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Resum

Des del descobriment per part del @oic R. Brown al segle XIX de la préacia d'un
moviment eratic en sistemes de tamany micropic, més tard conegut com a moviment
Brownia, grans avencos van@cer en el camp dels procesos esastrs durant els anys
sedlents. La inevitable presicia de renou (o termes en les equacions del moviment que
provenen de I'eliminaéi de graus de llibertat microgpics, i que norés es podien des-
criure de manera probatfstica) en un sistema es pensava que jugava un pEséctiu
Recentment, pér han aparegut moltes situacions en les quals el renou pot jugar un pape
constructiu. Aix doncs, fedmens com laesorancia estoastica 1] mostra que el renou

pot millorar les propietats de transmissi'un sistema. Tamke trobam les transicions de
fase indiides per renou, en les quals la gnesia de renou pot donar lloc a una trartsici

de fase de no-equilibri cap a un estat de ruptura de simetria [2].

Un altre aplicad interessant& a veure amb f@nmens de transport: el renou pot ser
emprat per a obtenir moviment unidireccionaly &g, es poderectificar les fluctuacions
causades pel renoérimic de I'ambient, obtenint dixuna corrent neta en el sistema.
Aquest model es coneix commotor Browna. Basicament consisteix en un sistema
de petita escala que es troba sesha fluctuacionstmiques les qualsbs rectificades
mitjangcant qualque tipus d’asimetria (ja sigui espaial o temporal) presesitsistema.
Aquest fedmen de transport es coneix cafecte ratchet Depenent de la forma en
la qual aquesta asimetrés introdiida podem distingir entre diferents tipus de motors
Brownians. De totes maneres, el nostre idsees centraren un sol tipus de motor
Brownia conegut com #lashing ratcheti que es caracteritza per una peuta que es veu
sotmesa a un potencial agiric que s’enén i s'apaga peddicament o aleatiament.

El flashing ratchet servcom ainspiracio al fisic espanyol Juan M.R. Parrondo per
a model.lar un exemple de caire pedgig amb dos jocs A i B en els quals ocorria un
efecte similar. Va crear aquests jocs I'any 1996, i els prasdatmanera informal a
Torino, l@alia [3]. Aquests jocs, s tard coneguts comjacs de Parrondperen dos
jocs justos (o indls jocs perdedors) quan s’hi jugava a un d’ells solament, mentre que
si un els combinava de forma pedica o inclis aleabria, s'obtenia com a resultat un
joc guanyador. Llavors aquest exemple mostrava d’'una manera mallaeom quan

Per a ser s precisos, existeix un valoptim per a 'amplitud del renou, reflectit per la peesia d’un
maxim quan dibuixam laelacio entre la senyal i el renoan funcb del renou.
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dues didamiques es combinaven no neméament donaven com a resultat iguanade
dinamiques. Tot el contrari, s’obtenia un resultat que era totalment ineésgérasultat
d’obtenir un joc guanyador a partir de dos jocs justos o perdedorsnesxcoom a la
paradoxa de Parrond{-8].

Des de la seva aparii aquests jocs varen atreure molt d’'ig®en altres camps,
com per exemple teoria d'informaxguantica [9—-12], teoria de control [13, 14], sistemes
d’Ising [15], formacb d’estructures [16—18], resancia estoastica [19], caminates ale-
atories i difusions [20—-24], sistemes dimics discrets [25-27], economia [28,29], motors
moleculars en biologia [30, 31], bieégesis [32] i diamica de pobladi[33, 34]. Tami
han estat tractats com a processos de naixement i mort [3%]mates cel.lulars [36].

No obstant ai, a pesar de que la connéxntre el flashing ratchet i els jocs de Par-
rondo era patent, no existia una refaprecisa i quantitativa entre amixi Es la finalitat
doncs d’aquesta tesi poder aprofundir en aquesta caneetie els jocs de Parrondo i
el flashing ratchet. La tesi es divideix en deuitalg, dels quals el Cal 1 constitu-
eix una breu introducobials conceptes preliminars necessaris per a un millor enteniment
dels cajfitols posteriors. Hi presentam els conceptasidés de la teda de processos es-
tocastics, aixcom altres de teoria de cadenes de Markov i teoria de la infoémaci

El Cagtol 2 esh dedicat a una explicdatidetallada del ratchet Browai Concre-
tament ens centrarem en el flashing ratchet, explicant el mecarisimgdie es troba
darrera I'efecte ratchet. En aquest taptamkeé presentam detalladament els jocs de
Parrondo tal com varen ser definits, juntament amb wdisimmitjancant cadenes de
Markov a temps discret que ens condudr I'obtencd de la distribud de probabilitats
estacio@ries aix com els ritmes de guany dels jocs. Asa nés, presentarem de ma-
nera resumida altres versions dels jocs de Parrondo que podem tnadaes treballs, i
que es diferencien dels originals en les regles emprades per a escolioghabiftats.

Els jocs A i B que apareixen a la paradoxa de Parrondo poden caarsgiecom un
procés de difush sota I'accd d’'un potencial extern. No obstant apno tenen la forma
general d'un proes natural de difuéi ja que el capital sempre canvia amb cada joc,
mentre que en el casés general de difugila partcula pot moure’s cap amunt o cap
avall o romandre en la mateixa posi@n un temps donat. En el deg 3 presentam
una nova ver$i dels jocs de Parrondo, en els quals consideram una nova probabilitat
de transiad. Introdum la probabilitat anomenadself-transition amb la qual el capital
del jugador pot romandre igual deéprd’haver jugat. Per tant aquesta nova epsit
considerar-se com una evol@ciatural dels jocs de Parrondo, dels quals els jocs originals
en constitueixen un cas particular.

Despés d'introduir aquesta nova vesidels jocs, procedim a derivar una reaci
quantitativaentre els jocs de Parrondo i el moddi€ del ratchet Browsi. El treball
original de Parrondo no feia aquesta compdratgtallada. Aquesta reld@cfunciona
en amb@s sentits: emprant la nostra refa@s possible obtenir nous jocs partint de
potencialsisics molt simples; de forma sembla@s, possible generar nous modédsds
gue presenten I'efecte ratchet a partir de la desdrimdirica d'un joc. El Cafiol 4 est
doncs dedicat a mostrar aquesta réamitre els jocs de Parrondo i el flashing ratchet,



demostrant que pot ser establerta de forma rigurosa.

Per a ampliar encaraés 'analogia establerta entre els jocs de Parrondo i el ratchet
Brownia, analitzam al Cdpl 5, des del punt de vista de la teoria de la inforroata
relact entre el corrent (0 guany) dels jocs i I'entropia de la inforadtamte coneguda
com anegentropy. Aquesta relad, establerta anteriorment per al ratchet Braw3i7],
presenta un efecte molt similar i per tant reforca I'equéinaia entre els dos models.

Un altre punt d’integs fa refeéncia als intercanvis enertics en els motors Browni-
ans. Aquestaiipstd ha estat estudiada durant els darrers anys, i fins i tot podem trobar
en la bibliografia existent diferents definicions per a I'éfiwia. A nés, aquestaipstd
ha subscitat inté&s per al cas dels jocs de Parrondo [8] ja que no existia una cénnexi
clara entre I'energia que s'injecta al sistema, I'energia que seé&ia conseiggncia
I'eficiéncia dels jocs. Per tant el Gagd 6 esh dedicat a un estudi de la relaantre
I'eficiencia d’'un sistemaidic i els jocs de Parrondo. Emprant el formalisme intibdu
préeviament en el Cdfl 4, desenvolupam un @ode per avaluar I'efiéncia dels jocs
combinant resultats tant de models discrets com de continuus.

Tots els cafiols anteriors determinen, des de diferents perspectives, ladelaci-
pleta que existeix entre els jocs de Parrondo i el model del flashing ta@hledestacar
que en aquests jodmicament hi interg un sol jugador. Llavors, el ségnt pas a fer
inclou un estudi de jocs ambés d’'un jugadorés a dir, el§ocs de Parrondo col.lectius
Ambdos Cajitols 7 i 8 esan dedicats als jocs col.lectius. Per una banda, estudiam al
Captol 7 diversos casos d’'un joc col.lectiu intratdper Toral [38], en els quals s’es-
tableix una redistribudi de capital entre els jugadors. Obtenim, per a diferents combi-
nacions dels jocs A i B, resultats atas per al guany mi§ d'un sol jugador. D’altra
banda, introdim al Captol 8 una nova verside jocs col.lectius que presenten, @sxle
I'efecte de Parrondo, una invedsile corrent sota determinades circugmnsies. Aquesta
nova propietat es caracteritza per obtenir un joc que pot ser guanygwdedor d’'a-
cord amb la fregiencia de canvi entre els diferents jocs, un resultat que no s'obsarva p
al cas d’un sol jugador. Analitzam en detall aquests nous jocs i expticafitativament
el mecanisme que es troba darrera aquesta ifvaescorrent.

El Cagtol 9 fa refeéncia a I'altre tema principal d’estudi d’aquest tesi. Consideram
I'analisi d'un altre tipus de jocs en els quals taréblbc un resultat paradjic. Aquests
jocs es coneixen comteuels i poden considerar-se com a una extérggl duel a on hi
participen tres individuus. De forma resumida, I'efecte pagidique s’obé en aquests
jocs és que el jugador &s fort (0 amb ras aptituds) no necemsament guanyar el
joc, sim que en alguns casos el jugadoesrfeble posseeix la major probabilitat de
sobreviure.

Aquests jocs varen ser estudiats des del punt de vista de la teoria d8Jed2].

En aquest Cdpol 9 reprodiim els resultats existents d’aquest camp en un llenguatge
gue, segurament, uisfc troba nés adequats per a un millor enteniment: el dels proces-
sos estoastics. Obtenim les probabilitats de supegviia per a cada jugador, abom

la distribucb de guanyadors per a diferentes versions dels jocs analitzats.éTemb
pram les simulacions dels jocs (un procediment amb ordinador i amb llarge érad la



fisica) per tal d’entendre els resultats en aquelles situacions en les qual§ugedisrs
competeixen entre ells emprant les regles ttakls A més, estudiam I'efecte d’incloure
una depenéincia espaial en el sistema i una generalitzaels truels per a &s de tres
jugadors.

Finalment, en el Cdml 10 extraiem les conclusions sobre el treball presentait, aix
com les futuresihies de treball que cal seguir.

Pau Amengual

Juliol 2006
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Preface

Since the discovery by the botanist R. Brown in the nineteenth century @résence
of an erratic movement in small-scale systems, later known as Brownian motéat, g
advances occurred in the field of stochastic processes in subsequamty The unavoid-
able presence of noise (or terms in the movement equations coming fronptiession
of microscopic degrees of freedom, which can only be described intabiiestic man-
ner) in a system was supposed to play a destructive role. Very receothgver, there
have appeared many situations in which noise can lead to a construative Efir exam-
ple, phenomena of stochastic resonance [1] shows that noise camcertha transmis-
sion properties of a systefn We also find phase transitions induced by noise, where the
presence of noise may induce a nonequilibrium phase transition to a symmeskjrig
state [2].

Another interesting application deals with transport phenomena: noiseecaseil
in order to obtain directed motion, i.e., one can rectify unbiased fluctuatiarseddy
thermal environment obtaining a net current in the system. This model isrkimothe
literature as Brownian motor. Basically it consists on a small-scale systentsubje
thermal fluctuations which anmectifiedthrough some sort of asymmetry (either spatial
or temporal) present in the system. This transport effect is knowatelset effect De-
pending on the way the asymmetry is introduced we may distinguish betwerediffer
kinds of Brownian motors. However, our interest is focused on one daB8rownian
motor known aglashing ratchetcharacterized by a particle subjected to an asymmetric
potential that is switchedn andoff either periodically or randomly.

The flashing ratchet servediaspirationto the Spanish physicist Juan M.R. Parrondo
to design a pedagogical example with two coin tossing games A and B where a simila
effect took place. He devised the games in 1996, presenting them in lighmabform
in Torino, Italy [3]. These games, later knownRarrondo gameswere both fair games
(or even losing) when played alone, whereas if one combined them eithguariodic
or even random fashion a winning game was obtained. Therefore thigpéxahowed
in a simple manner that two dynamics, when combined, do not necessarilg gageilt
being simply asumof dynamics. All the contrary, it might turn to be a totally unexpected

2To be more precise, there exists an optimal value of the noise amplitdigeted by the presence of a
maximum when plotting the signal to noise ratio in terms of noise.
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8 Preface

outcome. The result of a winning game out of two fair/losing games is knownein th
literature adParrondo’s ParadoX4—8].

Since their appearance, these games attracted much interest in othefdieddam-
ple quantum information theory [9—12], control theory [13, 14], Isiggtems [15], pat-
tern formation [16—18], stochastic resonance [19], random walkslifodions [20—24],
discrete dinamical systems [25-27], economics [28, 29], molecular motobsoin
ogy [30, 31], biogenesis [32] and population dynamics [33, 34]. Tieye also been
considered as quasi-birth-death processes [35] and lattice gas aufd@jata

However, even though the connection between the flashing ratchetsara@héo’s
games was patent, there was no precise and quantitative relation betwiee here-
fore it is the aim of this thesis to deepen into this connection between Pargamdes
and the flashing ratchet. The thesis is divided into ten Chapters, from \@hnapter 1
constitutes a brief introduction to the necessary preliminary conceptsahémdebetter
understanding of succeeding chapters. We present some basipiotaten from the-
ory of stochastic processes, as well as others from Markov chainytaed information
theory.

Chapter 2 is devoted to a detailed explanation of the Brownian ratchet. &lelycr
we focus on the flashing ratchet, explaining the physical mechanism bitarrdtchet
effect. In this Chapter we also explain in detail the original Parrondasegaas they
were defined, together with a detailed analysis by means of discrete-timewtriins
leading to the distribution of stationary probabilities as well as the rates of vgmiithe
games. Besides, we briefly present other versions of Parrondo gaesest in the liter-
ature, differentiating from the originals on the rules used for selectingrtiigpilities.

Games A and B appearing in Parrondo’s paradox can be thought dfussah pro-
cesses under the action of a external potential. However, they do wettha more
general form of a natural diffusion process, because the capitahiwidlys change with
every game played, whereas in the most general diffusion procesticdepean either
move up or down or remain in the same position at a given time. In Chapter 3aserir
a new version of Parrondo’s games, where a new transition probabilitikga fato ac-
count. We introduce self-transitionprobability, that is, the capital of the player now can
remain the same after a game played. Thus the significance of this new \sraioat-
ural evolution of Parrondo’s games, from which the original gamesitttes particular
case.

After introducing this new version of Parrondo games, we proceed teedeguanti-
tativerelation between Parrondo’s games and the physical model of the Brovetcoet.
Parrondo’s original work did not make such a detailed comparison. Téest goes both
ways: using our detailed comparison it is possible to derive new gamesgtaotimvery
simple physical potentials; similarly, it is possible to generate new physical mibdels
undergo the ratchet effect starting from some game theoretical descrigtf@mpter 4 is



thus dedicated to present this relation between Parrondo’s games aregkiedlratchet,
showing that it can be established in a rigorous way.

To extend further the analogy between Parrondo games and the Brawatdhat, we
analyze in Chapter 5, from the point of view of information theory, the reidbietween
the current (or gain) from the games and the information entropy (alserkas negen-
tropy). This relation, already established for the Brownian ratchet [8&kents a similar
effect and hence reinforces the equivalence between both models.

Another point of interest concerns the energetics of Brownian motohnss ques-
tion has been addressed in recent years, finding in the literature difdeénitions of
efficiency. It has also raised interest in case of Parrondo games [8ee is no clear
connection between energy input, energy output and consequentlffitieney in the
games. Thus, Chapter 6 is dedicated to a study of the relation between thetese
of a physical system and Parrondo’s games. Making use of the formadtsnduced
previously in Chapter 4, we develop a method for evaluating the efficiehnttye@ames
combining results from both discrete and continuous models.

All previous Chapters determine, from different perspectives, a teimpelation
existing between Parrondo’s games and the flashing ratchet. These granpdsyed by
one player only. Therefore, our next step involves a study of a gamemotie than
one player: i.e.collective Parrondo gamesBoth Chapters 7 and 8 are dedicated to
collective games. On one hand we study in Chapter 7 various cases fcoiteetive
game introduced by Toral [38], where a redistribution of capital takesepéamongst
players. We obtain, for different combinations of games A and B, analygealts for
the average gain of a single player. On the other hand, we introduce inteCi&aa
new version of collective games presenting, appart from the Parreffieict, a current
inversion under certain circumstances. This new feature is charactényzan outcome
that can be winning or losing according to the frequency of change batthe differen
games, a result that is not observed in single player games. We analyzgilntldese
new games and explain qualitatively the mechanism behind this currentionvers

Chapter 9 is committed to the second main subject of study of the present thesis.
considers the analysis of another kind of games where, again, a cininféve result
takes place. These are the so—called truel games, and can be thoaglaroéxtension
of a duel played by three individuals. In brief, the paradoxical remyftearing in these
games is that the player with the highest performance does not necesarrihe game,
instead, even the weakest possesses a higher probability of winningéncases.

These games were studied from the pont of view of game theory [39+42his
Chapter 9 we reproduce the existing results of this field in a language thpefutly, a
physicist finds more comfortable to understand: that of stochastic @exe¥/e obtain
the survival probabilities of each player, as well as the distribution of @rfor the dif-
ferent versions of the games analyzed. We also use simulations of the @acoasputer
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procedure with long tradition in physics) in order to understand the actuebme in
a situation in which many agents compete amongst themselves using the ruledsof tru
Furthermore, we study the effect of including spatial dependence inytens and a
generalization of the truels to more than three players.

Finally, in Chapter 10 conclusions about the present work will be draegether
with perspectives about future work.

Pau Amengual

July 2006
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Chapter 1

Infroduction

In the following sections of the present Chapter we introduce some basiepts that
will be used in foregoing Chapters. First we will present briefly somecepts on the
theory of stochastic processes in Sec. 1.1, Markov processes ith.3end the Fokker-
Planck equation in Sec.1.3. These will be followed by some introductoryepisabout
Markov chain theory in Sec.1.4 and finally some concepts on informationythieor
Sec. 1.5.

1.1 Stochastic processes

A stochastic process can be thought of as a system that evolves itistically in
time, or more explicitly, a system where there exists at least one time—depeadent
dom variable. Denoting this stochastic variableXds), we can measure its actual value
x1,T9, T3, ... at different timeg, to, t3, ... and so obtain the joint probability density
of the variableX ()

P(.%'l,tl;xg,tg;.%g,tg;...) (1.1)

which denotes the probability that we measured the vajuat timet,, valuez, at time
ta,. .., €tc.
Using these probability density functions we can also deforaitional probability

densitieghrough

P(z1,t1; 20, t2; - . 5Y1, T15 Y2, 725 - - )

Py, 11592, 725 .. .) 7
(1.2)

where it's been assumed that the times are orderedii.B.fo > t3> ... > 171 > 0 >

P(xy,ti; 2o, ta5 ... [ Y1, 715 Y2, 25 .. ) =

The simplest stochastic process is that of complete independence
P(xy, by ma, tos s, b3 ) = [ [ Pla, ta) (1.3)
%

1
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which means that the value of at time¢ is completely independent of its values at
previous — or posterior — times.

The next step is to consider processes where the future state of tha siggiends on
its actual state. This kind of processes are known in the literatuvkadsov processes

1.2 Markov processes

This class of processes are characterized by the so ddbeklov property A Markov
process can be defined as a stochastic process with the propertyrthay feet ofsuc-
cessivdimes, i.ety >ty >t3 > ... > 1 > 1 > ..., 0ne has

P(xy,t1;29,t0; ... | y1, 11392, 725 . . .) = P(ay,ti; 2o, to; ... | y1,71). 1.4)

This previous statement means that we can define everything in terms of simgie co
tional probabilitiesP(x1, t1 | y1,71). ForinstanceP(z1,t1; x2,ta | y1,71) = P(x1,t1 |
x9,to;y1, 1) P(x2,t2 | y1, 7 ) and using the Markov property (1.4) we find

P(xy,t1;22, t2;y1,71) = P21, t1 | 22, t2) P22, t2 | y1,71) (1.5)

and for the general case it can be written

P(xy,t1; 20, t2; 23,133 ... Tpy tp) = P(x1,t1 | x2,t2) P(xy,ty | w3,13) . ..
P(xn—lvtn—l |$n7tn) P(mnatn) (16)

provided that| >ty > t3 > ... > t,.

There are many processes in nature where this property appearsof @reemost
studied processes successfully described using this Markov prapettig Brownian
motion, presented in more detail in the next Section.

1.2.1 Brownian motion

The botanist Robert Brown discovered in 1827 that small particles sdepen water
were found to be in a very animated and irregular motion. Initially it was sugubts

represent some manifestation of life, though after some studies this optiarejeeted,

as the same behavior was also observed in other fine particles suspangienals, glass
.... The solution to this mysterious movement had to await a few decadesa wati

isfactory explanation came through the work of Albert Einstein in 1905. [4Bf same
explanation was independently developed by Smoluchowski [44], wisor@sponsible
for much of the later systematic development and for much of the experimeniiata-

tion of Brownian motion theory.

Einstein’s work had primarily two main premises:
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e The motion of the particles is caused by the exceedingly frequent impactgon th
pollen grain of the incessantly moving molecules of liquid in which it is suspended

e The motion of these particles can only be described probabilistically in terms of
frequent and statistical independent impacts, due to the erratic andlarégund
so complicated) movement that the particles carry out.

This process is the best known example of Markov process. We haysctuee of a
particle that makes random jumps back and forth over a given set oflicates, for
instance over the X—axis in one dimension. The jumps may have any length,ebut th
probability for large jumps falls off rapidly. Moreover, the probability is syntrieal in
space and independent of the starting point.

Hence, we can summarize the basic steps that Einstein took in order to kisrive
Brownian motion theory.

The first point to consider is that each individual particle executes a matich
is totally uncorrelated from the motion of all other particles; it will also be cared
that the displacement of the same patrticle, but taken at different time inteavalalso
independent processes — as long as these time intervals are not takeralioo s

Then a characteristic time intervalcan be introduced, which is small compared to
the observation time intervals, but large enough so that the approximatictepf@ndent
successive time intervalsis correct.

Now we considem particles suspended in a liquid. In a time intervalthe z—
coordinate of the particles will increase by an amofintwhere this quantity may have
different values — either positive or negative — for different partiotethe same time
interval. We will also consider that there exists a certain distribution lawAfagiven by
the functiong(A). The number of particles that will shift their position with an interval
betweemA andA + dA will be given by the expression

dn =n¢(A)dA @.7)
where

/ P(A)dA =1 (1.8)

The functiong is only distinct from zero for small values @£, and it also follows
the property
$(A) = ¢(-4A) (1.9)

which implies that there exists no preferred direction of movement for thicles:

We can now study how the diffusion coefficient dependssorLet P(z,t) be the
number of particles per unit volume @t, t). We compute the distribution of particles at
time ¢ + 7 from the distribution at time¢. From the definition of the function(A), we
can obtain the number of particles which at time 7 are found between the poinis
andz + dx. One obtains
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P(x,t+71) = / Pz — A, t)p(A)dA. (1.10)

But sincer is very small, we can Taylor expari®(x,t + 7)

P(z,t+ 1) = P(x, )+Taa]; (1.12)

Besides, we can also Taylor expand the functitic — A, ¢) in powers ofA

OP(x,t) LA A2 9?P(z,t) .
Ox 2l ox2
Introducing the results from Eq. (1.11,1.12) into the integral Eq. (1.1@bt&in the
following expression

P(z — A t) = P(z,t) — A

(1.12)

op 7 2P [ A2
P+Sor=P /qﬁ(A)dA—/Aqb )dA + o /2¢(A)dA. (1.13)

—00 —00

Due to the symmetry property Eqg. (1.9), the odd terms of Eq. (1.13) — séeand
fourth term, etc. — vanish, whereas for the remaining terms, that is, finsf tieird term,
etc. each one is very small compared to the previous one. Introducind. BYin the
last equation, setting

1 [ A2
! / 5 6(a)da=D, (1.14)

T
— 0o

and keeping only the first and third terms on the right hand side,

2
o _ 0P
ot Ox?
We can clearly identify the latter equation as the diffusion equation,/arasd the

diffusion coefficient. The solution for an initial condition at= 0 given byn(z) =
nd(zx)is

(1.15)

22

n e 4Dt
VarD Vi

which is a Gaussian function centered at the origin. Using this result welatdche
averages

P(x,t) =

(1.16)
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() = 0 (1.17)
(%) = 2Dt. (1.18)

This result was derived by Einstein assuming a discrete—time assumptiois that
that the impacts occurred only at timesr, 27, ..., and both Egs. (1.15,1.16) are to be
regarded as only approximations, wheris considered so small thatan be thought as
being continuous.

1.2.2 Langevin’'s equation

After Einstein presented his theory about Brownian motion, Langevin jp4é$ented
another method quite different from Einstein’s work. In brief, his thexany be explained
as follows.

From statistical mechanics it was already known that the mean kinetic enkegy o
Brownian patrticle at equilibrium should reach a value

1 1
<§mﬁ>:§M’ (1.19)

whereT denotes the absolute temperaturés the Boltzmann constant; the mass
andv the velocity of the Brownian particle.
We can distinguish two different forces acting on the particle, namely,

e A viscous drag. Assuming that the expression of the force is analogadi to
macroscopic hydrodynamic equation, for a low Reynolds number we cié@ wr
down the following expression for the drag foreéwnafl—f, n being the viscosity
anda the diameter of the particle, assuming it to be spherical.

e A fluctuating force¢ coming from the consideration of the impacts of the fluid
particles upon the Brownian particle. The unique consideration aboubtttis is
that it can be either positive or negative with the same probability. The efsemb
may consist on many particles in the same field, far enough from each ottreats
they cannot influence mutually. Or it may also be considered as a uniqtidear
where the time intervals between measurements are large enough not tociafluen
each other.

The stochastic properties ¢fare given regardless of the velocityof the particle. Its
average vanishes; ¢ >= 0, and its autocorrelation function reads
<EBEH) >=0(t—1) (1.20)

The latter expression comes from the consideration that successiveooslise un-
correlated and practically instantaneous.
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Writing down Newton’s equation of motion for the particle we get

d*x dx
mog = _GWIG% + & (1.22)

This equation is usually known as Langevin equation. Multiplying Eq. (1.81),b
and after a little algebra we obtain

m & d(z?)
2 dt? dt
dx

wherev = 5. Averaging over a large number of particles and making use of
Eg. (1.19) we obtain an equation farz? >

(z%) — mv* = —3mna +ax (1.22)

2

d d
%@ <z?> +37T77a% < x? >=kT, (2.23)

where the ternx z¢ > has been set to zero due to the irregularity of the fluctuating

force &. This assumption implies that the variation suffered by the x variable can be
considered as independent from the variation that the fluctuating faeeperience's

<zl >=<x><E> (1.24)
The general solution to Eq. (1.23) is
d 9 T
J— f— m 1.2
dt<x > 37777a+0e (1.25)

where(C' is an arbitrary constant.
Considering that the exponential in Eq. (1.25) decays very rapidly,amedtsmiss
this term and so the solution for the average square distance> reads

kT
<x2>—<x%>:< >t (1.26)
3mna

Now we can compare Eq. (1.26) with Eq. (1.18) to obtain the following relation

kT
D = = ukT (1.27)
6mna

wherey, is the mobility of the Brownian particle.

