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Bifurcation structure of dissipative solitons
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Abstract

In this paper we analyze in detail the structure of the phase space of a reversible dynamical system describing the stationary solutions of a
model for a nonlinear optical cavity. We compare our results with the general picture described in [P.D. Woods, A.R. Champneys, Physica D 129
(1999) 147; P. Coullet, C. Riera, C. Tresser, Phys. Rev. Lett. 84 (2000) 3069] and find that the stable and unstable manifolds of homogeneous and
patterned solutions present a much higher level of complexity than predicted, including the existence of additional localized solutions and fronts.
This extra complexity arises due to homoclinic and heteroclinic intersections of the invariant manifolds of low-amplitude periodic solutions, and
to the fact that these periodic solutions together with the high-amplitude ones constitute a one-parameter family generating a closed line on the
symmetry plane.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Dissipative spatial localized structures, also known as
dissipative solitons (DS), appear in a large variety of physical
systems, such as granular media, chemical reactions, gas
discharges and fluids [1]. In nonlinear optical cavities they
appear due to the interplay between diffraction, nonlinearity,
driving and dissipation, and are known as cavity solitons.
Cavity solitons are interesting not only from a theoretical
point of view, but also for their potential applications in
optoelectronic devices [2,3].

A mathematical description of the bifurcation sequence of
a general class of DS including cavity solitons was recently
given in Refs. [4–6]. The existence of DS is related to a
situation in which a stable infinite pattern coexists with a stable
homogeneous solution. There one can envisage a configuration
in which there is a domain of pattern and a homogeneous
domain, with a front connecting both solutions. In general one
or other solution will dominate, so that the front will move until
the entire space is filled with the dominant state. One might
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expect a point in parameter space at which the dominant role
switches from the pattern to the homogeneous state. In fact,
this “point” spreads out in parameter space into a “locking
range” of finite width, within which the front is stationary i.e.
the two states can stably coexist [7]. Using generic properties
of ordinary differential equations, one can show that such a
locking range is generally accompanied by an infinite sequence
of localized patterns (close-packed clusters of DS) [5] as well as
their counterparts (clusters of holes) in the pattern solution [6].
This scenario is one of the possible results of the unfolding of a
codimension-2 degenerate Hamiltonian–Hopf bifurcation [4].

In this paper we analyze in detail the structure of the phase
space that yields DS in the four-dimensional dynamical system
that describes the stationary solutions of a specific nonlinear
optical system: a ring cavity filled with a self-focusing Kerr
medium [8,9]. We find that the stable and unstable manifolds
of homogeneous and pattern solutions, on whose form and
relative position the results reported in [4–6] rely, present a
much higher level of complexity than predicted, including the
existence of additional localized solutions and complexes. This
extra complexity arises due to homoclinic and heteroclinic
intersections of the stable and unstable manifolds of the high
and low-amplitude periodic solutions, corresponding to the
stable and unstable patterns of the full PDE respectively,
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and to the fact that these periodic solutions constitute a
one-parameter family generating a closed, rather than open,
line on the symmetry plane. This also induces additional
heteroclinic intersections between the invariant manifolds of
the homogeneous state and low-amplitude periodic orbits.
Associated with these intersections are new fronts and localized
states. In order to demonstrate the generality of our results we
show that the same phenomenology is present in a different
optical system: a cavity with a saturable absorber [10].

The paper is organized as follows: In Section 2 we
summarize the picture presented in [4–6], analyze the Kerr
cavity model and compare our results with the general theory.
In Section 3 we reproduce the main results found in the Kerr
cavity for a saturable absorber cavity, showing the generality of
the phenomena. Finally, in Section 4 we give some concluding
remarks.

2. Kerr cavity

As a representative model system, we consider an optical
cavity filled with a nonlinear self-focusing Kerr medium and
driven by a plane-wave pump. In the mean field approximation,
and with one transverse spatial dimension, the dynamics of the
slowly varying amplitude of the electric field E(x, t) can be
described by [8]:

∂t E = −(1 + iθ)E + i∂2
x E + E0 + i|E |

2 E, (1)

where θ is the detuning between the frequency of the input
pump and the nearest cavity resonance, and E0 is the amplitude
of the pump. The homogeneous steady state solution Es =

us + ivs is given implicitly by

Es = E0/[1 + i(θ − Is)], (2)

where Is = |Es |
2.

