
mensionality. There are long lived polarized states in which spatial domains of the
two options coexist. Secondly, we consider a model proposedby Axelrod [3] for the
dissemination of culture. This model can be considered as a multivariable elabora-
tion of the voter model dynamics. This model, in a fixed network of interactions,
exhibits a nonequilibrium transition between the ordered and polarized states for a
critical value of the parameter measuring initial culturaldiversity. We analyze here
how this phenomena is modified when there is coupled dynamics(co-evolution) of
the state of the agents and the links defining the social network. This results in a
complex dynamics of group formation with nonequilibrium network fragmentation
and recombination transitions.

2 Voter Model

The voter model is a stochastic model originated in the mathematical literature [1, 2]
recently considered in a variety of situations [6, 7, 8, 9, 10]. It is defined by a set
of agents with two possible opinions or spinssi = ±1 located at the nodes of a
network. The elementary dynamical step in anode-update dynamics consists in
randomly choosing one node and assigning to it the opinion, or spin value, of one of
its neighbors, also chosen at random. A neighbor is defined asan agent connected to
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the one being considered by a link of the network. This interaction rule implements
a simple mechanism of social imitation.

The voter model dynamics has two absorbing states, corresponding to situations
in which all the spins have converged to thesi = 1 or to thesi =−1 consensus states.
The ordering dynamics is stochastic and driven by interfacial noise. A standard order
parameter to describe the ordering process [6, 7] is the average of the interface
densityρ , defined as the density of links connecting nodes with different spin value.
In a disordered configuration with randomly distributed spins ρ ≃ 1/2, while for
a completely ordered systemρ = 0. In regular lattices of dimensionalityd ≤ 2 the
system orders. This means that, in an infinite large system, there is a coarsening
process with unbounded growth of spatial domains of one of the two opinions. The
asymptotic regime of approach to the ordered state is characterized ind = 1 by a
power law〈ρ〉 ∼ t−

1
2 , while for the critical dimensiond = 2 a logarithmic decay is

found〈ρ〉 ∼ (ln t)−1 [4, 6]. Here the average〈·〉 is an ensemble average.
Intuition might indicate that consensus should be reached more efficiently modi-

fying a regular network by introducing random links that connect far away nodes of
the network (that is, creating a small-world network [11]).It turns out that this intu-
ition is wrong. For networks with random connections (and also for regular lattices
with d > 2), the voter dynamics does not order the system in the thermodynamic
limit of large systems [5, 7, 8, 10]. Starting from a random initial condition and af-
ter an initial transient, the system falls in a partially ordered dynamical metastable
state. After the initial transientρ fluctuates randomly around an average plateau
valueξ which gives the characteristic linear dimension of an ordered domain of one
of the two options. In a finite system the metastable state hasa finite lifetime: a finite
size fluctuation takes the system from the metastable state to one of the two ordered
absorbing states. In this process the fluctuation orders thesystem andρ changes
from its metastable plateau value toρ = 0 (see Fig. 1). Note that these dynamical
metastable states are different from frozen states that occur even in finite systems in
other dynamical models.

Fig. 1 Interface density evo-
lution for several realizations
of voter model dynamics in a
random network.
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Fig. 2 Time evolution of
the mean interface density
for three random networks:
Barabasi-Albert (circles),
Exponential (squares) and
Erdős-Rényi (diamonds). The
system size isN = 104 and
the average connectivity is
〈k〉 = 8. The continuous line
gives the mean-field result.
Numerical simulations depart
from this result due to finite
size effects.
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Such metastable states can be characterized within a mean field approximation
focusing on the link dynamics. One finds that for a random network and in the limit
of infinite system size

ξ =
〈k〉−2

2(〈k〉−1)
, (1)

where〈k〉 is the average degree of the network, that is the average number of neigh-
bors of a node. This result [21] establishes a one parameter theory in which the
degree of order reached by the system is determined only by〈k〉 in any random net-
work. Fig. 2 checks this result against numerical simulations for different random
networks. The exponential random network is constructed asin the Barabasi net-
work [12] but with random instead of preferential attachment of new nodes, there-
fore it has an exponential degree distribution. In the Erdős-Rényi network every
pair of nodes is connected by a link with probabilityp, giving a Poisson degree
distribution with average connectivity〈k〉 = N p.

3 Axelrod Model

One of the crucial and yet unanswered questions in the socialsciences is: if people
become more similar in their beliefs, attitudes and behavior as they interact, why
doesn’t this interaction lead to homogeneity? [3].

To answer this question, social scientists have been proposing various mecha-
nisms. A few years ago Robert Axelrod introduced a model [3] that explores the
competition between consensus and polarization, in an attempt to describe how the
culture disseminates within a society. He proposed a mechanism in which people
become more alike when they interact (social influence) as, for instance in the voter
model [1, 2], but now with the possibility that the tendency to converge stops before
it reaches completion. It also incorporates the idea that partners with more similari-
ties interact more frequently than those with less similarities (homophily).
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The “culture” of an individual is defined as a set ofF different attributes, each
of which can assume one ofq possible traits, and they describe the individual’s
features. For instance, forF = 3 features andq = 4 traits per feature, we could
have:

1. Language: English, Spanish, French, Hebrew;
2. Religion: Protestant, Catholic, Muslim, Jewish;
3. Food preference: pasta, meat, vegetables, tofu.

