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In this paper we analyze in detail the secondary bifurcations of stationary hexagonal patterns in a prototype
model of nonlinear optics. Hexagonal pattern solutions with all allowed wave numbers are computed and their
linear stability is studied by means of a Bloch analysis. Depending on the wave number of the selected pattern
we predict and numerically observe phase instabilities, amplitude instabilities, both stationary and oscillatory,
and oscillatory finite wavelength bifurcations. The results presented here illustrate a typical bifurcation sce-
nario for patterns with different wave numbers in self-focusing systems.
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I. INTRODUCTION

The mean field equation describing a Kerr medium in a
cavity with flat mirrors and driven by a coherent plane wave
is one of the simplest models showing spatial structures in
nonlinear optics. This prototype model has been used to
study a wide variety of phenomena such as pattern formation
in optical bistability or formation of localized structures
�1–7�. In the self-focusing case, a weakly nonlinear analysis
shows that, for pump intensities above a certain threshold,
the system spontaneously develops hexagonal patterns while
stripes are unstable �3,8�.

Once a hexagonal pattern is formed, increasing further the
intensity of the pump, it may undergo secondary instabilities.
Secondary bifurcations of hexagonal patterns have been ob-
served experimentally, not only in optics �9–13�, but also in
hydrodynamical systems �14–18� and gas discharges �19�.
From a theoretical point of view, they have been studied
mainly by means of amplitude equations or symmetry-based
approaches �20–27�. In the first case, amplitude equations are
only valid close to the primary instability leading to the for-
mation of the pattern, therefore, only secondary bifurcations
occurring close to this point can be analyzed. The second
technique classifies the different ways in which the spatial
symmetry can be broken, however, does not predict which
instability will occur in a particular model. It is then inter-
esting to study in more detail secondary bifurcations of hex-
agonal patterns in specific systems. In this paper we perform
a linear stability analysis of hexagonal pattern solutions in
the mean field model for a Kerr cavity. This simple model
allowed us to study generic instabilities associated to the
self-focusing effect, a commonplace phenomenon in differ-
ent fields of physics such us nonlinear optics �28,29�, fluid
dynamics �30�, and plasma physics �31�.

Secondary instabilities in this model were partially stud-
ied in �5� as part of a transition from stationary hexagonal
pattern to a regime of spatiotemporal chaos, however, in that
case, only a pattern with a precise wave number was ana-
lyzed. Here we study the secondary bifurcations of patterns

with different wave numbers and analyze the role of the spa-
tial wavelength in the instabilities. A similar analysis was
done in �32,33� for two different systems: an alkali metal
vapor in a single-mirror arrangement and a saturable ab-
sorber in a cavity. In these two cases, however, only station-
ary instabilities were found.

This paper is organized as follows: In Sec. II we describe
the model and perform a linear stability analysis of the ho-
mogeneous solution. In Sec. III we find the stationary hex-
agonal pattern solutions of the model with any wave number.
Then, in Sec. IV, we perform a linear stability analysis of the
hexagonal patterns and discuss the different instabilities de-
pending on the wave number of the pattern. Finally, in Sec.
V we give some concluding remarks.

II. MODEL

In the mean field approximation, the dynamics of the elec-
tric field inside an optical cavity filled with a self-focusing
Kerr medium can be described by an equation for the scaled
slowly varying amplitude of the field E�x� , t� �1,2� as follows:

�tE = − �1 + i��E + i�2E + E0 + i2�E�2E , �1�

where E0 is the input field, � is the cavity detuning, and �2 is
the transverse Laplacian. Equation �1� has been normalized
by the cavity decay rate. The homogeneous solution Es of
Eq. �1� is implicitly given by E0=Es�1− i�2Is−���, where Is

��Es�2. The relation between the input and output optical
intensities is then given by

I0 = Is�1 + �2Is − ��2� , �2�

where I0��E0�2. Through this paper we consider ���3 so
that from Eq. �2� it follows that there is only one homoge-
neous solution. Then Is, directly related to I0 via Eq. �2�, can
be considered as a proper control parameter.

