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Abstract. We discuss the relation between the dynamics of walls separating two
equivalent domains and the existence of different kinds of localized structures in
systems far from thermodynamic equilibrium. In particular we focus in systems
displaying a modulational instability of a flat front where an amplitude equation
for the dynamics of the curvature allows to characterize different growth regimes
and to predict the existence of stable droplets, localized structures whose stability
comes from nonlinear curvature effects.

1 Introduction

Localized structures (LS), or dissipative solitons, are commonplace in extended systems display-
ing bistability between either a periodic pattern and a homogeneous state or two homogeneous
solutions. In 1D, the existence of such LS can be explained through a pinning mechanism
around the “Maxwell” point where a front between the two stable solutions is at rest [1,2]. In
the case of bistability between two equivalent homogeneous solutions, for instance as a result
of a pitchfork bifurcation, the “Maxwell” point spread over all the bistable parameter region
and the front is always at rest due to symmetry. In this case, the existence of LS in 1D due to
the locking of two fronts through the interaction of their oscillatory tails is greatly enhanced.
In 2D, however, the role of the curvature of the fronts has not been completely understood in
these terms. Reversibility, which is the basic ingredient behind the pinning around a “Maxwell”
point, is broken when studying a radial equation describing a circular domain wall. Moreover,
the “Maxwell” point itself is destroyed by the curvature driven motion, even in the case of
bistability between equivalent solutions. The extension of the 1D theory to 2D is, then, not
straightforward.
On the other hand, the dynamics of such LS is strongly related the growth of spatial domains

of one homogeneous solution embedded in the other. The study of domain wall dynamics
provides, then, a different approach to study the formation of LS. For systems approaching
thermodynamic equilibrium, domain growth has been studied long ago [3,4]. The physical
mechanisms explaining the different asymptotic growth laws have been clearly identified. It
is convenient to consider domain growth in systems with conserved and nonconserved order
parameters separately. In the first case, one talks of spinodal decomposition leading to the
Lifshitz–Slyozov t1/3 power law. In the second case, the dominant mechanism is curvature
driven minimization of surface tension energy, leading to the Allen–Cahn (AC) t1/2 power
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law [5]. In systems that do not approach thermodynamic equilibrium there is only a partial
understanding of a variety of possible situations [6–9]. Reported results have been in some cases
even contradictory. For example, in nonlinear optical systems several growth laws, including
t1/2 [10,11] and t1/3 [12,13] have been reported. These results were obtained from numerical
simulations but only in [10,11] evidence of scaling was given.
We have recently developed a quite general theory [14] to analyze the transition from a

coarsening regime characterized by a t1/2 growth law to one of labyrinthine pattern formation
due to a modulational instability of a flat domain wall connecting two equivalent homogeneous
solutions. Such transition has been observed experimentally in reaction diffusion [15,16] and
optical [17] systems, and numerically in [10], as well as in Swift–Hohenberg models [18,19].
On the basis of our general theory, it is possible to show for which parameter regions there is
dynamical scaling, so that, the growth follows a power law, and for which parameters there is
no dynamical scaling. Furthermore the theory predicts a novel kind of localized structures, the
stable droplets, large circular domain of one phase embedded in the other.
In this paper we review the general theory for the movement of domain walls connecting

two equivalent stable homogeneous solutions (labeled as phases) in two spatial dimensions and
present in detail the perturbation theory originally developed in [14]. The paper is organized as
follows: In section 2 we describe the type of systems to which our theory applies. In section 3
we derive a first order eikonal equation for the velocity of gently curved fronts and establish a
criterion for the modulation instability of flat fronts. Then, in section 4 we extend the analysis
close to the bifurcation point where the velocity vanishes to include nonlinear terms, and derive
an amplitude equation for circular domain walls close to this point. In section 5 we summarize
and discuss the different growth laws that can be observed in this systems. Finally, in section
6 we give some concluding remarks.

