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It is demonstrated that a closed delayed equation for the phase of the electric field can be used 
to describe accurately the transient switch on of a laser with external feedback when it can be 

,. 

described by field evolution equations. In contrast, it is shown that several more severe 
approximations to the dynamics, including an adiabatically evolving potential for 
one-dimensional relaxation dynamics (which had previously been used to accurately predict the 
laser linewidths for the steady-state solutions) fail to reliably describe the final state selection 
during transient switch on of the laser, the delay-induced oscillatojry approach to the chosen 
state, and features of the amplitude and frequency spectra near multiples of the external cavity 
mode spacing which may be important for the stability and switching dynamics of the steady ‘, 

states that correspond to excitation of different external cavity resonances. 

L- 

I. INTRODUCTION 

It is well known that the linewidth of a single-mode 
laser can be considerably narrowed by a small amount of 
feedback from an external mirror or resonator. If the feed- 
back is large enough the laser can operate in several dif- 
ferent states which have optical frequencies that are shifted 
with respect to the emission frequency of the laser in the 
absence of external feedback. For relatively small external 
delay times the different operating frequencies represent 
long-lived locally stable lasing states of the three-mirror 
laser that approximately correspond to selection of differ- 
ent ones of the resonant frequencies of the external reso- 
nator. The most stable state is the one of smallest linewidth 
and not the one of highest output power.lm3 These are 
rather general properties of any type of laser with optical 
feedback and they have been considered in particular detail 
for single-mode laser diodes.4,’ For cw operation, the com- 
petition among the states with different frequencies seems 
to be well described by a potential picture6” of general 
applicability for different types of lasers. In this model, the 
difference in phase at times separated by the feedback delay 
time obeys a relaxational dynamics driven by noise in a 
potential with multiple minima. (From the simplifications 
of this model the dynamics of the laser frequency is deter- 
mined by the evolution of the other dynamical variables of 
the laser, but there is no dependence of those variables on 
the changes in the optical frequency.) The locations of the 
minima of the potential are associated with the solutions of 
different frequency and the curvature of the potential at 
these minima is inversely proportional to the linewidth. 
The long-time hopping dynamics between the solutions 

‘)Permanent address: Dipartamento di Fisica, Universita di l’hquila, 
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having different frequencies a&o seems to be &her well 
reproduced by this model. 

In this paper we address questions complementary to 
this description which are associated with the transient 
dynamics when the laser is turned on. Since- the different 
steady-state solutions with different frequencies are in gen- 
eral long lived, a crucial question is which frequency is 
selected in each switch-on event. We are interested in the 
description of such frequency selection dynamics and in 
the characterization of the fluctuations during this dynam- 
ical regime. One of our motivations is to explore.!0 what 
extent the potential picture mentioned above can describe 
this dynamical regime. We are not .aware of.. any other 
systematic study of stochastic transient dynamics. in the 
presence of optical feedback. The exceptjon is the experi- 
mental work in Ref. 8 where the emission frequency is 
observed to change during the transient regime from a 
frequency close to the emission frequency in the absence of 
feedback to a new final frequency. Such studies of transient 
dynamics are of relevance for the use of these devices in 
coherent optical communications. They are also desirable 
in view of recent results’ which indicate a possible confu- 
sion between long transients and chaoticlike solutions. 

Our discussion in this paper is based on a model for the 
complex electriofield amplitude, appropriate for detuned 
single-mode lasers with high Q factor, so that the material 
dynamics can be adiabatically eliminated, and small to 
moderate feedback. from. a single external mirror. We ne- 
glect the possible excitation of other longitudinal modes of 
the free-running laser that can be effectively suppressed for 
many lasers by the choice of a mode spacing larger than 
the gain linewidth, by operation close to the lasing thresh- 
old, or by an intracavity &talon. Our results are then di- 
rectly applicable to almost any laser near threshold and 
more generally to single-mode dye lasers and single-mode 
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helium-neon lasers and show the interplay between tran- 
sient dynamics and oscillations due to the optical feedback. 
The applicability of our results to other lasers such as 
solid-state or semiconductor lasers would require further 
elaboration since their proper modeling requires equations 
for the field and the material variables in order to describe 
the effects of relaxation oscillations. However, it is often 
found that many basic phenomena of linewidth narrowing 
in these more complicated lasers can be described accu- 
rately by equations for the complex field amplitude.” In 
fact a common description of frequency properties associ- 
ated with optical feedback is given in terms of a Van der 
Pol equation.” Results of such models are appropriate for 
the external cavity geometry that is commonly used for 
lmewidth reduction and frequency stabilization in semi- 
conductor lasers so long as the time scales of evolution are 
long compared to the characteristic times for response of 
the carrier number. There is also a long history of analysis 
of this kind of model in order to gain insight into the 
behavior of lasers with external reflectors. In addition, it 
provides the simplest basis for extending the investigation 
of the potential picture of the phase difference to the re- 
gimes of transient and stochastic dynamics. 

Our analysis is based on analytic approximations and 
numerical simulations of stochastic equations. We consider 
transients following an abrupt switch on of the gain from 
an initial level below the threshold for laser action. We find 
that the transient dynamics is characterized by a rapid 
frequency shift associated with the initial increase in the 
intensity followed by an oscillatory approach to the final 
state. These oscillations are associated with the feedback 
and ‘should be present in any type of laser with optical 
feedback. While they are qualitatively similar to relaxation 
oscillations, the oscillations in the case have a fundamen- 
tally different origin. (It is worth noting that previous 
studies that include the carrier dynamics have shown that 
semiconductor lasers can be more susceptible to undamped 
pulsations when the feedback-induced oscillations match 
the relaxation oscillation frequency.) Although our models 
for the evolution of the field do not have the relaxation 
oscillation resonance phenomena, we can still see the de- 
gree to which the further potential-based approximations 
neglect features of the noise spectrum that are induced 
purely by the feedback, namely, line narrowing at the ex- 
pense of excess power at higher frequencies. 

