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Abstract

We study a model for opinion formation, which incorporates three basic ingredients for the

evolution of the opinion held by an individual: imitation, influence of fashion and

randomness. We show that in the absence of fashion, the model behaves as a bistable system

with random jumps between the two stable states with a distribution of times following

Kramer’s law. We also demonstrate the existence of system size stochastic resonance, by which

there is an optimal value for the number of individuals N for which the average opinion

follows better the fashion.

r 2004 Elsevier B.V. All rights reserved.

PACS: 87.23.Ge; 05.40.Ca; 02.50.Ey
1. Introduction

It is nowadays well established that the stochastic terms (noise) in the equations of
motion of a dynamical system can have a constructive effect leading to some sort of
order. An example is the appearance of ordered phases in a scalar field theory when
the noise intensity is increased [1–3]. The classical prototype is that of stochastic
see front matter r 2004 Elsevier B.V. All rights reserved.
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resonance [4–7] by which an adequate value of the noise intensity helps to
synchronize the output of a nonlinear dynamical system with an external forcing.
Amongst other examples, that of coherence resonance shows again that the proper
amount of noise helps to improve the regularity of the output of an excitable [8] or
chaotic [9] system. Similar results have been referred to as stochastic coherence in
Ref. [10] or stochastic resonance without external periodic force [11,12]. In these
examples, the subtle interaction between the nonlinear terms, the coupling (either
internal or with an external source) and the noise produce the desired effect. Most of
these previous works have considered the appearance of order as a result of tuning
the noise intensity to its proper value, whereas the role of system size has been
either neglected, or analyzed in terms of standard finite-size theory for phase
transitions [13].

A recent line of work, however, considers that the output of a nonlinear stochastic
system can have a nontrivial dependence on its size (or number of constituents).
Some recent work on biological models [14–16] consider Hodgkin–Huxley type
models to show that the ion concentration along biological cell membranes displays
(intrinsic) stochastic resonance as well as coherence resonance as the number of ion
channels is varied. These references also discuss the possible biological implications.
A similar result [17] shows that in the absence of external forcing, the regularity of
the collective output of a set of coupled excitable FitzHugh–Nagumo systems is
optimal for a given value of the number of elements. This is a system size stochastic

coherence effect.
In physical systems, system size resonance [18] has been found in the Ising model,

as well as in a set of globally (or local) coupled generic (f4-type) bistable systems
ðx1; . . . ;xN Þ under the influence of an external periodic forcing and uncorrelated
Gaussian white noises xiðtÞ:

_xi ¼ xi � x3
i þ

K

N

XN

j¼1

ðxj � xiÞ þ
ffiffiffiffi
D

p
xiðtÞ þ A cosðOtÞ (1)

for i ¼ 1 . . .N: It is possible to understand in this case the origin of the resonance
with the system size N, by deriving a closed equation for the collective (macroscopic)
variable X ðtÞ ¼ ð1=NÞ

PN
i¼1 xi as

_X ¼ F ðX Þ þ

ffiffiffiffiffi
D

N

r
xðtÞ þ A cosðOtÞ ; (2)

where xðtÞ is a zero mean Gaussian white noise with correlation function hxðtÞxðt0Þi ¼
dðt � t0Þ: The rescaling by N�1=2 of the noise intensity has a simple origin in the
central limit theorem. The function F ðX Þ can be computed by using some
approximations based on the strong coupling limit, and it can be shown that it
still exhibits bistable behavior [18,19].

Eq. (2) shows that the effective noise intensity, D=N; can be controlled both by
varying the noise intensity D or the system size N. Hence, the optimal value of the
effective noise intensity needed to observe stochastic resonance in the collective
response X ðtÞ can be achieved by changing the system size N. It is then conceivable
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the following situation: let us start with a single system ðN ¼ 1Þ subject to an external
perturbation and noise, such that the noise intensity is too large in order to observe
any synchrony with the weak external forcing, and the jumps between the two stable
states occur randomly. If we now couple together an increasing number N of these
units, the effective noise for the global system will decrease as N�1=2 and the global
response to the external signal will be initially improved. Eventually, for too large N,
the effective noise intensity will be very small and the system will be unable to follow
globally the forcing. The possibility of having stochastic resonance for an optimal
system size opens a wide range of applications in those cases in which it is not
possible to tune the intensity of the noise at will, but it might be possible to change
the number of coupled elements or the effective connections between them in order
to obtain the best response.