2 System description

We consider any system described by real N components vector field Ψ(x) whose dynamical
evolution in two spatial dimensions can be written as

∂tΨ = D∇2Ψ+W (Ψ, p) , (1)

where the matrix D describes the spatial coupling, W is a local nonlinear function of the
fields and p a control parameter. Equation (1) is invariant under translations and under the
change P : x → −x (parity). We also assume that it has a discrete symmetry Z that allows
for the existence of two, and only two, equivalent stable homogeneous solutions, and that, in
a 1d system, they are connected by stable Ising fronts Ψ0(x, p). An Ising front is invariant
with respect to S = ZP0, where the subscript 0 means that the reference frame for the spatial
inversion is chosen at the center of the wall x0 [20]. Thus, the 1d front (and equivalently a flat
front in 2d) is stationary, D∇2Ψ0 +W (Ψ0, p) = 0.
For the sake of clarity we will illustrate our general results throughout the paper on a

prototypical model: the Parametrically driven Complex Ginzburg–Landau Equation (PCGLE).
The PCGLE [21,22] is the generic amplitude equation for an oscillatory system parametrically
forced at twice its natural frequency [15]:

∂tA = (1 + iα)∇2A+ (µ+ iν)A− (1 + iβ)|A|2A+ pA∗, (2)

where µ measures the distance from the oscillatory instability threshold, ν is the detuning and
p > 0 is the forcing amplitude. This model has been used to describe a light sensitive form of
the Belousov–Zhabotinsky reaction [15,16].
The PCGLE is an example fulfilling the hypothesis required above. For p ∼ ν ∼ α large

compared to other parameters a pattern forming instability takes place for p < ph, while
for p > ph there are two equivalent stable homogeneous solutions (frequency locked solu-
tions) (figure 1). In the PCGLE both Ising and Bloch walls can be observed. We restrict our-
selves to parameter regions where the fronts connecting the two homogeneous solutions are of
Ising type.
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Fig. 1. Bifurcation diagram of the homogeneous solutions of the PCGLE for α = 2, β = 0, ν = 2
and µ = 0. Solid lines indicate linearly stable solutions while dotted lines indicate solutions that are
unstable under finite wavelength perturbations. For the parameter values considered, ph = 2.09 (dashed
line).

Fig. 2. A heteroclinic solution consisting of a Ising wall for p = 2.75. Other parameters as in figure 1.
Left: Real part (solid line) and imaginary part (dotted line) of the complex field A as a function of
x in the PCGLE. The center of the wall x0 = 16 is the point where the two lines cross each other,
which in this case corresponds to point where the field vanishes. Note the invariance with respect
to S = ZP0. Right: The domain wall plotted in the A-complex plane. The crosses indicate the two
equivalent homogeneous stable solutions and the zero unstable solution.

The real vector field describing the state of the system is Ψ(x) = (Re[A(x)], Im[A(x)]),
the spatial coupling is described by the matrix D = ((1, α)T , (−α, 1)T )), Z = −I and Ψ0(x)
describes a Ising front connecting the two homogeneous solutions (we consider p > ph). The
front profile presents oscillatory tails as shown in figure 2. The 1d front profile Ψ0 is obtained
by solving the 1d stationary equation of (2), namely

(1 + iα)
d2A

dx2
+ (µ+ iν)A− (1 + iβ)|A|2A+ pA∗ = 0 , (3)

where we impose first derivative equal to zero at each boundary. We then discretize the space
and solve the set of coupled ordinary differential equations using a Newton method in which
the transverse derivatives are computed in Fourier space [23–25].

3 Eikonal equation

In the reference frame moving with a front equation (1) becomes [26]:

D∂2uΨ+

(
vnI +

κ

1 + uκ
D

)
∂uΨ+

uκ2∂θκ

(1 + uκ)3
D∂θΨ+

κ2

(1 + uκ)2
D∂2θΨ+W (Ψ, p) = ∂tΨ, (4)
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where u is the coordinate normal to the front, s is the arclength of the line front, vn is the
normal front velocity, κ is the local curvature of the front line, θ = κs is the azimuthal angle
and I the identity matrix. We analyze the dynamics of slightly curved fronts Ψ(u, s, t) as a
perturbation of the flat front Ψ0(u)

Ψ(u, s, t) = Ψ0(u) +Ψ1(u, s, t). (5)

We assume that (i) κw � 1, with w the front width, (ii) in the moving frame the front profile
depends at most weakly on t (|∂tΨ| � |κD∂uΨ|) and (iii) κ is a function which depends at
most weakly on s, thus |κ∂2θΨ| ∼ |κ∂θΨ| � |∂uΨ|. Linearizing equation (4) around Ψ0 keeping
only first order terms in κ and Ψ1 we have