A linear stability analysis of the homogeneous solution
with respect to spatially periodic perturbations yields to the
dispersion relation

��k�� = − 1 ± �− �� + k2 − 6Is��� + k2 − 2Is� , �3�

where ��k�� is the linear growth rate of a perturbation with
wave vector k� and k= �k��.
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A pattern forming instability takes place at Is= Ith=1/2
with a critical wave number kc=�2−�. For pump intensities
above threshold the maximum linear growth rate is for wave
vectors with modulus

ku = �4Is − � . �4�

At threshold ku=kc. The selection of the wave number ku
�which as follows from Eqs. �4� and �2� depends on the
pump intensity I0� arises from a balance between the diffrac-
tive phase modulation ku

2, the nonlinear phase modulation
4Is, and the cavity detuning �. Exact compensation among
these three effects, expressed by Eq. �4�, results in a perfect
phase matching of the four-wave mixing interaction �annihi-
lation of two photons of the steady uniform solution and
creation of one pair of photons with opposite transverse
wave number ku� that enhances the perturbation, and hence a
maximum growth rate.

III. STATIONARY HEXAGONAL PATTERNS

The linear stability analysis gives information about
where the homogeneous solution becomes unstable to small
perturbations, but not about the nontrivial solution that may
emerge from the bifurcation. In two transverse dimensions, a
nonlinear analysis predicts the formation of hexagonal pat-
terns �2,3�. This is a general feature related to the existence
of quadratic nonlinearities in the equation for the dynamics
of the perturbations of the homogeneous solution.

Depending on the value of Is, the hexagons may appear
oscillating. The transition is subcritical and the hexagonal
pattern, once it is formed, is stable for a range of values of
the pump intensity including values below threshold. In the
case of oscillating hexagons, the amplitude of the oscillations
decreases when the pump intensity is decreased adiabatically
until they become, in all cases, stationary. Due to the sub-
criticality of the hexagonal patterns, they always have, even
at threshold, a finite amplitude. Then, the harmonics of the
six fundamental wave vectors have a significant intensity and
they have to be considered. This is particularly important in
the self-focusing case considered here because the sharp
peaks of the pattern have a strongly anharmonic far field
�Fig. 1�.

The stationary hexagonal patterns can be written in the
form

Eh�x�� = �
n=0

N−1

aneik�n
0x� , �5�

where k�n
0 are the wave vectors of the pattern, an are complex

coefficients, and N=91 is the number of Fourier modes we
consider in the analysis. k�0

0=0 is the homogeneous mode and
k�n

0 for n=1,N−1 are the off-axis wave vectors of the hex-
agonal pattern, containing the six fundamental wave vectors
with modulus �k�n

0�=k �n=1,6� and harmonics up to 5k. As
the hexagonal patterns are the result of a spontaneous break-
ing of the translational invariance, there are continuous fami-
lies of such patterns. Each family is characterized by the
pattern wave number k and each member of the family by the

location of the pattern in the near field, which corresponds to
a global phase in the far field.

The coefficients an can be obtained either by numerical
simulations or by solving the stationary form of Eq. �1�,

− �1 + i��E + i�2E + E0 + i2�E�2E = 0. �6�

The second method allows us to find the stationary hexago-
nal solution with very high accuracy much faster than from
numerical simulations. It also allows us to find both stable
and unstable stationary solutions. Substituting Eq. �5� in Eq.
�6� a set of coupled nonlinear equations for the amplitudes of
the Fourier components an is obtained

�− �1 + i�� − i�k�n
0�2�an + i2�

l=0

N−1

�
m=0

N−1

alam
* an−l+m = 0, �7�

where an−l+m is the amplitude of the mode k�n
0−k�l

0+k�m
0 . From

a suitably chosen initial condition a Newton-Raphson
method is used to find solutions of the set of nonlinear equa-
tions �7�. The first guess can be obtained from a numerical
simulation of Eq. �1�. Once a single stationary solution has
been found, any parameter region can be reached by means
of continuation techniques �34�. We also treat the wave num-
ber k of the hexagonal pattern as a parameter and look for
stable and unstable stationary hexagonal solutions with dif-
ferent fundamental wave numbers.

Figure 2 shows the region of existence of stationary hexa-
gons. For each value of Is above threshold there is a whole
band of possible stationary hexagonal patterns with very dif-
ferent wave numbers k. The hexagons are subcritical and
therefore exist below the marginal stability curve of the ho-
mogeneous solution �black solid line�. The lower limit for
the existence of a subcritical hexagonal pattern with a given

FIG. 1. �Color online� �a� Near field �E�x ,y��2 and �b� power
spectrum �far field� �E�k���2 of a stationary hexagonal solution. Note
the presence of high harmonics in the far field. Panel �c� shows a
cross section along a y axis of the pattern and panel �d� a cross
section along the kx axis of the power spectrum. The hexagon drawn
in a solid line in panel �b� shows the first Brillouin zone of the
lattice defined by the Fourier modes of the hexagonal pattern in the
far field.
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k �gray solid line� is determined by the saddle-node bifurca-
tion where this pattern branch collides with the branch of
unstable hexagonal patterns with the same wave number that
starts from the homogeneous solution at the marginal stabil-
ity curve ��k�=0. The upper branch of stationary hexagonal
patterns ends at the upper line of the marginal stability curve.
These hexagonal patterns, however, become first unstable
leading to different dynamical regimes as will be shown in
the next section.