Strong fluctuations of the frequency occur at the time 
of the frequency jump, but the laser approaches the state 
with the frequency associated with narrowest linewidth 
(which is not the -one with highest output power) with 
very high probability during the transient regime. A gen- 
eralization of the potential dynamics of Refs. 6 and 7 to the 
transient regime is seen to lead in some cases to an incor- 
rect prediction of the frequency selected at the end of the 
transient and this approach cannot describe the oscillatory 
approach to steady state; however, it is useful for identify- 
ing the time at which the frequency jump occurs. We also 
introduce an approximation leading to a closed delayed 
equation for the phase which gives a good description of 
the dynamics for all times, including the oscillatory ap- 

proach to the final steady state. Finally, in order to explore 
the spectral linewidth and stability of the solutions, we 
consider the effect on the steady-state spectra of the oscil- 
lations purely associated with the feedback which give rise 
to sidebands in the spectra. We calculate the steady-state 
spectra of the intensity, frequency, and the electric-field 
amplitude from the full equations and from the approxi- 
mations considered above. Errors occur for the frequency 
and amplitude spectra in the potential picture near fre- 
quencies that are multiples of the spacing between external 
cavity modes. The power in this portion of the spectrum 
can be relatively large when the noise is strong. In addition, 
since these are important frequencies during noise-induced 
transitions to other states at all noise strengths, it is likely 
that the stability of the steady states is overestimated by the 
potential picture. However, the calculation of the field 
spectrum in terms of amplitude and frequency fluctuations 
indicates that the low-frequency linewidth associated with 
a central Lorentzian peak is accurately reproduced in any 
of the approximations considered here. 

The importance of these results is that they clarify the 
effects of feedback on the temporal and spectral behavior. 
The feedback with delay causes oscillatory behavior which 
can be viewed either in the time domain or in the frequency 
domain, where it may be referred to as transient excitation 
of external cavity modes. We see in our results a distinction 
between temporal oscillation (AM and FM modulation) 
and extended or alternate operation at one or more of the 
external cavity modes. A potential picture provides the 
many different external cavity mode steady states, but it 
provides no mechanism for significant amounts of transient 
oscillations. Experimental measurements could be made to 
establish that oscillations do occur, ruling out the potential 
picture. Studies of those oscillations in time and in spectra 
could reveal whether they correspond to actual mode com- 
petition (as is often argued) or to phase and amplitude 
modulation of a single field. Additional features that arise 
from relaxation oscillations when they are present could 
also be more clearly identified. However, of most impor- 
tance is the demonstration that relaxation oscillation phe- 
nomena are not essential for the appearance of an oscilla- 
tory approach to steady-state operation. While they may be 
resonant enhancement of the oscillatory behavior when the 
relaxation oscillation frequency matches the oscillations 
caused by feedback, there are two distinct mechanisms. 

The outline of the paper is as follows. In Sec. II we 
introduce our dynamical model, we derive from it a poten- 
tial picture, and we review some of its features and limita- 
tions. We also discuss possible approximations to describe 
the stochastic transient dynamics of frequency selection. In 
Sec. III we analyze individual switch-on events. Statistical 
properties of fluctuations averaged over many switch-on 
events are discussed in Sec. IV. In Sec. V we consider the 
calculation of steady-state spectra in the context of our 
previous results. Section VI gives a summary of our main 
results and conclusions. 
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II. APPROXIMATIONS FOR THE TRANSIENT 
DYNAMICS 

Our starting dynamical model is the following equa- 
tion for the slowly varying amplitude of the electric field 
E(r) of a single-mode high-Q-factor laser with weak feed- 
back from a single external mirror. It can be derived from 
the Lang-Kobayashi equations” for semiconductor lasers 
through the adiabatic elimination of the material variables, 
or it can be gotten from the single-mode equations for any 
detuned laser by a similar adiabatic elimination. The 
Lang-Kobayashi equations have been used as the starting 
point in Refs. 1, 3, 4, and 7, among others, for the discus- 
sion of lasers (including semiconductor lasers) with exter- 
nal feedback, and they have been specifically reduced to an 
equation of the following form in the discussions of dynam- 
ics in a potential well in Refs. 6 and 7: 

-t-byw) -I- &at>. (1) 

The parameter a is the total gain parameter and b is the 
saturation parameter in a third-order Lamb approxima- 
tion. The frequency o. is the frequency of the laser when it 
is above threshold in the absence of feedback. The detuning 
parameter 8 plays the role of the a factor in semiconductor 
lasers. The feedback coupling parameter y is proportional 
to the strength of the feedback, and r is the feedback delay 
time. We assume that the field is uniform inside the laser 
medium and that the internal round-trip time is negligibly 
short compared with the feedback delay time r. Spontane- 
ous emission noise is modeled by the complex Gaussian 
white noise c(t) with intensity E and correlation 

(&t)C*(t’))=4S(t--‘). (2) 

In terms of amplitude and phase in a rotating frame, 
E(t) = A(t)ecq(‘)+Oofl, Eq. (1) can be written as 

~~(t)=aA(t)-bz4(t)3+l/A(t-r)cos[A~(t)] 

+ 4&4(t) (3) 

and 

A(t--7) 
&t)=0[a-bA(t)‘]--yA(r)sin[Aq(t)] 

(4) 

UT= -rrm sin[ (wo+0)7+arctan f3]. (8) 

A necessary condition for the existence of multiple solu- 
tions of Eq. (8) is that the dressed feedback parameter 
C- yr m be such that C> 1. When such solutions ex- 
ist the phenomenon of frequency multistability appears. 