This important result, known as ttikictuation—dissipatiotheorem, relates a quan-
tity D pertaining to statistically unpredictable dynamical fluctuations to a quantity which
involves deterministic, steady state properties.

This can be thought as equivalent to the assumption made by Einsteirhettemsiders that for a suf-
ficiently large time intervat, the displacementA suffered by the Brownian particle within two successive
time intervals are independent.
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1.3 The Fokker—Planck equation

This section aims to be a brief explanation on how to obtain the time evolution of the
probability density function for the system under consideration. Its namesdérom the
work of Fokker [46] and Planck [47]. The former studied Brownian motioa radiation
field and the latter attempted to build a complete theory of fluctuations based on it.

1.3.1 Derivation of the Fokker—Planck equation

If we consider a Markov process, we can write a master equation as

OP:L"t

/{Wa:|x (a',t) = W (2" | z) P(x,t)} da’ (1.28)

where the termiV (z | 2) denotes the transition probability between statesnd '
P(z,t) denotes the probability of finding the system at positicat timet, and must be
normalized, that is

/ dx P(z,t) =1 (1.29)

If = corresponds to a discretized variable, the master equation takes the form

= Z {Wnn’Pn’ (t) - Wn’npn(t)} : (130)

Written in this form clearly the master equation is a gain—loss equation. Thiefirst
on the right hand side of Eg. (1.30) corresponds to the gain of stetee to transitions
from different states’ to n, whereas the second term is a loss term due to the transitions
from the state: to other states’.

Planck derived the Fokker—Planck equation as an approximation to ther reqste
tion (1.28). He expressed the transition probabilityz | z) as a function of the size
of the jump and of the starting point

W(z|2")=W('sr), r=x-2. (1.31)

Then (1.28) can be rewritten in the form

OP(z,t

= /W(:L‘ —ryr)P(x —r t)dr — P(x,t) / W (x; —r)dr (1.32)

At this stage two assumptions are made,
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e Only small jumps occur, i.ely/ (z’;r) is a sharply peaked function ofbut varies
slowly with z’. Then there will exist somé > 0 such that

Wi(x';r) =0 for|r|>4¢ (1.33)
W (2" + Ax;r) = W(a'sr)  for | Az |< 0. (1.34)

e The second assumption is that the solutifx, t) also varies slowly with:, mak-
ing possible a Taylor expansion of the tefftw—r, t) in terms of P(z, ¢) obtaining

3Péfvt) _ /W(m;r)P(m,t) dx—/rai{W(x;ﬂP(xvt)}d”

/ 922 {W(x;r)P(x,t)}dr —P(a:,t)/W(x; —r)dr. (1.35)

The first and fourth terms on the right hand side of Eq. (1.35) vaniskyeds the
other two remaining terms are named as

o0

F(z) = /rW(a:;r)dr (1.36)

—00

o0

D(z) = /TQW(a:;r)dr, (1.37)

—00

and they correspond to the first and second jump momenig(af ), respectively.
The first jump moment corresponds to the so catlgtt term —F'(x)—, and the second
moment to thaliffusion term-D(z) —. Then the final result is

OP(z,t) 0 102
o —%[F(x)P(%t)] T 552
In conclusion, we have derived the Fokker—Planck equation starting thhe master

equation governing the transitions between different states from thersyste

[D(z)P(x,t)] (1.38)

1.3.2 The Fokker—Planck equation in one dimension

For a one dimension we can write the following Fokker—Planck equation eragd in
the previous section —

OP(z,t) 0 1 92
S = = [P, t) Pl )] + 5 5 [D(a, 1) Pla, 1) (1.39)
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Here D(z,t) is the diffusion term and”(z,t) is the drift term usually written as
F(z,t) = —%, introducing a potential functioi’(x,¢). The stochastic process
whose probability density function obeys Eq. (1.39) is equivalent to tlubagic process

described by the Ito stochastic differential equation

= F(x,t) + v/ D(x,t)&(1) (1.40)
where £(t) is a gaussian white noise of mean zero and correlation giver: by

§E) >=0(t —t').
Defining aprobability current/(z, t) as

J(x,t) = Fla,t) P(z,t) — l%w(a;,t) P, 1)] (1.41)

Eq. (1.39) can be rewritten in the form of a continuity equation

OP(x,t) N oJ(z,t)

o oo =0 (1.42)

1.3.3 Boundary conditions

The Fokker—Planck equation is a second—order parabolic differeagiigdtion, and in
order to find its solution we need an initial condition as well as some boundadjitons
where the variable is constrained. For a more general case, in more than one dimension,
we can write

0 1 <« 0°D(x,t
P (X, t) = — Z 8xiF(X’t> P(x,t) + B Z (‘sz(&c]) (1.43)
7 J

which can also be written as a continuity equation

8th 0J; (X, t)
Z

0r (1.44)

The previous equation has the form of a local conservation law, andcamibe
rewritten in an integral form. Considering a regi@nwith boundaryS we have

OP(R.t) _

tul / S A(X) - I(x, 1) (1.45)

S

where we have defined the total probability in regi®rs P(R,t) = [, dx P(x,1),
andn(x) is an outward vector pointing normal & Eq. (1.45) indicates that the total loss
of probability in the regionR is given by the surface integral dfx, ¢) over regionR.
The currentl(x, t) also has the property that a surface integral over any suSajiees
us the net flow of probability across that surface. Depending on thérexisoundary
conditions, we will impose different conditions, such as
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Reflecting barrier In this case there is no flow of probability through surf&evhich
can be thought of as the particle not leaving regitnin this case it is required
that

A(X) - J(x,t) =0,VxeS (1.46)

Absorbing barrier For this case when the particle reaches the boundary, it is removed
from the system. As a consequence, the probability of finding the particlein th
boundary is strictly zero,

P(x,t) =0,¥x € S (1.47)

Periodic boundary conditions The process takes place in a closed intefagd], where
the two end points are identified with each other. This implies the following set of
conditions to be fulfilled

lim P(X+mL,t) = lim P(X+mL,t)
Xx—b~ x—at

lim J(X+mL,t) = lim J(X+mL,t). (1.48)
X—b~ x—at

where the quantityn L accounts for a displacement in any direction equal to the period-
icity of the system.
1.3.4 Stationary properties

Given a stochastic proce3§(t), we say thafX(t) is a stationary process X(¢) and
the procesX(t + ty) have the same statistics for atyy This property is equivalent to
saying that all joint probability densities satisfy time translation invariancejghat

P(xy,t1;22,t0; .. .3 Tpy tn) = Play, t1 + to; e, ta +to; .. &0, bty + 1) (1.49)

and therefore such probabilities are only functions of the time differefyces;. In
the particular case of the one—time probability, it is independent of tiaved it can be
written asPs(x). Furthermore, if the stationary Markov process satisfies

tlim P(z,t|zo,0) = Ps(x) (1.50)

then we can construct from the stationary Markov process a honstgtioreecess whose
limit as time becomes large is the stationary process. It can be defined’for to by

P(x,t) = Py(x,t|zo, to) P(x, t|2', ') = Py(x,t|a’, 1)) (1.51)

So if Eq. (1.50) is satisfied, we find that as— oo or tg — —oo, P(x,t) — Ps(x)
and the rest of probabilities become stationary because the conditiobahity is also
stationary. This process is known as@mogeneous process



1.3 The Fokker—Planck equation 11

For a homogeneous process, the drift and diffusion terms of the FeRlaerck

equation are time independent. Then, returning toltPecase, in the stationary state
OP(x,t)

ar— = 0 and soP(z,t) = P*(x) becomes independent of time. From Eq. (1.39) we
have
L (p(@)P(a)) - 2L D@ P@) = 0 (152
de x X 5 d.j;'z x xr) = U. .

And using Eq. (1.42) we ha\%g(z—m) =0,0rJ(z) = J = Constant.

If the process takes place in the inter{@lb), it must be satisfied that(a) = J(z) =
J(b) = J; so if one of the boundary conditions is reflecting, it means that both of them
must be reflecting, and theh= 0.

If the boundaries are not reflecting, the condition of constant curegpires them to
be periodic. In that case we may use the boundary conditions given4s) (1

1.3.4.a Zero—current case

If J =0, Eq. (1.52) can be rewritten as

1d
F(x) P? = -——I[D(x)P? 1.
(2) P*(a) = 5 - [D(x) P*(2) (153)
with solution
N 2 [* d:p’g<—z>
S e a (z)
P?*(x) D) e (1.54)
N being a normalization constant ensuring tﬁ?tlx P#(x) =1.
1.3.4.b Periodic boundary conditions
For the case where we have a non-zero current Eq. (1.52) canttaas
1d
F(z) P*(x) — 5%[1)(1') Pi(z)] = J. (1.55)

In this case the current is completely determined by the boundary conditions

Pi(a) = P3(b) (1.56)
J@) = Jb). (1.57)

For calculating the stationary probability density functiBrfi(z) we can integrate
Eqg. (1.55) to obtain
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I 58 50 + e e
PS(z) = P*(a) [ GCRTORE - (1.58)
w(x) f P(a")
and the current is determined through
D(b) D(a)] P*(a)
J = [ - (1.59)
b b _da!
o) @] P

1.3.5 Particle current

Once the stationary probability density function (1.58) and the probabilitgnti(1.59)
are obtained, the next quantity of interest is ffaaticle current< & >, defined as the
ensemble average over the velocities. Its relation with the probability cuf(ent) is

J(x,t) =< z(t)o(x — x(t)) > (1.60)
from where we derive
<z >= /da:J(a:,t) (1.61)

and using Eq. (1.42) can be written as

<T>= % / dxzP(x,t). (1.62)

1.4 Markov—chain theory

This section is devoted to a class of Markov processes in discrete—timésarete space.
We call such processes Markov chains. We may define a Markov chaieeguenck,
X1,... of discrete random variables with the property that the conditional distritbutio

of X,,+1 given Xy, Xy, ...,X,, depends only on the value &, but not further on
Xo, X14,...,X,_1; i.e., for any set of values, j, ..., k belonging to the discrete state
space,

prob(X,+1 = k|Xo = h,..., X, = j) = prob(X,,+1 = k|X,, = j) (1.63)

Thus the conditional probability distribution fo€,, depends only on the value &
at the latest timex — 1.
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1.4.1 A two-—state Markov chain

We will consider a simple example of a two—state Markov chain. This is the simplest
non-trivial state space. Let's denote bynd0 the two states of the Markov chain. If
the system is found in stafg there will be a probabilityy of a transition to staté, and

a probabilityl — « of remaining in the same state. Similarly, when the system is found
in statel, there will be a probability? of a transition to staté, and1 — g of remaining

in 1. These probabilities are callednsition probabilities and can be represented by a
transition matrixT as

11—« Q
T < 3 1_ﬂ> (1.64)

The matrix element in positiofy, k) denotes the conditional probability of a transi-
tion to statek at timen + 1 given that the system is in stajeat timen. The transition
probabilities considered here do not depend on time.

Let the column vectaP™ = (Pg, Pi*)T denote the probabilities of finding the system
in states0 or 1 at timen when the initial probabilities of the two states are given by
PO = (PY, PY)T. Consider the system to be in stdteat timen. This state can be
reached in two mutually exclusive ways: either statgas occupied at time — 1 and
no transition occurred at time this event may happened with probabilﬁ@?”(l — ).
Alternatively, the system could happenned to be in staetimen — 1 followed by a
transition from staté to state0 at timen; this latter event has probabilit&fflﬁ.Thus
we can obtain the following recurrence relations

Py = (1—a)Pr '+ PPt (1.65)
Pl = aPy 4+ (1-p)Pr! (1.66)
(1.67)

which can be put in matrix form &&* = T - P"~!, and iterating we obtain
PP=T2.P" 2= =T".P" (1.68)

Thus, given the initial probabilitieB’ and the transition matrif, we can find the
state occupation probabilities at any timéy means of Eq. (1.68). One question arises
naturally, and it concerns the possibility of whether the system reachiésatian of
statistical equilibrium after a sufficiently long time, where the occupation (ittias
P™ are independent of the initial conditions. If this happens there existsalibegm
probability distributionr = (7, 1) whenn — oo satisfying

7=Tr — I-T)r=0 (1.69)

From where it follows through the normalization conditien+ 71 = 1 that
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__B __«
C Bta’ ™= 8+«
Therefore, if the initial probability distribution coincides with the distributionP™

is stationary, i.e., it does not change in time.

If we want to find the time dependent probabilitig% given a set of initial proba-
bilities PY, we need to evaluate the matf¥. For this purpose we can use the spectral
representation df'. Let us assume thdt has distinct eigenvalues;, A». Then, we can
find a2 x 2 matrix Q such that

(1.70)

o

B A0 1
TQ( 0 )\2>Q (1.71)
where the columng;, ¢» of Q are solutions of the equatiofig; = \;¢;. Hence we have
n o __ >‘711 0 -1
T _Q( o Ag)Q (1.72)
The eigenvalues dF are the solutions of the equatigfi — A\I| = 0, from where it

follows the equatiorfl — o — \)(1 — 8 — A\) — o8 = 0. The solutions are; = 1 and
A2 =1—a— Fand\; # A\ provided thaty + 3 # 0. We obtain for matrice§) and

Qfl
(1 « R | 06 «
@‘<1 —ﬁ)’ ¢ ‘aw(l —1) &

Thus,

1 0 _
T—@(O 1_a_g)@1 (L.74)

Recall that\y = 1—a—is less than one in modulus, unles$ 3 = 0 ora+8 = 2.
For a general time we have

"o <>~1rﬁ<i —aﬁ)<(1J (1—040—6)”><f —a1>
- aiﬁ(g 3)*%(% _ﬂa>- (1.75)

We can easily identify the first term in Eq. (1.75) észo :1 > while the second
0 ™

term tends rapidly to zero with increasingas long a$l — a — 3| < 1. Thus as: — oo,

T" — ( T ) (1.76)

T™ 71
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and from Eq. (1.68) we obtain

P"—><Zg 2)1@0:<2>:w (1.77)

Therefore the limiting state occupation probability exist and are indepeiddime
initial conditionsP’.

1.4.2 General case of a Markov chain

We turn to a more general case in which our Markov chain may be compébsitther
a finite or infinite number of states. We have a sequence of discrete ravattables
Xo, X1, ... having the property that given the valueXf, for any instant timen, then
for any later time instantn + n the probability distribution ofX,,,, is completely
determined and the values Xf,,,_1, X,,,_o, ... at times earlier tham are irrelevant to
its determinatiof. Thus, ifm; < mas < ... <m, <m <m-+n

prob(Xotn = kX, - -y X,y Xin) = prob(Xopan = k| Xon). (1.78)

Besides, we will consider the caselmimogeneouMarkov chains, which are char-
acterized by possesing a stationary state when the conditional probabili®y (epends
only on the time intervah, not onm. For this kind of chains we can define thestep
transition probabilities

Pik = prob(X,,+n = k|X,, = j) = prob(X,, = k|Xoy = j) (m,n=1,2,...).
(1.79)
Particularly we are interested in tbee-step transition probabilities

Pjk = Djk = prob(Xpmt1 = k[ X = j). (1.80)

Since our system must realize a transition to some state from anyj gtatéis case
we also include the possibility of a transition to the same gtatee have

[e.e]
> k=1 (1.81)
k=0
Based on the previous results, a general transition matwould read
Poo  Po1
T = P10 P11 7 (1.82)

%j.e., if we have complete knowledge of the present state of the systenamaetermine the probability
of any future state without reference to the past.
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and it is known as a&tochastic matrixwith the properties that its elements are non-
negative and that its row sums are unity If the Markov chain defifiinigas a finite
number of stateg then the stochastic matrikis aix/ square matrix.

LetPY = {pJ, p,...}T denote the column vector for the initial state occupation, and
P = {pg,p?,...}* the vector of occupancy probabilities at time It can be shown,
using arguments similar to those used for the two-state Markov chain, that

PP=TP" 1 =...=T"P° (n=1,2,...). (1.83)

1.4.3 Classification of states

According to their limiting behavior, we can classify the states of a Markoinct&up-
pose that initially we are in stage we callj arecurrentstate if the ultimate return to this
state is a certain event, that is, if the probability of returning to statiter some finite
length of time is one. In this case the time of first return will be a random varcatled
therecurrence timend the state is callgabsitive-recurrenpr null-recurrentaccording
as the mean recurrence time is finite or infinite respectively. On the other tidhd
ultimate return to statg has probability less than one the state is caitadsient At this
point we definef7; as the probability that the next occurrence of sfateat timen, i.e.,
= pjj, and forn > 1

=prob(X, #j,r=1,...,n -1 X, = j|Xo = j). (1.84)

In other words we can say that conditional on stabeing occupied initially,f}"; is
the probability that statgis avoided attimes, 2, ...,n—1 and entered at time. Given
that the chain starts in stajehe sum

fi=>_ 1 (1.85)
n=1

is the probability that statg is eventually re-entered. If; = 1 then statej is re-
current while if f; < 1 statej is transient. Thus, conditional on starting in a tran-
sient statej, there is a positive probability — f; that statej will never be re-entered,
while for a recurrent state re-entrance is a certain event. For a eetwstate, therefore,
{ Tan=1,2,.. .} is a probability distribution and the mean of this distribution

o0

w=3 nfe, (1.86)

n=1
is the mean recurrence time.
Similarly, given that the chain starts in stgtéhe sum

fir = Z J”k (1.87)
n=1
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is the probability of ever entering state and is known agirst passage probability
from statej to statek. If f;; = 1thend> " n fik is themean first passage tinfeom
statej to statek.

Let us suppose that when the chain starts in stageibsequent occupations of that
state can only occur at timeg2t, 3t,...where is an integer greater thdnchoose to be
the largest integer with this property. Then state calledperiodicwith periodt andp?;
vanishes except whenis an integral multiple of. A state which is not preiodic is called
aperiodic Essentially it has period. An aperiodic state which is positive-recurrent is
calledergodic

An important property of ergodic systems concerns the existence of aaunigy
vectors of limiting occupation probabilities called theguilibrium distribution which is
formed by the inverse of the mean recurrence times. Thus a finite ergatérsgettles
down in the long run to a condition of statistical equilibrium independent of titialin
conditions.

Another important classification can be done regardingctimmunicatiorbetween
different states from a Markov chain. Statés said to beaccessiblédrom state; if for
some integen > 0, g;. > 0: i.e., statej is accessible from sateif there is positive
probability that in a finite number of transitions statean be reached starting from state
1. Two stateg andj, each accessible to the other, are saiddimmunicatelf two states
1 andj do not communicate, then either

;=0 Vn=>0,
or (1.88)
Jni =0 Vn2>0,

or both relations are true. This concept of communication is an equivatelat®sn.

We can now partition the totality of states into equivalence classes. The states in
equivalence class are those which communicate with each other. We sthetirkov
chain isirreducibleif the equivalence relation induces only one class, i.e., a process is
irreducible if any state communicates with any other.

1.4.4 Existence of stationary distributions for stochastienatrices

The basic theorem that demonstrates the existence of a stationary prolattitibution
is thePerron-Frobeniugheorem [48]. The basic results of this theorem are:

Given an irreducible matrix\, if every matrix component;; is nonnegative, we
write A > 0. Then

e i) A has areal positive eigenvalue with the following properties;

e ii) corresponding to\; there is an eigenvector all of whose elements may be
taken as positive, i.e., there exists a vestar 0 such that

Ax = \ix; (1.89)
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iii) if « is any other eigenvalue df then

la] < Ag; (1.90)

iv) A1 increases when any elementfincreases;

V) A1 is a simple root of the determinantal equation

IAL— Al =0. (1.91)

Vi)

)\1 S max; <Z ajk> y /\1 S maxy. Zajk . (1.92)
& -

J

If A\ itself is the only eigenvalue of modulug then matrixA is said to berimitive.
Besides, note that point (vi) gives an upper bound;tas the largest row sum or largest
column sum of matrixA. Thus, if we are dealing with a stochastic matrix suchlas
we know from the previous theorem that has an eigenvalsiaceT - 1 = 1, wherel
is a column vector of’s. Besides, it follows from (1.90), (1.92) that no eigenvalue can
exceed! in modulus.

An important aspect we can extract is that the nature of a finite chain isydetst
by the properties of the eigenvaluesibivhich have unit modulus. Another point is that
the limiting values of transition probabilities are approached exponentiallytfestate
of approach being determined in general by the eigenvalue of largestlmsddss than
unity.

If the finite Markov chain is ergodic then its transition matfixis irreducible and
primitive, with a simple eigenvalug¢ which exceeds all other eigenvalues in modulus
(conversely, ifT is primitive and irreducible then the system is ergodic). According to the
theorem of Perron and Frobenius described above, there is a pasitiven eigenvector
n = {m;} satisfyingTr = 7 and we can normalize this vector so thatr; = 1.
Besides, the system is ergodic and

1
lim pj = — =7, >0, (2.93)
ik

the limit approached exponentially fast and uniformly for athnd k. Conversely
if the system is ergodic thefi is primitive and irreducible. Thus, given the necessary

conditions for the stochastic matrix, there exists a limiting value for the occyganb-
abilities, being that of the stationary probability distribution
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1.5 Information Theory

The information theory was introduced in the seminal paper by Shanndmn[4948.
Basically this work studies certain problems of the transmission of messageglthr
channels involving communication systems. These communication systems can be d
vided in three main categories: discrete, continuous and mixed. By a disystéan it
is meant one where the signal and the message are a sequence of digotmits — for
example, the telegraphy. A continuous system is one where the messatie aighal
are both continuous, e.g., the television. The last one is the mixed systeng kdtar
discrete and continuous variables appear, for instance the pulsercmtidation (PCM)
for the transmission of speech.

The case of our interest here deals with discrete systems. Basically wistaguish
three main parts: the information source, the communication channel (thwhegie the
signal is transmitted) and the receiver. Generally, a discrete channehealh a system
where a sequence of choices from a finite set of elementary symbals. , a;,, can be
transmitted from one point to another.

1.5.1 Discrete and ergodic sources

We can think of the information source as generating the message, symbyirinpl.
The source will choose successively symbols according to certaimlpilities depend-
ing, in general, on preceding choices as well as the particular symboleatigj.

We may define arergodic sourceas a source that generates strings of symbols
a1, aoe, ... with the same statistical properties. Thus the symbols frequencies obtained
from particular sequences will, as the length of the message increaseacipplefinite
limits independent of the particular sequence.

In some cases a messafehat is not homogeneous statistically speaking, can be
considered as composed of pieces of messages coming from varielergodic sources
Ly,Ls, Ls, ... that is

L=T1I) Ly +Ts Lo+ TI3Ls+... (1.94)

wherell; corresponds to the probability of the component source

1.5.1.a Shannon Entropy

For a single source we may define the entropy as

H=-> plog(p)) (1.95)

wherep’ denotes the probability of emitting a given symhbgl This quantity was in-
troduced by Shannon for measuring, in some sense, how much lack ohatfon is
produced by such a source. It can also be regarded as a measwore ofuch “choice”
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is involved in the selection of the symbol emitted by the source or of the undgrtdin
the outcome.

The information entropy represents the average information content oksage
Some of its most interesting properties are

1. H = 0 if and only if all thep’ but one are zero, this one having the value unity.
Thus only when we are certain of the outcome déesanish. Otherwise is
positive.

2. For a givem, H is a maximum and equal fog» when all thep’ are equal, i.e.:
1

nt

3. Any change toward equalization of the probabilitiésp?, . .., p™ increasedd.

The Shannon entropy gives the minimum transfer rate — bit rate — at whicksage
can be transmitted without losing any information content. For instance, weocaider
an information source that emits only two symbols, either 0 with probability p and
q = 1 — prespectively. The corresponding expression for the entropy ofitilnes reads

H = —plogp —qlogq = —plogp — (1 — p)log(1l —p) (1.96)

In Fig. 1.1 we plot the entropy as a function of the probabjitf emitting the symbol
1. It can be appreciated how the entropy of the message generated byitbe acquires
its maximum whem = % corresponding to the value where both symbols have the same
probability of being emitted, and therefore the uncertainty of the resultingagess
maximum.

17

0.8

0.6
Figure 1.1. Plot of the variation
of the entropy of the source when
varying the probabilityp of emit-
ting symboll.

0.4

0.2

If we now consider a sourck, composed itself of a mixture of different sourdes
with probability IT;, the resulting entropy of the system will depend on the entropy of
each individual source in the following way
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H=Y T H; =-Y ILplogp] (1.97)
i i.j
wherepff denotes the probability of emitting a symhol by the sourcd.;.

1.5.1.b Entropy of a message

Given a message composed of a set of symbolss, . . ., successive approximations of
the actual entropy of the message can be obtained. As afirst step, & candidered that
all the symbols have been emitted by the source with a fixed and indepemndeabitity.
Therefore, we can measure the frequencies of all the symbols of thabalppresent in
the message, estimating from them their probabilities using Eq. (1.95).

Next thing to consider are the so—callddck entropiesWe must calculate the prob-
abilities of words constructed with symbols from the alphabgtos, as, . . ., ay, and
thereafter obtain their corresponding block entropies

H,=- Z plaq,...,ap)loglp(aq, ..., an)l. (1.98)

This quantity measures the average amount of information contained in aoiertyth
n. From Eq. (1.98) we can then evaluate the differential entropy

hn = H,—Hp,
= — Z plaq, ..., ap)log[p(an|a, ..., an-1)], (1.99)

A,..50n

that gives the new information of threth symbol if the precedingn — 1) symbols are

known; p(ay,|aq, - .., an—1) is the conditional probability fory,, being conditioned on
the previous symbolsq, ..., a,_1. The Shannon entropy is then
h = lim h, (1.100)

The latter expression gives the average amount of information per syhabatorrela-
tions are taken into account, and the limit approaches monotonically the aatualof
h from above, i.e., all thé,, are upper bounds an

For a numerical estimation of Eq. (1.98) we must count the number of tirikat
the wordas, . . ., a,, is contained in the message, and then obtain its probability fith
whereN is the total length of the message.

The actual problem of evaluating the Shannon entropy in this way is thatithber
of possible words increases exponentially as the length of the wordreases. In order
to obtain good statistical results when calculating the word probabilities we raust h
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a sufficiently long message when evaluating the probabilities of large Wosdiéch in
fact is a considerable inconvenient.

There exist other ways of evaluating the entropy of a message. An itineratgo-
rithm developed by A. Lempel and J. Ziv [50] permits the calculation of thieopy of a
message, and it will be explained in the next section.

