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Chapter 1

Introduction

As a source of coherent radiation, the Laser found numerous applications
since it appeared in the early 1960s, starting from welding sheets in the
vehicle construction industry in 1969, ranging today from optical communi-
cations, to medicine, military and leisure use.

Optical communications had a enormous growth in the last decades thanks
to the development of optical fibers and the capacity to modulate lasers at
high frequencies. In this field lasers are used as sources of digital messages
and to characterize optical fibers.

In metrology, lasers are used to make accurate geodesic measurements
e.g. to measure the earth bark and rotation movements. They are used to
measure the pollution in the atmosphere and to measure the Moon-Earth dis-
tance. They were used in relativity experiments and to measure the speed of
light with a great precision and in spectroscopy. Lasers are used in materials
and molecular structure characterization and can induce chemical reactions
in selective form.

As industrial applications, lasers are used to weld, melt or vaporize ma-
terials with high precision in many different fields, from jewellery to aero-
nautics. Lasers are used to cut microelectronics components, to warm up
semiconductors chips, to cut textile patterns o synthesize materials. In the
construction of roads and buildings they are used to align structures and
measure distances. Another important field for laser is medicine, surgery in
particular.

The guiding laser systems for missiles, aircrafts and satellites are one of
the numerous military applications of lasers. Also they are use in the navi-



gation systems of planes and ships.

For our leisure time we can find laser applications in music in our compact-
disk (CD) player or staring light shows in live show. After CD, CD-ROM and
DVD allow to store and manage a great amount of data.

A laser is constructed from three principal parts:

e An energy source (usually referred to as the pump or pump source),
e A gain medium or laser medium, and

e A cavity that forms an optical resonator.

The type of pump source used in practice depends on the choice of ac-
tive medium, and this also determines how the energy is transmitted to the
medium. Examples of pump sources include electrical discharges, flashlamps,
arc lamps, light from another laser, chemical reactions and even explosive
devices. A He-Ne laser uses an electrical discharge in the helium-neon gas
mixture, a Nd:YAG laser uses a light focused from a xenon flash lamp, and
semiconductor laser uses a simple electric current.

The gain medium severely affects the operation wavelength of the laser.
The gain medium is excited by the pump source to produce a population
inversion, providing optical gain and thus amplification.

Usually the cavity is formed by two parallel mirrors placed around the
gain medium which provides optical feedback. This is the Fabry-Perot optical
cavity. Another possible optical resonator is the ring cavity. In the ring cavity
two laser beams propagate in opposite directions. Historically ring lasers
were made by tubes of He-Ne and corner mirrors, but recently lithography
technology enabled the fabrication of semiconductor ring laser in various
different shapes.

1.1 Ring laser

A peculiar application of the ring laser is the gyroscope, an instrument to
measure inertial rotations. The operation principle is the following, in the
ring cavity two optical modes propagate in opposite directions, a measure of
the interference pattern formed by extracting and heterodyning portions of
the two counter propagating beams provides information about the rotation



rate relative to an inertial frame.

The idea of using a ring interferometer as a rotation rate sensor was in-
troduced by Sagnac in 1913 but, until the demonstration of the laser, the
Sagnac interferometer was not considered as an alternative to conventional
mechanical gyroscopes. The advantage of the ring laser gyroscope as a ro-
tation sensing device is that it has no moving parts and so would seem,
potentially, to have a longer repair lifetime than a mechanical gyroscope, but
the major advantage is the higher sensitivity (the minimum rotation that the
instrument can resolve ) attaining (0.001°/h).

There are two major types of laser gyroscopes: the ring laser gyroscopes
and the fiber ring gyroscopes. The ring laser gyroscope has higher sensitivity
than fiber gyroscope and is used for ultra-high sensitivity measurements [1],
e.g. to measure the Earth’s rotation. Fiber ring gyroscopes [2] are cheaper and
used in commercial applications, like in the navigation systems of aircrafts.
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Figure 1.1: Scheme of the He-Ne ring laser gyroscope.

Sagnac effect

The basis for the description of the operation of a ring laser gyroscopes is
the called Sagnac effect. By considering the scheme shown in figure 1.1, we
suppose that the light leaves the point P of the triangular cavity, rotating
around O with an angular velocity €2. The time it takes in return to P making



the travel in the ring cavity if 2 =01is t = % = % Where L is the length of
the side of the triangle and S = 3L is the total perimeter. When the gyroscope
spins (i.e. €2 # 0), the point P moves to a distance d = Qrt = QT%, where r
is the distance from P to O, which is %sec 30° = % The change of optical
path 0.5 seen by the beam is the component of the movement of P along the
direction of the beam, which is: §S = d cos60° = d/2, making use of d and r
one arrives to:

~ QSL  V/3QL?
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And now using the area of a triangle, A = @, we got:

5S (1.1)
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To accomplish with the cavity resonance condition, the path length is
a integer number of times the wavelength, mA = 3L = S, therefore for a
change 65 a change d\ is produced:

_as i
“m S

And the correspondent frequency change is dv/v = A/ = §S5/S. Each
beam suffers the same change in frequency, but in opposite direction, there-
fore the beat frequency f is f = 20v = 2v(55/S), and using (1.2) one obtains:
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This is the basic equation to model the measurement of angular rotations.

In [3] a derivation of the Sagnac effect in the context of general relativity is
reported.

) (1.3)

(1.4)

In principle, laser gyroscopes should be very sensitive and accurate with
a fundamental limit of less than 107¢ °/h. In practice the performance is less
than this, the limits being set by the accuracy of fabrication, cleanliness and
a few inherent operational difficulties. The use of the device as a rotation
sensor depends crucially on the extent to which the relation (1.4) is valid.
In the ideal case (that is, one which obeys (1.4)) the relationship between €2
and f is linear as shown in figure 1.2.