Chaotic behavior in semiconductor lasers (including 
some described by this model) with feedback has been 
discussed by a number of authors.3P’3 The solution of Eq. 
( 1 >, for a--y, follows a route to chaotic behavior as r is 
increased; from a monotonic relaxation, damped oscilla- 
tions, periodic behavior, and eventually erratic dynamics 
are obtained. For a fixed value of r this route is also fol- 
lowed as the ratio y/a is increased. However, as we are 
primarily interested in the fluctuations during the tran- 
sients and the spectra of the steady states, we will not 
discuss further the regimes of chaotic operation. 

Throughout this paper we choose time units in which 
~=l. In these units we take b=20, 0=5, and e=lO-“. 
We will consider two different representative parameter 
sets: 

Set I: y=2, a=20, wo=7r, 

Set II: y=O.5, u=2, wo=O. 

For these two sets, C= 10.2 and 2.55, respectively, and the 
dynamics shows no chaotic behavior. Qualitatively these 
two sets belong to regions II/III of the classification of Ref. 
14 (see also Ref. 5, page 273) for distributed feedback 
(DFB) lasers. Hence these two sets belong to the domain 
for which the potential approximation of Refs. 6 and 7 is 
intended to be valid. Frequency multistability only occurs 
for the first set of parameters. 

A description of the frequency dynamics implied by 
Eqs. (3) and (4) in terms of a potentia16” requires two 
steps. The first step involves the assumption of a late re- 
gime in which the dynamics of the amplitude follows the 
phase dynamics adiabatically so that we set 

k-0, A(t--7)-A(t) 

in Eq. (3) obtaining 

A2=la/b) + (y/b)cos Ap+ ( &/bA&(t). (9) 

Replacing Eq. (9) in Eq. (4), that equation for the phase 
becomes 

pj=-y~~sin[A~(t)+arctan0]+q(t), (10) 

where 

A&> =p(t) -p(t--7) +wg. (5) 

The amplitude and phase noises have correlations given by 

(~~‘A(t)~~;a(t’>)=(~~(t)~~(t’))=2s(t-t’), (6) 

and vanishing cross correlations. The steady solutions of 
Eqs. (3) and (4) with constant amplitude and frequency 
uj=w are given by 

AZ= (a/b) + (y/b)cos[ (oo+wh-I 
and 

(7) 

where 

q(t) = ( &/A) C&,-Q~,J (11) 
is a real Gaussian white noise with correlation 

(q(t)q(t’))=2e(;e2) S(t-t’). 

Equation ( 10) describes the late time regime phase evolu- 
tion with fluctuations around one of the possible final 
states. The value of A used in the denominator of Eq. ( 12) 
is given by Eq. (7). In this time regime A is assumed to be 
constant and determined from Eq. (7) by one of the 
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FIG. 1. The time-dependent potential V(q,t) for set I of parameters. A 
valueof ]h(m)]= wh as been used to obtain a typical evolution. 
(a) Solid line: t= 1 (indistinguishable from any t< l), dashed line: t 
= 1.20; (b) dotted line: t= 1.40, dashed line: r=215, solid line: t=2.30 
[indistinguishable from V( qt= m )]. 

steady-state solutions of FLq. (8). The second step involves 
the approximation of Mark and co-workers6 to convert 
this delayed equation (formally an infinite-order differen- 
tial equation) into a local-in-time, first-order differential 
equation for the phase difference 

rl(t) =p(f) yJ(f-9. 

Setting 

+I.-#- w~)~+2gi, 

one obtains 

(13) 

(14) 

r]=--7 
-1 am) 

------+2q(t), 
a77 

(15) 

where the potential V(r]) is given by 

V(v) =r2--2yrdm cos(q+WOr+arctan 6). (16) 

The dynamics of the variable q gives a good account of the 
frequency dynamics in the system for small r. The form of 
this potential for our two sets of parameters is shown in 
Figs. 1 and 2. Each local minimum for set I of the param- 
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FIG. 2. Same as Fig. 1 but for set II,of parameters. Dotted line: t=9.5, 
indistinguishable from any tc9.5, dot-dashed line: t= 11; dashed line: 
t= 11.5; solid line: t= 13, indistinguishable from I’(n,t= M ). 

eters is associated with a solution of a different frequency 
as given by I$. (8). 

While Eq. ( 15) seems to give a reasonable description 
of steady-state properties and dynamics on long time 
scales,6*7 we are interested in the transient dynamics after 
the laser switched on. During this transient, one of the 
solutions is selected. Hopping among the solutions of dif- 
ferent frequencies occurs at much longer times. It is clear 
that Eq. ( 15) cannot describe the transient dynamics since 
it is based on a late time approximation for the amplitude. 
We now explore whether some modification of this poten- 
tial picture can be successfully -applied in the regime of 
transient dynamics. Our general strategy is to find a time- 
dependent approximation for the amplitude which can be 
then substituted into Eq. (4), to give a closed equation for 
the phase dynamics. A second step involving the approxi- 
mation Eq. (14) should lead to a description in terms of a 
time-dependent potential. 

In the absence of feedback (y=O) there exists a well- 
known approximation for the transient dynamics of the 
amplitude,15P’6 

Im) I 
A”(t)=~e-2Qf[l-(b/a)l h(t)j2]+(b/a)( h(t)12)1/2’ 

where 

h(t) = JE Ji emu”lj(t’)dt’. 