The basic mechanism is that neighbors who share at least one feature are more
likely to interact, after which they agree on another feature previously not shared,
thus becoming even more similar; while neighbors with no features in common do
not interact.

This model has attracted the attention of many statistical physicists due to its rich
dynamics and non-trivial behavior. It belongs to the class of stochastic models that,
started from a given initial state, may or may not reach the consensus state. This
gives rise to its most intriguing feature: an order-disorder non-equilibrium phase
transition as we shall explain.

3.1 Model definition and results on a square lattice

The mathematical model consists of a population of individuals located at the nodes
of a 2D square lattice that can interact only with its first four neighbors. The culture
of an individuali is represented by anF-component arrayC f

i ( f = 1,2...,F) where

each component can take one ofq different values (C f
i = 0,1...,q−1). There are,

therefore,qF different possible states or type of individuals.
At each time step one individuali is chosen at random, and then it randomly

picks one of its neighbors (j). Then one featuref is chosen randomly: ifC f
i 6= C f

j

nothing happens but ifC f
i = C f

j another featuref ′ among the non-shared ones is

chosen randomly and individuali adopts individual’sj feature (C f ′

i = C f ′

j ). This last
step is equivalent to makingi and j interact with a probability equal to the fraction
of features that they sharem/F, wherem = ∑F

f=1 δ
C f

i ,C f
j

is theiroverlap andδ is the

Kronecker delta function.
The model posses two competing features that lead to a very rich dynamical

behavior. On the one hand, the interactions between nearestneighbors lead to more
similarity producing the formation of same-culture domains. On the other hand,
the incompatibility constrained between totally different neighbors prevents global
consensus.

For a finite population, the system eventually freezes in a configuration that de-
pends onq. For smallq, the system coarsens as the neighbors tend to share the same
culture and it freezes in a state where the average size of thelargest monocultural
region〈Smax〉 is similar to the system sizeN (monocultural phase) (see fig. 3). As
q is increased beyond a critical valueqc, 〈Smax〉/N suddenly drops to zero meaning
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Fig. 3 Average size of the
largest cultural domain〈Smax〉
vs q for F = 10 features and
system sizesN = 900 (cir-
cles),N = 1600 (squares) and
N = 2500 (diamonds). The
transition at the critical point
qc ≃ 55 becomes sharper as
the system size increases.
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that in the final state all the regions have a size much smallerthanN (multicultural
phase).

3.2 The model in a co-evolving network

In section 3.1 we presented the original version of the model, where individuals are
assumed to interact always with the same neighbors. However, real-life experience
shows that people have a tendency to select their interacting partners according to
their evolving social preferences. In this section we present a version of the model
in which the interacting neighborhood of individuals changes with time. Individuals
drop their ties with incompatible partners and form new tieswith other like-minded
individuals.

Individuals are located at the nodes of a degree-regular graph where every node
has exactly〈k〉 neighbors, and they initially take values for the features at random
from 0 toq−1. In a Monte Carlo step, an individuali and one of its neighborsj are
randomly chosen. If their overlapm is larger than zero they interact with probability

Fig. 4 Node degree distribu-
tion P(k) of the co-evolving
network in the final frozen
state for a system withF = 10
features, population size
N = 104 and various values
of q. The system starts from
random network with aver-
age degree〈k〉 = 4. P(k) is
very similar to a Poissonian
(sketched in empty squares
for comparison) for all values
of q.
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m/F (as in the original model) and, in case of an interaction, theoverlap is increased
by one. However, if the overlap is zero, theni removes its link toj and attaches it to
a randomly chosen nodel with the condition thatl was not already a neighbor ofi.

Due to the random rewiring dynamics the original network quickly evolves into
a random graph with a Poisson degree distribution with average connectivity〈k〉.
This distribution is conserved until the system freezes (see fig. 4).

Even though the node degree distribution seems to be independent onq, the struc-
ture of the network in the final frozen state dramatically depends onq. During the
evolution nodes are grouped in different communities with individuals sharing some
features. Thus the network gets disconnected in different network components of
like-minded individuals. Inside a component there are alsogroups of nodes with the
same state, that we call domains.

In order to characterize the final structure of the network wecalculated the aver-
age size of the largest componentS as a function ofq for simulations on a population
of N = 2500 individuals andF = 3 features (fig. 5).