1.5.2 Lempel and Ziv algorithm

In 1977, Abraham Lempel and Jakob Ziv created the losélessnpressor algorithm
LZ77. This algorithm is present in programs suchgasp,arj, etc. It was later mod-
ified by Terry Welch in1978 becoming the LZW algorithm, and this is the algorithm
commonly found today.

It was originally designed to obtain the algorithmic complexity of a binary stiis).
Basically it is a dictionary based or substitutional encoding/decoding alguordieating
a dictionary during the process of encoding and decoding of a certasages

For a useful example of how the algorithworks, we will encode/decode the fol-
lowing binary stringl0010110100111011100101, of lengthn = 23.

1.5.2.a Encoding process

First, we will partition the chain into wordB,, B>, .. of variable block length —Lempel
& Ziv parsing—

10010110100111011100101 (1.101)

So we obtain the following wordsB, = 1, By, = 0, By = 01, By = 011, B; = 010,
Bg = 0111, By = 01110, Bg = 0101.

This words are then coded gwefix+newbit) =(pointer to the last occurrence, new-
bit): (01) = (0+1) = (2,1), (011) = (01 + 1) = (3,1), (010) = (01 + 0) = (3,0),
(0111) = (011 + 1) = (4,1), (01110) = (0111 4 0) = (6,0), (0101) = (010 + 1) =
(5,1). We have then the following pairs

(0,1) (0,0) (2,1) (3,1) (3,0) (4,1) (6,0) (5,1) (1.102)

Once the pairs for eacB; are obtained, we replace each p@is) by the integerl; =
21 + s.

3the necessary length of the message also increments exponentially with

4it assures that the original information can be exactly reproducedtiiernompressed data

®Algorithmic complexityf a binary string is the length in bits of the shortest computer program able to
reproduce the string and to stop afterward

Swe will make use of the LZ78 algorithm, which is simpler than its original LZ77
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(0,1) =1, =20+1=1 (3,0) = I5=23+0=6
(0,00 > I,=20+0=0 (4,1) > Ig=24+1=9
(2,1) = I3=224+1=5 (6,0) = I; =26+0=12

(3,1) = I, =23+1=7 (5,1) = [g=25+1=11
Each integet; is then expanded to base two, and the binary expansions are padded

with zeroes on the left so that the total length of bit§ligs, (25) |, where the brackets]
denote the upper integer valuelof»(25). We obtain in this way the stringd’;.

(1.103)

J | I; | Binary string [log,(27) W; | Binary string
1] 1 1 Mogy(2)] =1 | Wy 1
210 0 [logy(4)] =2 | Wy 00
35 101 [og,(6)] =3 | W3 101
417 111 Mog,(8)] =3 | W, 111
516 110 [logy(10)] =4 | W5 0110

6] 9 1001 [log,(12)] = 4 | Ws 1001

7] 12 1100 [log,(14)] =4 | Wy 1100
8|11 1011 [logy(16)] =4 | Wy 1011

Finally we just need to concatenate the binary wdfggo obtain the encoded string:
1001011110110100111001011. Clearly, the length of the encoded string is not much
shorter than the original in this case, but it must be kept in mind that the algobiga
comesoptimalas the length of the string increases

1.5.2.b Decoding process

The decoding process is much simpler than the encoding. We just needidhesize
alphabet of the source that created the string. From the previous seetiobtained the
encoded string001011110110100111001011 with an alphabet equal &

The first thing to do is to divide the string in blocks of sjzeg,(25)] : 1-00-101-111-
0110-1001-1100-1011; then convert these blocks into integer formQ, 5,7,6,9,12, 11
; we divide by the size alphabétjn this case, and we keep the quotierstnd remainder
r, (¢,7):(0,1),(0,0), (2,1), (3,1), (3,0), (4,1), (6,0), (5,1).

Finally we convert these pairs into words using the same formalism than indbd-en
ing process, and we join them to obtain the original binary stritg 0110100111011100101.

1.5.2.c Properties of the LZ algorithm

An important property of the LZ algorithm is that it relates the compressidorfée the
entropy of the compressed string.

"Because the length of the words; that will be substituted increases linearly with the binary string,
whereas the length of the wordlg; increases logarithmically.
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Thecompression factofCF) of strings is the ratio between the compression length
and the original length

cF = <. (1.104)
n

Theoptimality ratio~(n) is defined as the ratio between the compression factor and
the entropy per charactérof the source

v(n) = - (1.105)

it is said that the compressionasymptotically optimaif v(n) — 1 asn — .

Lempel and Ziv showed that their dictionary—based algoritim§7, LZ78 give
asymptotically optimal compression for strings generated by an ergodic statioma
cess, that is, as the length of the file to compress oo the ratio of the length of the
compressed file with tends to the entropy per character

This algorithm together with the previous definitions explained above will bd s
Sec. 5 for establishing a relation between Parrondo’s games and infomrttadiary.
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The Brownian ratchet and
Parrondo’s games

In some physical and biological systems, combining processes may leadriterco
intuitive dynamics. For example, in control theory, the combination of two biesta
systems can cause them to become stable [52]. In the theory of granuladiiiid can

occur in a counter-intuitive direction [53, 54]. Also the switching betweeam transient
diffusion processes in random media can form a positive recurreneps [55]. Other
interesting phenomena where physical processes drift in a countéivtlirection can
be found (see for example [56—60]). One part of the present ahajitdoe devoted to
another example where a counter—intuitive result takes place: the flasiamgt. This
is characterized by directed motion obtained from the random or periodioaite of

two relaxation potentials acting on a Brownian particle, none of each pirtglaay net
flux.

Parrondo’s paradox [5—7] shows that the combination of two losing gacaegjive
rise to a winning game. This paradox is a qualitative translation of the physod¢| of
the flashing ratchet into game-theoretic terms. These games were firsgdlevit996
by the Spanish physicist Juan M.R. Parrondo, who presented them uiblisiged form
in Torino, Italy [3], as a pedagogical illustration of the flashing ratchet.

The first part of this chapter, Sec. 2.1, will be devoted to the explanatitwe &row-
nian ratchet, also including the original model of the Smoluchowski—Feynatahat,
that brought the idea of the ratchet effect; and finally we will focus optaitkd expla-
nation of the flashing ratchet model.

Afterwards, in Sec. 2.2 we present the original Parrondo games asireyde-
signed and explain thoroughly the basics of the so-catetondo paradoxunraveling
the mechanism behind it. Furthermore, some other versions of Parronus ghat ap-
peared later on will be also shown at the end of this section.

25
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2.1 Smoluchowski—Feynman ratchet

Is it possible to obtain useful work out of unbiased random fluctuationgRe case of
macroscopic devices we can find many ways of accomplishing this tasksdorpte a
wind—mill, the self—winding wristwratch, etc. But when dealing with the microgcop
world, this case becomes more subtle. A clear example of this problem wasiibasin

the conference talk by Smoluchowski inlivister 1912 (and published as a proceedings—
article in [61]) and later popularized and extended in Feynman'’s LeatmrBéiysics [62].

2.1.1 Ratchet and pawl

The ratchet and pawl model consists on an axis with a paddle located andnand
a circular saw with a ratchet-like shape on the other end, see Fig. 2.1t&ilsdd his
device is surrounded by a thermal bath at equilibrium at temper@tuiideft alone, the
system would perform a rotatory, random, Brownian motion due to the colisibthe
gas molecules with the paddles.

Figure 2.1. Plot of the ratchet and
pawl device.

We can modify this picture by introducing a pawl in order to rectify this randlan:
tuations. Hence in this way rotations would be favored in one precise dimeetiowing
the saw—teeth to rotate clockwise — as depicted in Fig. 2.1 —, whereas it woaldthe
saw—teeth to rotate in the counter—clock direction. So intuitively it seems thajettigret
would perform a net rotation clockwise, and if a weight is added to the az@uld even
perform some work lifting the weight.

Based on the previous reasoning we could conclude that the deviceumed this
way would constitute gerpetuum mobilef the second kind, therefore violating the
second law of thermodynamics. However, this naive expectation is whoisgite of the
asymmetry of the device, no preferred motion is possible. The reason islliwsifg:
due to the microscopic size of the machine, not only the paddles are subjedtes
fluctuations due to the collisions with the gas patrticles, but also the pawl isedo
them. These collisions of the particles with the pawl would, occasionally, lifpéve.
Then the ratchet could rotate counter—clockwise as it would not havemosing force.
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As a result the ratchet and pawl device would have no preferredtidinesf rotation.
This Smoluchowski—Feynman'’s ratchet and pawl! device was introdigagadagogic
example of the second law of thermodynamics.

We can modify the previous picture by considering that the gas surraytttérpad-
dles and the gas surrounding the ratchet have different temperatureabkis case an
equilibrium situation no longer exists. This second model was introducedjpynian
[62], and later revised by Parrondo [63].

A simplified stochastic model known as Brownian ratchet will be presentecein th
next section, capturing the essential features of the Smoluchowskiraeys ratchet
and pawl device.

2.1.2 Brownian ratchet

We will consider the motion of a Brownian particle of massunder the effect of a po-
tential V' (x, t) that can be time—dependent, a friction foregi(t), a forceF'(t) exerted
by an external agent and a stochastic fopB (z, t)&(t), whereD(x, t) = 2nkT (x,t) is
the noise strength or noise intensity, proportional to the temperature. Nswtpration
of motion for this system can be expressed as

mi(t) + V'(x,t) = —ni(t) + F(t) + /D(z, t)E(2). (2.1)

The terms on the left hand side account for the deterministic, conseryaive
whereas the terms on the right hand side account for the dissipative tees dhe
interaction of the Brownian particle with its environment and the externaltasually
the time—dependent external forégt) is split in two terms, a constant terfi and a
time—dependent term(t), and so it can be written &(t) = F + y(t).

The potentialV/ (z, t) used in Eq. (2.1) must fulfill the following conditions

e Periodicity. It must be periodic with period L, that i¥(z,¢) = V(z + L, t) for
all x andt.

e Asymmetry This asymmetry can be established in many ways, the simplest con-
sisting on spatial asymmetry, that occurs when for any value thiere exists no
Az such thal/(—z,t) = V(x + Az, t), in some sense this condition accounts for
some kind of spatial anisotropy. A typical example of an asymmetric potential is

. 2mx 1 . 4y
Viz,t) =W [sm <L> + 7 sin (L)] L+ W()], (2.2)
where the functioriV (¢) represents the time dependence of the potential, if there
is any.

The stochastic force or thermal noi§é) generally is considered to @aussian
white noiseof zero mearnx £(¢) >= 0 and correlations
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< E(t)E(s) >=d(t — 5) (2.3)

For the systems we will study, the inertia terni:(¢) is negligible, and so Eq. (2.1)
can be written as

ni(t) = =V'(z(t),t) + F +y(t) + v/ D(z,t)&(2). (2.4)
The latter equation can be considered as a generalized equation desthridy-
namics of an overdamped Brownian particle.
2.1.2.a Reduced probability variables
As our interest is focused mainly on transport in periodic systems, we tadirce the

reduced probability densitgndreduced probability currenas

oo

P(z,t) = Z P(x +nL,t), (2.5)
J(z,t) = i J(x +nL,t). (2.6)
And from Egs. (1.29,1.61) we get
P(x+L,t) = P(x,1), (2.7)
L
/dxﬁ(x,t) = 1, (2.8)
0
L
<i> = [daJ(x,t) (2.9)
/

As P(x,t) is solution of the Fokker—Planck equation (1.39), it follows from the peri-
odic condition introduced abov&,(x,t) = V(z+L, t), thatP(z+nL,t) is also solution
for any integer valuer. Introducing expressions (2.5) and (2.6) into the Fokker—Planck
equation (1.39), it can be rewritten as a continuity equation for the reqaroddbilities

OP(x,t) N dJ(x,t)

o 7 =0, (2.10)

where
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A

J@@:F@wﬁ@wf%%w@ﬁﬁ@m. (2.11)

Therefore, in order to obtain the particle current is sufficient to solve-tileker—
Planck equation (1.39) with periodic boundary conditions, together with ttial icon-
ditions. Besides, operating wi'gﬁfo“*L dx x ... on both sides of Eq. (2.10) we obtain

zo+L
d . .
<T>= a / dxxzP(x,t)| + LJ(zo,t), (2.12)

o

wherex, denotes the initial position of the particle. Essentially, we distinguish two
contributions to the particle current: the first term on the right hand sidego{ZE12)
accounts for the motion of the center of mass, and the second tértimes the reduced
probability currentf(xo, t) measured at the reference paifpt If the reduced dynamics

reaches a steady state, characterizeéﬂé@ﬁ = 0, then the reduced probability current
f(:co, t) = J* becomes independent of and¢, and the particle current becomes

< i >= LJ*. (2.13)

The patrticle current can also be calculated through the time-averagetityeba
single realization:(¢) of the stochastic process described by Eq. (2.1), i.e.

<z >= lim :C(tt), (2.14)

t—o00

independent of the initial conditian(0).

2.1.2.b Ratchet effect

The so—called ratchet effect takes place when a given set of corgdtieraccomplished.

e First, we must have a spatially periodic system.

e Second, there must be some asymmetry in the system, for example spatial asym-
metry.

e Last but not least, the system must be out of equilibrium.

Depending on the way these conditions are accomplished, we may distingftesand
types of ratchets.
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2.1.3 Classes of ratchets

There are two main groups of ratchets that can be derived from E{. {hé first group
considers those systems where the tegm) = 0, these are theulsating ratchetsthe
second group considers those where there is no time dependence itethigghs («, t),

i.e. W(t) = 0, and they are known d8ting ratchets

2.1.3.a Pulsating ratchets

Within this group, we can also distinguish the following types of ratchets

Fluctuating potential ratchets They are obtained when the time dependence of the po-
tential 17/ (¢) is additive, that isV (z,t) = V(x)[1 + W (¢)]. This group contains
as a special case tlwm—off ratchet, also known afashing ratchetconsisting on
W (t) having only two possible value8:(ON state) and-1 (OFF state).

Traveling potential ratchets They have potentials of the forii(z, t) = V(z — W (t)).

2.1.3.b Tilting ratchets

This group is characterized by (¢) = 0, and so the potential is time—independent
V(z,t) = V(x). Within this group we will distinguish three types of ratchets depending
on the time dependence gft) in Eq. (2.4)

Fluctuating force ratchets They are obtained wheg(¢) is a stationary stochastic pro-
cess. It can be another Gaussian white noise, hence we are dealing eftbaive
Smoluchowski-Feynman ratchet, or it can be a Gaussian colored noisefoifh
mer case needs a correlated (non-white), Gaussian or non-Gaussiarfjaolored
noise) in order to obtain directed transport. The latter case is repredantzd
Ornstein—Uhlenbeck noise with an exponentially decaying correlation.

Rocking ratchet It is obtained wheny(¢) is periodic.

Asymmetrically tilting ratchet We explained before that one essential ingredient for
the ratchet effect was the existence of an asymmetry in the system. If tmntipb
V(x) is symmetric the source of asymmetry can be introduced through the term
y(t), imposing it to be non—symmetric.

From all these different kinds of ratchets, we will now focus onfthshing ratchet
model and analyze it a little closer.
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2.1.4 The flashing ratchet

This system is characterized by a Brownian particle subjected to a poterataisth
switched on and off either periodically or stochastically — depending on thedéne
pendence of the functioW (¢). This scheme was introduced by Ajdari and Prost [56].
The model can be described through the equation

na(t) = =V'(x@)) [1 + WE)] + /D(z, 1)), (2.15)

whereV (z) is a spatially periodic and asymmetric potential, and usually a potential
such as the one in Eq. (2.2) is used — in Fig. 2.2 we can see a plot of theiglofen
the parameterd = 3 and1;, = 1. The functionl¥/ () is restricted to two valueg, —1,
switching on and off the potential, add(x, t) = 2nkT'(z,t) is the noise strength.

Figure 2.2. Plot of the asymmetric
potential (2.2) with the parameters
L =3andVp = 1.

V(X)

The ratchet mechanisnfor ratchet effedt can be explained as follows. Imagine a
landscape with a few Brownian particles moving freely. At a given instanaticet—like
potential is switched ont¥ (¢) = 1, and the particles (assuming the thermal endrfy
to be much smaller than the potential amplitude) are eventually confined to one of th
potential wells located at(, see Fig. 2.3. When the potential is switched 6if:(t) =
—1, the particles are subjected only to the thermal ngiseand start to diffuse.

If we let the particles diffuse for a large enough time interval, a small fracifon
them will reach the vicinity of the next potential wéllat 2, + L. Repeating this cycle
many times, a net current of particles is obtairieédl > 0. In Fig. 2.4 — left panel —
we see the plot of the net current vs the natural logarithm of the flig rafer a single
Brownian patrticle. It can be clearly identified the existence of an optimal Bingjaate
that produces the maximum current.

due to the asymmetry in the potential of Fig. 2.3, is more likely that the partigleach the potential
well located on the right than the one on the left, as the distance is shorterforitier case.
2The flip ratey accounts for the probability of switching the potentialor off per time unit.
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a) Figure 2.3. Three differ-
ON ent stages of then-off cy-
cle for the case of the flash-
ing ratchet. In case a) the
potential ison and the par-
ticles get trapped in a poten-
tial well; in stage b) the po-
b) tential is off and the parti-
OFF cles spread due to diffusion;
finally, in stage c) some par-
ticles have diffused up to the
00 S8 300 vicinity of the next potential
well, and so when the poten-
tial is on again, there are a
certain number of particles
ON located in the next potential
well. The flux of particles
°28%e due to the asymmetry in the
LY Q000 potential in this case is to the
right.

)

We can modify this picture introducing an external fofcacting against the particle.
Even with this opposing force applied on the particle,rditehet effects still present for
sufficiently small values of’. We see in Fig. 2.4 — right panel — how the current is
positive and different from zero up to a value of the applied fdrce Fj, beingFy the
so—calledstopping force It is worth noting that for this case, the particle is doing work
against the external force applied.

4
log(y)

Figure 2.4. Left panel: Plot of the average particle current versus the logarithtiredfip rate. Right
panel: Plot of the average particle current versus the applied externalF'.
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2.1.5 Atemperatureratchet

A variation of the flashing ratchet, which also may lead to the same result, tsoasis

the temperatureratchet. In this case the Brownian particles are exposed to an alterna-
tion between dot and acold temperature (for instance we could expose the Brownian
particles to temperatures such tl'ﬁﬁ < 1, and 77— > 1), and simultaneously a
ratchet-like potential as the one deplcted in Flg 2 3. Thus, when the padieles-
posed to theold temperature, the particles are pinned at a potential minimum due to the
relatively high amplitude of the potential compared to the low temperature. locade
stage, when temperature now is increasef}tp, the particles effectively do ndéelthe
potential and begin to diffuse. Afterwards, when the temperature is cald,abere will

be a certain number of particles that will have diffused up to the vicinity of tienial

well on the right, and on average that number will be greater than thosgdhsd the
vicinity of the potential well on the left. On average, as in the case of thariigsatchet
model, there will be a net flux of particles to the right (as long as the asymmeting in
potential is the one depicted in Fig. 2.3).

2.2 A discrete—time flashing ratchet : Parrondo’s games

2.2.1 Description of the games

Parrondo’s two original games are as follows. Game A is a simple coin tossing,ga
where a player increases (decreases) his capital in one unit if hedgsghow up. The
probability of winning is denoted by and the probability of losingig =1 —p

Game B is a capital dependent game, where the probability of winning depeod
the actual capital of the player, modulo a given intetjerTherefore if the capital isthe
probability of winningp; is taken from the sefpo, p1,...,pv—1} @SPi = Pimod M- IN
the original version of game B, the numbff is set equal to three and the probability of
winning can take only two valueg;, po, i.e. game B uses two different coins according
to whether the capital of the player is multiple of three or not. The two gamegpre r
resented diagrammatically in Fig. 2.5 using branches to represent winsssed with
probabilities given by the terms in brackets.

The numerical values corresponding to the original Parrondo’s gebhasd:

p= % — €,
p1 = % — €, (2.16)
P2 = % — €,

wheree is a small biasing parameter introduced to control the three probabilities. For
a value ofe equal to zero, both games are fair games, whereasismall and positive
both games are losing. In both cases, the combined game results in a winmeg ga
Intuitively, we could think of a potential representing games A and B — fosiime
plest case ot = 0 — through the following reasoning: the winning and losing proba-
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Game A Game B
(p,1-p) ( Capital divisible by M, otherwise )
(py,1-/) (py,1-B)
W L /\ /\
W L W L

Figure 2.5 Probability trees for games A and B.

bilities for game A are independent of the site and equag.toTherefore it would be
equally likely a forward or a backward transition. Then the barriers optitential that
one would find would be of equal height, as depicted in Fig. 2.6a.

a)
ap Qqg0p q p qa p
‘ Figure 2.6. a) Schematic po-
-2 -1 0 1 2 tential related to game A. b)
b) Schematic potential related to
game B.

(S A~

-3 -2 -1 0 1 2

For the case of game B, we must take into account the dependence of thiagvin
probabilities with the current capital of the player. When the capital is multiptereg
the winning probability is very small, i.ep; = % this translates into a high potential
barrier between this site and the one located on the right. However, foitésetlsat
correspond to the capital of the player not being multiple of three the winmotgapility
is rather highps = %, and so the potential barriers must be placed in a way that it is
favored a forward transition than a backward transition. One possibleofvdepicting
the potential is found in Fig. 2.6b.

In Fig. 2.7 we can see a plot of the average gain for a player that alterietiween
games A and B, either periodically or stochastically. For both kind of altemstibcan
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be seen that the resulting game is a winning game. When the player alternéels pe
ically between games A and B, it follows a fixed sequence of plays for gamed?B.

For example, the sequenfk 2] implies that the player will play game A three times in

a row, followed by game B two times. The case of random mixing between games is
obtained as follows: the player will decide on each time step if he plays gameBA or
with probabilityy and1 — ~ respectively. In Fig. 2.7 we have plotted the random case
for a value ofy = 1.

25

[3.2]
Pys A

Figure 2.7. Plot of the average

Gain

15F

1k

051

ok

7 22

random

| va

gain over 100 plays of either game
A or B alone — both of them losing
games —, although any combination
of them, either periodic or stochas-
tic results in a winning game. The
notation|a, b] indicates, for the pe-

riodic case, that we play times
game A, followed by times game
B. For the random case games A
and B are alternated with a proba-
T 8] b|||ty Y= %

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
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Games played

2.2.2 Theoretical analysis of the games

One way of analyzing these games is through discrete—time Markov chdihsH&ch
value of capital is represented by a state, and the transition probabilitieedrethese
states are determined by the rules of the games. In this section we will anayganties

A, B and the randomized game AB with this technique in order to obtain the stationar
probability distributions.

2.2.2.a Analysis of game B

Either game A and B can be represented through discrete—time Markowsch&limen
playing game B alone, we could represent the evolution of the capital withfiaitén
Markov chain as the one depicted in Fig. 2.8. However, this Markov clzairibe simpli-

fied inasmuch as there exists a periodicity in the system (we can see howrtsitidra
probabilities repeat eadld = 3 states). Thus, game B can be reduced to a Markov chain
with three state8, 1 and2 —see Fig. 2.9 for details— representing the value of the capital
modulo three. The transition probabilities between states will be given by th@ngin
(p;) and losing ;) probabilities for each state.

3From now on the randomized game will be referred to as game AB.



36 Chapter Il

P o P, B Py b,
@ @ Figure 2.8.  Discrete—time
Markov chain corresponding
% xS w__~ ™~ togameB.
% % % % % %

We are interested in obtaining the probabilities of finding the capital of the iplaye
each of these states. We can write down a set of equations that deseridethtion
with the numbem of games played — which in some sense would be equivalent to the
time— of the probabilitie$I?’, I1¥ andI1Z of finding the capital of the player in states
1 and2 respectively. These equations are

If(n+1) = paTF(n)+ (1 —p2) OF(n), (2.17)
P (n+1) = piIF(n)+ (1 - p2) IF(n), (2.18)
MPn+1) = pIP )+ (1 —p) IF0). (2.19)

We can explain how these evolution
equations are obtained through the following
example: imagine that we are in stateat

P, @ Py timen+ 1. We could have got to this state by
q q two ways: one would be if we were in state
y 2 0 at a previous time step (with probabil-
q ity 1% (n)) and we had won with probability
@/_2\@ p1; on the other hand, we could have been

in state2 at timen (with probability 112 (n))
and lost with probability(1 — py).
Eq. (2.18) is obtained through this rea-

soning, and the rest of equations can be ob-

Figure 2.9. Diagram representing the different tained following the same procedure.

s_tates of game B, as well as the allowed transi- Defining the column VeCtOHB(n) _

tions between these states. T .

(115 (n), 117 (n), 11 (n)]~ we can rewrite the

previous set of equations in a matrix formi§ (n + 1) = TgII”(n), where we have
defined a transition matrix for game B as

P,

0 1=p2 p2
TB = D1 0 1 — P2 . (220)

I—=p1  po 0
Our objective is to obtain the stationary probabilities, that occurs when the dis

bution of capital in the state®, 1 and2 does not change from one game to the next.
This implies that the distribution of probabilities is independent of the numbeaiokg
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playedn and invariant under the action of the matffiy, i.e. II® = TgIIZ. Matrix T is

a stochastic matrix as the elements of each column sum up to one, and frob¥Séwe
do know that there must be a stationary solution fulfilling the equdfienT )11 = 0.

The solution for vectofT? that corresponds to the eigenvalie- 1 is

L[ 1Pt
=7 1 —p2+pip2 |, (2.21)
1 —p1+ pip2

and whereD = 3 — p; — 2ps + 2p1p2 + p3 is a normalization constant. Introducing the
probabilities for game B described in (2.16) whes 0 we obtain

HB

K
m=—121. (2.22)
13|

2.2.2.b Analysis for game A

For the simplest case of game A we can make use of the previous resultecbfain
game B, as we need only to substitute the winning probabilitieand p, by p. The
result for the stationary probabilitid$* obtained wher = 0 reads

a1 !
=z, (2.23)
1

a logical result as all transition probabilities are equal.