Equation (17) can be understood 
ministic solution of Eq. (3) (for 

(18) 

as given by the deter- 
r=O) with the initial 

condition A,(O) replaced by 1 h(t) I. This approximation 
implies an amplification of an effective random initial con- 
dition h(t) by the deterministic solution. For t > l/a, h(t) 
can be safely replaced by h ( CO ) which is a complex Gauss- 
ian random number of zero average, random phase, and 
( I h ( a~ ) 1 2, = 2~/u. The effect of feedback cannot be intro- 
duced by a straightforward perturbation in y of the solu- 
tion of Eq. (3) around Eq. ( 17) because of the appearance 

(17) 
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of secular terms. An ansatz for A(t) can be obtained as a 
generalization of Eq. (9) for all times: The adiabatic fol- 
lowing (for E==O) of Eq. (9) is formally obtained setting 
A=0 in Eq. (3), 

(19) 

Noting that A;( CO > = (a/b), A2(t) can be approximated 
during the transient regime by replacing in the right-hand 
side of Eq. (19) A,( CQ) and A(t) by A,-Jt), 

A2(t>=A;(t) l+ (20) 

A*(t) is then given by a standard approximation for y=O 
modified by a nonperturbative correction. The long time 
dynamics is well described since I$. (20) reproduces Eq. 
(9) (for E=O) in this ,limit. For very early times the dy- 
namics is essentially linear. Equation (20) reproduces the 
linear solution of Eq. (1) to lowest order (p”) in the 
parameter p = ye-‘, so that it becomes better as p becomes 
smaller. For intermediate times Eq. (20) is expected to 
give a good interpolation between these two limits. Substi- 
tuting Eq. (20) in Eq. (4) we obtain a proper generaliza- 
tion of Eq. ( 10) for transient dynamics, 

(P&I [ 1-iA; (l+‘:;;;;’ cos Apl)] 

‘@Ott-7) J; - 
A,(t) sin b+Ao(t) &Jt)- 

1.0- r 

0.8 - 

0.8 - 
< 

0.4 - 

0.2 - 

I I o.oo I I I I I I I 
4 0 12 10 20 24 28 

It turns out that Eq. (2 1) gives correctly the terms of order 
p” and p’ in the expansion of the exact linear solution of 
Eq. ( 1). Since it also reproduces the deterministic correct 
steady-state results, it is expected that for intermediate 
times Eq. (21) gives a good interpolation between early 
and late time evolution. In fact, it is shown below that it 
gives a- very good description of the phase evolution for all 
times. An additional comment on noise effects is needed. 
The dominant noise effect during the transient dynamics is 
the shifting in time of the amplitude evolution due to the 
random switch-on times. This effect is well described in 
Eqs. (20) and (21) through the randomness of A,(t). 
However, the amplitude noise term &(t) consider in Eqs. 
(9) and (11) is not included in Eqs. (19) and (21). The 
reason is that explicit amplitude noise is important in the 
late time regime when the system is near a steady-state 
solution (see Sec. V) but should not be included in the 
transient dynamics: Amplitude fluctuations are irrelevant 
in the transient dynamics after the amplitude turn on, and 
they cannot be included in ECq. ( 19) in the very etirly noise- 
dominated regime (t < 1/2a) since it would imply an un- 
physical adiabatic following of white noise by the ampli- 
tude. 

If the further approximation using Eq. ( 14) is made in 
Eq. (21) we obtain the generalization of Eq. ( 15) in which 
the potential Y in Eq. (16) is replaced by the time- 
dependent potential 

V(q,t> =+2&w[ l-g(t>]q 

I \‘ : . . . . . . . . I 
o_I AT-- -+-LA t 

(21) 

FIG. 3. (a) Amplitude and (b) 7 evolution for set I of parameters. Solid 
line: direct simulation of Eq. (1); dashed line: approximation in Eqs. (20) 
and (21); dotted line: time-dependent potential approximation, Eqs. (15) 
and (22). Note that 77 is not defined for t < 1. 

-2yTAf;;) [1+8$&)]!‘2 

Xcos{77+oor+arctan[&(t)]}, 

where 

(22) 

g(t) =bA;(t)/a. (i3j 

The time dependence of this potential for the two sets of 
parameters we are considering is also shown in Figs. 1 and 
2. For t= CO, V(q,t= CO ) reproduces the potential Eq. 
( 16). The development in time of the local minima asso- 
ciated with the multiple solutions of Eq; ( 17) (parameter 
set I), or the dynamic evolution of a preferred frequency 
(parameter set II), is clearly displayed. 

III. ANALYSiS’OF INDIVIDUAL SWITCH-ON EVENTS -- 

The time evolution of the amplitude and 7 variables 
are shown in Rigs. 3 and 4 as obtained from a numerical 
simulation of Eq. ( 1) and compared with simulations of 
the approximations Eqs. (20) and (21) and Eqs. ( 15) and 
(22); They are representative switch-on events obtained 
for a given sequence of random numbers associated with 
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FIG. 4. As in Fig. 3 but for set II of parameters. 

g(t). The same sequence of random numbers is used in the 
numerical simulations of the original model and for the 
two approximations. The laser is assumed to be switched 
off for t<O with E=O, and at t=O the net gain parameter 
takes instantaneously a value a > 0. 