In this paper, we present an example of system size stochastic resonance in the field
of the dynamics of social systems. Our objective is twofold. First, we want to show
that the mechanism for system size stochastic resonance is generic and can appear in
systems which are very far away from the original ones. Second, we emphasize the
fact that the role of system size in social systems is a very important one and, for
instance, there are examples which show that these systems may display phase
transitions that disappear in the thermodynamic limit, instead of the other way
around which is the usual effect [20].

The rest of the paper is organized as follows: in the next section we explain in some
detail the model for opinion formation that we have considered in this work, while
the results are presented in the final Section 3, and a short discussion in Section 4.
2. Model studied

We have considered the model of opinion formation developed by Kuperman and
Zanette [21] based on similar models by Weidlich [22]. In this model, the opinion is
considered to be a binary variable, and we consider a set of i ¼ 1; . . . ;N individuals,
each one having an opinion miðtÞ ¼ 
1 at time t.

The opinion of an individual is not fixed and it can change due to three effects: (i)
the interaction with the rest of the individuals, modeled by a simple majority rule; (ii)
the influence of fashion, modeled as the effect of some external time varying agent
(such as advertising) and (iii) random changes. The model first establishes the
connections between the individuals by enumerating the set nðiÞ of neighbors of
individual i.

In order to better mimic the social relations between the individuals, we assume
that they live in the sites of a particular type of small-world network [23]. This is
constructed as follows: we consider that the i ¼ 1; . . . ;N individuals are regularly
spaced in a linear chain such that site i is initially linked to the 2k nearest sites (we
assume periodic boundary conditions). Each individual is then visited sequentially
and with probability p one of the links to its set of k right near neighbors is randomly
replaced by a link with a randomly chosen site. Double and multiple connections are
forbidden, and realizations where the network becomes disconnected are discarded.
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In this way, the new set of neighbors nðiÞ of site i, while still keeping an average size
of 2k; includes links to very far away sites. The re-wiring parameter p and the
connectivity parameter k characterize the small-world network.

The three effects mentioned above in the evolution of the opinion are precisely
implemented as follows: assign at time t ¼ 0 random values mi ¼ 
1 to each
individual; then at a given time t the next three steps are applied consecutively:
(i)
Fig. 1

time
Select randomly one individual i and let it adopt the majority opinion favored by
the set nðiÞ of its neighbors, i.e., miðtÞ ¼ sign½

P
j2nðiÞ mjðtÞ
; if

P
j2nðiÞ mjðtÞ ¼ 0 then

miðtÞ remains unchanged,

(ii)
 with probability Aj sinðOtÞj; set miðtÞ ¼ sign½sinðOtÞ
;

(iii)
 with probability Z; let mi adopt randomly a new value 
1; independently of its

present value.
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. (a) Time evolution of the average opinion rðtÞ in the case A ¼ 0: (b) Distribution of the residence

T on the stable states. The parameters are k ¼ 3; p ¼ 0:3; N ¼ 100 and Z ¼ 0:25:
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t ! t þ 1=N: This is chosen such that after one unit of time every individual has
been updated once on the average.
After these three steps have been performed, time increases by a fixed amount

The parameter A ð0pAp1Þ measures the strength of the fashion and O its
frequency. The last step (iii) introduces noise in the evolution. In order to define a
noise intensity D related to the flip rate Z; we consider the model without the effect of
fashion (step ii). This is equivalent to setting A ¼ 0: In Fig. 1 we plot the time
dependence of the average opinion rðtÞ ¼ 1=N

P
i miðtÞ: This figure clearly shows that

the system behaves as bistable, jumping randomly around the two bistable states
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Fig. 2. (a) Mean residence time t as a function of the flip rate Z in the case N ¼ 100: (b) Mean residence

time t as a function of system size N for Z ¼ 0:25 and different values of the re-wiring parameter p. In both

cases, other parameters are A ¼ 0; k ¼ 3:
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Fig. 3. The rescaled noise D� ¼ D=Dv as a function of flip rate Z for different values of the re-wiring

parameter p and k ¼ 3:
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which are close to r ¼ 
1: These random jumps are induced by the noise introduced
in step (iii) of the evolution and occur more frequently for large flip rate Z: This
picture of a bistable system whose jumps between the stable states are induced by
noise is consistent with the fact that, as shown in Fig. 1(b), the residence time in each
of the stable states follows the exponential Kramer’s law:

pðTÞ ¼ te�T=t (3)

being t the mean residence time [24]. The dependence of t in the flip rate Z and the
system size N can be seen in Fig. 2.