There are three main kinds of error that may cause relation (1.4) to be
invalid.
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Figure 1.2: Beat frequency f vs input rotation rate €2 in a ring laser gyro.
a) The ideal case, a straight line through the origin; b) A linear relationship
with a nonzero null shift; ¢) Frequency locking; and d) nonlinearities in the
response (variable scale factor). [3].

1. Null shift (fig. 1.2 (b)). This happens when the frequency difference
is "biased”, i.e. f is non zero for zero input rate. It amounts to adding
a constant term to the right-hand side of (1.4), the exact magnitude of
which is unpredictable. It can arise from any anisotropy in the cavity
respect to the radiation traveling in the two directions. If it is constant
and repeatable it can be measured and compensated for in the final
output. If it drifts, however, or changes from turn-on to turn-on, it can
be a serious problem. The main cavity anisotropy that gives rise to
null shift errors is the Langmuir flow in the active gas laser medium. It
consists in a flow appearing in the gas as a consequence of the dc power
supply, there is a movement of the neutral atoms which is towards the
cathode along the center of the discharge tube, and towards the anode
along the walls. Since the laser beam is along the tube center, it sees a
net motion of the medium. This effect is used to determinate physical
properties of the plasma.

The usual way to avoid this problem is to make the Langmuir flow



reciprocal by using two discharge tubes with opposite polarities. In
this way the two ”biasing” elements cancel each other. The discharge
current has to be the same in both tubes to a rather high accuracy if
no null shift is to be observed. The problem can be completely avoided
if we use a semiconductor or solid state laser.

2. Mode locking. In the figure 1.2 (c) we can see a dead-band where,
even though the rotation rate is non-zero , the beat frequency is fixed
at zero, i.e. the fringe pattern is stationary. This occurs when the ro-
tation rate becomes very small. The effect is due to interaction ef-
fects between the two counter-propagating fields, when on reflection,
a small amount of energy is scattered from the mirror surface back
into the oppositely traveling beam. If this difference becomes too small
the counter-propagating beams will lock together in the same way that
coupled mechanical oscillators operating at slightly different frequen-
cies lock together. When the two fields have the same frequency the
beat frequency is zero.

3. Variations in the scale factor as a function of the rotation rate (fig.
1.2 (d)). This means that the linearity in (1.4) no longer holds. These
nonlinear effects may arise by dispersive effects in the laser medium
(frequency pulling and pushing). Or as a consequence of some of the
techniques used to eliminate mode locking.

In the paper of Chow et al. [3] an equation of motion is derived from
Lamb’s semiclassical laser theory assumunig £, = F_ for the phase angle
difference 1:

= SO+ bsing (1.5)

Where €2 is the rotation rate, S is the scale factor and b is the backscat-
tering coefficient. Note that 1/1 is basically the beat frequency, what we called
f- If S>> b the phase difference 1) grows essentially as a linear function of
time, as it would do in absence of backscattering. But if SQ2 < b stationary
solutions to (1.5) exist, with ¢ = 0, given by:

50
— arcsin =—
by = { oo (1.6)

T -+ arcsin =

Of this two solutions the second one, having bcos, < 0 is stable, this
mean that no matter what the initial condition is, the evolution of 3 will
eventually bring it arbitrarily close to the value 1, for which the right-hand
side of equation (1.5) vanishes. That is the frequency difference vanishes, in



spite of the fact that the rotation rate {2 is nonzero. This is what is called
mode locking in the literature. In [3] a description of techniques used to avoid
mode locking is reported, e.g. introducing a constant bias or an alternating
bias.

Noise in the ring laser gyroscope

In the framework of Lamb’s semiclassical laser theory, the optical medium
was treated quantum mechanically, whereas the electric field was considered
to be a classical quantity. However the electric field can be treated in a
quantum-mechanical way too. From this point of view the electric field is a
superposition of an infinite number of independent quantum-mechanical har-
monic oscillators described by their creation or destruction operators. This
problem was studied in the late 1960s, finding new effects such as the infi-
nite zero-point energy of the field, the vacuum fluctuations and spontaneous
emission.

Due to spontaneous emission the laser field has a random phase and,
therefore, the phase of the electric field in the cavity is no longer well deter-
minated, and it becomes a stochastic quantity. This is very important in the
use of a ring laser as a gyroscope, because one measures the phase or fre-
quency difference between the two counter-propagating fields. Therefore, the
quantum noise influences the output. All other noise sources, as, for exam-
ple, vibrations of the laser mirrors, can be overcome by some clever technique.

Due to spontaneous emission of the laser atoms the phase of the electric
field in the cavity is a stochastic variable. The equation of motion for the
phase difference (1.5) now becomes:

= SO+ bsine + F(t) (1.7)

where F'(t) is fluctuating force which we assume to be gaussian with mean
zero,

< F(t)>=0 (1.8)

where < ... > denotes the ensemble average. Such stochastic equations
are called Langevin equations. The noise causes the system variable to fluc-
tuate around a mean value and according to the fluctuation-dissipation theo-
rem, also causes damping. Comparing the correlation time 7. (i.e., the decay
time of the atoms) with the damping time of the electric field 1/~ one finds:



7. < 1/~. Therefore, on the time scale of the electric field we can assume for
the two time correlation function:

< F(t)F(t') >=2Dé(t — t') (1.9)

There are basically two approaches to calculate the average of a function
f(@) depending on a stochastic variable v: the Langevin and the Fokker-
Planck methods. In the Langevin approach one solves the equation of mo-
tion for ¢ in terms of integrals of the fluctuating force F'(t), substitutes this
back into f(¢) and performs the average using (1.8) and (1.9) together with
the property that F'(t) is gaussian. This approach is difficult in many cases,
because one is unable to solve the Langevin equation, which is, at least in
the problems of interest, nonlinear.