2.2.2.c Analysis for the randomized game

Recalling that the randomized game is based on the combination of games A atid B w
probabilityy and1 —~ respectively, we can define an equivalent set of probabilifies),
characterizing this mixed game AB. The transition probabilities thus are

pi = vp+ (1 —=7)p1, (2.24)
py = yp+(1—7)ps. (2.25)

In order to solve for the vector of stationary probabiliti&4”? we can introduce the
previous expressions fgf, andp), into Eq. (2.21). For the case ef= 0 and a mixing
probabilityy = J we obtain

245

1
ma8 — — | 180 | . 2.26
709 1 984 (220
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2.2.2.d Average winning probabilities

There are different ways of obtaining the average winning probabilitiethEse games,
or equivalently, the conditions under which the games are losing, fair arimgn One
of them makes use of the stationary probability distribution obtained in presexi®ons
for games A, B and the randomized game AB. The average winning probahjlity
over all the states is then defined as

M—-1
Puwin = Y, pi 1. (2.27)

Thus, a game will be fair on averagepif,;,, = %, losing if p,;; < & and winning if
Dwin > % Substituting the set of winning probabilities (2.16) o 0 and the stationary
probabilities for games A, B and AB given by Egs. (2.22),(2.23) and j2&&pectively,
we obtain

1
pl = 5 (2.28)
B 1

Pwin = 9 (2.29)
pAB - — 0.5144. (2.30)

This reflects what has been previously presented, namely, that ganmelsBraae fair
and the combined game AB is winning. For arbitrary value§op, p2}, we can easily
obtain the set of conditions to be fulfilled in order to reproduce the samet @fiposing
thatp,,, < 3 (losing game A)pZ, < 1 (losing game B) ang:\” > 1 (winning game

AB),

— > 1, (2.31)
p
p1p3 ’
1— / 1— /\2
( p12<,2 P g (2.33)
YSV%)

Perhaps another way of envisioning the appearance of this paradgxlésking
at the parameter space of the winning probabilifies, p2}. In Fig. 2.10 we plot the
curve in parameter spade;, p»} separating the winning —upper part— from the losing
—lower part— region. The point marked as A corresponds to the setld#svaf a fair
game A € = 0), whereas the point marked as B corresponds to that of fair game B. The
line joining both points shows the evolution of the winning probabilifig’s, p, } of the
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randomized game AB when increasifndrom zero (point A) to one (point B). It can be
seen that due to the local concavity of the losing region, when moving frampoint to
another we cross the winning region, i.e., the values obtained by mixing thesetsvA
and B give as a result a winning game. Therefore, if we want to repsothe paradox
for any other two sets of values, we need only two points in the fair/losingmeghere
the line between them crosses the winning region.

1

0.8~ —
Winning Region Figure 2.10  Parameter space
{p1,p2} where it is plotted the di-
0.6 E vision line between a winning and
b, a losing game. The evolution of
. . the transition probabilitie§p’ , p5 }
0.4+ Losing Region . when varying the mixing probabil-
ity v is represented with the red
line. When~y = 0 the probabili-
0.2~ ] ties correspond to game A, whereas
for v = 1 correspond to game B.
0 |
0 0.2 0.4 0.6 0.8 1

Besides, we can also obtain the region in parameter space:, p} where the para-
dox occurs. Fig. 2.11 shows the three surfaldgsIl, andIl,, delimiting the winning
and losing regions either for game A, game B and the randomized game A8 Ifior-
ing probabilityy = %) respectively. In case of game A the losing region corresponds to
the lower half of surfacél,, wherep < %; for game B the losing volume is located on
the right side of surfacH;, and for the randomized game the winning volume is located
on the upper side of surface AB. Thus the unique region fullfiling all @@ at once
corresponds to the small volume on the front left side of Fig. 2.11, whidsdascmunded
by the planep; = 0.

2.2.2.e Rates of winning

With the stationary probabilities obtained for the games it is possible to find thefrate
winning as a function of the number of games play€a,). The rate of winning can be
obtained by subtracting the probability of losing from the probability of winnifigus,
we have

M-—1
d(Xn)
== Z; 211, pi — 1. (2.34)

For the simplest case of game A, the rate of winninguis= 2p — 1. For game B the
corresponding rate of winning iss = 2 p2 — 1 + 2 Iy (p1 — p2). Substituting the set of
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AARAANAN
A

i

Figure 2.11 Probability spac€p1, p2, p} where surfaceHl 4, I1z andIl 4 delimiting winning and
losing regions are plotted. The region where the paradox is obtained iedoma the front left side,
that is, the small triangle bounded also by the= 0 plane.

probabilities (2.16) witke # 0 we obtain

ra = 2p—1=-2¢ (2.35)
o_ 3 -med) _ 6e(80€? —8ec+49)
B2 +pip2 + q1q2 — p2g2 240€2 — 16€ + 169
= —1.74 ¢+ 0.119¢% — 0.358¢> + O(e?), (2.36)

6(e — 0.01311) (¢* — 0.0369¢ + 0.7151)
3e2 — 0.1e + 2.216

= 0.0254 — 1.9368¢ + 0.01361€> — 0.085¢> — O(*). (2.37)

TAB =

It can be checked that for values of small and positive valuedoth rates of winning
of games A and B are negative, whereas for the randomized game ABitisg0s

2.2.2.f Other ways of evaluating the rates of winning

Besides the method described in the previous section, we can also derseantle result
with another approach based on existing results from continuous—timemandlks [65]
on the set of integers. In this system we can calculate which is the firsigmésne

7 (i — i+ 1) to go from sitei to sitei + 1, considering all transitions shown in Fig.2.12,
through the following expression
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T(i—i+l)=<7m>pi+[<7>4+T(i —i+1)|r+[<7>+T(i—1—i+1)]g.
(2.38)
where < 7; > is the average resi- T

dence time at sité. The first term on the q; P,
rhs of the previous equatlon. accounts for — O o
the probability that after a time< 7, >
the particle has made a transition to site — ! —
i + 1 with probability p;; the second term -1 ! +1
accounts for the probability that the particle Figure 2.12 Diagram corresponding to the al-
after a time< 7; > remains in site with Ipwed transitions from stateto states + 1 and
probability r; and then jumps té + 1ina '~ L
time7 (i — i + 1); finally the last term considers the probability that the particle makes
a transition to sité — 1 with probability ¢; after a time< 7; > plus the time it takes for
the particle then to jump to sitet+ 1,i.e.,7(i — 1 — ¢+ 1).

After some algebra manipulation, and recallingthgt — 1 — i+ 1) =7(: — 1 —
i)+ 7 (i — i+ 1), we obtain the following expression

< T >

LTl -1 0L (2.39)
Di pz
Iterating Eqg. (2.39) we can obtain a general expression for the megpeasage time
from sitei to sitei + 1 as

T(i—i+1)=

T(i—i+1)=

qi q; < Tj—1 >
—i— . (2.40)
Z [ P Pj-1

jf()O

andsinc& (i — i+n) =7 (i — i+1)+7 (i+1 — i+2)+.. 47 (i+n—1 — i+n)
we obtain

T(ng—n) =Y |=02 Z & q{<;31> . (2.41)
] J

r=ng j*—OO

Therefore, once we have obtained a general expression for the firegrassage
time considering continuous—time, we can simply particularize it to the discrete—time
case recalling that 7, >= 1Vi,

n—1
T(ng—n)=Y 7+ Z KU A (2.42)
r=ng j= pr p_]p_] 1

From a previous section we know that the Parrondo games can be @edtribugh a
Markov chain that eventually is reduced to a three—state Markov chaitodhe period-
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icity in the transition probabilities. Thus, we are interested in particularizingréngqus
result (2.42) for a periodic system with arbitrary peribgdobtaining

j+L— 1
ZJ onk i—j+1 9k HZ; ]H-l
Hk:l Pr — sz:l

Finally we can obtain the general expression for the rate of winning +ovagntly
the velocity— through

T(i—i+1)= (2.43)

L L [Héﬂ Pr — Héﬂ}
re— =i _ P . (2.44)
Y Ti—it+l)  °F {Z; o [Tieie PERR 8 | }

which after some manipulation leads to the same expression of the curreiniedbta
through discrete—time Markov chain analysis, c.f. Eq. (2.36). Eq. (hdd)a simple
interpretation if we think of the rate of winning as a velocity, thus it is nothingeut
quotient between a distancé)(and the time it takes to cover iﬂf 7;). The general
result (2.44) agrees with other studies of one—dimensional hopping meitkekrbitrary
period L [66].

2.3 Other classes of Parrondo’s games

We have seen in previous sections that Parrondo’s paradox apgeansone combines
a simple coin tossing game, either unbiased or negatively biased, with anaothiased
(or negatively biased) game where the coin to be used depends on thkcagtital of
the player. Whatever sort of alternation between these games, eitheasttoalty or
randomly, leads to a positively biased game. However, we might wonderrd st
different games giving a similar effect, without considering the modulo rufeduced
in game B.

Parrondo et al. [4] introduced a new version for game B, where a iplases four
different coins depending on its previous history of wins and lossesh®nother hand,
effects of cooperation between players in Parrondo’s games havecbesidered by
Toral [38,67]. In the following sections we will briefly present the basitthese games.

2.3.1 History dependent games

As already mentioned, Parronat al [4] devised a new game B (which we will refer
to as game B’) where the winning probabilities of a player depend on hisfbeiops
history of wins and losses. Therefore we have two games: game A is iddotitse
original game, that is, there is a winning probabifitand a losing probability = 1 — p.
For game B’ there are four probabiliti€s, , p2, p3, p4} that will be used depending on
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whether the player won or lost in the two previous rounds. If subserigénotes the
round played we can summarize the probabilities in the following table,

n—2 | n—1| Winning probability

Loss | Loss P1

Loss | Win D2 (2.45)
Win Loss D3

Win Win D4

Originally they were assigned the following set of values

p:%g_ea

Pr=1o_% (2.46)
P2=p37=1—€,

p4:m—€.

wheree accomplishes the same task than in the original games, i.e. avhehboth
games are fair and when> 0 they are losing games; however, any sort of combination

between both (either periodic or stochastic) gives rise to a winning gamégrsexample
Fig. 2.13.

1.5

1012,1]

Random

Figure 2.13 Plot of the average
gain of a single player versus the
number of plays for Parrondo’s his-
tory dependent games A and B’, as
well as a periodic and a random
combination of them. Simulations

112,21
3,2]

Capital

|Game B’ were performed using the probabil-
Game A ities defined in (2.46) together with
e = 0.003.
-1 . . . .
0 20 40 60 80 100

Games Played

Furthermore, even when two games like game B’ are combined, we still nagrod
the paradox [68].

2.3.1.a Analysis of the games

These games can also be described through discrete—time Markov dhairgame B’
we may distinguish four different state§LL, LW, W L, WW}. As a result we obtain
the Markov chain represented in Fig. 2.14.

We can write down a set of evolution equations for the set of probabififigs, 17, 115,
as

17}
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P,

/\ Py

q

’ q, Figure 2.14. Diagram representing the differ-
Py ent states of the history dependent game B’, as
P, well as the allowed transitions between these

: states.
q, \q;/
5 (n+1) = (1—ps) I8 (n)+ (1 —py) I 2.47

Il p3) 1L (n p1) 1 (n), (2.47)

2 (n+1) = psIB(n)+p I (n), (2.48)

Mon+1) = (1—p2) I} (n) + (1 —pa) TG, (n), (2.49)

Mhu(n+1) = paTIf,(n) + pa 15, (n). (2.50)

Which can be put in matrix form &' (n + 1) = T II1%' (n), whereT 5 accounts
for the transition matrix between these states and is given by

1—p1 0 1—p3 0

_ P1 0 D3 0
Ty = 0 1-pm 0 1—p |’ (2.51)
0 D2 0 P4

andIl? (n+1) = {11 (n+1), 05 (n+1), 15, (n+1), 115 (n+1)}7 is the column
vector of occupancy probabilities for the states. As already explainedanis4.4 we
know there exists a stationary probability distribution¥6f’ such that{l — T/ )II5" =
0, and whose solution reads

(1 =p3)(1 = pa)

/ 1 (1 —pyg)

B P1 P4

II° = - (1= pa) (2.52)
p1p2

whereD’ = pips + (1 4+ 2p1 — p3)(1 — ps). Once we have obtained the stationary
probability distribution for game B’ we can easily obtain that of game A and the ra
domized AB’; the former case would be equivalent to setfing: p Vi, whereas for the
second case we would substitpieby p; =~vp+ (1 —v) p;fori=1,...,4.

Using the probabilities for game A and B’ with= 0, and for the randomized AB’
with v = % we obtain for the stationary distributions
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1 5 100
111 , 116 , 1 112
A _ 1t B _ AB" _ L
= 4111 1 2216 |’ 429 | 112 (2.53)
1 5 105

The average winning probabilities (2.27) axg,, = pZ;, = 1, pAP" = 0.512. Thus,
the necessary conditions for the paradox to occur are accomplisheis, thve have two
fair/losing games that when combined give as a result a winning game.

Finally, for arbitrary valuegp, p1, p2, p3, pa} the following set of conditions needs
to be fulfilled in order to reproduce the Parrondo effect

1_
J > 1,
P
1—p3)(1 —
(1 —p3)(1 —pa) .1
p1p2
1— ) (1 =7,
( p3,)(, VN (2.54)
P1Po

2.3.2 Collective games

Once reviewed an alternative group of Parrondo games where thel cipiéandent rules

of game B have been substituted for history rules, we turn to another fsBarmndo
games introduced by Toral [38, 67] where the Parrondo effect iscditined but for a

set of N players (collective games). In one of these games [67], game B is suluktitute
by another game that depends on the state of a player’s neighbor. &¥ea¢iis state

as whether a player has win or lost the previous game. The other veB8ipodnsiders

a redistribution of capital between a set/éfplayers. We will now briefly explain both
games.

2.3.2.a Cooperative games

A group of N players with capital§’;, i = 1,..., N are arranged in a circle so that
each player has two neighbors. A player chosen randomly for playingreiin play
game A with probabilityy or game B with probability — ~. These players are labelled
as winners/losers depending on whether they have won/lost the previoud played.
Game A is the same as the original, where a player has a winning probabditg a
losing probabilityl — p. Probabilities for game B depend on the state of the neighbors
i+ — 1 andi + 1 of player:. In the following table we have summarized the different
combinations available with their corresponding winning probabilities
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playeri — 1 | playeri + 1 | Winning probability
Loser Loser P1
Loser Winner D2 (2.55)
Winner Loser 3
Winner Winner D4

The games are classified according to the behavior of the total capital =
>, Ci(t). Thus, a winning game is one for which the average value of the total capital
C'(t) increases with time, and similarly for losing and fair games. Fig. 2.15 showsthe a
erage gain per playéﬂg,ﬁ for the set of probabilitiep = 0.5, p1 = 1, ps = p3 = 0.16,
andps = 0.7. We can see how the Parrondo effect is again reproduced: playing ei-
ther game A or B reports no winnings on average, whereas an alternatwadn both
increases the average capital per player with time.

100 F ~nYB’
80 F ' Figure 2.15 Average capital per
[ e I (C(t)) ; Th
- b player, *=* versus timet. e
< 60¢ probabilities defining the games
A E are:p = 0.5, p1 = 1,p2 = p3 =
—~ 40
= X 0.16, ps = 0.7. These results show
Cé 20 that game A is fair, game B is a los-
0 L ) A ing game, but when games A and B
; ) - —B are combined (AB) or in the [2, 2]
—20¢ alternationAABBAABB. . ., the

0 5000 10000 15000 20000 result is a winning game. Results
t are shown forN = 50,100, and

200 players.

2.3.2.b Capital redistribution between players

The other version of collective games [38] substitutes the randomizingt effgame A
by a game that redistributes the capital between the players. Depending waytihe
capital is redistributed we may distinguish different versions for this nenega:

e Game A: A unit of capital is given to a randomly selected player (with prdibab
¥)-

e GameA”: A unit of capital is given to a nearest neighbor with probabilities that
depend on the capital difference between playgis— i + 1) o« max[C; —
Ci+1,0], withp(¢ — i+ 1) +p(i — i —1) = 1 andC; denotes the current
capital of player.

These versions of game A are clearly fair, as they only redistribute tlitadagtween
different players, keeping the total amount of capital constant. Theanexrh of plays
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Figure 2.16. Average capital per playe{C'(t))/N, versus timet (in units of games per player) for
different combinations of games A and B. We find the evolution of the dapitan players only play
game A ¢ = 1), game B ¢ = 0) and a combination of bothy(= ). Upper panel: Combination

of the new game A’ with the original game B with probabilitiesi = 0.1 — ¢, p2» = 0.75 — e.
Middle panel: Alternation between the new game A’ and game B’ with probabilitie = 0.9 — ¢,
p2 = p3 = 0.25 — ¢, ps = 0.7 — ¢, with e = 0.01. Lower panel: Alternation between the gamé
and game B with probabilitiegi; = 0.9 — ¢, p2 = p3 = 0.25 — ¢, pa = 0.7 — ¢, with e = 0.01.

These figures have been obtained considering an ensemile-0200 players; the results have been
averaged ovet0 realizations of the games. In all cases, the initial condition is that of zeitata

Ci(0)=0,¥i=1,...N.
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can be described as follows: we have a seiNoplayers, and each time step a random
playeri is chosen for playing. In one version of these collective games, therglhgeses

to play either game A or the original capital dependent game B; anothgiovenvolves
an alternation between game A and the history dependent game B’, alespthined

in a previous section. A third version includes an alternation between gdnaed the
capital dependent game B.

Fig. 2.16 shows the evolution of the average capital per player versus dintleef
three different versions explained previously. In all cases, theoRa@ar effect is again
reproduced, i.e., the resulting game from the combination of any versicanuoé @ with
any other game B turns to be a winning game. This result emphasizes thedtitt th
is better, collectively speaking, for an individual player to redistribute piits capital
between other players, in order to increase on average the total anfi@apital.



Chapter 3

Parrondo’s games with
self-transition

The aim of this Chapter is to study a new version of Parrondo’s gamesgveheew
transition probability is taken into account. We introducsedi-transitionprobability,
that is, now the capital of the player can remain the same after a game played with
probability that will be denoted by;, i = 0,...,M — 1 (for simplicity the case of
M = 3 will be considered).

As we will show, the significance of this new version is a natural evolutioRaof
rondo’s games, which will be of particular interest in a succeeding chapten the
quantitative relation between Parrondo’s games and the Brownian regastablished.

3.1 Analysis of the new Parrondo games with self-transitions

3.1.1 GameA

We start with the new game A, where the probability of winning,ishe probability of
remaining with the same capital will be denoted-aand the losing probability is given
byg=1—-r—p.

Following the same reasoning as [7] we will calculate the probabfljtyhat the
capital reaches zero in a finite number of plays. Let us assume that initialhavwea
given capital ofj units. From Markov chain analysis [64] we find

e f; =1forall j > 0, and so the game is either fair or losing; or

e f; < 1forall j > 0, in which case the game can be winning because there is a
certain probability that the capital can grow indefinitely.

We are looking for the set of numbefg;} that correspond to the minimal non-
negative solution of the equation

49
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fi=p-fimi+tr-fi+aqa fi1, j=1 (3.1)
with the boundary condition

fo=1. (3.2)
Eq.(3.1) can be put in the following form
p q
fi=y— Ity i (3.3)

whose solution, for the initial condition (3.2), f§ = A - [(*=£=)7 — 1] + 1, where
A is a constant. For the minimal non-negative solution we obtain

1, <1_i_’“>1 . (3.4)

So we can see that the new game A is a winning game for

fj = min

l—-p—r

<1, (3.5)
p
is a losing game for
l-p—r > 1, (3.6)
p
and is a fair game for
l1-p—r - 1. (3.7)
p

3.1.2 GameB

We now analyze the new game B. Like game A, we have introduced the piibésb

of a self-transition in each state, that is, if the capital is a multiple of three we &av
probability r; of remaining in the same state, whereas if the capital is not a multiple of
three then the probability i. The rest of the probabilities will follow the same notation
as in the original game B, so we have the following scheme

mod(capital,3) = 0 — p1,71,q1
(3.8)
mod(capital, 3) # 0 — pa2, 72, 2.

Now let g; be the probability that the capital will reach the zeroth state in a finite
number of plays, supposing an initial capitaljafnits. Again, from Markov chain theory
we have
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e g; = 1forall j > 0, so game B is either fair or losing; or

e g; < 1forall j > 0, in which case game B can be winning because there is a
certain probability for the capital to grow indefinitely.

Forj > 1, the following set of recurrence equations must be solved:

93 = P1-Gg3i41+ 1193+ (1 —p1—r1)-g3-1, j=>1
g3j+1 = D2-g3j+2 +712- 9341+ (1 —p2 —12) - g35, Jj=0 (3.9)
g3j+2 = P2-93j+3 + 712 93542+ (1 —p2—12)-g3j41, 5 =>0.

As in game A, we are looking for the set of numbéis} that correspond to the
minimal non-negative solution. Eliminating terms;_1, g3j+1 andgs;,2 from (3.9) we
get

P13+ (1—p1—71)(1—pa—72)?]-93; = p1p3-g3j+a+(1—p1—71)(1—pa—72)?-g3;—3.
(3.10)

Considering the same boundary condition as in gamg As 1, the last equation has

. ) (1—pg—r)2 \J .
a general solution of the formy; = B - <(1 p1=r1)(1=p ’”2)2) —1| +1, where B is

p1ps
a constant. For the minimal non-negative solution we obtain
1—pr—r)(1—po—12)2\’
g3; = min 1,<( =)~ pe T2)> . (3.11)
p1Dp3

It can be verified that the same solution (3.11) will be obtained solving (Bt9}f;1
andgs;12, leading all them to the same condition for the probabilities of the games.
As with game A, game B will be winning if

(1—p1—r1)(1—p2—12)?

b1p3
losing if
o N2
(1-p m)(l2 P2=r2)” g (3.13)
p1p3
and fair if
o N2
I=p—r)d=p—r)* (3.14)

p1p3
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3.1.3 Game AB

Now we will turn to the random alternation of games A and B with probabilitAs in
a previous chapter this game will be named as game AB. For this game AB wéhieave
following (primed) probabilities

e if the capital is a multiple of three

/_ . —_— .
{ P =1 p+(1_’v) p1, (3.15)
rp=vy-r+1-7)r,

e if the capital is not multiple of three

Po=7-p+(1—=7) p,
3.16
{r§:7'r+(17)-7‘2. ( )

The same reasoning as with game B can be made but with the new probaplities
1, ph, 75 instead oy, r1, p2, 2. Eventually we obtain that game AB will be winning if

(1—ph — 7)1 — ph —rh)?

<1, (3.17)
php§
losing if
1— I 1— /N2
( P "61?(,2 %) TQ) >17 (318)
SV
and fair if
ISV A o 2
(1 P1 7”1)(1 Pa 7”2) -1 (3.19)

Pip5

The paradox will be present if games A and B are losing, while game AB isimgnn
In this framework this means that the conditions (3.6), (3.13) and (3.17)beussttisfied
simultaneously. In order to obtain sets of probabilities fulfilling theses conditios
have first obtained sets of probabilities yieldifagr A and B games but such that AB is
a winning game, and then introducing a small biasing paranaeteaking game A and
game B losing games, but still keeping a winning AB game. As an example, we giv
some sets of probabilities that fulfill these conditions:

—_ 9 _ 1 _ 9 _ 1 3 _ 1

(a) P =3 €& T'=1995 Pr= 19 & = 19 p2_57_6a 2 =%,
_ 9 _ 1 __ 509 _ 1 _ _ 1

(b) p —2? €, T_Tl()a p1—53000_67 rl—@a p2—:13*0_67 TQ—QT()a
(C) P =35 6 T:%ioa plz%_ea 1"1:;, p2:§_€a 2 = 70>
1 1

(d) P =17 €, r=3, P1 =35 — €6 L=z, p2=735—¢ 2= 15

20)

—~
w
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3.2 Properties of the Games

3.2.1 Rate of winning

If we consider the capital of a player at play numbeX,, moduloM, we can perform a
discrete-time Markov chain analysis of the games with a state-gjga¢e. .., M — 1}1.
For the case of Parrondo’s games we haye= 3, so the following set of difference
equations for the probability distribution can be obtained:

Po(n+1) =p2-Pa(n)+r1-Py(n)+q2- Pi(n),
Pi(n+1) =p1-F(n)+rz-Pi(n)+q - Pn), (3.21)
Py(n+1) =pa-Pi(n)+r2- Pa(n)+q1 - Po(n),

which can be put in a matrix form &n + 1) = T - P(n), where

oq2 P2
T = pP1 T2 Q2 (322)

q p2 T2
and

Py(n)
P(n)=1 Pi(n) |. (3.23)
PQ (n)

In the limiting case wheree — oo the system will tend to a stationary statef(
Sec. 1.4.4) characterized by

I=T-TI, (3.24)

wherelim,,_,, P(n) = II.

Solving (3.24) is equivalent to solving an eigenvalue problem. As we aledeavith
Markov chains and the transition matrix obtained is a stochastic matrix, we kradw th
there will be an eigenvalug = 1 and the rest will be unddr (see thePerron-Frobenius
theorem in Sec. 1.4.4 for further details). Poe 1 we obtain the following eigenvector
giving the stationary probability distribution in terms of the games’ probabilities.

Iy 1 (1—7r2)2 —po- (1 —pa—r2)
II = H1 = E (1—r1)(1—r2)—p2-(1—p1—rl) y (325)
11, (1—=ri)(L—=7r2) —p1- (1 —p2—ra)

whereD is a normalization constant given by

1As in the original Parrondo games, we can reduce the infinite state Makiein to anM finite Markov
chain.
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D= (1-7r9)*+2(1—11)(1—72) —p2(2—pa—r2—71—p1) —p1(L —p2 —12). (3.26)

The rate of winning at the—th step, has the general expression

[e.9]

r(n) = E[Xp1] = E[Xpl = > i [Piny1 — Pinl. (3.27)

1=—00

Using these expressions it is possible to obtain the stationary rate of wiroritigef
new games introduced in the previous section. The results are, for game A:

St =2p4+r—1, (3.28)
and for game B
= 2pp+ro—14[g2—p2+p1—aq]- o
3
= 5 (pp3 — (1 —p1 — 1) (1 — p2 — 12)*), (3.29)

whereD is given by (3.26).

It is an easy task to check that when = ro = 0 we recover the well-known ex-
pressions for the original games obtained in [8]. To obtain the stationteyfoathe
randomized game AB we just need to replace in the above expression trebjites
from (3.15) and (3.16).

Within this context the paradox appears whe€h< 0, 75 < 0 andrs; > 0. If, for
example, we use the values from (3.20d) and a switching probabitityl /2, we obtain
the following stationary rates for game A, game B and the random combination AB

rzt = —2e,
—€ (441 — 120€ + 1000€2
. €+ 1000¢7) (3.30)

231 — 40¢ + 500€2

ot 93 — 9828¢ + 1920€2 — 32000€°
AB 2 (2499 — 320€ + 8000€2)

which yield the desired paradoxical result for snzalt 0.

We can also evaluate the stationary rate of winning when both the probability of
winning and the self-transition probability for the games vary with a parametep =
p — 5 andr = r + ¢, so that normalization is preserved. Using the set of probabilities
derived from (3.20d), namely = ; — §.r = § +€.p1 = 5t — 5,71 = 2 +€,pp =
3£ rg =1 +etheresultis:
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i = 0,

ot —e (21 — 20¢)

= 3.31
"B 2 (77 — 200¢ + 125¢2)’ (3.31)

o 31 — 164e + 160¢>
"AB — )
2 (833 — 2600€ + 2000€?)

again a paradoxical result.