Eq. (2) has a unique solution for θ <
√

3. Here we restrict
ourselves to this range, and use Is and θ as convenient control
parameters. The homogeneous solution is stable for Is < 1
and becomes modulationally unstable at Is = 1 with critical
wavenumber kc =

√
2 − θ , leading to the formation of a stripe

pattern.
Above threshold there is a finite band of unstable

wavenumbers associated with a one-parameter family of pattern
solutions. For θ > 41/30 the transition is subcritical [8,9], so
that stable homogeneous and patterned solutions co-exist for
intensities Is < 1, below the modulational instability.

In addition, however, there is a coexistent unstable family of
low amplitude patterns spanning the same wavenumber range,
whose relevance will become clear in the following.

The point (Is = 1, θ = 41/30) signals the codimension-2
Hamiltonian–Hopf bifurcation analyzed in [4]. Associated with
this subcritical bifurcation are localized states. In this context,
localized states with a single main peak are known as cavity
solitons [2], while multiple-peak structures can be regarded, in
some sense, as bound states of cavity solitons. These states can
be considered as regions of a pattern sitting on a background of
the homogeneous solution.

Setting ∂t E = 0 in Eq. (1) yields the condition
for a stationary solution. The resulting complex, second
order ordinary differential equation can be recast as a four
dimensional dynamical system in the variables

V ≡ [a = dx Re(E), b = dx Im(E), u = Re(E), v = Im(E)]T.

Moreover, this system is reversible [4–6] with respect to the
involution R:

R


a
b
u
v

 =


−a
−b
u
v

 (3)

so that RV(−x) = V(x). The symmetry plane Π is defined
as the set of points invariant under R, in our case obviously
defined by a = b = 0. Orbits (including fixed points) closed
under the action of R are termed reversible, and all such orbits
intersect Π . In particular, the homogeneous solution Es (which
corresponds to a fixed point) and the set P of subcritical pattern
solutions (which correspond to a one-parameter continuum of
periodic orbits) are reversible.

A general mechanism for the appearance of localized
solutions in reversible dynamical systems has previously been
proposed in [4–6]. On variation of a system parameter the two-
dimensional unstable manifold of Es [W u(Es)] will generically
intersect the three dimensional collection of stable manifolds
of P [W s(P)] creating a heteroclinic connection between Es
and one of the periodic orbits P0 of P (a front between
the homogeneous and a pattern solution) [7]. Varying the
parameter further leads to the intersection of W u(Es) with
Π in the region of the periodic solution. By reversibility,
intersection of the unstable manifold of Es with Π also implies
intersection of the stable manifold of Es [W s(Es)] with Π ,
and therefore an intersection of W u(Es) and W s(Es). The
appearance of these intersections corresponds, therefore, to
the birth of homoclinic solutions, biasymptotic to Es , but
passing close to the periodic solution P0: the localized states.
Analogous homoclinic connections of the periodic solutions
are also implied, which resemble patterns containing holes [6,
4]. Varying the parameter still further leads to the eventual
disappearance of localized states and fronts as the relevant
manifolds cross the symmetry plane and eventually become
disjoint once more. This scenario is depicted schematically in
Fig. 13 of [4] and in Figs. 3 and 2 of [5] and [6] respectively, and
elegantly explains the appearance and disappearance, through
a sequence of saddle–node bifurcations, of localized states
consisting of N adjacent peaks of the pattern, where N is a
whole number. For our system (1), Fig. 1 shows the region of
existence of DS with 1, 3 and 5 peaks in the Is–θ parameter
space, while Fig. 2 shows their bifurcation structure for a
vertical cut of Fig. 1 at θ = 1.5. As in [10] for the saturable
absorber model, qualitatively this scenario is in agreement with
the general theory outlined above [4–6].

This simple picture, however, considers only intersections
between manifolds of the homogeneous solutions and
manifolds of high-amplitude periodic patterns, i.e. only the
existence of fronts between the homogeneous state and
a pattern stable in the full PDE are assumed. Close to
a degenerate Hamiltonian–Hopf bifurcation this is actually
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Fig. 1. Region of existence of DS in the two-dimensional Is–θ parameter
space. Dotted, dashed and dotted-dashed lines show the limits for localized
structures with one, three and five peaks respectively. The solid line corresponds
to the turning point (saddle-node) of a subcritical pattern with the critical
wavenumber.