MΨ1 = −(vnI + κD)∂uΨ0 , (6)

whereM ij = D
i
j∂
2
u+δΨjW

i|Ψ0,p. The last term is the functional derivative of the ith component
of the nonlinear vector functionW (Ψ, p) with respect to the jth component of the real vector
fieldΨ. Due to the translational invariance of (1), which is broken by the presence of the domain
wall, fronts have a neutrally stable Goldstone mode e0 (Me0 = 0), whose spatial profile is given
by the gradient of the front e0 ≡ ∂uΨ0. Since the front is symmetric with respect to S, its
gradient e0 is antisymmetric. Due to the existence of the neutrally stable mode, M is singular
and there exist a condition for equation (6) to have a solution, the so called solvability condition
(see Appendix A in [27]). The condition is obtained multiplying on the left both sides of (6) by
the null vector of M†, a0: ∫ ∞

−∞
a0 · (vnI + κD)e0 du = 0. (7)

Equation (7) leads to the eikonal equation

vn = −γ(p)κ, (8)

where

γ(p) ≡ 1
Γ

∫ ∞
−∞

a0 ·De0 du , (9)

and Γ ≡ ∫∞−∞ a0 · e0 du. Γ vanishes at a Ising–Bloch transition [20]. Here we only consider
parameter regions far away from any Ising–Bloch transition for which Γ is never zero. For a
circular domain κ = 1/R and

vn = Ṙ = −γ(p)/R . (10)

From equation (6) one obtains that the front perturbationΨ1(u, t) = κ(t)ϕ1(u) is independent
of s while the dependence on t comes only through κ. ϕ1 satisfies

Mϕ1 = −(−γI +D)e0. (11)

For systems such that the diffusion matrix is proportional to the identity, D = dI,

γ =
d

Γ

∫ ∞
−∞

a0 · Ie0 du = d
Γ
Γ = d. (12)

Thus, γ takes the constant value d independently of the profile of the front and any system
parameter. In this case, the rhs of (11) vanishes and ϕ1 must be either zero or proportional to
the Goldstone mode e0. Physically this means that the fronts translate without changing their
radial profile. The front velocity is proportional to the curvature with opposite sign vn = −dκ,
which is the well known Allen–Cahn law [3,5]. This law implies a coarsening regime with a t1/2

growth law and shrinking of circular domains following R(t) =
√
R(0)2 − γt, as obtained from

(10) (figure 4).
In general, D = dI + C with a non zero matrix C, so that

γ = d+
1

Γ

∫ ∞
−∞

a0 · Ce0 du. (13)
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Fig. 3. Left: wall profile of a gently curved front in 2D plotted in the A-complex plane. The symbols
correspond to the zero solution and the two non-trivial homogeneous equivalent solution. The difference
between the curved front and the flat wall (figure 2) is the effect of the deformation due to the first
order correction Ψ1. The distance of the center of walls from the zero solution, given by min |A|, is
a measure of the deformation and is plotted in the right panel as a function of the curvature for a
shrinking circular domain. The linear dependence predicted theoretically is clear. The dashed line is a
linear fitting of the data from the simulations.

C leads to a contribution to γ that depends on the profile of the front Ψ0 and therefore, on
the system parameters. From equation (11) we have that ϕ1 is no longer proportional to the
Goldstone mode. This means that the transverse profile of the front is now deformed by the cur-
vature. Since Ψ1(u, t) = κ(t)ϕ1(u), the amount of deformation is proportional to the curvature.
Due to the deformation, real and imaginary parts of the field does not vanish simultaneously
at any point of the wall, so |A| is always positive. In fact, the minimum of |A|, which takes
place at the center of the wall, can be considered a good measure of the deformation. As shown
in figure 3) the deformation grows linearly with the curvature as predicted. While deformation
can be interpreted as the original flat Ising wall getting chirality, this deformed Ising front must
no be confused with a Bloch wall resulting of a symmetry breaking bifurcation and which has
chirality even in 1D. Thus, for example, in optical systems the experimental observation of
fronts for which the intensity does not vanish at the center [28] does not necessarily imply that
these are Bloch fronts if the fronts have local curvature.
The d contribution is generally positive and, for wide parameter regions, γ is also positive.