In the Fokker-Planck approach one derives a partial differential equation
for the conditional probability P(t,|to, %) - the probability to find at time
t the value v, given that the value at t; was 1)y - and substitutes this into
the familiar expression for an average:

< f) >= / ay P(4) () (1.10)

This method work fines because in most of the cases one is able to solve
the Fokker-Planck equation exactly, in terms of infinite (matrix) continued
fractions. The Fokker-Planck equation corresponding to the problem (1.7) is:

oP 0 o?pP
— = ——[(SQ+bsinyY)P|+ D—= 1.11
5 = o l(sQ -+ bsinv)P+ DS (111)

This equation subject to periodic boundary conditions can be solved ap-
proximately in various regions of the rotation rate [3] as well as exactly in
terms of infinite continued fractions.

1.2 Semiconductor ring laser

The semiconductor ring laser (SRL) demonstration was made by Liao and
Wang in 1980 [4], their device consists in a circular resonator and a straight
waveguide through which the lasing emission can be coupled out of the cir-
cular resonator. After that SRL have received increasing attention owing to
their application in photonic integrated circuits and because they were re-
garded as promising candidates for wavelength filtering, unidirectional travel-
ling wave operation, and multiplexing/demultiplexing applications. The out-
put coupler is still a source of problems. In 1995 Krauss et al. [5] investigated
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three different types of output couplers in order to identify the influence of
the coupling geometry on the performance of the lasers.

Different cavity geometries have been proposed, such as square [6], trian-
gular [7], racetrack [8], micro-squares [9] and S section [10].

In 2003 Sorel et al. [11] fabricated different kinds of semiconductor ring
lasers of GaAs and AlGaAs like the shown in figure 1.3. They used three
integrated photodetectors to characterize the behaviour of the device. Pho-
todetectors 1 and 2 (PD1 and PD2) are output waveguide photodiodes mea-
suring the two counter propagating fields independently, and photodetector
3 (PD3) is the in line photodiode which measures the total power in the ring
cavity.

Figure 1.3: Micrograph of the device showing the contact layout with the the
ring biasing contact and the three integrated photodetectors. [11]

Experimentally they found different regimes or behaviors for increasing
values of the pump coefficient p described in the figure 1.4. Above threshold
the first regime they found is a bidirectional-Continuous Wave regime (la-
beled Bi-CW), mathematically corresponding to a line of fixed points. After
that there is a Hopf bifurcation which marks the beginning of a bidirectional
with alternate oscillations regime (Bi-AO), which is a limit cycle in mathe-
matical words. And finally a unidirectional regime (UNI) due to a Pitchfork
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induced bistability. The latter regime is suitable for applications in optical
memories [12].
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Figure 1.4: Experimental L-I characteristics. The different regimes are indi-
cated. [11]

In this paper [11], the semiconductor ring laser in considered working in
a single longitudinal mode, so the electric field inside the cavity is expressed

by:

E(x,t) = By (t)e k) L B (1) (@) (1.12)

Where E, and E_ are the mean-field slowly varying complex amplitudes
of the electric field associated with the two propagation directions, E clock-
wise and E_ counter clockwise, respectively. x is the spatial coordinate along
the ring, assumed positive in the clockwise direction, and €) is the optical
frequency of the selected longitudinal mode. In [11] the following set of di-
mensionless rate equations for the time evolution of the electric fields, E.(t),
and the carrier density, N(¢):

{ E.(t) = Ge(N(t), [E<(1)]?) Bx(t) —n Bx(t)

N(t) =~ f(N(t): |EL(t)]?) (1.13)
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Ge(N(1), | E= (1)) = %(1 +ia){N(t) o+ — 1}

FNW), |EL(t)]*) = p = N(t) = N(t) o4 | E4(t)|* = N(t) o |[E-(t)]”

or =1—s|E(t)]* —c |Ex(t)]*
n = k’d -+ ’ch

Where 7 is the complex backscattering coefficient, which is an explicit
coupling between the two counter propagating fields, k; represents the dis-
sipative coupling and k. the conservative coupling. « takes account of the
coupling between phase and amplitudes. The saturations effects in the gain
are written in the quadratic approximation, s and ¢ are normalized self- and
cross-gain saturation coefficients. p is the pump parameter and + is the ratio
between the photon lifetime and the carrier lifetime.

Numerical simulations showed that, as the condition v < 1 is fulfilled,
the SRL regimes and dynamics only weakly depend on v and the carriers
adiabatically follow the dynamics of the fields.

They found that it appears that the conservative backscattering acts as
a driving force for the alternate oscillations, while dissipative backscattering
tends to restore CW operation, either bidirectional or unidirectional depend-
ing on the value of the conservative backscattering.

Sorel et al. showed in figure 1.5 the dependence of the frequency of the al-
ternate oscillations versus ring laser pump current. With this data they fitted
the parameters of their model finding the following values: k; = 0.46 1073,
k.=851073 ¢c=2s=9.3 1073

The model reported in (1.13) does not take into accounts the influence of
spontaneous emission. A commonly accepted form to introduce spontaneous
emission is by means of Langevin forces, like we see in the previous section,
specifying the problem for a semiconductor lasers. Indeed, in this case there is
a coupling between amplitude and phase (« factor) and, due to that we can
not derive a Fokker-Planck equation like equation (1.11), therefore we use
the Langevin approach solving the nonlinear equations numerically. There
are many examples in the literature concerning the noise in semiconductor
lasers, see [15] and [16] for example.