Fig. 2. Bifurcation structure of DS for θ = 1.5. Solid (dashed) lines indicate
stable (unstable solutions). From smaller to larger total intensity the solid lines
correspond to localized structures with one, three and five peaks. The vertical
dotted lines show the values of Is in each panel of Fig. 3.

the case: low-amplitude periodic orbits (unstable patterns in
the PDE) correspond to centre type periodic orbits of the
dynamical system describing the stationary solutions of the
PDE (their four Floquet multipliers lie on the unit circle) and,
therefore, they have neither stable nor unstable manifolds [4].
As one moves away from the Hamiltonian–Hopf bifurcation
point, however, some of these periodic orbits may acquire
stable and unstable manifolds through a period doubling
bifurcation by which two Floquet multipliers meet at −1
and move away from the unit circle on the real axis. In
reversible systems, such period doubling bifurcations may
induce very involved dynamics [11]. Moreover, these low-
amplitude periodic solutions coexist with both high-amplitude
periodic orbits and the homogeneous state in a whole parameter
region, as the lower branches of subcritical bifurcations, and
therefore the possibility of additional fronts connecting the
homogeneous solution and low-amplitude patterns cannot be
neglected. This modifies the structure of the phase space
analyzed in [4–6] leading to new phenomena, including
additional types of fronts and localized structures. This is
actually the case in the systems studied here, and the exact
nature of these structures, and the reason for their appearance,
is the main subject of the rest of this paper.

To clarify what is actually occurring in (1), and possibly
in other systems to which the analysis of [5,6] applies, we
compute W u(Es) and W s(P) and analyze the structure of the
phase space in more detail. The four-dimensional vector field
describing stationary solutions of Eq. (1) is given explicitly by:

dx a = θu + v − (u2
+ v2)u

dx b = −u + θv − (u2
+ v2)v + E0

dx u = a

dxv = b. (4)

To simplify the description we can follow the example
of [4–6] and display trajectories on a Poincaré section S
containing the symmetry plane Π . This will allow us to depict
the intersections of the stable and unstable manifolds with each
other, and with the symmetry plane, in a three dimensional
space. Here we take the Poincaré section given by a = 0.

From the stability analysis of Es one can parameterize
W u(Es) around the fixed point in the following way:

δu(α, φ) = α[us cos(φ + ψ)− vs cos(φ)]
δv(α, φ) = α[us cos(φ)+ vs cos(φ + ψ)]

δa(α, φ) = α{us[µ cos(φ + ψ)− ν sin(φ + ψ)]

− vs[µ cos(φ)− ν sin(φ)]}

δb(α, φ) = α{us[µ cos(φ)− ν sin(φ)] + vs[µ cos(φ + ψ)

− ν sin(φ + ψ)]} (5)

where α and φ are the parameters, ψ = tan−1(−
√

1 − I 2
s /Is),

µ = Re[λ] and ν = Im[λ], where λ = +

√
θ − 2Is + i

√
1 − I 2

s
is one of the eigenvalues of the fixed point with positive real
part.

In order to generate the whole unstable manifold W u(Es),
we start from a family of initial conditions (uφ = us + δu,
vφ = vs + δv, aφ = δa, bφ = δb) with 0 ≤ φ < 2π
and α � 1, and integrate Eqs. (4) forwards in x . The stable
manifold W s(Es) is the symmetrical image of W u(Es) with
respect to the symmetry plane Π given by a = 0 and b = 0.