IV. SECONDARY BIFURCATIONS OF STATIONARY
HEXAGONAL PATTERNS

In this section we perform a numerical linear stability
analysis of the stationary hexagonal solutions with different
fundamental wave numbers k in order to determine their sta-
bility as a function of the input power �5,32,33�. Linearizing
Eq. �1� around the stationary solution �5� the following equa-
tion for the perturbations �E�x� , t�=E�x� , t�−Eh�x�� is obtained:

�t�E = − �1 + i���E + i�2�E + i2�2�Eh�2�E + EhEh�E*� .

�8�

The solution of this equation can be written as a superposi-
tion of Bloch waves �5,32,33� �E�x�,t� = �

n=0

N−1

��an�+ q� ,t�ei�k�n
0+q��x + �an�− q� ,t�ei�k�n

0−q��x� .

A set of linear equations for the complex amplitudes �an�q� , t�
is then obtained from Eq. �8�,

�t�an�±q�� = �− �1 + i�� − i�k�n
0 ± q� �2��an�±q��

+ i2	2�
l=0

N−1

�
m=0

N−1

alam
* �an−l+m�±q��

+ �
l=0

N−1

�
m=0

N−1

alam�a−n+l+m
* ��q��
 . �9�

By considering �� �q� , t�= (�a1�q� , t� ,�a2�q� , t� , . . . ,�aN�q� , t� ,
�a1

*�−q� , t� , . . . ,�aN
* �−q� , t�)T, Eq. �9� can be written as

�t�
� �q� ,t� = M�an,q���� �q� ,t� . �10�

Then, we find the 2N eigenvalues �n�q�� �n=0, . . . ,2N−1� of
the matrix M�an ,q��, and its corresponding eigenvectors, for

LW

HS

HO

FW1
2

3
4

FIG. 3. Marginal stability diagram of the hexagonal pattern so-
lutions for �=1.0. The shadowed region corresponds to the param-
eter values where the stationary hexagonal patterns are stable. Each
numerated subregion corresponds to hexagonal patterns that un-
dergo different instabilities when the pump is set out of the stable
region.

FIG. 4. �Color online� Left: Re��0�qx ,qy�� for a hexagonal pat-
tern with a wave number inside the region 1 �k=0.95�. qx=qy =0
�center of the image� corresponds to the Goldstone modes and
�0,1�q� =0�=0. The dashed line shows the limits of the first Brillouin
zone. Dark �bright� color indicates low �large� values of
Re��0�qx ,qy��. From top to bottom, Is=0.48 �stable�, Is=0.50 �criti-
cal point�, and Is=0.52 �unstable�. Right: transverse cut of
Re��0�qx ,qy�� along the qx �solid line� and qy �dashed line� axis.

FIG. 2. Marginal stability curve of the homogeneous solution
�solid black line�, most unstable wave number �dashed line�, and the
lower limit �saddle-node bifurcation� for the existence of stationary
hexagonal patterns �gray line� for �=1.0.
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each vector q� . These eigenvalues may be either real or com-
plex conjugates and determine the stability of the solution
against periodic perturbations containing any set of wave
vectors k�n

0±q� . It is sufficient to explore 1/6 of the first Bril-
louin zone �35� plotted in Fig. 1�b�. We order the eigenvalues
�i�q�� according to the values of their real part Re��i�q���
�Re��i+1�q���.

We find that the stationary hexagonal patterns are stable
only in the shadowed region of Fig. 3. Lines LW �long wave-
length�, HS �homogeneous stationary�, HO �homogeneous
oscillatory�, and FW �finite wavelength� indicate different
types of instabilities. Increasing or decreasing the pump in-
tensity stable hexagonal patterns become unstable in differ-

ent ways depending on their wave number. In the following
subsections we analyze the different cases. Numerical simu-
lations have been performed on a 512	512 rectangular grid
with periodic boundary conditions. For a stationary hexago-
nal pattern of wave number k we use 
kx=k /8 and 
ky
=k sin�60° � /7 such that the Fourier space in the modes lie
exactly on top of the grid. This discretization allows for
higher order harmonics �up to 32� in Fourier space ensuring
that any relevant wavelength is properly accounted for. In
real space, the system size corresponds to Lx=16� /k and
Ly =28� / ��3k�. This size is large enough to account for a
proper observation of the predicted instabilities.