13
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Figure 1.5: Alternate oscillations frequency versus pump current g. The dots
are the experimental data and the dashed curve is the numerical solution of
the theoretical model (1.13). [11]

A peculiar noise spectra SRL was found experimentally by Ballantyne and
co-workers recently. In [13] they showed the presence in the output spectrum
of an unusual low frequency noise peak, that is strongly dependent on the
mirror backscattering strength. The mirrors described in the work by Ballan-
tyne et al. were fabricated to embed the medium in a triangular ring laser,
but also they expected the effect in other geometries like circular or square
rings. Moreover noise can induce spontaneous switching in the unidirectional
regime (UNI).

The values for the parameters in the text if no others are explicitly indi-
cated are taken from [14] and are: o = 3.5, s = 0.005, ¢ = 0.01, kg = 327 1076
k. =4410"% v =210"% and p = 1.2 which corresponds to the bidirectional
continuous wave regime (Bi-CW).
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Chapter 2

Theoretical analysis

By introducing a fluctuation term (Langevin forces) in the differential equa-
tions (1.13) makes them loose its deterministic characteristic and become
stochastic differential equations [15]. The numerical method to solve the
equations is described in Appendix A. The inclusion of a complex fluctia-
tion term in the equations for the electric fields (1.13) leads to the following
stochastic rate equations,

{ EL(t) = Ge(N(t), | Ex(t)]*) B(t) —n E=(t) + €(1)

N(t) = v F(N(), | E=(1)?) 21)

07 ——EF |
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Figure 2.1: Time evolution of the carrier density and the intensities of the
fields.

Where £4(t) is a white gaussian complex noise with the following corre-
lation properties

(Ex(t)EL(1)) = 2Do(t — 1) (2.9)
(D)€ (M) = (Ex(t)&£(t)) = (€ ()&= (1)) = 0. '
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The time traces for the carrier density N(¢) and the intensity of the fields
|E4(t)|* are shown in figure 2.1. The system reaches the Bi-CW stationary
state after a transient.

2.1 Switch-on statistics

One consequence of the presence of noise is a change in the switch-on time t*,
which results to be statistically distributed. To analyze this one can derive
histograms for t* corresponding to different values of the noise amplitude D,
as shown in figures 2.2, 2.3 y 2.4. The total intensity I(t) = |E,|* + |E_|?
versus dimensionless time is also plotted,

1200

1000

800

600

I

400

200

= L L L L T . L L al o .
1160 1180 1200 1220 1240 1260 1280 1300 1%00 1050 1100 1150 1200 1250 1300
t t

1q 00 1120

Figure 2.2: Superposition of 15 switch-on and histogram of 10000 realizations,
D =10"%
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Figure 2.3: Superposition of 15 switch-on and histogram of 10000 realizations,
D =1073.
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Figure 2.4: Superposition of 15 switch-on and histogram of 10000 realizations,
D =102

Figures 2.2, 2.3 and 2.4, show that the distribution of t* moves toward
lower times broadening the distribution. To analyze this behavior more in
detail we simulated eqs. (2.1) for values of D ranging from 10~* to 107!, and
deriving a statistics over 10000 realizations. the results are shown in figures
2.5 and 2.6, where the mean value < t* > of the switch-on time is plotted,
as well as its standard deviation, oo~ = /( < (t*)? > — < t* >2), versus
the noise amplitude.

Figure 2.5: Switch-on time mean value < t* >, versus noise amplitude D,
both in logarithmic scale.

Figure 2.5 shows that for low noise the mean value of the switch-on time
decreases with D, and the deviation increases (fig. 2.6), whereas noise dom-
inates for D ~ 1072,

17



Figure 2.6: Switch-on time deviation o, versus noise amplitude D, both
in logarithmic scale.

2.2 Time correlations

In this section the correlations between the two counter propagating fields
are analyzed. Correlations are calculated after a transient time of 10° time
units. In the figures 2.7 and 2.8 the time traces of the electric fields are shown,
the figures show that the two-fields intensity dynamics is anticorrelated.

—--|<E_() Et+0)>|
S\ ——|<E.() Eltrop]
AR

6000 ~o 1000 2000 3000 4000 5000 6000
T

NS L L
1000 2000 3000 4000 5000

Figure 2.7: Modules of the electric fields after the transient versus dimension-
less time, and two times autocorrelation and cross correlation, D = 1073, 20
realizations.
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Figure 2.8: Modules of the electric fields after the transient versus dimen-
sionless time,and two times autocorrelation and cross correlation, D = 1072,
20 realizations.

When the noise amplitude D is less or equal to 1072 the two counter prop-
agating fields are strongly correlated (fig. 2.7). Time traces (figs. 2.7 and 2.8)
show anticorrelated dynamics for the two fields, as a consequence the cross
correlation < E, (t)E* (t + 7) >, is higher for a non-zero delay 7, whereas
the autocorrelation < E (t)E7(t + 7) > is maximum at zero delay. It is so
because of a phenomenon called 'noisy precursor’ [17]. The system feels the
presence of a nearby Hopf bifurcation, noise excites a unstable limit cycle
which makes the intensity of the two fields oscillate in anticorrelated fash-
ion. When D increases the correlations tails assume a exponential behavior,
as shown in figure 2.8. When noise dominates the dynamical evolution the
correlations shrink approaching the Dirac delta function.