The numerical simulation of Eq. ( 1) indicates a rather 
long transient in which the steady state is not reached until 
many feedback delay times (r= 1). The approach to the 
final state exhibits damped oscillations. For the first set of 
parameters (Fig. 3) the frequency evolves rather quickly 
to values close to its final one but the oscillations are long 
lived. For the second set of parameters (Fig. 4) the oscil- 
lations are more strongly damped but the main .frequency 
jump does not occur until later than ten feedback delay 
times. In both cases there is a significant jump in the fre- 
quency during the transient. This jump occurs during the 
short time interval in which the time-dependent potential, 
Eq. (22)) evolves from having a single minimum at 7 -8a 
to its final form (see Figs. 1 and 2). We note that this jump 
is from the frequency associated with the off state of the 
laser rather than from the frequency of the laser in the 
absence of feedback, which is zero in our reference frame. 
The jump occurs when the growing amplitude exceeds a 
critical level. This is the random time at which the laser 
effectively switches on. It can be estimated by the time at 
which A,(t) acquires a value clearly above the noise level. 

1230 J. Appl. Phys., Vol. 72, No. 4, 15 August 1992 

This is the switch-on time in the absence of feedback whose 
mean value is known16 to be t- (1/2a)ln e-i. This time 
gives an upper limit of the regime of exponential amplifi- 
cation of the initial fluctuations. At times earlier than 1/2a 
the dynamics is noise dominated and for times larger than 
the switch-on time nonlinear effects become important. 
Hence Y(v,t) gives a useful indication of the time of the 
frequency jump which can be identified as the time at 
which the potential reaches its asymptotic form found in 
Refs. 6 and 7. 

In spite of the usefulness of V( qt), the generalization 
to the transient dynamics of the theory of Refs. 6 and 7 
given by Eqs. ( 1.5) and (22) leads to an incorrect descrip- 
tion of several gross qualitative features. In the first place, 
the approximation of the dynamics by an ordinary first- 
order differential equation is unable to describe the oscil- 
latory approach to the final state. Second, and perhaps 
more important, is that solutions of this first-order equa- 
tion lead in some switch-on events to a selection of a dif- 
ferent final state from that chosen by the exact solution; 
this is easily identified by the error in the frequency. In Fig. 
3(b) it is seen that while the exact solution leads to a 
frequency associated with the absolute minimum of 
V(q,t), the approximate model using Eqs. ( 15) and (22) 
leaves the system hung up at a frequency associated with 
the local minimum to the right of the absolute minimum. 
This frequency is visited during the transient dynamics in 
both models but the system does not escape from it in the 
approximate solution. For the same set of parameters as 
used for Fig. 3(b) but with wo=O we have observed other 
events in which the solution of Eqs. ( 15) and (22) leads to 
a local minima of V(q,t) much higher than the absolute 
minimum. The incorrect evolution of 7 also leads to an 
incorrect final value of the amplitude via Eq. (20) as seen 
in Fig. 3 (a). The possibility of an incorrect final frequency 
obtained from Rqs. ( 15) and (22) disappears for set II of 
parameters in which V(v,t) has a single minimum. 

In contrast with the approximation based on the time- 
dependent potential V( q,t) our simulations of Eq. ( 1) give 
good agreement for all times with the approximation in 
Eqs. (20) and (21). It always gives the correct selected 
frequency and displays the observed oscillatory approach 
to the final state. However, our improved approximation 
reaches the final state slightly faster than the exact solu- 
tion: The final oscillations are more rapidly damped when 
these are long lived (set I) and the main frequency jump is 
advanced in time for set II. 

In summary, we have a good approximation which 
reproduces individual switch-on events but a potential de- 
scription of the dynamics of frequency selection is not pos- 
sible. Still, the time-dependent potential, Eq. (20), is useful 
for identifying the time of main frequency jump and the 
selection of one of the possible final states. 

IV. TRANSIENT INTENSITY AND FREQUENCY 
STATISTICS 

In this section we analyze the transient statistics ob- 
tained from averages over 4000 independent switch-on 
events. Results from the simulation of Eq. (1) are com- 
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FIG. 5. (a) Average intensity and (b) standard derivation of intensity 
fluctuations for parameter set I, obtained from averages over 4000 real- 
izations of Eq. (1) (solid line) and Eqs. (20) and (21) (dashed line). 
Note the logarithmic scale in (b) . 

pared with those obtained from simulations of Eqs. (20) 
and (21) in Figs. 5-8. The agreement is rather good. The 
mean intensity (I), ISA”, shows the same oscillations 
about the final state that are seen in the individual switch- 
on events. The fact that the averaging does not kill these 
oscillations indicates that the switch-on time of the differ- 
ent events has a distribution with a standard deviation 
smaller than the period of oscillations. The small dip ob- 
served during the growth of the intensity for the second set 
of parameters in Fig. 4(a) leaves a trace in Fig. 7 (a), but 
the average intensity has a monotonic growth. The stan- 
dard deviation of the time-dependent intensity fluctuations, 
AI= ((12>-(I) > 2 1’2, shows oscillations with a first large 
peak during the growth of the mean intensity [Figs. 5(b) 
and 7(b)]. For each delay feedback time r= 1 there is an 
oscillation of (I) and there are two peaks in AI. The peaks 
of AI are due to the shifting in time of the different indi- 
vidual events. In Fig. 7 (b), I?rl has a minimum for t- 12 
associated with the dip in the growth of the intensity for 
individual events for the second set of parameters. 