A comparison between the expressions for the rates of winning of the alrigar-
rondo games [8] and the new games can be done in two ways. The firsbosists
in comparing two games with the same probabilities of winning, say original game A
with probabilitiesp = 3 andg =  and the new game A with probabilitigge, = 1,
Thow = i and gnew = i. In this case we can think of the ‘old’ probability of losing
q as taking the place of theelf-transitionprobability r,.,, and the new probability of
losingguew- IN this way we obtain a higher rate of winning in the new game A than in the
original game — remember that the new game A has an extrartertie rate of winning
compared to the original rate, and this extra term is what gives rise to ther vigle.
The same reasoning applies for game B, leading to the same conclusion.

The other possibility could be to compare the two games with the same probability
of losing. In this case, we follow the same reasoning as before, but mogawimagine
the ‘old’ probability of winning as replacing the winning and self-transitioolyabilities
of the new game. What we now obtain is a lower rate of winning for the new game
compared to the original one. An easy way of checking this is by rewritir®8§3and
(3.29) as

i =p—q, (3.32)

3
ry = o (p1p3 — q143).

So for the same value gfbut a lower value op we obtain a lower value for the rates
of game A and B.

We now explore the range of probabilities in which the Parrondo effeestalace.
We restrict ourselves to the cad€é = 3 andy = 1/2 used in the previous formulae.

The fact that we have introduced three new probabilities complicates tresespa-
tion of the parameter space as we have six variables altogether, two vafiablé from
game A and four variable, r1, p2, 72} coming from game B. In order to simplify this
high number of variables, some probabilities must be set so that a refatesein three
dimensions will be possible. In our case we will fix the variables1, 72} so that the
surfaces can be represented in the parameter §page ps }.

In Fig. 3.1 we can see the resulting region where the paradox exists feariadles
r =1, = %andry = 5. Itis possible to show that the volume where the paradox
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0.8
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Figure 3.1. Parameter space corresponding to the values ;, 1 = § andr, = ;5. The actual
region where the paradox exists is delimited by the pjane: 0 and the triangular region situated at
the frontal face, where all the planes intersect.

takes place, gradually shrinks to zero as the variahles andrs increase from zero to
their maximum value of one.

Although it still remains an open question, we have not been able to obtaiguhe e
alent parameter space to Fig. 3.1 with the fixed variahl@s, p» and with the parameter

space variables, r1, ry instead — it is possible to obtain the planes for games A and B,

but not for the randomized game AB.

3.2.2 Simulations and discussion

We have analyzed the new games A and B, and obtained the conditionsiiticrelero-
duce the Parrondo effect. We now present some simulations to verify ghpatadox is
present for a different range of probabilities — see Fig. 3.2. Some #tirggefeatures can
be observed from these graphs. First it can be noticed that the perice of random or
deterministic alternation of the games drastically changes with the parameters.

We use the notatiofu, b] to indicate that game A was playedimes and game B
times. The performance of the deterministic alternati@ng| and[2, 2] remain close to
one another, as can be seen in Fig. 3.2. However the alterrjatitirhas a low rate of
winning because as we play each game four times, that causes the dynagacses
A and B to dominate over the dynamic of alternation, thereby considerahlgiregithe
gain.

The performance of the random alternation is more variable, obtaining in cases
a greater gain than in the deterministic cases — see Fig. 3.2c.

In figures (3.3a) and (3.3b) a comparison between the theoretical fat@sing for



3.2 Properties of the Games

57

Gain

2.2
[3.2]

A 70 80 90

-random

[2.2]
[3.2]

[4:4]

40 50 60
Games played

Gain

Gain

32
[2.2]

random

[4.4]

[Al

[B]

I I
30 40 50 60
Games played

[2.2]

B2
random

[4.4]

10 20

30 40 50 60

Games played

Figure 3.2 Average gain as a function of the number of games played coming fromerical
simulation of Parrondo’s games with different sets of probabilities. Tdiation[a, b] indicates that
game A was played times and game B times. The gains were averaged over 50 000 realizations
of the games. a) Simulation corresponding to the probabilities (3.20a) anea(l)k; b) probabilities
d) probabilities (3.20d) and =

(3.20b) andt =

1.
200

0 0.008
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Figure 3.3. Comparison of the theoretical rates of winning — dashed lines — togethetheitfates
obtained through simulations — solid lines. All the simulations were obtainedvéraging over
50 000 trials and over all possible initial conditions. a) The parameters comelsjocthe ones used in

equations (3.30). b) The parameters correspond to the ones uspehtinas (3.31).
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Figure 3.4 Comparison between
the theoretical and the simulation
for the gain vs gamma, for the fol-
lowing set of probabilities p = 1,
r = l;p1 = 2—35,1"1 = %and
p2 = £, r2 = 15. The simulations
were carried out by averaging over
50 000 trials and all possible initial

conditions.

Gain

o

games A, B and AB given by (3.30) and (3.31) and the rates obtainedjtnsdunulations
is presented. It is worth noting the good agreement between both results.

It is also interesting to analyze the evolution of the average gain obtainedtire
random alternation of game A and game B when varying the mixing parameter
Fig. 3.4 we compare the theoretical curves and the ones obtained thioudatons. As
in the original games, the maximum gain obtained for this set of parameters isezbta
for a value aroundy ~ % [69]. For other sets of the game probabilities, though, the

optimal~ differs from~ = 1.
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Relation between Parrondo’s
games and the Brownian
ratchet

Parrondo’s games were originally inspired by the model of the flashingettddow-

ever, no direct relation was ever established between both. In this chepteddress
a quantitative relation between the variables defining a game, i.e., the winrdrigsan
ing probabilities, and the physical variables defining a Brownian ratchepebding on
the game considered, a different formulation will be obtained: it will be shthat the
original Parrondo’s games can be derived from a Langevin equaitbradditive noise,
and Parrondo’s games with self-transition can be related to a Langeati@yusing
multiplicative noise in the sense of Ito.

4.1 Additive noise

The evolution in time of the games can be described through a master equation with
discrete timer. This time increases by one at every coin toss. If we denotg, py) the
probability that at timer the capital of the player is equal ipwe can write a general
master equation as

Pyt +1) = a' | P_1(7) + ay Pi(7) + ai Py (7), (4.1)

wheread’ | is the probability of winning when the capital is— 1, a} is the prob-
ability of losing when the capital is+ 1, and, for completeness, we have introduced
a} as the probability that the capitafemains unchanged (a possibility not considered
in the original Parrondo games). In accordance with the rules of the gasueilaed in
Sec. 2.2, the probabilitieg:’ |, a, a’ } do not depend on time and they satisfy the nor-
malization condition’ ' +-a{ +a'~' = 1, which ensures the conservation of probability:

59
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SR G Bir 1) = 0 B(r) = Lif T R(0) = 1.
We can rewrite Eq. (4.1) by making use of the normalization condition for theitra
tion probabilities:

P(r+1)—PFi(r) = a ‘q

:U

(1) + (ab — V) Py(1) + a% Py (1)
LiPa (1) = (@ + ay ) Pi(7) + ai Py (7)
= @l Pii(1) — ' Pi(r) — ai ' Pi(7) + ai Piga(7)
= = [Jis1(7) = Li(7)]. (4.2)

where the currenf;(7) is given by:

I
.
:U

Ji(7) = 5 [FP(r) + Fa P ()] = [DiP(r) = DiaPa(n)], (43)

andF; = ™! —ai™', D; = L(a™! +a%7"). This form is a consistent discretization
of the Fokker—PIank equatlon for a probabllﬁym, t)

OP(z,t)  0J(x,t)
ot or 7

(4.4)
with a current

I[D(z)P(x,t)]

Ox ’

with an arbitrary driftF'(x), and diffusionD(x). If At and Az are, respectively,

the time and space discretization steps, suchithatiAx andt = 7At, it is clear the
identification

J(x,t) = F(x)P(z,t) — (4.5)

At At :
The discrete and continuum probabilities are related’fly’) < P(iAx, TAt)Az

, - L Ax)?
and the continuum limit can be taken by considering thiat= lim (Az) is a
At—0,Az—0 AN
finite number. In this casg; «» M ~'AxF(iAz) andD; «+» M ' D(iAx).
From now on, we restrict ourselves to the cage= 0 (which corresponds to the

original Parrondo’s games). Sinpe= a“",' we can rewrite the term®;, F; as

1
Di = D=, 4.7)

and the currenf;(7) = —(1 — p;) P;(7) + pi—1 P;—1(7) is nothing but the probability
flux fromi—1to:. We are interested in solving our system for the stationary case. In this
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regime we know thaP’;(7) = P7* and the current does not depend on itecquiring a
constant valug; = .J. The stationary solutions for the probabil* are found solving
the recurrence relation (4.3) for a constant curtetdgether with the boundary condition

P =Pty
2J <~ &"i/P e~ VL/D _q
Pt = Ne Vi/P |1 - =2 J:Ni. 4.9
! ¢ N ~1-F|’ 2 vk eVi/P (4.9)
J=1 j=1 1-F}

where N is the normalization constant obtained frdm-",' P* = 1. In these ex-

(2

pressions we have introduced the poteritidah terms of the probabilities of the gantes

:—DZI [ } —DZI [p” 1] (4.10)

The case of zero currem =0, |mpI|es a perlodlc potentidl;, = Vp = 0. This
latter condition leads t§] ' p; = [1-5,' (1 — p;) for a fair game, a requirement already
obtained when analyzing the games with discrete—time Markov ctafhgg. (2.32). In
this case, the stationary solution can be written as the exponential of thei@bfg\‘?ﬁ =
Ne~Vi/P_ Note that Eq. (4.10) reduces in the linit: — 0to V() = —M~" [ F(x)
orF(z) = Ma\g(x) which is the usual relation between the dfftr) and the potentlal
V(z) with a mobility coefficient)/.

The inverse problem of obtaining the game probabilities in terms of the potential
requires solving Eq. (4.10) fdF; with the boundary conditiody, = Fy, 2:

L 1\j[~—Vi/D _ fV',l/D i
B i V;/D Zj:l( 1)][6 ’ e —V;/D —Vi_1/D
Fi= (-1t (—1)Le(Vo—V)/D — 1 + Z [0 —eVim/P]

(4.11)

These results allow us to obtain the stochastic potehtiéhnd hence the currer)
for a given set of probabilitie§py, . . ., pr.—1}, using (4.10); as well as the inverse: obtain
the probabilities of the games given a stochastic potential, using (4.11). Nxtthénh
game resulting from the alternation, with probabilityof a game Awith p; = 1/2, Vi
and a game B defined by the 4, ..., pr—1} has a set of probabilitiegy, ..., p} _,}
with p} = (1 — )3 + yp;. For theF;’s variables, this relation yields] = ~£;, and the
related potential’’ follows from (4.10).

We give now two examples of the application of the above formalism. In thefiest
we compute the stochastic potentials of the fair game B and the winning game AB, the

n this, as well as in other similar expressions, the notation is suchﬁﬁég = 0. Therefore the
potential is arbitrarily rescaled such tHat = 0.

2The singularity appearing for a fair garig = V; in the case of an even numbemight be related to
the lack of ergodicity explicitely shown in [31] fat = 4. In this case additional conditions on the potential
are required for the existence of a fair game, and will be further exgidimthe next section.
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Figure 4.1. Upper panel: potential; obtained from (4.10) for the fair game B defined hy =
1/10, p1 = p2 = 3/4. Lower panel: potential for the randomized game AB, with= 3/10, p| =
ps = 5/8 resulting from the random alternation of game B with a game A with constabapilities

pi =p=1/2, Vi.
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random combination with probability = 1/2 of game B and a game A with constant
probabilities, in the original version of the paradox [5]. The resulting migdbs are
shown in Fig. 4.1. Note that the potential for game B takes different valesch point

¢ mod 3 even though the probabilities were equal fo£ 1,2 mod 3. The resulting
asymmetry in the potential is the required one for the existence of the raftdwtt ©n
the other hand, the potential of the combined game AB has a hon-zerogati/aenean
slope, as it corresponds to a winning game.

V(x)
o

Figure 4.2. Upper panel: Ratchet
potential (2.2) in the casé = 9,
A = 1.3. The dots are the dis-

-15

40 -30 20 -10 0 10 20 30 40 crete valuesl; = V(i) used in
the definition of game B. Lower
X panel: discrete values for the poten-
1.5 ; ; ; ; ; ; ; tial V/ for the combined game AB

obtained by alternating with prob-
ability v = 1/2 games A and B.
The line is a fit to the empirical
formV'(z) = —Tz + aV (z) with

I' =0.009525, o = 0.4718.

l,
05| |1
0 &

V'(X)

-05 1

1t

a5 .
-40 -30 -20 -10 O 10 20 30 40

X

The second application considers as input the potential (2.2), setting the time—
dependent functiodV' (¢) = 1, which has been widely used as a prototype for ratch-
ets [70, 71]. Using (4.11) we obtain a set of probabiliigs, ..., pr.—1} by discretizing
this potential withAz = 1, i.e. settingl; = V(7). Since the potential’(z) is peri-
odic, the resulting game B defined by these probabilities is a fair one andrile®tcliis
therefore zero. Game A, as always is definehpy- p = 1/2, Vi. We plot in Fig. 4.2
the potentials for game B and for the randomized game AB, the random comhinatio
with probabilityy = 1/2 of games A and B. Note again that the potentiais tilted as
corresponding to a winning game AB. As shown in Fig. 4.3, the cur/et¢pends on
the probabilityy for the alternation of games A and B.
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2e-05

1.5e-05 | A Figure 4.3._ Current J resulting
from equation (4.9) for game AB
as a function of the probabilityy

- 1e-05 | ) of alterngtion .of games A. and .B.
Game B is defined as the discretiza-
tion of the ratchet potential (2.2) in

5e-06 | i the caseA = 0.4, L = 9. The
maximum gain corresponds to=
0.57.
0
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4.2 The case of. even

A problem arises when finding the probabilitipsusing (4.11) for a periodic poten-
tial (corresponding to a fair game) when the number of poinis even. This is ob-
vious since the periodicity conditiol, = Vj gives a zero value for the denominator
(—1)Le2(0=V2) _ 1 in (4.11). In order to be able to find solutions for the probabilities,
the numerator has to vanish as well. This is equivalent to the condition:

Z o 2Vor — Z 672‘/2“17 (4.12)
k

k

which, in terms of the stationary probabilities, becomes:

S Psi=> Py (4.13)
k k

This condition implies that one can have a fair game in the case of an even numbe
L only if the probability of finding an even value for the capital equals thatnafifig an
odd value. To our knowledge, this curious property, which emergesailigtirom the
relation between the potential and the probabilities, has not been repoztedysly.

It turns out that one has to be careful when discretizing a periodic fi@té&fn(z) in
order to preserve this property. Otherwise, there will be no equivédarondo game
with zero current. The simple identificatid) = V(i\) might not satisfy this require-
ment, but we have found that a possible solution is to shift the origin ofthgis, i.e.
settingV; = V ((i 4+ §)\) for a suitable value of. For example, in Fig. 4.4 we plot the
difference

d(d) _ Z 6—2V((2i+5))\) N Z e—2V((2i-i—1-i—5))\)7 (414)
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Figure 4.4,  Plot of d(d) as
given by Eq. (4.14) versus dis-
placements. The unique zero
crossing is ab = —0.068616.

as a function of in the case of the potential (2.2) and= 1/4 (which corresponds to
L = 4 points per period). We see that there is only one value that accomplighes 0,
namelys = —0.068616.

Once the proper value dfis found, it follows from Eq. (4.11) that there are infinitely
many solutions for the probabilities. They can be found by varying, jgaysuch that
for each value ofy we will get a set of probabilitie$po, . .., pi,...,pr—1}. Solutions
satisfying the additional requirement that € [0, 1], Vi, will exist only for a certain
range of values ofy € [0.0025,0.68]. Some of the different solutions are plotted in
Fig. 4.5. Some numerical values are :

e pg = 0.125, p; = 0.8167766, po = 0.3927740, p3 = 0.7082539

e pg = 0.25, p1 = 0.6335531,p2 = 0.5289900, p3 = 0.6070749

e pg = 0.3525, p; = 0.4833099, p2 = 0.6406871, ps = 0.5241081

e pg = 0.50, p; = 0.2671062, p2 = 0.8014221, p3 = 0.4047168

An additional criterion to choose between the different sets of probabiltiesim-
pose the maximum “smoothness” in the distribution of pkis. For instance, one could

minimized the surrEiL:_O1 (pir1 — pi)?. In our example this criterion yields) = 0.3525
and the other values follow from the previous table.

4.3 Multiplicative Noise

We go now a step forward, and calculate how these previous expressitained for
the stationary probability, current and the defined potential vary wheoonsider the
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I ' Figure 4.5. Multiple solutions for
0.6k the probabilitiesp; obtained with

{ equation (4.10) for a potential like
= 1 22) with A = 03, A = 1,
0.4 B 6 = —0.068616 varying the value
of po. The continuous line corre-
sponds to the “optimal” solution,

0.2+ B po = 0.3525 (see the text).

casea), # 0 (which is equivalent ta; # 0). As stated previously, considering this term
implies that the player has a certain probability of remaining with the same capéal af
a round played.

The drift and diffusion terms now read

F, = aftt—a ™t =2p -1, (4.15)
1 1

It can be appreciated that both terms, the diffudigras well as the driff;, may vary
on every site. Using Eq. (4.3) and considering the stationary B4s¢ = P together
with a constant current; = .J, we may solve for the probability distribution obtaining

J iE_ 1+ D
Pt = — || p (4.17)
7Fi — D; 3Fi — D;

The previous equation can be put in a general form;as a; + b;z;_1, from which
a solution can be derived solving recursively gy,

xn:[ku cxo+ > ai- | I bel - (4.18)
k=1 j=1 k=j+1

Applying the latter result to the stationary probability we have

n

1
r = 1] Dy—1+ 3Fp
" i1 Dk — 2 F

n n 1

1 D1+ 5F,

st 2

B -y s | 1 =55
=1 J 2= k=j+1 2 k

(4.19)
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We can solve for the current using Eq. (4.17) together with the periodic boundary
conditionPj* = Pgt

1
L 5Fk—1+Dgk—1
0 Hk—l Dk—%Fk
ZL 1 HL ‘ 1F,_1+Dp_1]"
J=1 Dj*%Fj k=j+1 DkféFk

An effective potentiatan be defined in a similar way to its continuous analog as

J = (4.20)

7 1+%F lp] 1
J Tj—1

~Y 715 Zln e |- (4.21)
j=1 2D; 1—rj

It is important to note that, as in the previous ca§e= 0, the potential must verify
periodic conditiondf, = V7, when the set of probabilities define a fair game. Itis an easy
task to check that using Eq. (4.21) together with a periodic boundaryteammdvhat we
obtain is the fairness condition for a given set of probabilities definingieoRdo game
with self-transition(c.f. (3.14)), that is

L
[Ir:i= qu = H (1—p; —77). (4.22)
k=1 k=1

k=1
By means of EqQ. (4.21) we can obtain the stationary probability (4.19) amdrdu
(4.20) in terms of the defined potential as

Dn - Pst n 4
Pl—e [0 gy (4.23)

where

PstD_D NY%
_ K" [Do—Dr -] (4.24)

177
12D

DI
(1-45)

These are the new expressions which, together with Eqgs. (4.15) aij &éidw us
to obtain the potential, current and stationary probability for a given sptaifabilities
{pi,ri,q;} defining a Parrondo game witfelf-transition We will now show that the
set of Eqs. (4.21),(4.23),(4.24) can be related in a consistent form vathahtinuous
solutions corresponding to the Fokker—Planck equation of a processnwuitiplicative
noise.

Given a Langevin equation with multiplicative noise

& = Fla(t),t] + /Blz(t), t] - £(1), (4.25)
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interpreted in the sense of Ito, we can obtain its associated Fokker—Rignakion
given by Eq. (4.4) recalling thab(z,t) = %B(x,t). The general solution for the sta-
tionary probability density functio®(z, t) is given by

t f \I!(x)dm \Ij 11 d 11
P (z) = N TOR —J/ =T A g | (4.26)

where is a normalization constant anid(z) = ggxg

icity and the normalization conditio?(0) = P(L) and [’ P
following expressions fo\ and.J

Maklng use of the period-
x)dx = 1 we obtain the

P(0) - (D(0) — D(L)eJs ¥(@)dz
wero.po ot (P - D(L) )

- (4.27)
Jo e~ Jo W)dz" gy

Comparing the discrete equations for the current and stationary probd@i2g-
4.24) with the continuous solutions (4.26-4.27) we have the following elguivas

P§'-Dy = P(0)-D(0), (4.28)
D; = D(x), (4.29)
V= of Y@dr (4.30)
~ er ’ 7 7
— — [ \Il )dx /
Z( ;&) = / da’. (4.31)
Jj=1 2D;

It is clear the identification of the terms in Egs. (4.28) and (4.29). Now wd tee
demonstrate the equivalence given by Eqgs. (4.30) and (4.31). If fireedsediscretised
functionasy; = FJ L and we use the Taylor expansion up to first order of the logarithm
In(1+42x)~ :cweget
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n 1+ T,Z) . 1 n
V, = —2111( _2119/} ) —5 > (i1 1) =
j=1 277 j=1
1 = 1
= - (21/)0 +> U+ 2%) , (4.32)
k=1
n V. n n )
Z ¢ i = Zevf—ln(l_%d’j) ~ Ze_%( I 1 We—1 vl —;) _
= 1—- 517[}3' j=1 j=1
— Ze—(%w()+2i=1 Urt3¥5)+5v; (4.33)

It can be clearly seen that Eq. (4.32) corresponds to the numericatatitegof the
function ¥ (z) defined previously, but with & = 1 (the difference in the sign is due to
the way we have defined our potential). It can be demonstrated that A&vhénl both
expressions agree up to first orderAn

n—1
Voa = —A <;1/10 + ;wk + ;1%) : (4.34)

In the case of Eq. (4.33) what we obtain is nearly the Simpson’s numeriegration
method but for an extra term. As in the previous case, whea 1 then we have up to a
first order an extra\ term,

n

Z ~A. Ze (390+X0 1 Yeativia)+ 3AY;a (4.35)
j=1 1- ’w]A j=1

So whenA — 0 the contribution of thextraterm can be neglected as compared to
that of the sum.

We can also perform the inverse process, that is, to obtain the set ludlplites
{pi,ri,q;} for a given potential/;. If we define4,, = FZ = g:—jrgz, we need only to
solve Eq. (4.21) ford,, obtaining

1
2

Lo (—1)i(eVi —e Vit - ,
Zh S SRR

1L . eW-Ve —
(—1)E-eo=Ve —1 =

An = (_1)71 ! eVn

(4.36)

Once these values are obtained, we must solve for the probabilities togéthéne
normalization conditiom; + r; + ¢; = 1. Since we have a free parameter in the set of
solutions, we can fix the; values on every site and the rest of parameters can be obtained
through
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(I+A)(1 —ry), (4.37)

Pi =
qi =

N— NI

In this way what we have is a method for inverting effectivepotential, fixing a
parameter that in our case is the diffusion in every site (remember that traet@n; is
related to the diffusion coefficient by Eq. (4.16) or is also equivalentedgmperature).

The fact that we can obtain different sets of probabilities, both desgritifferent
dynamics but coming from the same poteniigl), it is not surprising. We need only
to remember that a system with multiplicative noise is equivalent, in the senseothat b
possess the same stationary probability distribution, to another system witikiexddise

i=F(x)+ D(x)-£(t) — & = F(z) + £(t), (4.39)
but with a renormalized drift terni(z') given by F(z) = —%, whereF (z) = — 9%

andV = [ 55dz + In D(x).



Chapter 5

Parrondo’s games and
Information theory

Recently, Arizmendet. al [37] quantified the transfer of information — negentropy —
between a Brownian particle and the nonequilibrium source of fluctuatictivgyeon it.
These authors coded the particle motion of a flashing ratchet into a stiifegeafd1’s ac-
cording to whether the particle had moved to the left or to the right respbgivel then
compressed the resulting binary file using the Lempel and Ziv algorithnSseel.5.2
for details). They obtained in this way an estimation of the entropy per dearaas
the ratio between the lengths of the compressed and the original file, fdfiaesuly
large file length. They applied this method to estimate the entropy per charétter o
ergodic source for different values of the flipping rate, with the resalt ttiere exists a
close relation between the current in the ratchet and the net transféowhation in the
system. The aim of the present Chapter is to apply this technique to the disionete
and space version of the Brownian ratchet, i.e., Parrondo’s games.

5.1 Parrondo’s games and Information Theory

Some previous works in the literature have related Parrondo’s games fanthation
theory. Pearce [72] considers the relation between the entropy andithesk of the
games, and the region of the parameter space where the entropy of gagreaté than
that of B and the randomized game AB. Harratral[73] study the relation between the
fairness of games A and B and the entropy rates considering two appsoache first
one calculates the entropy rates not taking into account the correlatessnpion game
B, finding a good agreement between the region of maximum entropy ratésearegion
of fairness. The second approach introduces these correlatiaagjin lower entropy
rates and no significant relation between fairness and entropy ratgse B.

The goal of this chapter is to relate the current or gain in Parrondo’s gaiitie the
variation of information entropy of the binary file generated using techsigumilar to

71
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those in [37]. In the next section we will present numerical results comg sim-
ulations of different versions of Parrondo’s games: in the cooperagtmes [38, 67],
one considers an ensemble of interacting players; in the history depeyaees [4,68],
the probabilities of winning depend on the history of previous results of aisloses;
finally, in the games with self-transition.f. Chapter 3), there is a non—zero probability
r; that the capital remains unchanged (not winning or losing) in a given fdke coins.
Finally, we offer in Sec. 5.3, a theoretical analysis that helps to undergtarbehavior
observed in the simulations.
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5.2 Simulation results

We have performed numerical simulations of the different versions ofaihmeg. In every
case, the evolution of the capital of the player has been converted togdthiis where
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bit O (resp., 1) corresponds to a decrease (resp., increase) el afterd; plays of
the games. It will be shown that the delay tidebetween capital measurements is a
relevant parameter.

An estimation of the entropy per characteris obtained as the compression ratio
obtained with thegzip (v. 1.3) program, that implements the Lempel and Ziv algorithm
(although it has been stressed by some authors that this is not the besessimyp al-
gorithm one can find in the literature). The simplicity in the use of this algorithm (as
it is already implemented “for free” in many operating systems) is an added,\adut
will become apparent in the following when we consider strings of symbaoisrgéed by
more than one ergodic source. As suggested in [37], we expect thaedgleatropy;—h,
which accounts for the known information about the system, is related in sayevith
the average gain in the games.

In the upper panel of Fig. 5.1 we compare the average gain in the randbgaree
AB with the value of the entropy differenc&h = h(y = 0) — h(~) as a function of
the probabilityy and for different delay time&,. We find indeed a qualitative agreement
between the increase in the gain and the decrease in entropy-apdhameter is varied.
This decrease in the entropy of the system implies that there exists an enaneihe
amount of known information about the system. Notice that the compresstotapends
on §;, and that they value for which there is the maximum decrease in entropy agrees
with the value for the maximum gain in the games. This agreement is similar to the one
observed when applying this technique to the Brownian flashing ratchpt [3

Similar results are obtained in other versions of Parrondo’s games. Fan@es in
the lower panel of Fig. 5.1 we compare the average gain and the entrégedde in the
games with self-transition [74]. Again in this case the maximum gain coincides with th
~ value for the minimum entropy per character for all value§,of

Finally, in Fig. 5.2 we present the comparison in the case of the history depen
games [4] (upper panel), and cooperative games [67] (lower pahelving all of them
the same features as in previous cases. We may conclude from thdse tresuthere
exists, as it happens for the Brownian ratchet, a close relation betweenttbpy and the
average gain. In the next section we will develop a simple argument thatdgitaining
this relation.