2.3 Stationary monochromatic solutions

By substituting the following monochromatic solution for the two fields

E.(t) = Qe (2.3)

we find the stationary solutions of (2.1). There are two possible cases,

In phase case:
6=0— w;;, =aky — k. (2.4)

Out of phase case:

¢ = g — Wout = _akd + kc (25)
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labeled according to the relative phase shift, 0 or 7. Depending of the sign
of the backscattering parameters one of the solutions is stable and the other
unstable, if k; > 0 the out of phase case is stable, and the in phase case is
stable for k; < 0. The corresponding stationary solution for the carrier den-
sity IV, as a function of the amplitude of the fields and the pump parameter,
is

o p
N=7 +2Q%(1 — sQ? — cQ?)’ (26)

For the amplitudes ) we find two solutions

In phase case:

i = oy 2(ka + 1) + p(s + )=

—(4lkg+ 1)? + 12 (s + ) —4pu(s + o) (1 + kg) + 8(s + ¢)(1 — kﬁ))%] (27)

Out of phase case:

out = eraa w21 — Ka) + (s + )=

—(4(ka — 1)2 + (s + €)2 — Ap(s + ¢) (1 — ka) — 8(s + ¢)(1 — k) (ka — 1))?]
(2.8)
15 out 1.03 out
—Zqut 1.025+ —Zoiut
in . . "Nin
1 ZQi / 7 1.02f —ZQi
7/ 1,015
0.5 / ] 1.01
S/
/ 1,005
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Figure 2.9: Stationary solutions versus the pump parameter.

In figure 2.9 the carrier inversion N and total intensity 2Q? are plotted
versus the pump parameter .
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2.4 Linear fluctuations dynamics

In this section we analyse the effect of a perturbation on the above reported
stationary solutions. We introduce a real perturbation n(t) in the carrier
density, and complex perturbations a4 (t) for the fields

By (t) = (Q + ax(t))eerio
: N(t)=N i n(t). (2.9)

By making use of (2.9) in (2.1) we derive the following linear system for
n(t), ax(t) and a’(t)

n(t) = = {n(t) + [1 — 2Q%(s + ¢)INQ(ax(t) + a* (t) + a—_(t) + a* (t))+
+2Q%[1 — sQ* — cQ*In(t)}
ax(t) = 3(1 +ia){N(1 - sQ* — cQ*)ax(t) — NQ*[s(ax(t) + a’(t))+
+e(az(t) +ai(t)] + Q1 — sQ* — cQ*)n(t) — ax(t)}—
—iwai(t) n(cos 2¢ F isin 2gz5)a¢£t) +&.(1)
ai(t) = 3(1 —ia){N(1 - sQ* — cQ*)a’(t) — NQ*[s(ax(t) + ai(t))+
+elax(t) + ()] + Q1 — sQ* — cQ*)n(t) — al(t)}+
+iwa*i(t) — n*(cos2¢ £ isin 2p)a’ (t) + £L(1)

(2.10)

At this point we introduce a new set of variables, S(t) and R(t), to simplify

our problem in two independent problems by block diagonalization. The new
variables are

S(t) = ax(t) + a_(t)
R(t) = a.(t) — a_(t).

S(t) describes a perturbations to the total laser intensity and it is coupled
to the carrier density perturbation equation. The variable S(¢) describes the
perturbation of the total intensity of the lasers, regardless its distribution
between the two modes. On the other side, R(t) describes the power exchange
between the two counter propagating fields. Those new variables are related
to the EL(t) by

(2.11)

E,(t) — BE_(t) ~ ie™"(2Q + S(t)), (2.12)

E (t)+ E_(t) ~ie™'R(t) (2.13)
for the out of phase case, and by

E (t)+ E_(t) ~ e™n'(2Q + S(t)), (2.14)
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E,(t) — E_(t) ~ e“n'R(t) (2.15)

for the in phase case.

The equations for the dynamic evolution of R(¢) and S(t) corresponding
to each stationary solution are

In phase case:

$in(t) = (L + i) {Cn(t) + K (Sinlt) + i)} + Es(0), (2.16)

Rin(t) = (1 + i) K(Rin(t) + R:,(t)) 4+ 2nRin(t) + Er(1), (2.17)

Out of phase case:

Sour(t) = (14 ia){Cn(t) + K (Sour(t) + Su(t))} + Es(8), (2.18)

Rour(t) = (1 +i0) K (Rou(t) + Ry () — 20 Rous(t) + Er(1), (2.19)
where K, K and C are real constants defined by

Q*(c—s)
K = —%NQ (c+s) (2.20)
C=Q(l-Q%c+s)).

The carrier density perturbation equation is the same for both cases

N

A(t) = —{n(t) + [1 = 2Q%(s + )INQ(S(1) + S*(t))+ (2.21)
+20Q°[1 = 5Q* — cQ?In(t)}. |

Therefore we have two independent blocks. The block involving R(t) and
R*(t) describes the the relative intensity of the two counter propagating
fields. On the other side, the block involving S(t), S*(¢) and n(t) describes

the total intensity of the fields and the perturbation in the carrier density.
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2.5 Spectral correlations

Relative Intensity

The equations for the time evolution of R, (t) in matrix form are

( Rout(t) ) — ( (1+ZOZ)K*2’I7 (1+ZQ)K > ( Rout( ) > + < gR(t) >
Ry (t) (1—i)K (1 —ia)K -2 R4 () §r(t) )
(2.22)
The corresponding eigenvalues are
AU = K — 2kq + [K? + 4K ak, — 4k2) (2.23)
for the out of phase case, whereas for the in phase case the system is
Rin(t) \ _ [ (1+ia)K +2n (1+ia)K Rin(t) N £r(t) (2.24)
Ry, (t) ) (1—i)K (1 —ia)K + 27" R, (1) §p(t) )7

and the eigenvalues are

Nty = K 4 2k + [K2 — 4K ak, — 4k7]2. (2.25)

From now on we focus on the out of phase case, because we have chosen
the parameters set in which such solution is stable. And we set the noise
amplitude D equal to 1077,

We apply the Fourier transform to the R,.(t) and R, (t) differential

equations, by taking the following definition of Fourier transform

= [T e d (1) = g [ fw)etdw (2.26)
yielding

iw R (w) = K (1 4 i0)[Rou () + Riyy(=w)] = 2nRous(w) + Epl(w) ‘
ZWRzut( ) (]‘ - Za)[ROUt( ) + Rout( )] - 277*Rc>§ut( ) + 5;{(_("))

(2.27)
The analytical solution of the above system is

= 1
Aw)

[(iw — (1 — i) K + 20" Er(w) + (1 +ia) KE(—w)] (2.28)
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10° 10 10 10 10 10°

Figure 2.10: < (E4 () + E-(w))(E4 (@) + B-(w))* >=< R(w—weut) R* (0 —
Wout) > spectrum, the grey line corresponds to the numerical simulation, the
analytical solution is the black line.

out(W) = r[(l — i) K&p(—w) + (2 — iw — (1 + i) K)Ex(w)] (2:29)

where
A(w) = —w? +iw(dky — 2K) — 4(kg + ak) K + 4(k3 + k2).