The mean frequency evolves similarly to the frequency 
evolution in individual events. The standard deviation of 
the fluctuations in the mean frequency, Ar] ( (q2) 
-(17) ) 2 1’2, shown in Figs. 6 and 8 becomes very large at 
the time of the frequency jump. This indicates that in the 
dynamics of frequency selection a large range of values of 
the frequency can be observed in different switch-on 
events. This is a consequence of the randomness of the 
switch-on times. The maximum standard deviation of the 
frequency fluctuations is comparable with the frequency 
differences between closest solutions of Eq. (8). However, 
the subsequent peaks of Aq during the oscillations are 
much smaller and they do not indicate jumps among the 
steady state of different possible frequencies. They are 
rather associated with fluctuations following an oscillatory 
behavior around the deepest minimum of V(q, CO ). In 
summary, we conclude that the transient dynamics initially 
exhibit large frequency fluctuations but that the frequency 
associated with the minimum of V(v, CO ) is selected with 

I 
2 4 a a 10 12 14 

t 

FIG. 6. The same as Fig. 5 for the average of (a) 11 and (b) the standard 
deviation of its fluctuations. 

very high probability. This frequency corresponds to the 
solution with narrowest linewidth. Jumps among the solu- 
tions of Eq. (4) with different frequencies might occur by 
an activation mechanism on much longer time scales. 

Measurements of temporal and spectral properties of 
switching transients such as studied here would demon- 
strte that feedback-induced oscillations are different from 
what is often called mode competition. In steady-state op- 
eration with noise, one expects both the AM and FM spec- 
tra to show peaks at other external cavity mode frequen- 
cies. In contrast, the modulations observed in the transient 
result from correlated AM and FM fluctuations which 
modulate the amplitude and frequency coherently in time. 

V. STEADY-STATE SPECTRA 

In this section, we consider the spectra of fluctuations 
in the steady-state regime. Spectra have been calculated for 
models of semiconductor lasers using field and carrier 
number equations such as the Lang-Kobayashi equa- 
tions. l2 Calculated spectra’7-‘9 and experimental measure- 
ments’8’20’2* show strong evidence that the intensity power 
spectrum has additional peaks located at distances from 
the primary peak given approximately by the intermode 
spacing of the external cavity modes. The electric-field 
spectrum and the frequency spectrum have similar addi- 
tional peaks at what are approximately the unexcited ex- 
ternal cavity frequencies. Feedback reduces the linewidth 
of the field spectrum, as intended. 

Previous studies that include the material dynamics for 
semiconductor or solid-state lasers have shown that these 
lasers are more susceptible to undamped pulsations when 
the feedback-induced oscillations match the relaxation os- 
cillation frequency in some rational ratio. Clearly the os- 
cillations induced by the transient might be used to sup- 
press relaxation oscillations if the feedback oscillations 
were timed to be out of phase with the relaxation oscilla- 
tions. The important key would be for the feedback to 
begin to suppress the rapidly growing intensity before it 
crossed the ultimate steady-state value. Our studies give an 
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FIG. 7. (a) Average intensity and (b) standard deviation of intensity 
fluctuations for parameter set II, obtained from averages over 4000 real- 
izations of Eq. (1) (solid line) and 2000 realizations of Eqs. (20) and 
(21) (dashed line). 

indication of the time scales involved and thus of the feed- 
back delay times that would be required to accomplish 
this. 

Of interest here is the degree to which the desired 
feedback-induced narrowing of the low-frequency portion 
of the spectrum of fluctuations around the final states is 
degraded in its usefulness by the excess power in other 
portions of the spectrum and the degree to, which various 
approximate models give an adequate representation of 
this effect. Although our models for the evolution of the 
field will not have the relaxation oscillation resonance 
characteristic of the held-carrier number equations, we can 
still see the degree to which the further potential-based 
approximations neglect features of the noise-spectrum that 
are induced purely by the feedback. For this purpose we 
could calculate the spectrum by using the results of oth- 
ersr* who have calculated these spectra for models incor- 
porating the field and carrier number dynamics and taking 
the limit of an infinite relaxation rate for the carrier num- 
ber. Alternatively, we follow here the direct procedure of 
linearizing our Eqs. (3) and (4) around the deterministic 
steady solutions for the amplitude (modulus of the com- 
plex electric field) and phase. By this method we calculate 
the amplitude and frequency spectra which show sideband 
peaks associated with the external cavity modes due to the 
feedback. Later, we-derive an expression [Eq. (42) below] 
relating the electric-field spectrum to that of the amplitude 
and phase, containing also a crossed term. In this way we 
investigate the effect of such peaks in the electric-field spec- 
trum. 

Writing 

p(t)=wt+b(t), (24) 

where w is one of the solutions of Eq. (8)) and 

A(t)=A&u(t), (25) 
where A, is the deterministic asymptotic value of the am- 
plitude in Eq. (7), the linearization consists in neglecting 

FIG. 8. The same as Fig. 7 for the average of (a) 7 and (b) the standard 
deviation of its fluctuations. 

terms of order u(t)2, [u(t)-u(t-T)12, and [6(t)-t3(t 
--r)12. No term in 6(t)2 appears. Szlving the linearized 
equations for the Fourier transforms S(z) and G(z) of 6(t) 
and u(t), respectively, we obtain 

where 

DGC~C~-C~C~, 

c*=2beA~-Q( l--e+), 

c2=2bAf,+R( l--e-iZT) +iz, 

c3=iz+R( l-e-“), 

c4=A&( 1 -e-“‘), 

R=ycos[ (w+w())7], 

(28) 

Qrysin[ (o+wo)T]/AD . 