We observe that there are two transitions in the absorbing state: a fragmentation
transition from phaseI to phaseII and a recombination transition from phaseII to
phaseIII. In phasesI and II, the system is frozen and composed by a set of dis-
connected components whose size depends on the degree of initial diversityq. For
values ofq smaller than a critical valueqc ≃ 85 (phaseI), S is similar to the system
sizeN (figs. 6-a and 6-b), while forq aboveqc (phaseII), S is much smaller than
N (fig. 6-c). In analogy to the characterization of non-equilibrium phase transitions,
we defineqc as the the value ofq where the fluctuations inS reach a maximum
value. The critical valueqc ≃ 85 in this co-evolving network is larger that the cor-
responding valueqc ≃ 55 obtained in a fixed 2D square lattice (Fig. 3). Whenq
is above a transition pointq∗ (phaseIII), the system reaches a dynamically active
configuration with many small domains. These domains have zero overlap between
them and they are interconnected by links making up a large network component
compared to the system size, as we observe in fig. 6-d. Above the valueq∗ ≃ NF

〈k〉 the

Fig. 5 Average relative size
of the largest network com-
ponent (circles) and largest
domain〈Smax〉 (solid line)
in the stationary configura-
tion vsq, for F = 3 features,
N = 2500, averaged over 400
realizations. The vertical lines
at qc = 85 andq∗ = 1875
indicate the transition points
between the different phases.
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Fig. 6 Network structure in the final frozen configuration in phaseI: q = 3 (a),q = 20 (b) and in
phaseII: q = 100 (c) forN = 400. (d) Snapshot of the network in the stationary active configuration
(phaseIII) for q = 500.

initial number of pairs of nodes with at least one feature in common is smaller than
the number of links in the system.

The nature of both transitions can be understood by studyingthe dynamical ap-
proach of the system to the final state in the three phases (see[20] for details).

3.2.1 Changing the rewiring rate

In the previous section we assumed that when a pair of nodes with zero overlap
is chosen, the link between them is always rewired. We now consider the case in
which the rewiring happens with probabilityp. Varying p is equivalent to change
the relative time scales at which the copy and the rewiring dynamics occur. In the
limit of p going to zero we expect the system to behave as in the originalAxelrod
model, where the network is fixed. On the other limit, whenp is one we recover the
co-evolving model studied before. Thus, we should see that the transition pointqc

shifts to higher values ofq asp is increased from zero. Fig. 7 shows that the critical
point for values ofp above 0.1 is very close to the critical valuepc ≃ 85 for thep = 1
case, whenS is measured at a fixed timeτ = 108. To investigate this dependence,
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Fig. 7 Relative size of the
largest domain vsq for values
of the rewiring probability
p = 0,10−6,5×10−5,0.1 and
1 from left to right,N = 1026
andF = 3 features.S was
measured for every value ofp
at the same observation time
τ = 108.
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we calculatedS for fixed q = 20 in the connected phaseI, and for three different
observation times. As we observe in fig. 8, for a fixed time,S/N is close to zero for
very small values ofp and it increases up toS/N ≃ 0.9 for larger values ofp when
the observation times areτ = 108 andτ = 1011. However this transition inS seems
to disappear whenS is measured at longer times (τ = 1013). We expect that if we
wait long enough the size of the largest component would reach the valueS/N ≃ 0.9
for any value ofp above zero. The last result means that there is a discontinuity in
the critical valueqc at p = 0. For anyp > 0, the behavior ofS as a function ofq is
essentially the same in the long time limit.

3.3 Summary

The voter model for opinion formation exhibits a non-trivial dynamical behavior
that depends on the spatial dimension of the interacting network of voters. In a finite
network the system always reaches the consensus state due tofine size fluctuations.
However, in infinite large networks, the consensus depends on the dimension. For

Fig. 8 Relative size of the
largest domain vs the rewiring
probability p for N = 1024,
F = 3, q = 20 and observation
times τ = 108 (squares),
τ = 1011 (diamonds) and
τ = 1013 (circles). For a
long enough observation
time, 〈Smax〉/N approaches
to the value〈Smax〉/N ≃ 0.9
independent on the value ofp.
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d ≤ 2 consensus is always reached in a characteristic time that depends ond. Ford >
2, including random networks, the system reaches a stationary state where the two
opinions coexist. This state is characterized by the average value of the stationary
density of interfaces that monotonically increases with the average connectivity of
the network.

The Axelrod model for the dissemination of culture is an incredibly rich non-
equilibrium model that posses a quite interesting nonlinear dynamics and it is simple
enough to be treated with traditional statistical physics tools. A phase transition from
an ordered to a disordered phase is found when the degree of initial diversity in the
population is increased above a critical value. When a co-evolutionary dynamics is
added to the model, the order-disorder transition still happens but at a larger value
qc. The network remains connected belowqc, but it disintegrates in multiple small
components aboveqc (fragmentation). There is also a second transition at a much
larger valueq∗ where a giant network component grows again asq is increased
aboveq∗ (recombination). We have also found that changing the rewiring rate does
not affect the final result on co-evolution, it just adds an overall time scale to the
system. The robustness of the co-evolving model was checkedin [19] under the
influence of an external noise. While in a fixed network the addition of a small
amount of noise has the effect of ordering the system, in a co-evolving network
the diversity is sustained even under the influence of a smallexternal noise; i.e, the
co-evolving Axelrod model is robust.
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