Taking profit of the statistical properties of the spontaneous emission
noise for the fields (2.2), we find the properties of the noise sources for the
system R(w) (2.27),

(Er(W)ER(W)) = 8TDI(w — ). (2.30)

By making use of (2.30) we find an analytical expression for the ensemble
average
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Figure 2.11: < E(w — wout)é* (W' — Wout) > spectrum dependence on dissi-
pative backscattering coefficient, kg4, versus the dimensionless frequency, w.
The dashed grey curve corresponds to kg = 107, the black to kq = 2 1074,
the grey to k; = 5 1074, the dotted black to k; = 1072 and the dash-dotted
black line to kg = 1072, (k. = 107 and pu = 1.2)

(Rout(w) R (W) = m[élkg — 4K (kq + ko) + 2K2(1 + o?)+
+2Kaw + (w — 2k.)?187 D (w — o).
(2.31)
Figure 2.10 shows a comparison between the analytical expression (2.31)
and numerical simulations for 20 realizations. The agreement between the
analytical and the numerical solutions is very good at all frequencies.

Figure 2.11 shows the spectral dependence on dissipative backscattering
coefficient k4. The resonance peak moves towards negatives frequencies for
higher values of k4. The spectrum dependence on the conservative coefficient
k., is shown in the figure 2.12. In the figure 2.13 the spectrum dependence
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<R(m—m0u,[)H ((n-(nou,[)>

Figure 2.12: < ﬁ(w —wout)ﬁ*(w’ — Weyt) > spectrum dependence on conserva-
tive backscattering coefficient, k., versus the dimensionless frequency, w. The
dashed grey curve corresponds to k, = 10~*, the black to k. = 5 107*, the
grey to k. = 1073 and dotted black to k. = 1072. (k; = 107* and pu = 1.2)

on pump parameter, p, is shown.

Total intensity and carrier density

The system describing S(t) and n(t) can be put in matrix form, yielding for
the out of phase case,

Sout(t) (1+ia)K (1+ia)K (1+ia)C Sout(t) ¢
( Sut(t) ) = (1 —ia)K (1 —ia)K (I —ia)C ( Sout(t) )+( 3
Nout () —v(2QK + NC) —y(2QK + NC) —~(1+2Q0C) Nout (1)
(2.32)

26



Figure 2.13: < E(w — wout)é*(w’ — Wout) > spectrum dependence on pump
current, u, versus the dimensionless frequency, w. The dashed grey curve
corresponds to p = 1.2, the black to p = 1.15, the grey to ¢ = 1.1 and the
dashed black to p = 1.05. (k. = 1072 and k4 = 107%)

As we did for the R(t) system, we find the eigenvalues of the matrix

AUt =0,
N4 =K -1 —7QC £ 3[y* +4(K?+ Ky +7*QC(1+ QC)) — 8v(KQC + nC?))z.
(2.33)
In this case we find the presence of a zero eigenvalue, AJ**, which indicates

that the matrix is singular. If we use (2.26) and apply the fourier transform
to the system describing S(¢) and n(t) we find

iwS(w) = (1+ia) K[S(w) + 5*(—w)] + (1 + ia)Cii(w) + &s(w)

wS(—w) = (1 — i) K[S(w) + 5™ (—w)] + (1 — i) Cn(w) + E5(—w) -

iwn(w) = —v2QK + NC)[S(w) + S*(—w)] —v(1 4+ 2QC)n(w) (
2.34)
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We solve the above system in the Fourier space, leading to an analytical
expressions for S(w), S*(w) and n(w),

S(w) = gzl +iw(y(1+2Q0) — (1 —ia)K) + (1 —ia)y(C?N — K))és(w)+
+(1+ i) (iwK +v(K — C*N))&5(—w)],
(2.35)

5§(w) = gl = iw(r(1+2Q0) — (1 +ia) K) + (14 ia)y(C*N — K))&5(w)+
+(1 —io)(—iwK + (K = C*N))¢s(—w)),
(2.36)
and

(W) = m— [-iwy2QK + NO))(€s(w) + 5(—w)), (2.37)

B(w) = —iw® — w?[y(1 4+ 2QC) — 2K] — 2iwy(K — NC?).

Taking profit of the statistical properties (2.2) of the noise sources and the
definition of S(t) we are able to characterize £g(t) by its statistical properties
in the Fourier space,

(€s(w)€5(w) = 8rDE(w — o). (2.38)

By using this properties and the solutions S(w) of the system (2.35) and
(2.36) we find following ensemble average

(S(w)S* (W) = s {w! — wP2Ka+w?[y2(142Q0)* + 2(1 + o?) K+
+72(K = C?N)? = 29K (1 +2QC) — 29(C*N — K)]—
—2way2(C2N — K)(1 4 2QC)]}87 D (w — o).

(2.39)

However, the presence of a zero eigenvalue A\J** makes the linear analysis

more complicated respect to the previous case. Indeed, the imaginary part

of S(t), Im(S(¢)) which corresponds to the eigenvector, v§" = S(t) — S*(t),

associated to AJ*, changes dizzy in an undamped fashion as can be seen

in figure 2.15, therefore the linearization is not strictly valid. This effect is
known in the literature as Goldstone mode.