We must also compute the unstable manifold W u(P0) of
the particular periodic orbit P0 selected by the intersection
of W s(Es) and W u(P) (the “Pomeau” front). In order to
generate W u(P0) we must first know the wavelength of P0.
This is obtained from the numerical simulation of the full
PDE for a large system, starting from an initial condition
consisting of the homogeneous solution in one half of the
spatial domain, and a periodic pattern of arbitrary wavelength
in the other. During the evolution a front is formed and the
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Fig. 3. Projection of the 3D Poincare section on the b–u plane for different values of the intensity Is and θ = 1.5. From top to bottom and left to right: Is = 0.946515,
0.948504, 0.965, 0.972, 0.975 and 0.99. The black symbols belong to the stable manifold W s (Es ) of the fixed point Es , and the dark grey ones to the unstable
manifold W u(P0) of the periodic orbit. In (a) the light grey symbols show the stable manifold W s (Pu) of the dynamically unstable pattern associated with P0. In
(b) grey symbols instead show the unstable manifold W u(Pu).
pattern region relaxes to the appropriate wavelength. Once
we have determined its wavenumber we compute P0 using
a Newton method. The unstable direction in phase space can
then be evaluated numerically: starting from a peak of the
pattern, where P0 crosses S on the symmetry plane Π , we
integrate Eqs. (4) forwards in x until the trajectory crosses
S again. Since the stable direction is contracting onto the
periodic orbit, this indicates the unstable direction. We then
discretize this segment between the two crossings with S into a
number of points (typically of the order of several hundreds)
and start a simulation from each such point. This generates
a sufficient sample of the unstable manifold W u(P0) of the
periodic orbit P0.
Fig. 3 shows W s(Es) and W u(P0) for increasing values of
Is , and θ = 1.5. It is useful to compare the structure of the
phase space shown in Fig. 3 with the bifurcation structure of
cavity solitons for this value of the detuning shown in Fig. 2.
We also note that the Re[E] axis corresponds to the projection
of the symmetry plane Π and, therefore, every intersection of
a manifold with the horizontal axis is a projection of an actual
intersection with Π , and so gives rise to a homoclinic orbit.

In Fig. 3(a) (Is = 0.946515), where cavity solitons do not
yet exist, W s(Es) (black symbols) and W u(P0) (dark grey
symbols) do not intersect, indicating that a Pomeau front has
not yet been formed. Note, however, that W u(P0), the unstable
manifold of the periodic orbit, already presents a high level of
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Fig. 4. Closed line formed by the set of stable and unstable periodic orbits, Ps
and Pu , on the symmetry plane Π defined by dx Re[E] = dx Im[E] = 0. The
cross indicates the homogeneous solution Es .

complexity. This stems from the topological structure of the
one-parameter family of periodic orbits P . The intersection of
this set of periodic orbits with the Poincaré section S forms
a closed curve on the symmetry plane Π (Fig. 4). Fig. 4 has
been obtained by plotting the intersection of pattern solutions
of Eq. (1) with S (dx Re[E] = 0) for different values of their
wavenumbers. Since periodic orbits are reversible, dx Im[E] is
also zero and these intersections lie on the symmetry plane.
The pattern solutions are obtained as zeros of Eq. (1) by a
Newton method where space has been discretized and periodic
boundary conditions assumed. The line P is naturally divided
in two portions Pu and Ps (P = Pu ∪ Ps) corresponding to low
and high-amplitude patterns [12]. These two subsets meet at the
extreme values of the wavenumber in two folds. At these two
points the four Floquet multipliers m of the periodic orbits take
the value m = +1. Moving away from these points on Ps , i.e.
changing the wavelength of the pattern, one Floquet multiplier
moves along the real axis with 0 < m < 1 and another with
1 < m. Moving on Pu , however, all Floquet multipliers remain
on the unit circle |m| = 1 but become complex. For parameter
values far from the degenerate Hamiltonian–Hopf bifurcation
analysed in [4], two of the Floquet multipliers may go all the
way round the unit circle until m = −1, and collide leading to
two Floquet multipliers on the real axis, one with m < −1 and
another with −1 < m < 0.

In [5,6] only intersections of the Poincaré section S
with the subset of periodic orbits Ps were considered and
S

⋂
W u(P) was assumed to be an open 2-dimensional

surface. Instead, close to P , W u(P) is closed, and also
very complicated. Moreover, the collection of unstable
manifolds of the subset of periodic orbits Ps (W u(Ps))

intersects the collection of stable manifolds of the other
subset of periodic orbits Pu (W s(Pu), light grey symbols)
creating heteroclinic intersections. By reversibility W u(Ps) also
intersects W s(Ps) yielding homoclinic intersections. By the
same argument as before, each crossing with the symmetry
plane Π associated with these intersections creates additional
homoclinic connections, i.e. localized states biasymptotic to a
periodic orbit. Fig. 5 shows an example of such a localized
state consisting of a region close to a low-amplitude pattern
within a high-amplitude pattern. The symbol in the central peak
Fig. 5. Localized state consisting of a region of an unstable pattern within a
stable one. This implies the existence of a front connecting both patterns. Here
θ = 1.5 and Is = 0.944.