5.3 Theoretical analysis

As stressed in Sec. 5.1, the entropy per character of a text prodyeeddigodic source

ist H = — > pi - log(p;), wherep; denotes the probability that the source will emit

a given symboky;, and the sum is taken over all possible symbols that the source can
emit. For instance, if we consider game A as a source of two symbd@lissing) andl
(winning) , the Shannon entropy according as a function of the probapitifyemitting
symboll (i.e. the probability of winning) is given by Eq. (1.96). In Fig. 5.3 we conapar

1Units are taken such that all logarithms are base
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Figure 5.2 Same as Fig. 5.1 in
other versions of Parrondo’s games:
Upper panel: History dependent
games, alternating between two
games with probabilitiegy = =,
p2:p3:i,p4:112(h:g,
G2 =q3 = % andqs = ¢.

Lower panel: Cooperative Par-
rondo’s games with probabilities:
p=3pm=1p =p= 135,
ps = 15 andN = 150 players
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this expression with the compression factoobtained using thgzip algorithm. As
shown in this figure for the case of a single source, the compressiom &ddtte gzip
algorithm does give a good approximation to the Shannon entropy.

l = T T T T =

0,8+ ° B

Figure 5.3. Comparison between
the theoretical value obtained for
< . the Shannon entropy — solid line
— with the numerical values — cir-

0,4+ B . .
. ¢ cles — obtained with thgzip al-
1 gorithm for a single source emitting
0,28 | two symbols with probability.
| | I | |
0 0,2 0,4 0,6 0,8

From now on, we restrict our analysis to the case of the original Pasi®pdradox
combining games A and B, as explained in Sec. 2.2. For the combined game AB we
must distinguish two states, that is, when the capital is multiple of three and wisen it
not. Therefore, we can think of the randomized game AB as originated bgdwees
depending on whether the capital is multiple3obr not. The probability of emitting
symboll when using the first source will be denoteddaywhereas the same probability
will be ¢; when using the second source.

Let us first consider the case = 1, i.e. we store the capital after each single play
of the games. According to the expression (1.97) for the entropy of a rsixedte, the
Shannon entropy for the combined game AB is:

H = —Tlp[qo log(go) + (1 — o) log(1 — qo)] — (1 — Io)[g1 log(q1) + (1 — q1) log(1 — fh()]a )
5.1

beingIly the stationary probability than in a given time the capital is a multipl& of
From the Markov chain analysis in Sec. 2.2.2 we know that the stationaoglpitiy 11
is given by

1-q+q}
3—q0—2q1 + 2901 + q}
In Fig. 5.4 we compare the Shannon entrdpygiven by the previous formula with
the numerical compression factbi|s a function of the probability of mixing games A
and B. Although certainly not as good as in the case of a single game, in Heistba
gzip compression factor gives a reasonable approximation to the Shannopyeoitthe
combined game AB. It is worth noting that in this casedpf= 1 the entropy increases

Iy = (5.2)
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with ~, corresponding to a decrease of the information known about the syistemnaer
to relate the entropy difference with the current gain, we need to consider values
for 6.

Figure 5.4. Plot of Shannon negen-
tropy (solid line) for the combina-
tion game AB according to expres-
sion (5.1), together with the numer-
ical values (circles) obtained with
the compression factor of theip
algorithm in the case whefy = 1
step.

- . | . | . ® 0 o o o 4 &
10 0,2 0,4 0,6 0,8

Ford; > 1 the system gradually loses its memory about its previous state. Therefore,
the different measures are statistically independent and they can hdaredsas gener-
ated by a single ergodic source. For this single source, the probabilitynofng after
one single play of the gamespg, = Iy g0 + (1 — IIy) ¢1. However, we are interested
in calculating the winning probability~. afterd; plays. In order to have a larger capital
afterd; plays it is necessary that the number of wins overcomes the number o losse
single game plays. The distribution of the number of wins follows a binomial disiily
and the probability-. is given by:

>

t

2 5 B
=3 (3) st 53)
k=0

The corresponding Shannon entropy for this single source is:

H = -P. 10g(p>) - (1 _p>) : log(l _p>)‘ (54)

We compare in Fig. 5.5 the Shannon entropy coming from this formula and &he on
obtained by the compression ratio of tgeip program for two different values @ =
500, 1000. In both cases, there is a reasonable agreement between both resuéievéd,
as shown in Figs. 5.1 and 5.2 the entropy follows closely the average gama@mbined
games.
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Chapter 6

Efficiency of discrete-time
ratchets

Since the field of Brownian ratchets acquired its importance, there havenioeeerous
studies on the energetics of these microscopic devices [70, 75-77]evdawinding
the ratchet efficiency in the discrete case uptil now has been an outgfamén prob-
lem. We have shown earlier in Chapter 4 the connection established betvwederkiter-
Planck equation associated to a Brownian ratchet, and the master equatiividg
Parrondo’s games. Therefore, Parrondo’s games can be catsiebeing a discrete—
time and discrete—space version of the continuous flashing ratchet rb6¢e8].

While this approach gives much insight and allows straightforward denedap of
games starting from suitable potentials, finding the correct formalism faridesy the
efficiency of the discrete ratchet and relating it back to the continuowes t@s been
problematic [8].

It is the aim of this Chapter to deepen this relationship in order to calculatefthe ef
ciency of the games. We develop an efficient method for obtaining the statipraba-
bilities and probability current for a discrete—time and space ratchet in tdranpaien-
tial function. We combine the new methods presented herein together witmkeswits
from ratchet theory in order to calculate the efficiency of the discretbeatd his allows
to gain new insight into the games behavior by quantifying the relation betweegath
and the dissimilarity between games A and B.

The Chapter is organized as follows: in Sec. 6.1 we present our thednaticel,
followed in Sec. 6.2 of the calculation of the efficiency.

79
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6.1 Theoretical model

6.1.1 Continuous model

We consider the following version of the flashing ratchetzigt) represent the position
of a Brownian particle whose dynamics can be described through theeldargguation

(t) = =V'(2) - C(t) + f + D(x) - (1), (6.1)

where

1. £(t) accounts for white noise,

2. ((t) is a form of dichotomous noise that switches on (staté(B), = 1) and off
(state A((t) = 0) the potential/ (),

3. fis a constant external force acting on the particle

4. D(x) is the diffusion function.

If V() is periodicV (x + L) = V(x), then the individual dynamics corresponding
to the off and on states both yie{d(¢)) = 0 (for f = 0). However, it is known that if the
potential has a certain degree of spatial asymmetry, the combined dynamicsctéy
the white noise fluctuations obtaining directed motion(t)) # 0, this is the case of
the flashing ratchet. Without loss of generality, we will considéx) to be of the form
given by Eq. (2.2) but setting/(¢) = 0, that is,

Viz) = Vi {sin <2Zx> + isin <4”Lx>] , 6.2)

although other similar potentials can perform the same task.

It can be demonstrated that the previous Langevin equation is equitalarget of
Fokker-Planck equations describing the transitions of the particle betstatas A and
B [56,78] as:

OP4(x,t) _3JA(x,t>

= - —BP ) —aP s )y .
5 97 WAB A(:U t)-I—wB A B(x t) (6.3)
OPg(x,t 0Jp(x,t
Ba(t ) __ E(;i ) _ wp—-aPp(z,t) + wa_pPa(z,t), (6.4)

whereP,(x,t) (resp.Pg(z, t)) denotes the probability of finding the particle in state
A (resp. B) at a given position and timet. Thew,_.g term accounts for the transi-
tion rate between statesand 3. The probability currentg 4 and.Jp are given by the
expressions
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I[D(z)Pa(z, )]
Ox ’

Jp(z,t) = [f —V'(@)Ps(x,1) - a[D@v)@ZB(w,t)L

In this model, once attained the stationary regime we Haver,t) = P4(x) and
Pgp(x,t) = Pp(z); the total current in this regime is constant [79] and given/by-
Ja(x) + Jp(x).

Ja(z,t) = f Pa(z,t)—

(6.5)

6.1.2 Discrete model

Based on the previous model, we can elaborate a set of equations ihesttréoevolution
of the capital when alternating between games A and B, namely, they woutpibakent
to the set (6.3),(6.4) but for discrete time and space. The set of masticeguare

PAr+1) = (1 —vamp) P PA(7) + P () + QZ{L—‘HP'A (T)]+

vB—alpP Py (7) + P PP (1) + ¢ P ()], (6.6)
Pz‘B(T +1)=(1- WBAA)[pfilPEl(T) + riBPiB(T) + Qi+1Pi+1(T)]+
Yaoplpi PR (T) + PR (T) + ‘Jﬁ1P{i1<T)]a (6.7)

WherePA( ) is the probability that the player plays game A with a capital time
T pZ , T andql are the probabilities of winning, drawing and losing, respectively, when
playing gameA with a capitali, and a similar notation for gamB. They satisfy the
normalization conditiom;4 + riA + q;“ = 1. This notation generalizes the original games
for which theself-transition probabilitiearer{* = r? = 0. Note that the probabilities
pit it ¢t pP, rP andgf repeat periodically?, ; = p*, etc. with periodicityL.

For the orlglnal Parrondo games we know that perliod 3 and the winning proba-
bilities are given by = 1 —¢, p¥ = 1 —e, pP = pf = 3 —<. Finally,y,_.5 accounts
for the transition probablllty between stateands. The partlcular case considered in the
original games in which the probability of playing gamdeand B is v and1 — -, respec-
tively, independently of the previously played game, impliesthat = 1—yp4 = 1—7.

Then, following the approach of Chapter 4, it is possible to rewrite E(8),(6.4) in
the Fokker-Planck form as

Pty — PAm = — [Ji10) — I )] —vamBP ) + v5—aPP),  (6.8)
PPy — PPy =—[J8,0) - JP @) +vamBP ) — v5—aPP ),  (6.9)

with a currentsa (n)=L1[FAPA(r)+FA, PA, (7)]-[DAPA(T)-DA  PA (7)), whereFiA =
pd — ¢, DA = 3(1— '), and similarly forJB( ). This form stresses the similarity
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of the continuum and discrete descriptions (compare with Egs. (6.3)-éh8)it is easy
to show that the currents are also given by the net flux between cdivecstates, i.e.,
JiA(T) = pfx : Pz'A(T) - qﬁkl Pfil( ) andJiB(T) = sz : PiB(T) - Qﬁl : P£1(7’)-

In general, it is not possible to solve the previous equations to obtain thalgilities
P (r) as a function of the set of probabilitigs*”, rZ, ¢*F and~,_. 5, even in the
steady state where the left-hand-sides of (6.8) and (6 9) vanish. Akeblarexception
is that of the case g = 1 — yg4 = 1 — v discussed above. In this case it turns out that
the total probabilityP;(t) = P4 (1) + PP (r) satisfies a master equation

Pi(t+1)=pi1Pi1(7) + 7 Pi(7) + ¢ix1 Piv1(7), (6.10)

wherep; = A\p2 + (1 — N)pP,ry = M + (1 = AMrP andg; = Mg + (1 — \)gP.
Furthermore, it is possible to show that the steady state solutions s&ﬁsﬁy ~P; and
PB = (1 — 4)P;. This result allows us to find an analytic solution to Egs. (6.6),(6.7)
for P;“ ande in the stationary regime. The solution is based upon on the correspond-
ing expression derived from Eq. (6.10) in the periodic steady-statmeefpr P; (see
Chapter 4 for further details)

v, Do P0 :
Pi=c" =Y Ay k
J=1 ( 2D])

whereF; = vFA + (1 — y)FB, D; = vD# + (1 — v)D¥ and the value of, has
to be found using the normalization condlt@j ~! P, = 1. The potentiali; is given
by Eq. (4.21), and the total curresitcan be obtalned from Eq. (4.24) and coincides with
the net flux between statésandi + 1, J = p; P, — ¢;+1 P;r1. Notice that although
J=Jt+ J¥ is a constant independentih the steady state, it can not be assured that
JZ.A andJP are constant as well. Finally, the average gain is obtained by multiplying the
current by the periodicity of the system, i@.= JL.

In Fig. 6.1 we have plotted the stationary probabilitie$, PP for the casel, = 3.

We can see the agreement between the stationary probability distridilifiobtained
through the analysis with discrete—time Markov chamé 2.21) and their corresponding
equivalentsP” + P obtained with the current method.

Let us remark that in the case of playing a single game, either ghoreB (corre-
sponding formally to setting = 1 or v = 0, respectively) it is possible to obtain the
corresponding steady state solutions in term of potential funchﬁandVB defined
as in Eq.(4.21) but using the corresponding probabilitig’, ¢, ) or (p?,q¢?,rP)
instead of(p;, ¢;, 7).

So far, we have introduced a method that allows the calculation of the stgtionar
properties, such as the probabiliti€s', P? and P, and the currentd/, JP and J.

We turn now to the problem of evaluating efficiency for our discrete—timeerysThis
has been problematic [8] because there was no clear way of evaluatiagetgy input
or energy output of the system when dealing only with probabilities definegdmes.

(6.11)
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Figure 6.1 Plot of the station-
IS ary probabilities for games! and

B versus the mixing probability.
The inset shows that the sum of
both probabilitiesPa (i) = P +
PP agrees with the expressions ob-
tained for the stationary probabili-
tiesII; obtained for the mixed game
AB through Markov chain analysis.
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With the formalism introduced earlier, a direct relation can be establishecbrtinese
games and the physical model of the ratchets so as to obtain an estimationfi¢itecy
for the discrete—time case.

6.2 Efficiency

Let us now evaluate the efficiency of our system. We will use the definiticgheokf-
ficiency as the ratio) = &, /Eim, and we will provide with suitable definitions for the
energy output&,u:, and input&;,, of the system.

Let us begin by¢;,, defined as the energy that must be supplied to the system for
switching between the two potentials. In order to evaluate this energy input isys-
tem we need potential functions related to each of the two games. Theriéfoseare
dealing with probabilities defining our games A and B, we will make use of EQ1§4
for obtaining the potential for each game.

The energy input can be calculated theoretically by means of a probabibity flu
balance. In the stationary regime, the net flux from a given game, say faamel state
1, towards the other game B and the same stasm be calculated through the difference
equationJA—F = JA, — JA. Clearly the net current/!~? equals the opposite current
from game B to game A, that ig/!~5 = —JB~4, whereJP~4 = JB. — JPB (see
Fig.6.2). Therefore the input energy can now be obtainetias S ' JA—E . (V;F -
vA).

For the energy output, we will use the definition introduced in [80], witgig is
defined as theninimumenergy inputf;, required to accomplish the same task as the
engine. The novelty of this definition is that it permits the evaluation of the effiyiéor
a Brownian patrticle even in the absence of an external fo@dncludes in the evaluation
of the power output the work done by the Brownian particle against thiofmi¢orce).
This leads tcf,,; = fv + I'v?, beingv the mean velocity of the Brownian particle and
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I" the friction coefficient. In our systeii has been rescaled to 1 and the mean velocity
corresponds to the average gainWe thus obtaiif,, = f.JL+ J?L? as the expression

to be used for determining the energy output of our system. Once thessigue for the
energy input and energy output of the system have been obtainedsnnempute the
efficiency for both fair and biased games.

In the case of fair games, = 0 GAME A GAME B
leads tof = 0 and &, = J2L2.
We consider first the original Parrondo
games as defined before. The results T X
are shown in Fig.6.3 where we plot the
energy input, energy output and the ef- 1°
ficiency for those games, as a function @ — @
of the mixing probability~y. Notice Vs
that the efficiency attains its maximum 7 £

value,n = 0.011, aty = 0.362 ap-
proximately, as seen in Fig. 6.3(c).

We consider now still fair games
A and B, but now the probabilities
pf andp? are obtained from suitable
ratchet potentialy”“ (z) andV Z(z). In particular we choose a flat potentiat* (x) = 0
while VB(z) is given by Eq. (6.2) with, = 5 andV; = 0.35. For the fair games con-
sidered here, the force js= 0. The probabilitiegag4 andp? are obtained by inverting
Eq. (4.21) (recall the trivial resujt! = 1/2). The results are displayed in Fig. 6.4. No-
tice that the the maximum value for the efficiengy= 3.554 x 1072 is obtained when
~v = 0.358.

In these two cases of fair games the system possesses a low efficienbybeaause
it works in an irreversible manner, far from its equilibrium state. It is woeimarking
that the magnitude obtained for the efficiency agrees with other studiesefantbff
ratchets [81, 82].

Now we turn to biased games and study the dependence of the efficierttye on
parameterf. Given a set of probabilitieg; defining a game it is possible to compuyte
as the average slopéy;, — Vy)/L, of the associated potentié} given by Eq. (4.21).
Applying this method to gamed and B of the original Parrondo paradox, it is possible
to relatef to the biasing parameter However, the average slopg,, resulting from
game A is different from the slopgs resulting from game B. Since we want to study the
effect that a common forcg has on the efficiency, we have chosen a different approach:
we first compute the potential(g;“ and V;? using the unbiased probabiliti@:@4 and
pP with ¢ = 0, then we modify the potentials by tilting them with a common slope,
V4 = vA — fiandV'? = VB — fi, and then compute the probabilities of the biased
gamep’iA andp’f using the inverse of Eq. (4.21). The energy input, output and effigienc
are then computed using the above defined formalism with the poteWt’iﬁland V/f .

Figure 6.2. Diagram showing the net probability cur-
rent.J*5 from gameA to gameB.
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Figure 6.3 In these figures,
we consider the original Parrondo
games defined by a periadd = 3
and the following set of probabili-
tiesp! = L —e,pf = & —¢
pt = p¥ = 2 — ¢ in the fair
casee = 0. Using the analogy ex-
plained in the text, we have com-
puted the energy input (a) and en-
ergy output (b) as a function of the
mixing probability v. The maxi-
mum energy input is af ~ 0.479,
close to the case of maximum alter-
nation between the games, whereas
the maximum for the energy out-
put (or the maximum gaif) is lo-
cated aty ~ 0.415. The efficiency

1N = Ein/Eout 1S displayed in panel
(c). Its maximum value) = 0.011
occurs aty ~ 0.362.
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Figure 6.4. We plot the energy in-
put (), energy output (b) and effi-
ciency (c) versus the mixing prob-
ability v in the case of fair games
whose probabilities have been ob-
tained from ratchet potentials (see
the main text for the values of the
parameters). The maximum energy
input is aty ~ 0.481, whereas the
maximum for the energy output is
atv ~ 0.413. The maximum value
for the efficiencyn = 3.554x 1073
occurs fory ~ 0.358.
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Figure 6.5. Plot of the efficiency
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for the original Parrondo’s games.
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The results are shown in Fig. 6.5 where we plot the efficiency for the aligiarrondo’s
games as a function of the external forcififpr different values of the mixing probability
~. Two features can be highlighted. On one hand it can be appreciatatetetficiency
attains a maximum value fgf # 0, corresponding to a lower value for the current than
in the case of null forcing. This effect has also been found in other mmofte example

in [81, 82]. On the other hand, we also find a non—monotonic dependéiire position

of the maxima for the efficiency depending on the probabilif1, 82].






Chapter 7

Collective games

This Chapter will be devoted to the development of a theoretical analysiscaliective
game which considers the redistribution of capital between players. Todisetive
games, already described in Sec. 2.3.2, are based on the alternatioerbehgame
A and game B. In [38] different games B are used, however, we wilfict®urselves
to the case were game B is the original Parrondo game whose probabilitiesddep
the capital of the player. Game A is basically a mechanism of redistributionpithita
between players. Two versions are used in [38]: the first one cossadeedistribution
of capital to a randomly selected player; the second considers a redistrilbfi capital
to a neighboring player with probabilities that do depend explicitly on the cagfithle
players.

In Sec. 7.1 we present the analysis when alternating between the origimal B
and the new gamel’, consisting on a redistribution of capital to a randomly selected
player; Sec. 7.2 considers the alternation of the capital dependent gavite 8nother
game A” with constant probabilities. Finally, we analyze the alternation of game B
with a version of gamel” where the probabilities depend on the capital of the players
in Sec.7.3, although this dependence will be slightly different in order fititéde the
analysis.

7.1 Distribution of capital to a randomly selected player

Let us denote byP(ci,c,...cn;r) the probability that at a given time player1 has a
capitalcy, player2 capitales,. .. and so on. This probability density function must fullfill
the normalization condition

Z P(c1,cz,...,cN;T) =1. (71)

€1,C2,.-,CN

The marginal probability for a single playgiis obtained simply by carrying out the
summation over all players byt i.e.,

89
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P(c]-;T) = Z Z .. Z Z .. Z P(cl,cz,.--,CN;T) (7-2)

C1 (&) Cj—1Cj+1 CN
We can write down an evolution equation for the probability density funddéenc,,....cx;r)
for a set of N players alternating between gaméwith probabilityy and game B with
probability1 — ~. The equation is given by

N N
1
Pciea,enit+l) = % Z Z P(ei,ejt1,ey—1,enim)+
#i (7.3)

N

. | | |

' (N’Y> > 0% Pleres—tenin) + ag Pler.enim) + a7 Pler,oe; +1enin)]-
=

Therhsof Eq. (7.3) is composed of the following terms:

e The first term accounts for the evolution of the capital when gagapital re-
distribution) is played; with the term denoting the probability of playing game
A, and% being the probability of choosing playgr Inside the summation we
find the termﬁ indicating the probability for playej’ of being chosen. The
termP(c,....cj+1,...c;—1,...cnir) INSide the summation accounts for the probability
at time of finding player; with capitalc; + 1 and player;” with capitalc; — 1.
Both summations foj and;j’ are done in order to consider all possible combina-
tions between the players.

e The second term accounts for the evolution when the selected playergaimes
B instead of game!’. The terml’T7 includes the probability of playing game B
times the probability of choosing playgr The term in brackets corresponds to
the master equation when playgeplays game B alone (we are following the same
notation as the one used in Chapter 4).

By means of property (7.2) and after some algebra, we can derive therragaation
corresponding to the evolution of the probability for a single playesith capitalc; at
time 7 (all the details are explicitly given in Appendix A.1) as

1-— ) . .
P(Cj§7') = N7 [CLC_JIP(C]-—I;T) + (L(C]]P(cj;’r) + (lij P(cj+1;7)]—|—
N — (1+
+ %[P(cj—i-l;’r) + P(cj—l;T)] + Hp(cjn’). (74)

It can easily be checked that the latter equation fulfills the normalization comditio
for a single pIayelzcj P, = 1. Rewritting Eq. (7.4) as a continuity equation we
obtain the following expression
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I—x cj—i-l)
N

P(cjr+1) — P(ejr) = [ P(c;—1,7) — (a(f +a P(e;r) 4 ay Plej+1,7)]+

%[P(Cj"rlﬂ') — 2P(Cj,7’) + P(Cj—lﬂ')]. (75)
From now on we drop the indek as we are dealing only with one player, and the
capital of playerj will be denoted instead by thusP(c;,r) = P;(7).
As we have seen, we have been able to obtain the equation governinglhioev
of the probability P;(7) for a single player. Taking a closer look to Eqg. (7.5) we can
conclude that the effect of gam#& of a diffusion of capital from playe) to another
randomly chosen playet is equivalent, from the point of view of a single playgito a
diffusion of capital of that player only. Therefore, we may define aentt/; as

_l’_

J; = (1_]\,7) [’ 1 Py (7) — af ' Bi(7)] + %[PH(T) - k(7). (7.6)

Assuming that the system eventually attains a stationary state, we can so{Vedkq.
for P;(7), assuming a constant currefht= J Vi and P;(t) = P;, obtaining

n—HAk Po—z

(1-y)a —1+7
(1—y)af ™ +7 7
P, = P,y and normallzatlon condltloﬁjk 5Pk = 1. The current/ reads

A Ap, (7.7)
(1 - )CL{ +v k]g—l

whereA;, = . The constant#, and.J are obtained from the periodicfty

Py [Hﬁzl A —1

, 7.8
L i A 7o
7=1 (1—)aF T4+
and
1
Py = . - o T\ (7.9)
n _ k 1 — k=541 Tk
2 =1 k=1 Ar st nL_] +1Ak <Zn 1 =1 (1-y)a] - +w>

Y -yad Tl

In Fig. 7.1 we plot the current of a single player in terms of the mixing probability
~ between gamed’ and B. We check this result with numerical values obtained through
simulation withN' = 1000 players.

As players alternate between the original Parrondo game B and the mesvAyawe can consider, as
in the analysis of the original games, that the system is periodic with periodicftyhere L is given by
periodicity of game B).



92 Chapter VIl

0,012 ‘ ‘ ‘ ‘ ‘ .
0,01~ |

0,008

1
|

Figure 7.1. Plot of the theoretical
H — continuous line — and numerical
J0,006- i current — circles < versus the mix-
ing probability for a single player.

0,004 The probabilities used for game B

B | are that of the original Parrondo
[ gamEBZp():TlO,pl :pzzg.
0,002 —
0 1 1 | 1
0 0,2 0,4 0,6 0.8

7.2 Redistribution of capital to a nearest neighbor with con-
stant probabilities

In this section we present a collective Parrondo game obtained from theatiibe of

the original Parrondo game B with a new diffusing garfé However, in this case
the diffusion of capital of gamel” takes place only to nearest neighbors. We consider
a general case where with probability player; will give a coin to its neighboy + 1
located on the right, and with probability the coin will be given to the neighbgr-1 on

the left. Then, the general master equation describing the time evolution obibeyplity
density functionP(c; c,,...cni7+1) When a set ofV players alternate between gamé

with probabilityy and game B with probability — ~ is given by

N
Z [plP(Cl,..Cj/il71,Cj/+1,..CN;T) +prP(Cl,..Cj/+1,cj/+171,..CN;T)j| +

/

Jj'=1

P(Cl,...,CN;T+1) =

=]

N
1-— . . _
+ T’y E [CLleP(cl,..,ijl,..,cN;-r) + CLSJ P(cl,...,CN;T) -+ a(lj]P(cl,..,cj+1,..,cN;T)]. (710)
7=1

All details of the calculation can be found in Appendix A.2. As a result weinlbke
same equation for a single player as the one obtained previauskg. (7.5).