Here flat walls are stable and the Allen-Cahn law still applies [10,24] (figure 4).1 Circular
domains shrink but in the parameter regions where the γ coefficient takes moderated values
the 1d interaction due to presence of oscillatory tails in the front may prevent the droplet to
disappear forming a localized structure (LS) (figure 5).
The crucial point is that for some parameter values the contribution to γ due to C may be

negative and larger than d. γ changes sign and a bifurcation occurs. Figure 6 shows the value
of γ versus p for the PCGLE.
The value of p for which γ = 0 identifies the bifurcation point pc. This is particularly

relevant in nonlinear optics where the spatial coupling is diffractive and therefore d = 0. For
γ < 0 the velocity has the same sign of the curvature leading to the growth of any perturbation
of the flat wall. The condition for vanishing γ,

∫∞
−∞ a0 · De0 du = 0, is in fact the criterion

for the modulational instability of a flat front. Modulational instabilities in fronts connecting
two equivalent homogeneous states have been studied in [10,15,30] (figure 7). Starting from a

1 Numerical simulations have been performed on a 256 × 256 square grid using a pseudospectral
method as in R. Montagne et al., Phys. Rev. E 56, 151 (1997). Linear terms are treated exactly in
Fourier space while a second order in time approximation is used for nonlinear terms. This automatically
implement periodic boundary conditions. The system size is taken large enough so that no finite size
effects influence the calculation of the growth rate of circular domains. Throughout the paper ∆x = 0.25
and ∆t = 0.1.
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t

Fig. 4. Snapshots corresponding to the time evolution of the real part of the complex field A for the
parametrically driven complex Ginzburg–Landau equation in the domain coarsening regime (p = 2.9
for which γ > 0). Left: evolution starting from random initial conditions. Right: evolution of a circular
domain of the phase A = (1.3455,−0.5382) in a background of phase A = (−1.3455, 0.5382). The
reverse case would let to exactly the same dynamics as the two solutions are equivalent. The total time
of the sequence is 1000 time units.
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t

Fig. 5. The same as figure 4 in the regime of formation of LS (p = 2.7 for which γ > 0 but small
enough to not overcome the oscillatory tails interaction). Here the total integration time is 2000 time
units.

random initial condition, the system develops labyrinthine patterns [10,15,17]. Also, a circular
domain grows like (10) until its boundary breaks up because of the modulational instability
leading to the formation of a labyrinthine pattern (figure 8).

The values of γ shown in figure 6 have been calculated from its definition equation (9). From
the discretized profile Ψ0 obtained from equation (3) we evaluate the operator M , which now
takes the form of a N × N matrix with N the number of grid points. The null mode of M†
is easily obtained by finding the eigenmodes of the transposed of the matrix M . This process
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Fig. 6. γ as function of p calculated from equation (9) for
the PCGLE. Parameters taken as in figure 1. γ becomes zero
at pc = 2.56629. The regions labeled with different numbers
and separated by dashed vertical lines indicate the parameter
values for which different asymptotic regimes are found: 1)
coarsening, 2) formation of localized structures, 3) stable
droplets, 4) t1/4 growth law, and 5) labyrinthine patterns.

Fig. 7. Images showing the development of a modulational instability of a flat wall for the PCGLE.
The time increases from left to right.

allows us to calculate γ with very high accuracy much faster than following the time evolution
of a 2d circular droplet from a numerical integration of equation (2).

4 Amplitude equation for the curvature: Stable droplets

In the previous section we have developed a perturbation theory at first order in the curvature κ.
However, for values of the control parameter p close to pc, where the proportionality coefficient
γ between the velocity and the curvature vanishes (modulational instability of a domain wall),
higher order contributions in κ, that have been neglected in the previous sub-section, may
become relevant. In order to study these nonlinear contributions we perform a multiple scale
analysis in ε of equation (4). We start considering the case of a circular domain wall (for which
vn = −κ̇/κ2). Assuming the following scaling:

p = pc + εp1, Ψ = Ψ0 + ε
1/2Ψ1 + εΨ2 + ε

3/2Ψ3,

κ = ε1/2κ1 and ∂t = ε
2∂T , (14)

at order ε1/2 we obtain
Mψ1 = −κ1De0. (15)

Now the solvability condition is
∫∞
−∞ a0 · De0 dr = 0, which is precisely the criterion for the

modulational instability of a domain wall, and therefore is automatically satisfied at pc. Then
a solution of (15) can be found:

Ψ1 = κ1ϕ1 (16)

with Mϕ1 = −De0. At order ε we obtain

M ijΨ
j
2 = −p1∂pW i|0 − κ21Dij(∂uϕj1 − uej0)−

κ21
2
δΨjΨkW

i|0ϕj1ϕk1 (17)

where |0 means evaluated at Ψ0 and pc, and the solvability condition is∫ ∞
−∞
a0i

[
p1∂pW

i|0 + κ21Dij(∂uϕj1 − uej0) +
κ21
2
δΨjΨkW

i|0ϕj1ϕk1
]
= 0. (18)
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Fig. 8. The same as figure 4 in the regime of formation of labyrinthine structures (region 5 in figure
6, for which γ < 0).

a0 has the same symmetry with respect to S as the Goldstone mode e0, namely it is antisym-
metric, while the expression in brackets is symmetric. Therefore the integral (18) vanishes, and
the solvability condition at this order is always fulfilled. Then, a solution of the form

Ψ2 = p1ϕ2 + κ
2
1ϕ3 (19)
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with Mϕ2 = −∂pW |0 and M ijϕj3 = −Dij(∂rϕj1 − rej0) − 1
2δ
j
ΨΨkW

i|0ϕ1jϕ1
k
can be found. To

obtain an amplitude equation for the curvature κ1 we have to go to order ε
3/2. We have

M ijΨ
j
3 =
∂Tκ1

κ21
ej0 − p1κ1(Dij∂rϕj2 + δΨj∂pW i|0ϕj1 + δΨjΨkW i|0ϕj1ϕk2)

−κ31[Dij(∂rϕj3 − r∂rϕj1 + r2ej0) + δΨjΨkW i|0ϕj1ϕk3 + δΨjΨkΨlW i|0ϕj1ϕk1ϕl1/6] . (20)

The solvability condition is:
∂Tκ1

κ21
= c1p1κ1 + c3κ

3
1 (21)

with

c1 =
1

Γ

∫ ∞
−∞
a0i(D

i
j∂rϕ

j
2 + δΨj∂pW

i|0ϕj1 + δΨjΨkW i|0ϕj1ϕk2) dr (22)

c3 =
1

Γ

∫ ∞
−∞
a0i[D

i
j(∂rϕ

j
3 − r∂rϕj1 + r2ej0) + δΨjΨkW i|0ϕj1ϕk3 + δΨjΨkΨlW i|0ϕj1ϕk1ϕl1/6]dr.

(23)

Equation (21) is written in the scaled curvature (14). Undoing the scaling we get

∂tκ

κ2
= c1(p− pc)κ+ c3κ3. (24)

For the radius of a circular domain (R = 1/κ) equation (24) becomes

∂tR = −c1(p− pc)/R− c3/R3. (25)

c1 > 0 since γ = c1(p − pc), and we are considering γ > 0 for p > pc. If c3 is negative
(supercritical bifurcation) our analysis predicts just above pc the existence of stable stationary
circular domains (SD) with a very large radius R0:

R0 =
1√
p− pc

√−c3
c1
. (26)

In figure 9 we show the form of the SD for the PCGLE. At the SD center the field closely
approaches the value of one of the homogeneous solutions so the wall of this structure is very
close to a heteroclinic orbit between the two homogeneous states (figure 9 (right)). The radius
of the SD diverges to infinity at pc. Figure 10 displays the radius of the SD and that of the LS
calculated by solving numerically

(1 + iα)

(
∂2r +

1

r
∂r

)
A+ (µ+ iν)A− (1 + iβ)|A|2A+ pA∗ = 0

as done for equation (3).
Figure 10 (right) shows the linear dependence of 1/R20 with p as predicted by (26). In

spite of the fact that there is a smooth transition from LS to SD (figure 10 (left)), these two
localized states are intrinsically different. As the radius of the stable droplets is so large, the
oscillatory tails interaction, responsible for the existence of LS (figure 11), does not play any
role in the SD. The stabilization mechanism comes from the counterbalance between the R−3
contribution to the front velocity and the shrinking due to the R−1 contribution.2 If c3 > 0
(subcritical bifurcation) there would exist an unstable circular domains with radius R0 just
below pc. However, we have never encountered this situation.