A. Long-wavelength instability

Hexagons with small wave numbers �region 1 in Fig. 3�
become unstable against long-wavelength perturbations �q�

FIG. 5. �Color online� Time evolution of the near �left� and far
field �right� of an unstable hexagonal pattern. The wave number of
the initially unstable hexagons is k=0.95 and Is=0.52. The time
increases from top to bottom. The right pictures show the central
part of the far field in the range kx= �−2k ,2k� and ky

= �−16k /7 ,16k /7�.

FIG. 6. �Color online� The same as in Fig. 5 for Is=0.46. In this
case the final state is a stationary hexagonal pattern with one more
spot in the y direction.
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�0� when the pump is changed such that Is goes across the
dashed border �LW�. This instability is associated to the dy-
namics of the global phase, or position, of the pattern �36�,
and is typically called phase instability �see, e.g.,
�33,34,37–39� for previous work on phase instabilities of
hexagons�. For small �q� � the branches of eigenvalues �0,1�q��
have a parabolic shape Re��0,1�q���� �q� �2, and this instability
is characterized by a change of their convexity. These
branches correspond to the so-called soft modes associated to

the Goldstone modes, the neutrally stable eigenmodes due to
the breaking of the translational invariance �40�. The Gold-
stone modes play a critical role in determining the near-field
fluctuations of a Kerr hexagonal pattern in the presence of
noise �41�. Figure 4 shows in detail the result of the stability
analysis for a hexagonal pattern with k=0.95 for different
values of the pump from below to above the instability bor-
der of region 1 �LW�. The change of convexity of the soft
mode branches clearly indicates the occurrence of a phase
instability. Above the instability threshold, the saturation for
large q leads to a maximum growth rate at some finite values
of q. This wave number can be clearly seen in the linear
growth regime of numerical simulations.

Figure 5 shows a numerical simulation for Is=0.52, taking
as initial condition a stationary unstable hexagonal pattern
with k=0.95, and shows the development of the instability.

FIG. 7. �Color online� The same as in Fig. 4 for hexagons with
a wave number k=1.0 crossing the upper border of region 2. From
top to bottom Is=0.55 �stable�, Is=0.555 �critical point�, and Is

=0.56 �unstable�. Note that the branch that becomes unstable
�dotted-dashed lines� is not the branch of the Goldstone and soft
modes �solid and dashed lines�.

FIG. 8. �Color online� Real part of the near field and far-field
intensity of the mode then become unstable when the upper border
of region 2 is crossed.

FIG. 9. �Color online� The same as in Fig. 5 for unstable hexa-
gons from region 2 �k=1.0 and E0=0.56�. Note in the second row
that the spots in the far field become wider due to the linear growth
of the unstable branch around q� =0 �Fig. 7�.
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In the first stages of the simulation the unstable wave vectors
close to the wave vectors of the hexagonal pattern can be
seen growing linearly �second row in Fig. 5�. The Fourier
components growing around the modes of the pattern in the
far field must be compared with the prediction of the linear
stability analysis in Fig. 4. Finally, the original hexagonal
structure is replaced by another hexagonal structure with the
same orientation but a larger wave number �k=1.11�. In fi-
nite systems, the minimum change in the wave number is
imposed by the discrete Fourier space. In this case the pat-
tern with the new wave number is not stationary. As shown
in Fig. 3 for Is=0.52 hexagons with this wave number are
just above the HO line and therefore are unstable. The sys-
tem finally evolves to a regime we call “chaotic hexagons,”
characterized by chaotically oscillating peaks on top of a
regular hexagonal lattice �5�.

The long-wavelength instability may take place also by
decreasing the pump across the left border of region 1 �LW�.
As shown in Fig. 6, again an hexagonal pattern with the
same orientation and a larger wave number �here k�1.0� is
formed. In this case the stationary pattern is stable.