An interesting case appears whgn= p, = % It corresponds to a random distri-
bution of capital amongst nearest neighbors. For this case the mas&tioaqbtained
is



7.2 Redistribution of capital to a nearest neighbor withstant probabilities 93

1—7

P(Cl7"7CN;T+1) - T |:a P(Clv -C 7 +»CNT )_'_ang(Cl?'ch;T)—’_

'MZ

Il
—

J

N
g [ (c1 7~-7Cj—1—1,Cj+1,-~,CN§T)+P(Cl7~-7Cj+176j+1—1,--70N27')}-
Jj=1

EP

—l—aijp(cl,..,cj-—i—l,..,cN, }
(7.11)

Which, after some manipulation, can be written in a continuity form as

Per,enst+1) = Pler,enst) =

N
1_ ' 1 i+1
- %Z [aiﬁP(q,..,cH,..,CN; )= (@77 4 a7 ) Pereyyenm)t
j=1

N
+ aijP(cl,_.,ch,..,cN iT) } % Z |:P(c17..,cj-_1—1,cj-+1,..,cN;7') — 2P(c1,enim)+
7=1

+ P(cl,..,0j+1,Cj+1—1,..,cN;T)] . (712)

We already know from a previous chapterf-Chapter 4— that the term correspond-
ing to game B is equivalent, in the continuous form, to a ratchet potential aatitigeo
Brownian particle. Therefore, we next proceed to find the equivatettel in the con-

tinuous form to that of gamd”’.
Let us consider only gamé”, thus we may set = 1 in Eq. (7.12) which leads to

the following equation

N
Z [P(Cl7--70j71—170j+1,--,CN;T) — 2P (c1,enim)+
=1

1

P(cl,..,cN;T-i—l) — P(cl,..,cN;T) = ﬁ

+ P(Cl,..70j+1,cj'+1—1,..,CN;’7') (713)

We may introduce the step-operators [83hndE~!, which are defined by its effect
on an arbitrary functiorf (n)

Ef(n)=f(n+1), E'f(n)=f(n-1), (7.14)

and that can be expanded in a Taylor series as
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Chapter VII
2 3
E = 1+3x+16%2+§.§%3+ (7.15)
E' = 1-F 45z 555 +- '
- 3z 2 8x2 3l 8363

Then, rewritting Eq. (7.13) using the previous operators we obtain

N
1
Pler,enirt1) — Pler,enir) = —NZ[ LB + EETL — 2)Perenin)| =

N

= oN > [Vj+1 =20 + V1 +Aj(Vj1 + Vjﬂ)} Pler,enir) =
j=1

N
7N Z |:2(Aj — VJ) — Aj(Vj_l + Vj-i—l)} Pei,..enim). (716)
j=1

Where we have defined the terms; and V; so that they can be directly related

to an expansion With partial derivatives a5 = E; — 1 = (99: + %88;2 + ..., and
— 2
Vi=1-E'=2 12+, ..

Regardlng theé.h.sof the previous equation as the discretization of a time derivative
OP(c1,...,cN3T)

, and substituting on theh.sthe termsA ; andV ; by their partial derivatives
expansions, to a first approximation, we obtain

aP(c1,..,cN;T) - ;1 N {82P(c1,..,CN;T) 282P(c1,...,cN;T) 82P(c17 JCN;
aCj_laCj 8c§

77-)
o ) o
j=1

8cj60j+1

This equation can be compared to the general Fokker—Planck equationife than
one dimension [83]

8P(cl,..,CN;‘r)

_ i aF(q,..,CN;T)P(Ch..,CN;T)
or N

8 C;

N
1 82Bij(cl7--7CN§7')P(017--7CN§7')
t5 2

= Bci 86]'

1,j=1

(7.18)
With the result that for gamd” there is no drift, i.e., the termfi'(ci,....cx;7) = 0, and

the diffusion matrixB;;(ci.....cy;7) IS given by

2 -1 0 0 ... 0 -1

os)
Il

| —
o
|
—
o
|

—
o
=)

N . ) (7.19)
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The diffusion matrix is related to the diffusion coefficients of the Langevin equa-
tioni; = f;({x}) + di;({x})& throughB;; = dd” = Y, d;rd;i.. This set of equations
has an infinite set of solutions due to the symmetry properfy;pt= B;;. Therefore, we
must choose the appropriate solution for this system, which to our consisenaight
be

1 -1 0 0 0 0
0 1 -1 0 0
1 _
g Lo 0o 1 10 .0 (7.20)
~1 0 0 0 1

Then, the equivalent set of Langevin equations would be given by

= —=(& — &),
\ﬁ( )
Ty = ——=(§&—&
\ﬁ( ),
(7.21)
i —(en— &)
X = — — .
N JN N — &1
This set of equations clearly preserves normalizatiog)as;) = 0. They could
also be rewritten in the fornt; = \jﬁ 9 = % e IN = L\/]]VV with the properties:

(nimiv1) = —1and(n?) = 2.

Finally, the complete solution would consider the inclusion of a drift term coming
from game B, which as stated previously it consisted on a ratchet—like patetria
Fig. 7.2 we plot the average current for a sef\of= 40 Brownian particles alternating
between a state characterized by Egs. (7.21) and a state with a ratchettdiktgd. The
ratchet effect is obtained as expected, and the curve presents (&sdimdie particle
case) an optimum flip-rate value for which the system attains a maximum current.

7.3 Distribution of capital with capital dependent probabili-
ties

In this section we derive the equation when the probabilities for gafhdepend ex-
plicitely on the actual value of the capital of the players. However, as spagstbusly,
we will make use of a set of probabilities slightly different from those deffind38]. In
order to facilitate our analysis, the following probabilities for gastewill be used
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2.25

1.75 _
Figure 7.2. Plot of the average

current per particle in terms of the
natural logarithm of the flip rate
when they are subjected to a state
where a ratchet-like potentiat-f.
Fig. (2.3)- is acting, and another

0.75 state characterized by Eqgs. (7.21).
r The number of particles & = 40,
0'57 and the results have been obtained

0.25 averaging oveit 000 realizations.
% 4
log(y)
Ciq Cit1
J J
Djj+1 = Pjji-1= (7.22)
Cj+1 +¢j-1 Cj+1 +¢j—1

wherep; ;11 denotes the probability that playgigives away one unit of capital to
playerj + 1, andp; ;_; is the probability that playej — 1 receives the coin instead.
Clearly, these probabilities fulfill the normalization conditipy; 1 + p;;—1 = 1. and
the way they are defined — i.e., the probability of playefr 1 receiving a coin from
playerj being proportional to the capital of playgr 1 — accomplishes the same task as
those defined in [38], that is, those players with less capital posseshex pigpbability
of receiving the coin than those with higher amounts of capital. The only wecoent is
that the capital of the players must remain positive in order to avoid negetiues for
the probabilities.

The master equation for this game is given by

Per,.enim+1) N E E Dy j i P (c1yemeyrtleim—1,enim)+
/ 1]/1 1

1— 2 i il
+ ( ’7) Z [ac_JlP(cl,.A,cj/—l,.A,cN;T) + CLSJ P(cl,..,cN;T) + CL;J P(Cl,..,cj/-l-l,..,CN;T)]
(7.23)

where the termp; ;» denotes the probability that playgrgives a unit of capital to
player;”. We are interested, as in previous cases, in obtaining the stationanpityba
distribution for a single player. Therefore, we must perform the sum {7 E2q. (7.23) in
order to obtain the single player distributiétic;; 7). A comparison between Egs. (7.23)
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and (7.3) yields that the suin’
gives as a result Eq. (A.6).

The most difficult part comes from gana¥'. The second term on this of Eq. (7.23)
must be developed in terms g¢f and then perform the suyq,. . .. . . The
calculations are shown in Appendix A.3. Nevertheless, the main result iz,
even though the probabilities of diffusing capital depend explicitly on thé&alagf the
players, the equation we obtain for the probability density function for desipigyer
agrees with the previous results, that is, Eq. (7.4).

,, of the term corresponding to game B

Cly+5Cj—1,Cj415+5C






Chapter 8

Reversals of chance in
collective games

Cooperative versions of the games, played by a seV dilayers, have been studied
previously. As already explained in Sec. 2.3.2, ref. [67] considerst @fsV players
arranged in a ring such that at each round a player is chosen randompillgyt@ither
game A or B. The original game A is combined with a new game B, for which the
winning probability depends on the state (winner/loser) of the nearedtlyeaig of the
selected player. A player is said to be a winner (loser) if he has won (lisdgdt game.

In [38], Toral considers again a setdfplayers, but game A is replaced by another game
based on a redistribution of capital. When combining this new game with the drigina
game B, the paradox is reproduced.

In this Chapter we present a new version of collective games with nevdecal
features when they are combined. Besides reproducing the Parrffedh ehere a
winning game is obtained from the alternation of two fair games, another éeappears:
the games show under certain circumstances a current inversion whengva. In
other words, the value of the mixing probabilitydetermines whether you end up with
a winning or a losing game AB. As shown in [15], it is not possible to obtainreeot
inversion in a single player set—up using the standard rules of the originagywhen
game A is state independent. For the collective games considered heres aldeto
obtain a current inversion even if one of the games used (game A) use®noation
at all about the present state of the system. And so this current invéssiotollective
genuine effect, without a corresponding analog in the single player game.

The chapter is organized as follows: in Sec. 8.1 we present the gametihade
well as a theoretical analysis by means of discrete—time Markov chain tredaaming
analytical expressions for the stationary probabilities for a finite numbplagkrs; we
also provide some qualitative insight into this new current inversion effeictally, in
Sec. 8.2 we offer a qualitative picture of the impossibility of a current inwanssing the
original games.

99
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8.1 The games

The games will be played by a set of players. In each round, a player is selected
randomly for playing. Then, with probabilitiesand1 — ~ respectively game A or B is
played. Game A is the original game in which the selected player wins or losesoan
with probabilityp? and1 — p respectively. The winning probabilities in game B depend
on the collective state of all players. Again, as in [67], a player is said swmner or

a loser when he has won or lost respectively his last game. More dyetisewinning
probability can have three possible values, determined by the actual nomieners:
within the total number of playerd’, in the following way

[\

plB |f ) > 3
p? = probability to win in game B = pQB if % <i< %, (8.1)
N

Y if i< 5.

' h ' /\ /\ ' Figure 8.1 Different states and

allowed transitions forN players.
""""" The arrows indicate the state of
x__“ v each player being a winnearfow

q N O up) or a loser arrow dowr).
2

8.1.1 Analysis of the games

The main quantity of interest is the average gain of the collectiofV gflayers when
playing the stochastic game AB. Since the winning probability of game B onlyndepe
on the total number of winners, it is sufficient to describe the games usetgpds + 1
different states{og,01,...,0n}. A stateo; is the configuration wheré players are
labeled as winner an®y — i as loser. Transitions between the states will be determined
by the forward transition probability;, the backward transition probabiliy, and the
probability for remaining in the same statg see Fig. 8.1.

Denoting asP;(t) the probability of finding the system in stadg at the t+h round
played, we can write the equation governing its time evolution as

Pi(t+1)=pi1Pi—1(t) + i Pi(t) + qiv1Pita (1), (8.2)

with 0 <7 < N and where the transition probabilities are given by
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pi = %[W‘L‘Hl—v)pﬂ’ (8.3)
2N, 4 5 N—i

i = et =P+ (8.4)

o = ~[a-pH+a-7)a-pP). (85)

These transition probabilities have been obtained through the followingmeas if
we recall that in statéthere areV — i losers and winners, the only way that we can go
forward to state + 1 is by choosing a player labelled as a loser — with probabﬂ@@i
— and that player winning the game. So if there is a probabjliby playing gameA and
a probabilityl — ~ of playing gameB, the combined winning probability will be given
by v pA + (1 — ) pf. Considering these two contributions, the forward transition (8.3)
from statei to statei + 1 is obtained. The transition probabilitiesandg; follow from
the same reasoning.

The set of transition probabilitig®;, ¢;, ;) must satisfy the normalization condition
pi + i + ¢; = 1, which implies for the probabilitie®; (¢) thath\i0 Pi(t) =1, as long
asy N P(t=0)=1.

This system ofN + 1 equations can be solved in the stationary state, where the
probabilities no longer depend on tif(t) = P In this case Eq. (8.2) can be rewritten
as

(pi + @) P = pici Py + qz’+1Pf+t1. (8.6)

Considering that the system is bounded by statasd NV we have

Pt = q Py,
(p1 + @) Pft = poP' + g2 P,
(p2 + @2)P5' = p1 P} + g3 P5',

(pi + @) P = pica PPy + i P2,

(pN—1+qn-1)PY_1 = pn—oP¥_5 + qn Py,
qNPﬁ;t = pN—lP]‘i;ll' (87)

Writing the previous set of equations in terms of the stationary probability at the
origin Py we get
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p =R

stt _ &Plst _ Pop1 P§t7
q2 q192

P:’,ft _ @Piet _ Pbop1p2 PSt,
q3 4149293

oy VYT qgeasan

Note that these solutions entail the detailed balance property between tiboreig
ing stateg; P! = qi+1Pifr1. This is due to the reflecting boundary conditiong at 0
andi = N. Through the normalization conditioEiN:0 Pft = 1 we may obtainP;?.
Thus, the general solution can be written as

Pﬁ[t PN-1 pst Pbopip2..-PN-1 Pdgt. (88)

1
P = ZPOPL Dic1 i1 Giv2 AN (8.9)
or equivalently,

1

Py = - 114243 - - AN
1

P = 7P0 0243 - 4N
1

P, = —PoP1 4304 - - - AN
1

Py = —PoP1P2 s - - AN
1

Py = ZPop1D2 - PN-1 (8.10)

whereZ is the normalization factor. Once the stationary probabilities are calculated,
we can obtain the average winning probability over all states for the stiicbambina-
tion AB (mixing probability~y) from

N
pain = [vp* + (1 =) p’] P (8.11)
i=0
The average gain can then easily be evaluated through the expréédion 2p;l5 —

The properties of the separate games A and B can be obtained by repradiey
previous expressionsby 1 or 0 respectively.
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0.05
0.04- :
0.03- :
JQB
0.02- :
Figure 8.2 a)Plot of the cur-
0.01- | rent versus the mixing probabil-
ity v between games A and B for
N = 4 with probabilitiesp® = 1,
1 2 3
0 ! ! ! ! pp = 0.79, pp = 0.65 andpy =
0 02 04 06 08 ! 0.15. b) Plot of the current versus
0.0006 the mixing probabilityy between
games A and B forN = 3 with
0.0004 probabilitiesp® = L, pj; = 0.686,
ph = 0.423 andp} = 0.8.
0.0002
JA+B 0
-0.0002
-0.0004
0 0.2 0.4 0.6 0.8 1
2
N Ph
Pp—1
pp—Pp—1

(pE—-D (P +1D)+/(p5—2) (P —Dp} (% +1)

(pp+pE—1)

(pp—1)*(pp+1)

1+pL+(p5—2) (pE+pErE—(0%)?)

{1_

r}h

pb—1

-1
5+2pk (p5—3)
1+2p% (1+p%)

Table 8.1 Condition onp% in order that game B is fair faN = 2, ..., 5.
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8.1.1.a The Parrondo effect

We know that the Parrondo effect appears when from the combinattwodéir games,

we obtain a winning game. Clearly, game A is fair fgt = 1/2. For game B the set of
values{pk, p%, p%} giving a fair game is more difficult to determine because it depends
on the total number of playe®. The conditions o for a fair game B have been
found analytically by a symbolic manipulation program upNo< 13. In Table 8.1

we find listed the conditions of fairness fpf, up to N = 5. When playing only game

B (y = 0), the following symmetry in the stationary distribution can be deduced from
Eq.(8.9)

1 .2 .3 3 2 1
PiSL{PByPvaB} _ P]s\ftii Py, 1—pp,1 pB}. (812)
This property implies thai4Z is unaffected by the parameter transformatigp;, p%, p%} —

{1-p%,1—p%, 1—pL}. Italso means that for the parameterfge, p% = 1/2,1—pL},
the stationary probability distribution is symmetric over the states, P&. = P§ ..
Therefore, when combining this with game A, i.e., alternating two games with symmet-
ric probability distributions, always yields a fair game, independent of &heeg of,
N andpk. To see the Parrondo effect, we need another, non-trivial, parasestehich
yields a fair game B. For example, fof = 4 we obtain a fair game B whes}; = 0.79,
p% = 0.65 andp% = 0.15. The stochastic combination with game A reproduces the
desired Parrondo effect, see Fig. 8.2.a.

8.1.2 Results
8.1.2.a Two players

For N = 2 players, there arg different states. Fig. 8.3.a shows the regions in parameter
space{y, pk, p%} where the mixing0 < v < 1) between games A and B results in a
fair, winning or losing game. Note tha, is fixed by the condition to have a fair game
B, see Table 8.1. Besides the cage= 1 — p%, valid for any number of players, also
ph = p% results in a fair game foN = 2, independent of the alternation probability
~. From Eq. (8.9), one can deduce that = p%, andpy = 1 — p3, imply a symmetric
distribution Pt over the states, i.eP§' = Ps'. As mentioned before, this property
prohibits any net current in the system. For all other valugstoandp?, the Parrondo
effect appears, that is, game AB is either a winning or a losing game, cf8 Bi@.

8.1.2.b Three players

Fig. 8.3.b shows foV = 3 the surfaces in parameter spdee pk, p%; } where AB is a
fair game. Besides the plapg = 1 — p3,, there is a second, curved surface with values
of ~ different from0 and1 which results in74Z = 0. This curved surface is not uniform
in v and is therefore the collection of points of flux reversal between a wiranddosing
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Figure 8.3. a) N = 2. The
regions in parameter space
for for which p2Z = 0.5,
0.499 and 0.501, indicating
the regions where AB is fair
(blug), losing fed) and win-
ning (Qreer) respectively. The
blue diagonal planes show the
situationspy; = 1 — p% and
py = p%, for which AB is
fair, independent of. b) N =

3. The regions in parame-
ter space for which the mix-
ing (0 < v < 1) between
game A and B results in a fair
game. Besides the trivial di-
agonal plane, there is a curved
plane — not uniform iny — for
which J4Z = 0.
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game AB. This implies that, depending on the valueyafe can either have a winning
game or a losing game by alternating between two fair games. For example, hZFiyg.
we have plotted the current!” vs. ~ for the set of probabilitiep” = 1, pl, = 0.686,

p% = 0.423 andp%, = 0.8. For low values ofy the resulting game is a losing game,
whereas for high values ofthe game turns to be a winning game, cf. Fig 8.2.b. In both
regions there exists an optimal value fpgiving a maximum current. We can provide
a gqualitative picture that may help understanding the mechanism by which rttemtcu
inversion phenomenon takes place.

When playing exclusively game By (= 0), the stationary distributiod®®" is not
homogeneous. This is reflected by the fact that the central States-} have a higher
occupancy probability®s) than the boundary stat€s(, o3}. On the other hand, if we
look to the winning probability, it is higher in the latter set of states rather thanein th
former one gL, p%, > p2).

Indeed, the central states can be labelleldsingstates, as when combining game B
with game A for any0 < v < 1, the average losing probabiligf = v(1 — p4) + (1 —

Y)(1 - pP) < % i.e., it is more likely on average for a player to lose money rather than
to win when being in one of these states. On the other hand, for the bgustdges the
contrary is true: it is more likely to win money rather than to lose for@ry v < 1, so

we can refer to them aginningsites, i.e.p?’ = yp? + (1 —v)p? > 1.

When combining game B with A, the resulting game will be fair, losing or winning
depending on the net balance between the occupancy probabilities aadethge win-
ning probability on each set of central and boundary states. Fotylgalues (playing
game B more often), the high occupancy probabilityof, o2 } is the dominant part, and
due to the low winning probability on these sites the resulting game is a losing game. O
the contrary, for highey values (playing game A more often), the winning probability on
the boundary site§o, o3} is high enough to compensate their low occupancy, resulting
in a winning game.

8.1.2.c N players

For a general number of players, we have not been able to find theiaabdxpressions
for a fair game B. Nevertheless, we will show numerically that the resultsvfor 3

are representative for any. This is illustrated by Fig. 8.4, where the parameter space
{p%,p%} giving a fair game B is shown, corresponding to a fixéd= 0.4 and different
values of N. As shown, the different curves seem to converge to a limiting curv€ as
increases. Note that all curves intersect at the trivial ppit = 0.4,p% = 0.5,p% =
0.6}.

We can also obtain the parameter space where the current inversiomlagesfor
different values ofV. For clarity reasons we show in Fig. 8.5 only a vertical slice corre-
sponding to a fixeds = 0.4, and different values oN. Again, the regions for which a
flux inversion exists, doesn’'t seem to depend mucliVorThe only exception iV = 4,
for which the curve bends in the other direction. This is a consequenite dact that
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0.6

Pg

0.2

Figure 8.4. Plot of the parameter spade?,p%} for a fixedpy = 0.4 that gives a fair game B
for different values ofV = 3, 10, 30, 50, 100, 200 and300. As it can be seen, the curves seem to
converge to a limiting curve a¥ increases.

for N = 4 there exists only one state (namely) where the probability% is used. This

is confirmed by our findings when we modify the definition of game B such tlea¢tis

for any IV only one state wherg, is used. The fact that all curves of inversion points are
symmetric upon reflection about the plarje = 1 — p%, is a consequence of the property
of Eq. (8.12).

8.2 Parrondo’s games and the current inversion

As stated previously and shown in [15], the effect of a current imverghen varying the
mixing probability~y is not possible when combining the original game B with a state in-
dependent type game A. One way of understanding the reason is thtmugbhantitative
relation established in Chapter 4 between the Brownian ratchet and &asgames. It
was shown that a fair or unfair paradoxical game corresponds ta@djeor tilted po-
tential respectively in the model of a Brownian ratchet. Thus, the questireduces
to explain why there is no current inversion in the flashing ratchet modehwhrying
the rate of alternation between the potentials.

In the flashing ratchet model, the appearance of a flux when alternatingdrea flat
and an asymmetric potential is due to a rectification process. From Fig. 2.8enbat
the asymmetry present in the ratchet potential will always favor a rightweanement
of the Brownian particles. Thus, whatever the rate of alternation betwatss©N
(asymmetric potential) an@FF (diffusive state), the induced current will always be
unidirectional. It is clear then that no current inversion may take placerthi scheme
unless some other parameters rather than the flip rate are varied.
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Figure 8.5. Plot of the points in parameter spage;, p%; } where (fory = 0.4 fixed) AB is a fair
game. Results for different values of the total number of plagérs 3,4, 10, 20, 30,40 and50 are
shown. The diagonal line shows the common plahe= 1 — p3, that corresponds to a fair game B
for any number of players/.
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Truels and N-uels

In this Chapter we present a detailed analysis using Markov chain thesoyne versions
of truel games in which three players try to eliminate each other in a seriegdbemne
competitions, using the rules of the game. These games were first studiélddyrf42]
from the point of view of game theory. Our treatment reproduces theesgjans for the
winning probability of each player, including the equilibrium points. Furtheemee
give expressions for the distribution of winners in a truel competition. biiGe9.1 we
introduce some basic concepts on game theory and the main notions of tmes ga
Sec 9.2. In Sec. 9.3, and in order to introduce the general methods in dersimptext,
we present a detailed analysis for the case of duels. Afterwards 9Sk&s devoted
to the analysis of the strategies —9.4.1— in the random —Sec. 9.4.2— anatsdque
Sec. 9.4.3-versions of truels, together with an analysis of the opinion imdsiet. 9.4.4.
In Sec. 9.4.5 we present the distribution of winners when playing the tameég as well
as the opinion model. We study the effect of introducing spatial deperdaritese
models in Sec. 9.4.6, and finally truels are generalized to more than threespiaye
Sec. 9.5. Most of the details of the calculations are left for AppendicesiBCashowing
here only the main results.

9.1 Introduction

Making a decision is not an easy task, and it turns to be even more diffibel wore
than one person is involved, with the result depending of all decisions.ta&esides,
in everyday life we encounter many situations in which we are posed with dilemmas
appearing from the confrontation of our own interests with that of othevithaals or the
society surrounding us. Thus we are frequently required to take desjsiith outcomes
that not necessarily are those one expeatpdori. Does exist a rational way of behaving
in those situations?

A formal answer to this question was not found until the mid 40’s, when the-math
ematician J. von Neumann (1903-1957) published in collaboration with thed®om
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economist Oskar Morgenstern the bobeory of games and economic beha\jig4].

In this book von Neumann establishes the foundations of what was latedcasgame
theory He realized that saloon games (like poker,. . .) raised simple dilemmas thét cou
encounter analogous conflicts in economy, politics, everyday life or weesituations.
Following the words of the authors, a gameaigonflictive situation where one has to
take a decision knowing that others also take decisions, and the outcaime adnflict

is determined, in some way, from all decisions taken

Strictly speaking, game theory can be considered as a formal study fittand
cooperation, a branch of mathematical analysis developed to study demialong in
conflict situations. They appear when two or more decision makers haiffiegedt
objectives act on the same system or share the same resources. Thanpase f game
theory is to consider situations where instead of agents making decisioeacions to
exogenous prices, their decisions are strategic reactions to other ageons. The goal
for all agents is always trying to obtain the maximum payoff, which can benstobd
as a quantity reflecting the desirability of an outcome to a player, for whatesason.
The expected payoff incorporates the player’s attitude towards rislkeserhgents (or
decision makers) can either be individuals, groups, firms, or any cotdrira these. In
game theorygamedhave always been a metaphor for more serious interactions in human
society.

We may distinguish betweetooperative game theorgnd non-cooperative game
theory. The former case investigates coalitional games, characterized by dehaih-
description, specifying only what payoffs each potential group, atittan, can obtain
by the cooperation of its members. The latter case is concerned with theiaradlys
strategic choices. The details of the ordering and timing of players’ chareesssential
to establish the outcome of the non-cooperative games.

von Neumann solved non-cooperative games in the caperefrivalries i.e., two
person zero-sum games, in which one person’s gain is another'stoise payoffs al-
ways sum to zero. 11950, John Forbes Nash [85] demonstrated that finite games have
always an equilibrium point, at which all players choose actions whichesefor them
given the opponents’ choices. This proposal applied to a much wideraflgames with-
out restrictions on the payoff structure or the number of players [$6]8i& idea oiNash
equilibrium? is that a set of strategies, one for each player, would be stable if ndtzatly
a unilateral incentive to deviate from the strategy they have adopted. dhibeum
notion supposed a key concept of non—cooperative game theariytiening the use of
game theory in economics, and has been object of analysis since theas later de-
veloped by Harsanyi [88], who extended the Nash equilibrium to a latges of games
of incomplete informationwhere a player making a decision cannot always observe all
previous decisions neither know other players’ preferences.

Since the pioneering work of von Neumann and Morgenstern, game thasrge-

1we will return later in this Chapter to the conceptNiish equilibria explaining it in more detail in
Sec. 9.4.2.
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veloped considerably and has found many applications in numerous figldsas eco-
nomics, social science, political science and evolutionary biology. Indlfering Sec-
tions we will present a detailed study of a non-cooperative game knotmedsoffering
an alternative analysis more adequate to the physics community to that cahtiycte
Kilgour [42] in the field of game theory.