2 Crossover between different growth laws has been found in systems with conserved order parameter
[31]. In that case, however, the coefficients have the same sign and there is no stationary radius for the
domains.
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Fig. 9. Left: spatial dependence and transverse section of a stable droplet. Right: the wall of the
structure plotted in the A-complex plane (solid line). The 1d wall (dotted line) is also plotted for
comparison with the wall of the stable droplet. The crosses indicate the two equivalent homogeneous
solutions and the zero solution. Note that the profile of the wall of the stable droplet is slightly deformed
with respect to the 1d wall due to the first order correction Ψ1.

Fig. 10. Left: radius of SD (solid line) and LS (dotted line) as a function of the forcing p. Right: linear
dependence of 1/R20 with p close to the bifurcation point pc (dashed line) as predicted by (26).

Another interesting feature of the nonlinear contributions of the curvature to the front
velocity is the growth law of the circular domains at pc. At pc, equation (25) becomes

∂tR = −c3/R3, (27)

and any circular domain of one solution embedded in the other grows as

R(t) = (R4(0)− 4c3t)1/4 , (28)

and, asymptotically, the radius follows the power law R(t) ∼ t1/4. In figure 12 we show the time
evolution of the radius of a circular domain at pc for the PCGLE. The numerical integration
of equation (2) (circles) fits nicely the theoretical dependence predicted by equation (28) (solid
line). Note that, since we calculate the value of c3 from the solvability condition, we are able
to predict not only the asymptotic power law but also the growth at earlier stages.
Close to pc, in the regime of existence of the SD, there is no asymptotic power law of

domain growth since at very long times the SD is formed stopping the growth process. During
the transient, an initially small (very large) circular domain will grow (shrink) following (25)
(figure 13).
So far we have considered the dynamics of domains with radial symmetry. When the system

evolves from random initial conditions other dynamical mechanisms come into play. The main
non-radially symmetric contribution to the velocity comes from the variation of the curvature
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Fig. 11. Left: spatial dependence and transverse section of a LS. Right: a cross-section of the LS plotted
in the A-complex plane (solid line). The 1d wall (dotted line) is also plotted for comparison with the
wall of the LS. The crosses indicate the two equivalent homogeneous solutions and the zero solution.
Note that a LS can not be considered as a heteroclinic connection between the two homogeneous
solutions.

along the front. Taking this effect into account, we can derive an amplitude equation for the
normal velocity vn. Using the fact that for circular domains vn = ∂tκ/κ

2, which is of order
ε1/2, we now assume the scaling vn = ε

1/2vn1. We obtain at order ε
3/2 an additional term for

the solvability condition with respect to the radially symmetric case given by (21):

c2κ
2
1∂
2
θκ1, (29)

where c2 =
1
Γ

∫∞
−∞ a0 ·Dϕ1dr. Thus,

vn1 = c1p1κ1 + c2κ
2
1∂
2
θκ1 + c3κ

3
1. (30)

Undoing the scaling, the front velocity becomes

vn = −c1(p− pc)κ− c2κ2∂2θκ− c3κ3. (31)

Consistently with our approximations, ∂2θκ will change at most at order κ
0, so the non-

radial contribution is at least of order κ2. For p/nepc the first term on the right hand side
of equation (31) dominates the dynamics and the system exhibits a t1/2 growth law. At pc,
c1(p− pc)κ vanishes, and the term given by −c2κ2∂2θκ may be dominant compared with c3κ3.
The front velocity is then proportional to κ2. However, for any closed boundary

∫ 2π
0

∂2θκ = ∂θκ|2π0 = 0, (32)

Fig. 12. Growth of a circular domain as function of the time
at p = pc. Symbols correspond to the numerical integration of
equation (2), while the solid line is the theoretical prediction
(28) with c3 = 0.3129 calculated from (23). The dotted line has
a slope 1/4 showing the asymptotic behavior.
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Fig. 13. Snapshots corresponding to the time evolution of a very large and a small circular domains
for the parametrically driven complex Ginzburg–Landau equation in the regime of existence of stable
droplets.

so ∂2θκ has to be positive in some parts of the wall and negative in others, therefore, this term
does not lead to an asymptotic growth law. If c2 < 0, which is the case for the PCGLE, this
term tends to reduce the curvature differences, so at pc an arbitrarily shaped domain first
becomes circular until the contribution of ∂2θκ vanishes and then the circular domain grows as

R(t) ∼ t1/4 due to the c3 term. Figure 14 shows the time evolution of an arbitrarily shaped
domain at p = pc for the PCGLE.
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t = 200000

t = 2000 t = 10000

t = 0 t = 500

t = 1650000

Fig. 14. Evolution of an arbitrarily shaped domain at p = pc.