B. Amplitude instabilities

Hexagonal patterns within regions 2 and 3 become un-

stable for perturbations with q� =0� when the pump intensity is

increased in such a way that IS goes above the instability
lines HS and HO. In region 2 the instability is stationary
�HS�, while in region 3 it is oscillatory �HO�. These insta-
bilities are associated to the growth of complex amplitude
perturbations of the Fourier modes of the hexagonal pattern
and, therefore, they are called amplitude instabilities. These
instabilities are characterized by a parabolic branch �2�q��
centered at q� =0 and whose maximum �2�0�� goes from nega-
tive to zero, and then becomes positive. In fact, if we follow
strictly the ordering of the eigenvalues, when it becomes
positive, the branch �2�q�� should be called �0�q��, because it
has crossed the two branches associated to the Goldstone
modes.

1. Stationary instability

In this case �2�q�� is a branch of real eigenmodes, so,
when Is is increased above the instability line HS the hex-

FIG. 10. �Color online� The same as in Fig. 4 for hexagons with
a wave number k=1.05, crossing the upper border �HO� of region 3.
From top to bottom, Is=0.51 �stable�, Is=0.52 �critical point�, and
Is=0.53 �Hopf unstable�. In this case, the eigenvalues have a non-
zero imaginary part.

FIG. 11. �Color online� The same as in Fig. 5 for Hopf unstable
hexagons from region 3 �k=1.05 and Is=0.52�. The final hexagonal
pattern oscillates homogeneously.
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agonal patterns undergo a stationary bifurcation �Fig. 7�. The
unstable mode computed from the linear stability analysis is
shown in Fig. 8. It has the same spatial wavelength that the
pattern but the hexagonal structure in the near field is shifted
a distance l /�3, where l=2� /k is the wavelength of the
original pattern, in the direction forming a 30° angle with the
primary pattern.

Figure 9 shows a numerical simulation above the region 2
�Is=0.555� starting with an unstable stationary hexagonal
pattern with k=1.0 as initial condition. In the transient �sec-
ond and third rows of Fig. 9� one can glimpse the shape of
the unstable mode �Fig. 8� predicted by the linear stability
analysis as it grows. As a result, a new shifted hexagonal
lattice appears in the near field. The interaction between the
new peaks and those of the primary hexagonal pattern makes
them oscillate, in a similar way as will be described in Sec.
IV C for patterns with larger wave numbers. As a conse-
quence spatial subharmonics are also generated. Finally, the
system ends up in a spatiotemporal chaotic attractor that we
call optical turbulence �5�. This regime is characterized by
the formation of peaks at random positions that, after oscil-
lating for several times with an overall broad temporal spec-
trum characteristic of chaotic behavior, vanish allowing other
peaks to appear at nearby locations, thus evolving the whole
pattern in a spatiotemporal chaotic manner. A further in-
crease of the pump will destroy the spatial order and the
system enters the optical turbulence regime �5�.

2. Oscillatory instability

In region 3, when the pump is increased above the insta-
bility line HO, the stationary hexagonal patterns undergo a
homogeneous �q� =0� Hopf bifurcation. In this case �2�q�� and
�3�q�� are branches of complex conjugate eigenvalues. The
real part of �2�0� and �3�0� become positive at the critical
point with an imaginary part 
 different from zero �Fig. 10�.
As a result, the hexagonal pattern starts to oscillate uni-
formly with a period T=2� /
. Figure 11 shows the result of
a simulation for Is=0.52 starting from a Hopf unstable hex-
agonal pattern with k=1.05. Since the form of the unstable
mode is similar to the stationary pattern, the hexagons sim-
ply start to oscillate. The period T of the oscillation �Fig. 12�
is in very good agreement with the value T�4.5 obtained
from the imaginary part of the unstable eigenvalue of the
stability analysis. The period of the oscillations increases
with the pump, until, eventually, the uniformly oscillating
hexagons become unstable and evolve towards chaotic hexa-
gons.

C. Finite wavelength Hopf instability

In region 4 hexagonal patterns undergo a finite wave-
length Hopf instability when the pump is increased above the
instability line FW �Fig. 13�. The unstable mode has a vector
q�1= �k�1

0+k�2
0� /3, located on the vertex of the first Brillouin

zone ��q�1 � =k /�3� �Fig. 14�. As a consequence hexagons do
not oscillate uniformly, instead they are divided into three
superlattices of wavelength l1=�3l, corresponding to the
spatial structure of the unstable eigenmodes �Fig. 14�. Figure
15 shows the result of a numerical simulation for Is=0.48
starting from an unstable hexagonal pattern with k=1.15.

FIG. 12. Time evolution of the maximum of a hexagonal pattern
peak in Fig. 11.