Fig. 6. Seven peaks localized structure associated with the unstable pattern.
The central peak is very close to one oscillation of the unstable pattern. Here
θ = 1.5 and Is = 0.965.

indicates the crossing with the symmetry plane Π and it is also
shown in Fig. 3(a). This indicates the existence of a “Pomeau”
front between low and high-amplitude patterns. In this case,
however, both sides of the front are members of one-parameter
families and, therefore, the localized structures and the front
itself belong to one-parameter families.

On increasing the control parameter, W s(Es) and W u(P)
intersect at some point between Fig. 3(a) and (b), selecting
one of the orbits P0

≡ P0
s on the subset Ps . As the pump

is increased (Fig. 3(c)) cavity solitons are created at each
crossing of W s(Es)with the symmetry plane Π in the predicted
sequence. The complexity (fractal structure) of the heteroclinic
connection, however, gives rise to an infinite number of other
reversible homoclinic trajectories which correspond to different
symmetric sequences in which DS can be arranged [6].

Due to the high level of complexity already present in
W u(P), even before the heteroclinic intersection leading to the
“Pomeau” front between the homogeneous and high-amplitude
pattern solutions takes place, W s(Es) has an even higher
level of complexity than described in the previous paragraphs
and in [4–6]. In particular, W s(Es) has a region of high
complexity in the neighbourhood of the low-amplitude patterns
Pu . Fig. 3(c) depicts W u(P0

u ), where P0
u denotes the low-

amplitude pattern with the same wavenumber as P0, in light
grey symbols for comparison, and indicates, approximately,
the intersection of this manifold with W s(Es). This shows
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that extra fronts associated with the low-amplitude pattern
exist, accompanied by a whole set of localized structures,
analogous to those associated with the stable pattern. Fig. 6
shows an eleven-peak DS arising from the low-amplitude
pattern, i.e. it is a homoclinic trajectory biasymptotic to the
homogeneous solution but passing very close to the low-
amplitude patterns. The side peaks have the height of DS
associated with the high-amplitude pattern, indicating that this
homoclinic trajectory, before going close to the low-amplitude
pattern, passes through the vicinity of the high-amplitude ones.
The symbol at the maximum of the central peak indicates the
intersection with the symmetry plane, and is also shown in
Fig. 3(c). In the dynamical system (4) these solutions appear as
stable–unstable pairs, but their precise bifurcation structure is
not described by the general theory presented above and will
be reported elsewhere. In the PDE (1), since the underlying
pattern is dynamically unstable, such localized solutions are
also unstable.

On further increasing the control parameter one starts to
encounter the sequence of saddle–node bifurcations which
destroy the localized solutions at the other end of the pinning
region in parameter space (Fig. 2), until eventually the last
single peak DS disappears. This occurs just before the situation
depicted in Fig. 3(d). Before this point, however, W s(Es)

and W u(P) should have become disjoint [5,6], with the
disappearance of the front between the stable pattern and
homogeneous solutions. The latter is actually the case, but
W s(Es) and W u(P0) still seem to intersect. We believe this is
due to the existence of at least one N -heteroclinic intersection
that goes to the high-amplitude pattern only after one or more
orbits close to the, originally, only remaining single peak DS
(which in the PDE correspond to the unstable DS). Associated
with such a front would be a set of N -homoclinic trajectories
(with N > 1) not described in [4,5], where only 1-homoclinic
trajectories were studied. An example of such a localized state
is shown in Fig. 7 [13]. It consists of three peaks; the two at the
sides have an amplitude corresponding to the “pde-unstable”
DS, while the one in the middle has a height similar to previous
“pde-stable” DS. The symbol in the central peak of Fig. 7
indicates the intersection with the symmetry plane. Note its
vicinity to the high-amplitude pattern solutions in Fig. 3(e)
where this intersection is shown with the same symbol. We
recall that for these parameter values there are no stable DS.
Even for values of the control parameter far from the limits
of stable DS existence W s(Es) and W u(Ps), and W s(Es) and
Π , still intersect (Fig. 3(f)). We also note that for these values
of the control parameter the heteroclinic connection between
the homogeneous and low-amplitude pattern solution has been
destroyed. In this case, this is due to the disappearance of the
manifolds of the periodic orbit, again via an inverted period
doubling bifurcation by which two Floquet multipliers collide
at −1 and remain on the unit circle with opposite imaginary
part. The absence of manifolds can be appreciated in Fig. 3(f)
as a hole in the unstable manifold of the fixed point in the region
close to the unstable pattern (Re[E] ' 1).