In general we can consider a set of fields x;(¢) which obey dynamical
equations of the form
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Figure 2.14: < S(w)S*(w) > spectrum versus dimensionless frequency w.
The grey curve corresponds to the numerical simulation and the black to the
analytical solution.

ot

where F; is a general function of the fields z;(¢), and such that they
admit a stationary solution z?. The linear analysis of fluctuations around this
solution configuration is made by calculating the eigenvalues of the matrix

= Fy(x1,...,2n), (2.40)

_ oA

M 8_xk|xi:x?' (2.41)
In optics, propagating fields presents phase invariance, i.e. a propagating
field, solution of a wave equation, can be written as 29 = z;¢®, where ¢ is

an arbitrary global phase. As a consequence of such phase invariance, the
dynamic evolution of the field shows a invariant direction in the phase space
(e.g. a zero eigenvalue is found). In presence of noise, such invariant direction
(Goldstone mode) shows undamped fluctuations. As a further consequence,
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a theoretical linearized analysis must carefully treat such problem, indeed a
linear analysis is valid in a subspace orthogonal to the eigenvector associated
to the zero eigenvalue.

0.4 L I I I | I | L | L
0 05 1 15 2 25 3 35 4 45 5 55
t x10°

Figure 2.15: Temporal evolution of Re(S(t)), in black, and Im(S(¢)) in grey.

To get rid of the Goldstone mode, we use a new variable associated to

the real part of S(t), which is orthogonal to v§*,

P(t) = S(t) + S*(t) = 2Re(S(1)), (2.42)

which obeys to the following system of differential equations

{ P(t) = 2K P(t) + 2Cn(t) + £p(t) (2.43)

W(t) = —v(2QK + NCO)P(t) — ~(1 + 2QC)n(t)

Again by using Fourier transform, we derive a system of linear equations
for P(w) and n(w), yielding

{ iwP(w) = 2K P(w) + 2C7i(w) + Ep(w) (2.44)

iwi(w) = —v(2QK + NC)P(w) — (1 + 2QC)7(w)

solved by
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Blw) = E(l i (14200016 (2.45)

and
fi(w) = f—wm@fé + NCO)ép(w), (2.46)
where
B(w) = —w? +iw[y(1 + 2QC) — 2K] + 27(C?N — K). (2.47)

As we did before we find the statistical properties of the noise for P (w),

(€p(W)Ep(w)) = 167 D(w — o), (2.48)

and we are able to find the following ensemble average

S 1 2 167D (0 — o
< P(w)P*(w') >= —E(w)é*(w>[ +2(1 4 2Q0)2167 DS ( ). (2.49)

Figure 2.16 shows a comparison between the analytical expression (2.49)
and numerical simulations. The agreement between numerical (20 realiza-
tions) and analytical solutions is very good.

Figure 2.17 shows analytical spectra for different pump current values.
For increasing pump current values the peaks splits more.
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Figure 2.16: < P(w)P*(w) > versus dimensionless frequency, w. The grey line
corresponds to the numerical simulation and the black line is the analytical
solution (2.49).
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~F

<P(o)P (0)>

Figure 2.17: < }Nj(w)lg*(w) > spectral dependence on the pump parameter,
1, versus dimensionless frequency w. The dashed black curve corresponds to
p = 1.2, the black to p = 1.15, the grey to u = 1.1 and the dotted grey to

w = 1.05.
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Chapter 3

Conclusions and future work

We have studied the influence of spontaneous emission noise in a two-mode
model for semiconductor ring lasers, biased in the bidirectional static emis-
sion regime. The analysis has been carried out by linearizing the model close
to a stable stationary solution, and considering effect of noise as stochastic
perturbations expressed by Langevin forces. At a linear level, pertubations
concerning the total intensity and carrier inversion dynamics decouple from
the energy distribution processes between the two modes. This fact permit-
ted a full analytic analysis, well confirmed by numerical simulations of the
complete non linear system. The analysis showed that semiconductor ring
lasers have peculiar noise properties. On one side the total intensity and car-
rier density show a noise spectrum characterized by a resonance induced by
the typical field-medium exchange processes (relaxation oscillations) and the
global phase invariance induced by the Goldstone mode, so as far as those
variables are concerned, it behaves as a standard single-mode Fabry-Perot
semiconductor laser. Besides, the degree of freedom associated to the simulta-
neous presence of two counterpropagating modes allows for a further process
of energy exchange between the two modes. Our analysis unveiled that such
process presents a resonance peak as well, influenced mainly by the backscat-
tering parameters, and can be excited in the bidirectional regime as a noisy
precursor’ of a Hopf bifurcation.

The present work represents the development of reliable tools for the
simulation and analytical analysis of a model for semiconductor ring lasers.
Reliability has been tested by a thoughout comparison between simulation
and calculations. Future developments will range from quantitative evalua-
tion of two-times correlations functions, to applications to rotation sensing,
to analysis of the stochastic jumps induced by noise in the bistable regime.
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Appendix A

Heun’s algorithm

The Heun’s algorithm is a method to solve stochastic differential equations
(SDE) based on the order two Runge-Kutta method for ordinary differential
equations (ODE). A generic SDE has the following expression for a dynamical
variable z(t) :

(1) = q(x, 1) + g(t, )&w(t)

where ¢(x,t) and g(z,t) are functions, linear or non linear, and &, () is a
white gaussian noise, which properties are

(Cw(t)Ew(t)) =2Do(t — ')
A possible algorithm [15] to solve the SDE is

k= hq(t,x(t))
| = hl/zu(t)g(t,m(t))
z(t+ h) = z(t) + Lq(t,x(t)) + q(t + h,2x(t) + 1 + k)] +
+ Lh2u(t)[g(t, x(t) + g(t + h,a(t) + k +1)]

where h is the temporal step and u(t) is a independent set of random
gaussian numbers with zero mean value and variance equal to one.
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Appendix B