FIG. 13. �Color online� The same as in Fig. 4 for hexagons with
a wave number k=1.15, crossing the upper border �FW� of region 4.
From top to bottom, Is=0.47 �stable�, Is=0.475 �critical point�, and
Is=0.48 �Hopf unstable�.

FIG. 14. �Color online� Near and far field of the mode then
become unstable when the upper line of region 4 �FW� is crossed.
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The peaks in each superlattice oscillate synchronously. Two
of the superlattices oscillate in antiphase with a relatively
large amplitude while the third oscillates at twice that fre-
quency and has a smaller amplitude. Figure 16 shows the
time evolution of one of the peaks of each superlattice as
well as the power spectrum corresponding to the time trace
plotted with a solid line. As shown in the power spectrum,
the frequency of the oscillations is in very good agreement
with the value 
1=Im��0�q�1���1.0 obtained from the linear
stability analysis �vertical dashed line�.

Physically this reflects an interchange of energy between
two of the superlattices, mediated by the third while the total
energy remains practically constant. Both in the homoge-
neous and finite wavelength Hopf instabilities, the high Fou-

rier harmonics play an important role in the oscillations. Ne-
glecting or filtering out successive rings of high harmonics
shift the bifurcations to larger pump values and may eventu-
ally suppress the bifurcations altogether �42–44�. Therefore
the oscillations are associated to a transfer of energy from
large scales to small scales. The bifurcation is supercritical,
close to the critical point Ic amplitude of the oscillations
grows as �Is− Ic as shown in Fig. 17. Mathematically, this
bifurcation is a spatial-period multiplying �23�. Stationary
instabilities with the same wave vector q�1 has been observed
in surface waves �14� leading to superlattices.

A Bloch-Floquet analysis of the oscillatory hexagons re-
veal that increasing the pump intensity a subsequent
Neimark-Sacker bifurcation further splits the the three super-
lattices, leading to a quasiperiodic regime in a route towards
spatiotemporal chaos �5�.

FIG. 15. �Color online� Time evolutions of �E�x� , t��2 �left� and
�E�k� , t��2 �right� for Hopf unstable hexagons from region 4 �k
=1.15 and Is=0.48�. The hexagons do not oscillate homogeneously
but nearby peaks are dephased. A superstructure corresponding to
the unstable mode of Fig. 14 with a wave number k /�3 can be seen
in the simulation.

FIG. 16. �Color online� Left: Time evolution of the maximum of
three dephased peaks of the hexagonal pattern in Fig. 15. Right:
Power spectrum of the time trace plotted with a solid line on the
left. The value of the frequency of the oscillations predicted by the
stability analysis is indicated with a vertical dashed line.

FIG. 17. Amplitude of the oscillations as a function of the con-
trol parameter Is.
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V. CONCLUDING REMARKS

We have analyzed in detail the secondary bifurcations of
stationary hexagonal patterns in a prototype model of non-
linear optics. The stability analysis of the stationary hexago-
nal patterns predicts different instabilities depending on their
fundamental wave number. Hexagons with wave numbers
smaller than the critical one undergo phase instabilities, pat-
terns with wave numbers close to the critical one undergo
stationary and oscillatory amplitude instabilities, and hexa-
gons with larger wave numbers undergo finite wavelength
Hopf instabilities leading to three superlattices oscillating pe-
riodically in antiphase. This instability can be also under-
stood as a collective behavior of a hexagonal lattice of
coupled oscillators. This system supports localized struc-
tures, also known as cavity or dissipative solitons, which can
be considered as isolated peaks of a hexagonal pattern. These
peaks also have an oscillatory instability �6,7�. The dynamics
of this coherent structure is essentially two dimensional and,
therefore, the hexagonal pattern can be interpreted as an hex-
agonal lattice of coupled oscillators. The coupling between
two nearby peaks comes through diffraction. When the wave

vector of the pattern is small �as it is the case for the patterns
in region 3� the peaks are quite far away from each other, and
the coupling is small. Then the system prefers to oscillate
synchronously. Patterns in region 4 have a larger wave num-
ber and therefore a larger coupling between the peaks. In this
circumstance a splitting in three superlattices is selected. In
general, adding more energy to the system �increasing the
pump� increases the influence of the coupling between peaks,
so that uniformly synchronous oscillations become unstable
�see Sec. IV B 2�.

These results are typical and do not change significantly
for small changes of the detuning parameter. Qualitative
changes are observed for larger detunings, where the exis-
tence of localized structures may strongly modify the region
of existence and stability of the hexagonal patterns.
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