The next step is to define a noise intensity D by using Kramer’s formula, valid for
small noise intensity,

t ¼ t0 eDV=D (4)

being DV the height of the barrier between the two stable states. As shown in
Fig. 2(b), this barrier height increases with the number of individuals DV ¼ NDv

with Dv ¼ OðN0Þ; as expected. Thus, a simple fitting procedure allows us to obtain
the rescaled noise intensity D� ¼ D=Dv: This is plotted in Fig. 3 as a function of the
flip rate Z:
3. System size stochastic resonance

In the previous section we have shown that the opinion formation model
considered is consistent with the picture of a bistable system with jumps between the
two opinion states induced by the noise. In this section we turn our attention to the
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effect that the fashion, modeled as a periodic external signal, A40; has on the
system. In particular, we ask ourselves the question of on which conditions the
average opinion follows the fashion. Since the necessary ingredients are present in
this model, it should not come to a surprise that this model displays stochastic
resonance, as first shown in [21]. A similar result was also found in [25] for the
original Weidlich model. The evidence is given in Fig. 4 which show that, for fixed
values of N, the correlation between the majority opinion and the fashion is
maximum for the proper value of the flip rate Z: In these figures we plot the signal-to-
noise ratio as a function of the flip rate Z: In order to get a cleaner result, and as in
other applications of stochastic resonance [5], we have first filtered the original signal
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Fig. 4. The signal-to-noise ratio as a function of the flip rate Z for two different values of the system size:

(a) N ¼ 100; and (b) N ¼ 1024: The presence of the maximum in each curve indicates the standard

stochastic resonance phenomenon. The parameters are k ¼ 3; p ¼ 0:3; O ¼ 2p=128 and A ¼ 0:03:
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into a binary valued time series sðtÞ ¼ sign½rðtÞ
: We then look at the power spectrum
SðoÞ of the time series of sðtÞ and compute the signal-to-noise ratio in the standard
form as the area above the background of SðoÞ at the external frequency
value o ¼ O:

According to the general discussion in the introduction, we expect that the system
will display as well stochastic resonance as a function of the number N of individuals.
This expectation is evidently fulfilled if one looks at the series of Fig. 5. For small
value of N (upper figure), the average opinion rðtÞ behaves rather erratically and
independent of the periodic variation of the fashion. For a very large value of N

(lower figure), the average time between jumps is very large and, again, basically
independent of the periodic variation of the fashion. It is only for an intermediate
value of N (middle figure) that the jumps between the two opinion states are
correlated with the fashion. This result is also observed in the set of Fig. 5 which plot
the power spectrum SðoÞ coming from the corresponding time series. It is apparent
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Fig. 5. Time series of the average opinion rðtÞ for three different values of the system size: N ¼ 10 (upper

figure), N ¼ 100 (middle) and N ¼ 1000 (lower). In each series we also plot a line proportional to the

periodic function sinðOtÞ modeling the influence of the fashion. Notice that the average opinion follows

more closely the fashion for the intermediate value of N. For each of the time series, we also plot the power

spectrum SðoÞ: Notice the peak at o ¼ O; the frequency of the fashion. The parameters of the system are

k ¼ 3; p ¼ 0:3; O ¼ 2p=128; A ¼ 0:03; Z ¼ 0:31:
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in these figures that the signal-to-noise ratio first increases and then decreases when
the number N grows.

This main result is more clearly shown in Fig. 6 where we plot the signal-to-
noise ratio as a function of the system size N for different values of the flip rate. In
each of the cases, it can be seen that there is an optimal value N� for which the
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Fig. 6. The signal-to-noise ratio versus the system size N for different values of flip-rate: Z ¼

0:29; 0:30; 0:31; 0:32; 0:33; 0:34; 0:35; 0:36; 0:38 from bottom to top. The existence of the maximum N�

shows the system size stochastic resonance effect. Same parameters as in Fig. 5.
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Fig. 7. The optimum value N� as a function of the flip rate Z: Same parameters as in Fig. 5.
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signal-to-noise ratio takes its maximum value, indicating a maximum correlation
between the average opinion and the fashion. The value of N� is plotted in Fig. 7 as a
function of the flip rate Z:
4. Conclusion

In conclusion, we have considered a model for opinion formation. The model
incorporates three basic ingredients for the evolution of the opinion held by an
individual: imitation, fashion and randomness. We have shown that in the absence of
fashion, the model behaves as a bistable system with random jumps between the two
stable states with a distribution of times following Kramer’s law. We have used this
image to compute the noise intensity as a function of the flip rate. Finally, we have
shown the existence of system size stochastic resonance, by which there is an optimal
value for the number of individuals N for which the average opinion follows better
the fashion. This result indicates that the response of a social system to an external
forcing agent depends in a non trivial manner of the number of constituents, a
feature already observed in other different models for social behavior.
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