Semiconductor ring laser
gyroscope responsivity

A possible application of an SRL is in the field of inertial rotation sensing.
A SRL Gyroscope (S-RLG) would represent a compact, simple and low cost
optical gyroscope. All the RLGs are based on the measure of the detuning
induced by the rotation on the optical frequency of the two counterpropagat-
ing modes in a Ring Laser. However, the unavoidable backscattering effects
couple and lock the counterpropagating waves, representing a major source
of error in real devices [3]. In the following, we theoretically show how a SRL
can be used to measure inertial rotation within the so called locking-band, i.e.
without the need to un-lock the two counterpropagating waves. We provide
an analytical expression for the Responsivity.

In the figure 1.2 (c) we see the effect of mode locking in the behavior of
the beat frequency, f, depending on the rotation rate, {2, which corresponds
to the solutions of equation (1.5) reported in (1.6). In the locking range, the
frequency difference vanishes but we can obtain information about the phase
difference (1.6), using the fact that we are dealing with a semiconductor laser,
where the phase and amplitude are coupled by the « factor, so we analyze the
effect of a detuning induced by an inertial rotation over the fields amplitudes.

Consistently with the standard theory [3], the emission frequency of the
two modes (referred to a common optical carrier set to zero) is shifted by
the inertial rotation of an amount equal to 2A, when the rotation vector is
orthogonal to the cavity plane,

2w R,
A

A - Q’I‘Ot y (Bl)
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where R is the ring radius, A is the laser wavelength, and €2, is the rota-
tion angular velocity. The way to introduce the rotation to the rate equations
(1.13) is by adding the detuning term (B.1) in the equations for the fields

{ EL(t) = Go(N(1), | E+(1)]") Ba(t) —n Ex(t) £ iAEL(1) (B.2)
N(t) =~ F(N(t),|E£(t)]) ' '

In this case we suppose that the two counter-propagating fields have dif-
ferent amplitudes, therefore we substitute in the set (B.2) a solution of the
following form

EL(t) = Qe+, (B.3)
We make use of (B.3) in the equations for the electric fields (B.2), assum-
ing w, = w_ = w, and separating the real part and the imaginary part, we

obtain

SN — sQ1 — cQ2) — 1]Qx — kaQ+ cos ¢ F kQxsing = 0
in SIN()(1 = sQF — Q%) — 1]Q+ — keQ+ cos ¢ £ kgQ+ sin ¢ = AQ+
(B.4)
At this point we make use the value for the stationary solutions with
@ (2.7) to relate with the amplitude Q.+, by considering a small symmetric
deviation, ¢, in the following way

and a small deviation 6 of the relative phase

) =20+0, (B.6)

by substituting eq. (B.5) in eq.(B.4), at first order in ¢ and 6, for the in
phase case we obtain

SIN()(1 = s(Q* £2Q0) — ¢(Q* F2Q0)) —1|(Q £ ) — (ka £ k0)(QF ) =0
(Q=E0)=SIN@)(1 —s(Q*£2Q0) — c(Q* F 2Q0)) — 1)(Q £ 6)—
— (ke F kaf)(Q F0) £ A(Q £ 9)

€

(B.7)
as a check, the order zero (i.e. A = § =60 = 0) of the above system leads
back to the unperturbed solution (2.4)

W= Wi, = aky — k. (B.8)

the second linear equation for the deviations 6 and ¢ is
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AQ + 0Q(ak. + kg) — 2(akg — k)6 =0, (B.9)
which can be solved in terms of the other parameters
. 2(Oék'd — kc)5 _ A
 (ak,+ k)Q k.4 ky

by making use of the stationary solutions (2.6, 2.7 and B.8) in (B.7), we
arrive to

(B.10)

AQ + kaflQ + 2ked — 20Q*N (s — ¢) = 0
2kq0 — k0Q — NQ*5(s —¢c) =0

finally we find an expression for § depending on A:

(B.11)

ka
k.Q

we define x as the difference between the fields intensities divided by the
total intensity,

§=—[—=2kq— NQ*(s —¢)) + %(kc —a@Q’N(s—¢))]'A (B.12)

B2 |E_|> 2
S e e S P Yo B.1
X B2+ [E-]F Q ' (B.13)

where R is the responsivity of the system to the inertial rotation.

Therefore, the responsivity R can be written as

_2[ ka
CQkQ

In figure B.1 the difference between the fields intensities divided by the
total intensity, y, is plotted versus the inertial rotation €2,.;.

_127RT,
A

R (ks — NQ*(s — ) + %(k:c — aQ?N (s — 0))] (B.14)

Figure B.2 shows responsivity versus conservative backscattering coeffi-
cient, k. for different values of dissipative backscattering coefficient, k;. A
more detailed plot of responsivity versus the backscattering coefficients is
shown in figure B.3.

Figure B.4 shows responsivity versus pump current, there is a maximum
responsivity for the pump value near 1.12.
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Figure B.1: Difference between the fields intensities divided by the total in-
tensity y, versus inertial rotation €2,.,;. The black line correspond to the an-
alytical expression (B.13) and the squares to the numerical simulation. The
slope is the responsivity R.
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Figure B.2: Responsivity versus conservative backscattering coefficient, k..
The grey dashed curve corresponds to kq = 1079, the black to kg = 107>, the
grey to kg = 10™* and the dotted black to kq = 1073, = 1.2.
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Figure B.3: Responsivity versus backscattering coefficients. y = 1.2.
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Figure B.4: Responsivity versus pump parameter, . kg = —10~% and k, =
1073,
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