For comparison, the same linearization can be repeated for 
the different approximations discussed in the previous seo- 
tions. In the stationary regime that we study here, our 
approximation in Eqs. (20) and (21) reduces to the sim- 
pler adiabatic approximation Eqs. (9) and ( 10). The re- 
sulting phase and amplitude spectra are 

1+e2 
, 

(29) 
and 

(Iii-24 12j=; [Ic/t12+ 1 C=W-‘--,&~21. (30) 

We have introduced 
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G= -rp cos[ (w+w&-+arctan q, (31) 

F=(-y/26A,)siIl[ (w+o(47], (32) 

and 

F( 1 -P-‘Zr> 
C,4=jz-G(~--e-iZT)' (33) 

In the same way, our time-dependent potential, Eq. 
(22), reduces to Fq. ( 16) at late times. The linear phase 
spectrum can be calculated by linearizing Eq. ( 15) around 
the stationary solution, v=wr, and then using the relation- 
ship Eq. (13) between Q, and 7, which in Fourier space 
reads ;; 

$(z> = (1 -e-b7)&>. (34) 

The result is 

(r6^p(z) 11)=-$ [l-cos(=r)]~~~~~l-G)‘+$l * 
D 

(35) 

The amplitude spectrum is again Eq. (30) but with c, 
replaced by 

2F 

CPEiz+2(T-‘-G) * (36) 

The frequency spectrum ?f&z) is 

~ff(z)=~(I%z) 12). (37) 

Figure 9 shows the amplitude and frequency spectra 
for fluctuations around the state corresponding to the 
deepest well (0~1.61) in the potential of Fig. l(b) and 
Fig. 10 shows these spectra for the adjacent and next deep- 
est well (0 =: - 4.10), both for parameter set I. Figure 11 
shows these results for the only potential well (0~ -0.98) 
of parameter set II. The amplitude spectra are normalized 
to obtain the relative intensity noise (RIN) spectra, which 
is the spectrum of fluctuations in the intensity divided by 
the mean (deterministic) value of the intensity squared. 
The relationship between the RIN. spectrum and the am- 
plitude spectrum is: 

RIN=4 (I~(z)j”) 2 
AD 

(38) 

From the figures, we see that for the RIN spectra; the 
potential approximation fails to reflect additional peaks in 
the spectrum while the adiabatic approximation qualita- 
tively agrees more closely with the exact solution. The 
peaks in the exact solution are shifted a small amount 
closer to zero frequency than in our adiabatic approxima- 
tion. Perhaps the only qualitative failure of the adiabatic 
approximation is that it overestimates the effect of the 
noise at high frequenciel;. This was expected from our dis- 
cussion in Sec. II: The adiabatic approach should fail for 
frequencies higher than a, the typical time scale for relax- 
ation of amplitude perturbations, since the amplitude can- 
not adiabatically follow such high frequencies. 

The frequency spectra can be understood as follows: 
The strongest approximation in the potential approach is 
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FIG. 9. (a) Frequency spectra and (b) relative intensity noise spectra for 
parameter set I, from linearization around the state with CO=: 1.61. Solid 
line is the result from the exact dynamics, dashed line from the adiabatic 
approximation, and dotted line from the potential approximation. 

the replacement in Eq. (14) of a finite difference by deriv- 
atives: Since this is clearly incorrect for time scales shorter 
than 7, the spectra in the potential approximation should 
contain unphysitial features at Fourier frequencies of order 
of higher than 2g/r. This is what is seen in the frequency 
spectrum: The-potential approximation presents divergen- 
cies at Fourier frequencies which are multiples of 2?r/r. 
They come from the trigonometric factor in the denomi- 
nator of Eq; (35), which is a consequence of Eq. (34). 
Again, the adiabatic approximation does a better job of 
reflecting the spectrum of the exact solution, .up to frequen- 
cies of order a: It is worth noting, however, that all the 
approximations reproduce the correct value for the fre- 
quency spectra at Fourier frequency z=O. Since this value 
is precisely the linewidth (full width at half-maximum) of 
the main Lorentzian contribution to the complex field 
spectrum,5,21 we see that both approximations reproduce 
the exact value of this low-frequency linewidth A,. 

For reference we show in Fig. 12 the spectra with no 
feedback for parameter set I. They have been obtained 
simply by taking the limit y-+0 in expressions Eqs. (26)- 
(36). Our approximations are clearly inaccurate in this 
regime, but still the value at z=O is correctly reproduced. 
The peaks .that appear in the frequency spectra in the po- 

Herndndez-Garcia et a/. 1233 

Downloaded 26 Jul 2001 to 192.58.150.40. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



FIG. 10. Same as Fig. 9 but from linearization around the state with 
OZ--4.10. 

FIG. 11. (a) Frequency spectra and (b) relative intensity noise spectra 
for parameter set II, from linearization around the only possible steady 
state (CD=-- 0.98). Meaning of the different lines is as in Fig. 9. 

tential approximation at the external cavity resonance fre- 
quencies even with y=O indicate that there is an intrinsic 
error in this approximation in the relations governing be- 
havior at frequencies of this magnitude or higher. Table I 
shows the linewidth reduction produced by the feedback 
for both sets of parameters. Two possible states for the first 
set of parameters are included. It is seen that the state 
corresponding to the deepest well in the potential is that of 
smaller linewidth. Note that AL is always linear in e, so 
that the tabulated values of AJE are the same for any 
value of E. 

The sideband frequencies in the frequency and ampli- 
tude spectra also produce sideband peaks in the complex 
field spectrum, thus degrading the usefulness of the central 
linewidth reduction. An alternate definition of linewidth 
A, which contains information about higher frequencies, 
is given b?l 

1 m 
z s 

dz( I&> 12) -1. 
AH/2 

(39) 

When the complex field spectrum is a Lorentzian, AL= A, 
It is clear that the definition of Eq. (39) cannot be applied 
to the potential approximation, because the divergencies at 
multiples of 2 lr/r will always give an infinite value to A, 
Calculation of A, for the value E= 10M2’ considered in this 

paper gives the same values as A, in both the exact and in 
the adiabatic calculation. This shows that, for this value of 
the noise intensity, the complex field spectrum produced by 
Eq. ( 1) is essentially a Lorentzian of linewidth A, with 
sideband peaks of negligible weight. Then, both adiabatic 
and potential approximations correctly describe this line- 
width, although in the potential case the second definition 
AH cannot be applied. 