All these new localized states and fronts not considered in
previous analyses are most likely unstable since they involve
Fig. 7. Unusual DS in a parameter region where DS are not supposed to exist
(θ = 1.5 and Is = 0.972). The central peak corresponds to a stable pattern, and
the two outer peaks are unstable DS.

unstable solutions of the underlying PDE’s. This is not always
the case as in some particular situations the composition of
unstable solutions may lead to stable structures [15]. In the
present system, however, we have explicitly checked some such
solutions and confirmed that they are unstable. In any case, a
precise knowledge of the phase space, including dynamically
unstable solutions, is crucial for the understanding of the
dynamics of the system as a whole. For example, in this system
with two transverse dimensions DS exhibit an excitable regime
where unstable DS play a crucial role in the dynamics [16].

3. Saturable absorber in an optical cavity

In order to demonstrate that the results shown in the previous
section are general and do not depend on specific features of
the model, we have studied the structure of the phase space
in a different system: a cavity filled with a saturable absorber
[3,17,18]

∂t E = −(1 + iθ)E + i∂2
x E + E0 −

2C
1 + |E |2

E, (6)

where E is the slowly varying amplitude of the electromagnetic
field, θ is the cavity detuning, C is the scaled atomic density
parameterizing both linear and nonlinear absorption, E0 is the
amplitude of the external field, and i∂2

x models diffraction. In
Ref. [10] the existence and stability properties of DS were
determined for this system. As in the Kerr cavity model the
bifurcation structure of DS is qualitatively in agreement with
the scenario proposed in [4–6].

Like the Kerr cavity, however, the phase space shows a
much higher degree of complexity than previously assumed.
Fig. 8 shows W s(Es) and W u(P) for θ = −1 and different
values of the input pump E0 (cf. Fig. 3 for the Kerr cavity).
For this value of the detuning the unpinning transitions of the
stationary front between the homogeneous solution and the
dynamically stable periodic pattern take place at Is ' 1.065 and
Is ' 1.465. The stable and unstable manifolds of the fixed point
and periodic orbits show the same qualitative features discussed
in the previous section. Before the heteroclinic connection is
formed, the unstable manifold of the high-amplitude periodic
orbit already shows a heteroclinic connection with the low-
amplitude one, as well as a homoclinic intersection with the
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Fig. 8. The same as in Fig. 3, but for the saturable absorber model (Eq. (6)). Here θ = −1.0 and, from top to bottom and left to right, I s = 1.06, 1.1, 1.4, and 1.6.
stable manifold (Fig. 8(a)). On increasing the control parameter
DS are created at each crossing of W s(Es) with the symmetry
plane Π in the predicted sequence [10] (Fig. 8(b)), but soon
much more complexity arises from the heteroclinic intersection
of W s(Es) with the unstable manifold of the low-amplitude
periodic patterns (Fig. 8(c)). Finally, as in the previous case,
this complexity remains far beyond the unpinning transition of
the “Pomeau” front (Fig. 8(d)).

4. Conclusions

We have presented a numerical analysis of the four
dimensional reversible dynamical system describing stationary
solutions of an optical cavity filled with a self-focusing Kerr
medium. Comparing the structure of its phase space with the
one predicted by the general theory described in [4–6], we have
found a much higher level of complexity than expected. This
complexity arises from the fact that the low-amplitude patterns
that form part of the closed one-parameter family of periodic
orbits have stable and unstable manifolds that intersect both
invariant manifolds of the homogeneous and high-amplitude
pattern solutions. As a result new fronts and localized solutions
exist. In particular, we have reported on new localized states
associated with heteroclinic connections between (i) low and
high-amplitude patterns, (ii) homogeneous solution and low-
amplitude patterns, and (iii) homogeneous solution and high-
amplitude patterns via the pde-unstable DS. Even if these new
localized structures are unstable in the PDE, knowing the global
structure of the phase space is crucial for the understanding
of the dynamics of the system. Therefore, we conclude that
the theory based on generic properties of reversible dynamical
systems proposed in [4–6], and valid only close to a degenerate
Hamiltonian–Hopf bifurcation, needs to be generalized away
from that point to include the role of the low-amplitude patterns
in shaping the phase space.
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