At early stages we can observe the reduction of curvature differences along the front due
to the nonradially symmetric contribution, until the domain become circular. Then, the con-
tribution from the ∂2θκ term vanishes and the cubic radial symmetric term makes the circular

domain to grow with a t1/4 power law (a much slower time scale).

5 Scaling laws

The determination of growth laws allows to establish from both theoretical and experimental
data the mechanism that governs the dynamics of interfaces. In the previous sections we have
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explained different growth processes in a framework which allow to include many non-potential
systems, for which interface dynamics is, in general, quite poorly understood. In the generic
situation of domain wall motion driven by curvature in which the proportionality coefficient γ
between wall velocity and curvature changes sign at a bifurcation point, we have identified five
different dynamical regimes with different growth laws (see figure 6). For γ positive and large
(region 1) there is a coarsening regime where the growth of domains is given by the Allen–
Cahn t1/2 power law. For γ positive but small (region 2), localized structures can be formed
as a consequence of the interactions of the tails of the fronts. The formation of these localized
structures halt the self-similar evolution and, strictly speaking, there is no power law in this
regime. The Allen–Cahn t1/2 law can still be observed, however, in transient regimes. Just
above the bifurcation point pc (region 3), the amplitude equation for the curvature predicts the
existence of stable nonlinear solutions, the stable droplets. Nonlinear dynamics of the curvature
leads to growth laws different from the Allen–Cahn t1/2 power law. The existence of a large
characteristic length given by the radius of the stable droplet destroys the possibility of self-
similar evolution in this regime. Exactly at the bifurcation point (point 5), however, the radius
of the stable droplets become infinite and there is not a characteristic length in the system. A
t1/4 growth law is then obtained. Finally, for γ < 0 (region 5), circular domain walls growth with
a t1/2 power law, however domain walls are modulationally unstable leading to the formation
of labyrinthine patterns. No self-similar evolution is then observed.
Our results are not based only on numerical simulation but come from a rigorous analysis

which allow us to show what growth law can be found in each region of the parameter space
and in which regions the growth rate of a domain does not follow a power law. Growth laws
of the form t1/3 do not appear in these systems. This result was obtained numerically [12,13],
probably because the measurement was done in transient regimes where the asymptotic growth
rate was not yet reached. The t1/2 power law have been recently experimentally observed in two
non-variational systems: a chemical reaction [16], described by the PCGLE, and a nonlinear
optical system [32].

6 Concluding remarks

Our results are universal in that any 2d system with a modulational instability of a flat front
connecting two equivalent homogeneous states displays similar droplets and dynamics inde-
pendently of the nature of the coexisting phases. Such systems can be found in fields asb
diverse as hydrodynamics, chemical reactions, material science and nonlinear optics. Transitions
from coarsening to labyrinthine regimes has been observed experimentally in reaction diffusion
[15,16] and optical [17,32] systems. The theory we presented in detail here predicts a novel kind
of localized structures, the stable droplets, which owe their stability to the interplay between
curvature and nonlinear effects, and therefore do not exist in 1d systems. Evidence of the exis-
tence of this objects is also present in [16]. Particularly relevant is the field of nonlinear optics,
where the criterion for the modulational instability of a domain wall can be easily reached due
to the diffractive coupling between real and imaginary parts of the complex field amplitude.
We have applied our results to a model for a self-defocusing vectorial Kerr cavity with linearly
polarized input field and to a model for a optical parametric oscillator. We have shown that
in both cases there exist stable circular domains [33]. For the vectorial Kerr resonator these
domains are in fact polarization domains, cavity polarization solitons, while for the optical para-
metric oscillator they are domains of opposite phase. This offers two different possibilities for
addressing and manipulating cavity solitons. We have also shown that stable droplets nucleate
out of dark ring cavity solitons but can coexist with dark ring cavity solitons in the parameter
space. This fact may be exploited in increasing the information capacity of these devices by
using the stable droplets and dark ring cavity solitons to encode separate information.
In real systems the perfect symmetry that makes the two homogeneous solutions equivalent

is typically broken. For small asymmetries, however, the general theory can be generalized to
include this effect changing slightly the scenario presented here [34].
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