To confirm this picture, we calculate the complex field 
spectrum as follows: First we write the complex electric 
field as 

I = [~~+~(t) -j,k.+iWl z~D ,W+if4O+uW/~~, 
(40) 

where J.L = w + we. In the last equality, use has been made of 
the assumed smallness of the fluctuations u(t). Next, we 
construct the correlation function 

C,,(s>~(E*(t)E(t+s))--(E*(t))(E(t+s)). (41) 

The averages are readily expressed in terms of phase and 
amplitude correlation functions by use of the Gaussian sta- 
tistics implied by the smallness of fluctuations. The 
1ow;frequency singular behavior of the phase spectrum 
[WW12bW~ as z-01 has to be taken explicitly into 
account and is responsible for the vanishing of (E(t)). 
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FIG. 12. (a) Frequency spectra and (b) relative intensity noise spectra 
for parameter set I but in the absence of feedback ( y=O) . Meaning of the 
line is as in Fig. 9. 

For small E we find the following expression for the com- 
plex field spectrum, the Fourier transform of Eq. (41) : 

cEdz+P) ( I &tpL) I 2 
2 = 

AD 
2 

AD 

AL 
=(l-'t?+lU) (AL/2)2+2 

+& I 
* dt 

AL 

-m (AL/~)~+ (z-z’)’ 

AL <Ih') I*> (Is^(z~)12+-j-z+ A; 

TABLE I. Low-frequency linewidth AL for different values of the param- 
eters. 

Parameter set 

Set I, y=O 52.0 
Set I, o)= 1.61 0.423 
Set I, o= -4.10 0.460 
Set II, y=O 520 
Set II 40.57 

10B 

104 
t 

FIG. 13. Complex field spectrum for parameter set I, but with E= lo-*, 
from linearization of the exact dynamics. 

+g Im(u^(z’)S?r(z’)) . 
) 

The last term in the integral, containing the imaginary part 
Im introduces asymmetry of the spectrum with respect to 
the central peak. We have defined 

I& 1 f 
m 

d. ((Is^(d l*b-2) 

and 

d4 1 u^(z) [ *>a 

(43) 

This result confirms that the complex field spectrum is a 
Lorentzian of linewidth A, with sidebands of order 8 (2) 
for small E. We show in Fig. 13 a plot of Eq. (42) from the 
amplitude and phase spectra in Eqs. (26) and (27) for our 
set I of parameters, but with E= lo-*. This is a rather large 
value of the noise, but still realistic for some cases. The 
presence of sidebands reflecting the effect of the external 
cavity resonances is clear but their intensity is too small 
even for this value of noise to make an appreciable differ- 
ence between AL and A, 

We present in Table II values of A, for the sets of 
parameters discussed in this paper but with the value of E 
arbitrarily raised to lo-*, to show the effect of the side- 
bands. For set I, where a is not small, the adiabatic ap- 
proximation again gives good results. It should be noted, 
however, that in the calculations of Table II (and in Fig. 
13) we have still used the expressions for the phase spectra 
obtained by a linear calculation. We have not checked 
whether nonlinear corrections are important for these val- 
ues of the noise intensity. 

An important question is the impact of the sideband 
frequencies on the stability of the laser. It seems clear that 
the low-frequency portion of the spectrum and thus the 
basic laser linewidths would not be much disturbed. How- 
ever, the frequency modulation that is evident in the fre- 
quency spectra indicates that the laser is changing its fre- 
quency in response to noise, including relatively long 
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TABLE II. High-frequency linewidth AH from the exact equations and 
from the adiabatic approximation for several values of the parameters. 

Parameter set (e= lo-‘) AH/e, exact AH/e, adiabatic 

Set I, y=O 51.5 52.0 
Set I, a)= 1.61 0.48 0.45 
Set I, w= -4.10 0.50 0.49 
Set II, y=O 295.0 520.0 
Set II 98.0 170.0 

visitations to frequencies that are close to the center fre- 
quencies of the spectra from other coexisting states (other 
wells in the potential picture). This should significantly 
enhance the possibility of transitions to those other states 
(see, for example, the switchings described by Favre and 
co-workers in Ref. 20), though the transition processes 
clearly must involve nonlinear effects not taken into ac- 
count in our spectral analyses. 

VI. SUMMARY AND CONCLUSIONS 

We have presented a variety of analyses of the tran- 
sient processes of a laser with an external cavity, exploring 
approximations to the dynamics which are then compared 
to the exact solution. All of the approximations we explore 
are able to accurately present the low-frequency linewidth 
of the steady states. However, the more extreme approxi- 
mations lead to errors in the transient selection of the 
steady-state solution, and to errors in the dynamical ap- 
proach to the selected solution and to the spectrum of 
amplitude and frequency fluctuations about that solution. 
We have introduced a closed delayed -equation for the 
phase of the electric field which captures most of these 
physical aspects of the system dynamics which are missed 
by the more severe approximations. Comparisons’ of tran- 
sients, final state selection, and spectra are used to examine 
the limitations of each approximation. In ‘particular, an 
adiabatically evolving potential for one-dimensional relax- 
ational dynamics leads to an incorrect selected frequency. 
It appears that features of the exact spectra which are ne- 
glected in the more severe approximations may have a sig- 
nificant bearing on the stability of the various solutions and 
on their switching dynamics between different steady-state 
solutions. 
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