9.2 Introduction: truel games

A truel game can be considered as the extension of a duel played byintdigduals.
These players, which will be named as A, B and C, possess differektmaaships, that
is, the probability of hitting a chosen target. Markmanships will be denotegtaandc
for players A, B and C respectively. Without loss of generality we willass throughout
this Chapter that the players are labeled suchdhatb > c. In this game all players
share the same goal: to eliminate all the opponents. The game ends when tdye is
one survivor left, the winner of the game. The mechanics of the truel eatescribed
by the following steps:

1. Each round — or time-step —, one of the truelists is chosen for playing.

2. He then decides who will be his target and, with a certain probability — thk-mar
manship — he does achieve the goal of eliminating that opponent from the game

3. Whatever the result obtained by the player, steps one and two asgteé@gain
until there is only one survivor.

Based on the rules used for selecting the players, we may distinguish betwee
main types of truels:

e Random truel. Each round one of the remaining players is chosen randomly with
equal probability.

e Sequential truel. In this case there exists an established firing order, which will be
followed throughout the whole game. We allow players with worst markmanship
to shoot firstly, followed then by players with better markmanship. Accorting
the notation introduced earlier, the firing order in the sequential truel isB-B

e Simultaneous truel. In this truel all players shoot at the same time.

A paradoxical or counter—intuitive result appears in this game, as theisruwith
the highest markmanship does not necessarily possess the highésilqanabability.
This paradoxical result was already mentioned in the early literature de [A2. These
games were formally introduced for the first time by Kinnaird in 1946 [89]aait/h the
nametruel was coined later by Shubik [90] in the 1960s.

We find in the literature other models similar to the truel game that present alse cou
terintuitive results, like for instance thieck—scissors—papegame. This game has been
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applied to some convective instabilities in rotating fluids [91], as well as tolptpo
dynamics [92,93]. It consists on a system with three species interactingadthother

in such a way that they create a competitive loop (recall that imable-scissors—paper
game a rock beats a pair of scissors, scissors beat a sheet of papepar beats a rock).
The paradoxical effect in this model is that the least competitive species b@adghe one
with the largest population and, when there are oscillations in a finite populébidre

the least likely to die out. This game has also been applied to a voter modeb]94, 9
obtaining again a paradoxical result, namely, an initial damage and ssjgores one
candidate may later lead to an enhancement of the same candidate.

Different versions of the truels vary on the number of tries (or “bullets/dilable
to each player, on whether they are allowed to “pass”, i.e. missing the shootir-
pose (“shooting into the air”), on the number of rounds being finite or infieite All
these modifications lead to games with different outcomes [39-41]. Besigscan
be further extended through the introduction of coalitions between the tsjdhat is,
the appearance of cooperations between different players so thatahaet a common
target (these games are knownca®perative truel§96]), in such a way that they can
obtain greater benefits from that coalition improving their own survivababdity. We
will restrict ourselves to the case of unlimited ammunition, and the game will continue
until there is only one player left (so that there is no upper limit in the numberusids);
besides, players are also allowed to lose their turn by shooting into the aissibity
that turns out to be useful in some particular cases.

The strategy of each player consists in choosing the appropriate tangatitis his
turn to shoot. Rational players will use the strategy that maximizes their ovisalpitity
of winning (considered as the payoff) and hence the ensemble of playiechose the
strategy given by the Nash equilibrium point. In a series of seminal pap@+gil],
Kilgour has analyzed the games and determined the equilibrium points undeety of
conditions.

In this Chapter, we analyze the games from the point of view of Markoin¢haory.
Besides being able to reproduce some of the results by Kilgour, we obtginahability
distribution for the winners of the games. We restrict our study to the caskiaithere
is an infinite number of bullets and consider two different versions of thed: trandom
and fixed sequential choosing of the shooting player.

Furthermore, we consider a variation of the game in which instead of eliminagng th
competitors from the game, the objective is to convince them on a topic, makitrg¢he
suitable for a model of opinion formation.

9.3 The duels

In this simpler game we consider two players, A and B, with markmanshgusd b
respectively, such that > b. We will consider the random duel in which the person
to shoot next is randomly selected with equal probability between the tworplage
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well as the sequential version in which the bad player, B, starts shootththan they
alternate fires. In any case, the game continues until there is only onecssulfwe take
the model as an opinion model, the game continues until one player has aahirec
other and hence both share the same opinion. Clearly, in a duel it makess®fsr a
player to lose his opportunity to eliminate the opponent by shooting into the athand
only meaningful strategy is to shoot into the other player.

An analytical study done with Markov chains for both the random duetla@dpin-
ion model shows that both models can be described through the same Madinwvith
three states (see Appendix B.1 for further details). If we denote thévaliter convinc-
ing) probabilities of players A and B as; andrp respectively we have

a b
a+b’ B A
a result that indicates that the higher the markmanship of a given playdriginer the
survival (convincing) probability in the random duel (opinion model).

Turning to the case of the sequential duel, this game can be described wéttkavV
chain with four states. The analytical expressions obtained for thevaliprobabilities
are

TA = (9.1)

B a B b(l —a)
T1-(1-a)(1—-b)’ Bl d—a(1-b)

A closer study of Egs. (9.2) shows that even though the worst player shooting
first, he achieves a higher survival probability than A only when
b > .. Thus, in the sequential duel the unfavorable situation of player B having
lower markmanship than A is partially compensated by being the one shootingtin fir

place.

A (9.2)

9.4 The truels

9.4.1 Strategies in truels

If a third individual comes into play, the previous situation of a duel is nodosgnple.
Now every player in the truel must consider all possible actions that ofh@wnents
may take and their corresponding outcomes. In this case, we must cosisategies
and make use of some concepts of game theory. For concretenessittama ¥oss of
generality, we consider that the third player C has the lowest marksmanséigh that
a>b>c.

It turns out that strategies followed by the players are a key point in rdatirg
the winner of the truel. As explained previously, all players in the truelestiee same
goal: to be the only one surviving the truel.This can be explicitly imposed thrdiug
inclusion of a “payoff’, a concept introduced in game theory and thatesponds to
some sort of reward the player receives for achieving the goal. lerdodmaximize
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their payoff, players have to chose strategies that maximize their supriebhbility.

When the three players are still in the game, a player has three possiblgisgate/o

correspond to choosing one of the two opponents and the third strategghiedbinto
the air (or missing the shot on purpose). If one of the three playersdeas femoved
from the game, we are in a duel situation and, as discussed before \{tstrategy is to
aim at the remaining opponent. We also assume that strategies adopted lay¢hne are
non—cooperative, in the sense that alliances or pacts between theot allewed.

9.4.2 Random firing

Let us first fix the notation. We denote B4z, Pac and P,g the probability of player
A shooting into player B, C, or into the air, respectively, with equivaleffindens for

players B and C. These probabilities verfip + Pac + P4y = 1. We will consider
only “pure” strategies, namely, only one of these three probabilities is tageal to
1 and the other two equal @?. Finally, we denote byr(a;b,c) the probability that

player with marksmanshig wins the game when playing against other two players with

marksmanships andc. This definition impliesr(a; b, ¢) = w(a;c, b) andnw(a; b, c) +
7(b;a,c) + w(c;a,b) = 1. Recall that we use the conventian> b > c.

The corresponding Markov chain for this game is composed of 7 diffestates
labeled as ABC, AB, AC, BC, A, B, C according to the players remaining irgtiree.
Three of these states, A, B and C are absorbent states. The detailsafdhkation for
the winning probabilities as well as a diagram of the allowed transitions betstat¥s
are shown in Appendix B.2. We now discuss the results in different cases

Let us first imagine that players do not adopt any thought strategy acil @ne
shoots randomly to any of the other two players. Clearly, this is equivalesgttig
Pyp = Pac = Ppa = Ppc = Poa = Pop = 1/2. The winning probabilities in this
case are:

ﬁ’ m(ba,c) = ’ m(c;a,b) = — (9-3)

b _ _ v _
m(a;b,¢) at+b+c at+b+c

a result indicating that the player with the higher marksmanship possessegtibe
probability of winning. Identical result is obtained if players include shapiinthe air
as one of their equally likely possibilities.

It is conceivable, though, that players will not decide the targets rahcidut will
use some strategy in order to maximize their winning probability. As explained
viously, completely rational players will choose strategies that are bgigomses (i.e.
strategies that are utility—maximizing) to the strategies used by the other playess.
defines an equilibrium point when all players are better off keeping tltirabstrat-
egy than changing to another one. Accordingly, this equilibrium point eaddfined

2Another possibility that we do not consider in this game is the“mixed” stratelizh consists on taking
two or more of the probabilities strictly greater than 0.

pre
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as the set of probabilities,z (with « =A,B,C and =A,B,C,)) such that the win-
ning probabilities have a local maximum. This idea, that is nothing but the contep
Nash equilibriaintroduced earlier, is clarified with the following example: in Table 9.1
we present the different survival —or winning— probabilitieg 7z andr¢c of players

A, B and C respectively for different strategies adopted by the playben they play
the random truel. These values are calculated considering that playas K% of
effectivenessd = 1), player B has0% (b = 0.8) and player G0% (¢ = 0.5).

Let us start by looking in Table 9.1 at the set of strategies givefithyy”, B}, which
consists on player A aiming at player C, player B aiming at player C and pagéning
at player B. In this case we can see how the player with the highest alpvobability is
A with a 58% percentage of winning, followed by player B wi1.8% percentage and
finally player C with a very low percentage ©22%. If player C analyzes this situation,
he concludes that if players A and B adopt these strategies in the gameegitds for
him to change his own strategy and instead of aiming to B, set as a new thget A.
Reasoning in this way, he increases his survival probability umt6a.

TA 8 TC
0.58 | 0.348| 0.072
0.434 | 0.481| 0.085
0.386 | 0.407| 0.207

0.2415] 0.541| 0.2175
0.628 | 0.155| 0.217
0.483 | 0.288| 0.229

0.4348| 0.214| 0.3512
0.29 | 0.348| 0.362

WWWWOOOO >
>>00>>00H
>W>W>wW>mAO

Table 9.1 Table corresponding to the survival probabilities, 75 andw< of players A, B and C
respectively, for the different set of strategies adopted in the cate gandom truel. Player A has
100% of effectiveness, player B &0% and player C &0%.

Once we are found in the s¢€, C, A}, we can follow the same reasoning but for
player B, and see that it is better for him to change his strategy —aiming arplay
setting as a new target player A (increasing from 48.1% to 54.1%). This leads us
to the set{C, A, A}. Now it is the turn of player A who decides to change strategy and
set B as a new target thus leading the the set BAA whgrdas indeed increased from
24.2% 10 29.0%.

Executing the same procedure for the rest of strategies, we see thadatbl¢éhe
same strategy se{.B, A, A}. This is the uniquNash equilibrium poinof the random
truel, meaning that no player improves his survival probability by changisigtrategy,
as long as the rest of players keep theirs. Therefore, this setponegsto a local maxi-
mum of all survival probabilities of the players. Besides, when all piyse their 'best’
strategy{ B, A, A} we are lead to the paradoxical result that the player with the worst
marksmanship can become the player with the highest winning probability. dimis-s
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what surprising result can be easily understood if one realizes thadrplagt as primary
target either player A or B, leaving player C as the last option and ther@foreasing
his winning expectation.

The strategy{ B, A, A} is known [40, 42] as thetrongest opponent strategys all
players aim at the opponent with the highest markmanship. For the randehit is the
equilibrium point whatever markmanshipsb ande, as long as the conditian> b > ¢
is fulfilled (in Appendix C.1 is shown the demonstration for arbitrary valugsandc).

Using this strategy, the winning probabilities for the random truel are

2

a

m(aib,c) = (atc)at+b+c)

W(b; a, C) = a—l—l;)—i-C’ 9.4)
' B c(c+ 2a)

mleia,b) = (a+c)a+b+c)

This set can be obtained from Egs. (C.1) from Appendix C Wity = Poa =
Pga=1 andPAc = PAQ) = PBC = PB(Z) = PCB = PCQ) = 0.

In Fig. 9.1 we plot by colour code the region in parameter space in whidhmager
possesses the highest survival probability when playing the randemmarying mark-
manshipsh and ¢ and keeping: fixed and equal td. It can be appreciated that the
region of player A is larger than the ones for B and C. In this figure, mankitig a
has been set to its highest possible valubecause other values# 1 can be related
through the scaling relations(a; b,c¢) = w(1;b/a,c/a), w(b;a,c) = w(b/a;1,c/a),
m(c;a,b) = mw(c/a;1,b/a).

9.4.3 Sequential firing

In this version of the truel there is an established order of firing. Theepsayill shoot
in increasing value of their marksmanship, i.e.¢it> b > c the first player to shoot
will be player C, followed by player B and the last to shoot is player A. Téguence
repeats until only one player remains. Again, we have left for Appendhiiie details of
the calculation of the winning probabilities. In Appendix C.2 we reproducelttaysis
of the optimal strategies which agrees with that obtained by Kilgour [40]. fihim
result is that there are two equilibrium points depending on the value of tictidn
gla,b,¢) = a*>(1-b)%(1—c)—b*c—ab(1—bc): if g(a,b, c) > 0the equilibrium point
is the strongest opponent strateBys = P4 = Pca = 1, while for g(a,b,c) < 0 it
turns out that the equilibrium point strategyfts 5 = Ppa = Pcg = 1, where the worst
player C is better off by shooting into the air and hoping that the secondlzgstr B
succeeds in eliminating the best player A from the game. Player C would usexhe
turn to try to eliminate the remaining player, becoming the winner of the truel.
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0,2 04 06 08
b

Figure 9.1. Diagramb vs c settinga = 1 where it is plotted with color codes which is the player
with the highest survival probability for the case of the random truelweing the optimal strategy,
as given by Eqg. (9.4). Black color corresponds to the region whesepA has the highest winning
probability, red color corresponds to player B having the highest winpinbability and finally the
green color corresponds to player C being the player with the highestalysrobability.

0 0,2 04 06 08 ]
b

Figure 9.2. Same as Fig. 9.1 in the case that players play sequentially in increasigadriheir
marksmanship.
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The winning probabilities for this case, assuming b > ¢, are given by

(1—¢)(1—b)a?
lc(1—a)+a]b(l —a)+a]’
(1—c)b?
(c(1=0)+b)(b(1 —a)+a)’
clbe + alb(2 + b(—1+¢) — 3¢) + ]|

meGab) = AT ol +al = Bt b= a) (9.5)

m(a;b,c) =

w(b;a,c) =

if g(a,b,c) >0, and

a?(1 —b)(1 — ¢)?

m(a;b,c) e+ (1—a)da+b—a)+cl—a)l—0b)]
m(b;a,c) = bl =) +)
T b+ (1 —=0b)c]la+b(1—a)+c(l—a)l—0)]
ac(1-b)(1—c) + c(b+c(1—2b))
7T(C; a, b) _ a+c(l—a) b+c(1-b) (9.6)

[a+b(1—a)+c(l—a)l—-0)]

if g(a,b,c) < 0. Again, as in the case of random firing, the paradoxical result appear
that the player with the smallest marksmanship has the largest probability to win the
game.

Due to the imposed firing order (C-B-A), player A is the last one to shoagréibre,
the a priori advantageous situation given by a high marksmanship is partistlyTlbis
is reflected in Fig. 9.2, since the region where player A is the favorite hazalsed
considerably compared to that of Fig. 9.1. In fact, the a priori worstepl&y is the
favorite in a larger number of occasions. We explained previously thet there two
equilibrium points in the sequential truglB, A, A} and{B, A, )}. The last one is the
relevant in the small green region located in the black region seen in Fig. 9.2.

9.4.4 Opinion model

We reinterpret the truel as a game in which three people holding diffepembas, A, B
and C, on a topic, aim to convince each other in a series of one-to-onessiiggs. The
marksmanship (resp. b, ¢) are now interpreted as the probabilities that player holding
opinion A (resp. B or C) have of convincing another player of adoptirgydpinion. The
main difference with the previous games is that the number of players pissdways
constant and equal to three, a fact that will strongly conditionate thésesu

The states belonging to the Markov chain for this model are ABC, AAB, ABBC,
ACC, BBC, BCC, AAA, BBB and CCC. As in previous cases, we havetladtanalysis
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of the convincing probabilities for Appendix B.4. We consider only the oamadase in
which the person that tries to convince another one is chosen randomlgantiomthree
players.

The study of equilibrium pointsc(f. App. C.3) reveals the existence of a unique
equilibrium point corresponding again to the strongest opponent sgrateghich each
player tries to convince the opponent with the highest marksmanship. dhalplities
of a final consensus opinion being A, B or C, assuming b > ¢ are given by

wlaib,c) — a? [2¢b? + a ((a + b)* + 2(a + 2b)c) | |

(a+b)?(a+c)*(a+b+c)
‘ B b2 (b + 3c)
m(bia.c) = b+c2@+bto)
. - ? [* 4 3(a+b)c? + a(a + 8b)c + ab(3a + b)]
m(ea,b) = (@t c)2(b+c)2atb+o) - G0

respectively. Notice that, as before, they satisfy the scaling relatiés, c) =
w(1;b/a,c/a), w(b;a,c) = w(b/a;1,¢c/a), n(c;a,b) = w(c/a;1,b/a). As in previous
cases, we have plotted in Fig. 9.3 in colour code the opinion with the highasimtity
of becoming majority. In this case opinion A becomes majority nearly for all galue
of b andc. Only for a small region opinion C can become the majority opinion. This
overwhelming dominion of A can be understood if we recall that the total numbe
players always remains the same throughout the game. Only the opinionisyhild
players change. So, once opinion A convinces either a player with opgihara player
with opinion C, it is very likely that it will eventually become the majority opinion due
to its highconvincingprobability.

9.4.5 Distribution of winners

Imagine that we set up a league scheme: everybody plays againdbedgmise. Sets
of three players are chosen randomly amongst a population whose madtgsmare
uniformly distributed in the interval0, 1). The distribution of winners is characterized
by a probability density functionf(x), such thatf(x)dz is the proportion of winners
whose marksmanship lies in the interyal = + dz). This distribution is obtained as:
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0.2 0.4 b 06 0.8

Figure 9.3 Same as Fig.9.1 for the convincing opinion model.

f(z) = /da dbde [m(a; b, c) 04 + 7(b;a,c)dy + w(c;a,b) de] =

—/dbdcw(:r;b,c)—i—/dadcw(m;a,c)+/dadb7r(c;a,b) =

1 1
= SO/db O/dmr(x;b, c). (9.8)

whered; accounts for the Dirac delt&#z — i).

We may also consider a variation of the competition in which the winner of one game
keeps on playing against other two randomly chosen players. The rgsdiinibution
of players,f(x), can be computed as the steady state solution of the recursion equation:

flz,t+1) = /da dbdc[r(a;b,c) 6, + m(b;a,c) by + w(c;a,b)d:] fla,t)

= f(a:,t)/dbdcw(z;b, c)+/dadc7r(a:;a,c)f(a, t)+/dadb7r(c; a,b)f(a,t),
(9.9)

a—b

- in the

performing the variable change— b in the second integral, an%

third one we obtain
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1
f(z) = éf() —I—Z/d /dmr:vbc (b) (9.10)

0

For the case of the random truel, with players using the random strateggewh
winning probabilities are given by Eg. (9.3), the distribution of winners({s) =
3xjzrlnz —2(14+2)In(l +2)+ (2+ z)In(2 + x)]. In Fig. 9.4 we observe that the
function f(x) attains its maximum at = 1 indicating that the best marksmanship play-
ers are the ones which win in more occasions. For the same strategy séstribatibn
of winners if the winner keeps on playingdsf (z) = 2z.

If, on the other hand, players adopt the equilibrium point strategy, €4),(the
resulting f(x) has been plotted in Fig. 9.5. Notice that, despite the paradoxical result
mentioned before, the distribution of winners still has it maximum at 1, indicating
that the best marksmanship players are nevertheless the ones who wireingoasions.
In the same figure, we have also plotted the distribufion) of the competition in which
the winner of a game keeps on playing. In this case, the integral relatiof® BQ) has
been solved numerically.

2

15

f(x) 1

0.5

1

Figure 9.4. Distribution functionf(x) for the winners of truels of randomly chosen triplets (solid
line) in the case of players using random strategies, Eq. (9.3); distnibfitio) of winners in the case
where the winner of a truel remains in the competition (dashed line).

In Fig. 9.6 we plot the distribution of winner&z) and f(x) in a competition where
players play the sequential truel. As before, the solid line corresporide former truel
competition and the discontinuous line corresponds to the competition wheréntterw
of the truel goes on playing. Notice that now the distribution of winngérs) has a

3The resultis more general 7|f(a b c) = G(a)/[G(a)+ G(b) + G(c)], for an arbitrary functiorZ(z),
the solution isf (z (z)/ [y G



Chapter IX

122
1.5
1
) |
05 //
| |
% 02 04

0.6

0.8

Figure 9.5. Similar to Fig.(9.4) in the case of the competition where players use the abstategy

of the equilibrium point given by Eq.(9.4).

maximum atr ~ 0.57. This result reflects the counter—intuitive result obtained earlier,
and is that players who perform better on averag@aatthose with higher markmanship,

instead, are those wiihtermediatevalues.

1.5

f) | !

0.57 //

0 1 | 1 |

0 0.2 0.4

0.6
X

0.8

Figure 9.6. Same as Fig.9.4 in the case that players play sequentially in increasieigadrtheir
marksmanship. Notice that now both distributions of winners preseninmaafor z < 1 indicating

that the best a priori players do not win the game in the majority of the cases

Similarly to other versions, we plot in Fig. 9.7 the distribution of winning opinions,
f(x)and f(z). As in the case of the random truel, we can observe how the player most

favored on average is the one with the highest markmanship available.
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Figure 9.7. Same as Fig.9.4 for the convincing opinion model.

9.4.6 Truels with spatial dependence

A natural step forward in the truels would involve the introduction of a spatiatture
in the system. This reflects the fact that players do not interact with any plénger,
but only with those which are closer in some sense. Although one couldedsvise
sort of social network of interaction [97, 98], we consider here a sitwgdedimensional
lattice. In this case we have a set/@findividuals arranged in a grid, each surrounded
by four nearest neighbor links. The lattice is initialized by putting randomly aihe
site one player of groups A, B or C in the respective proportionsez andxzc, (x4 +
rp + xc = 1) and respective marksmanships andc. An important ingredient of this
generalization is that players never shoot to a person of the same group.

The rules of the randorollective truekre as follows:

1. One of the remaining players is chosen at random.

2. The chosen player selects randomly two players amongst the occiigdbors
sites and the three of them play a random truel. The losers of the trudirare e
nated from the system. If the chosen player has only one neighbor, tlod thhem
will play a duel with the loser being removed from the system. If no neightaers
left, the player will walk to a randomly chosen neighbor site.

3. Steps 1 and 2 are repeated until all the survivors belong to the saoe gro

In step 2, it is possible that some of the chosen players belong to the saope gro
In this case, they observe strictly the rule of no shooting between membtrs séme
group. Accordingly, it could happen that there is more than one surgiibat game. In
any event, players use the strongest—opponent strategy. If, fonpdxathe three players
in a truel belong to groups A, A and B, the two A players will aim at B, while B waith
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to one of the two A (again chosen at random). The outcome of that partgitdation
could be either player B eliminating both A players or player B being eliminatedéy th
two players A. Since the analytical treatment appears rather difficult, @sept now the
results coming from a direct numerical simulation of the aforementioned rWesuse
throughout this section the values= 1, b = 0.8, ¢ = 0.5 for the marksmanships.

In Fig. 9.8 we show some shapshots concerning different stages of lsonicar-
ried out for the random truel. The initial population proportion was= 0.3, zp = 0.3
andxc = 0.4. We can see how in early stages of the run, populations B and C diminish
considerably whereas group A resists and eventually becomes the witthecollective
truel.

In this collective truel, the group that will survive at the end dependsafbixed
values of the marksmanships, on the initial proportions of players. Thisndigmce is
summarized in Fig. 9.9, where we plot in a color code the group that has theshig
winning probability as a functions of the initial proportions.

Figure 9.8. Snapshots corresponding to different stages of a simulation carrtefdratie random
truel with initial proportionsz4 = 0.3 (black colour),zg = 0.3 (red colour) andcc = 0.4 (green
colour). The total number of players = 2500 arranged in a two—dimensional grid.

It is easy to modify step 2 by considering the rule of the sequential trueltghw
players shoot in inverse order to their marksmanship. A typical realizatishagn in
Fig. 9.10. In this occasion the winning group is the weakest one, grodipi€survival
of the weakestffect is also present in the diagram of Fig. 9.11, as now groups B and C
have increased the region in parameter space where they win the truehrechtp the
diagram of the random truel in Fig.9.9.

It is possible to distinguish two different regimes in the dynamics. Almost all true
competitions take place during the first steps where a large fraction of {hdgtion
is removed. At the end of this first regime, the largest remaining populatior isrta
that possesses the higher survival probability when playing a singleatndghe system
presents many empty sites. Later, in a second regime, players start te thifiusighbor-
ing sites increasing the appearance of duel encounters. Consegtiengyolution will
result from a balance between the population favored by the existentestsi(the one
with the highest marksmanship), and the one favored by possessing ropgrtion of
the remaining population.

Finally, in Fig. 9.12 we show some snapshots of a simulation carried out for the
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Figure 9.9. Diagram where it is shown the winning group in colour code (black colotmesponds
to group A, red to group B and green to group C) in terms of initial propostios, =z andzc, for a
set of N = 400 players arranged in a two—dimensional grid and playing the random Traeltesults

are obtained after averaging o000 realizations.
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Figure 9.10. Snapshots corresponding to different stages of a simulation cartiéaor dbe sequential
truel with an initial population oft4 = 0.3 (black colour),zs = 0.3 (red colour) andrc = 0.4
(green colour) for a set oV = 2500 players arranged in a spatial two—dimensional grid.
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Figure 9.11 Diagram where it is shown the winning group in colour code (black colotmesponds
to group A, red to group B and green to group c) in terms of the initial ptep® x4, x5 andxc,
for a set of N = 400 players arranged in a two—dimensional grid that play the sequential frhel.
probabilities have been obtained averaging a@000 realizations.

case of the opinion model. As it happened in the three players case, theuwtaér of
players remains constant troughout the simulation, only the opinions hele Ipjathers
may vary. For the set of marksmanships choger- 1, b = 0.8 andc¢ = 0.5 we

find that the opinion most likely to become majority opinion is always the one with
highest marksmanship, A. This occurs even for very small initial propostipand it is

a reflection of the large region in parameter space where A becomes thiggf@pinion,

as it was shown in Fig. 9.3.

Figure 9.12 Snapshots corresponding to different stages of a simulation of the npivddel, carried
out with an initial population ot 4 = 0.3 (black colour) ;x5 = 0.3 (red colour) anc:c = 0.4 (green
colour) for a set ofV = 2500 players arranged in a spatial two—dimensional grid.
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9.5 Generalization to N players : N—-uels

We have shown for three players the existence of an interesting gmbri counter—
intuitive result where the player with the highest markmanship does not witnutblein

all cases. But, what happens if there are more than three players? geoeeal case
of N players, it is rather difficult to obtain exact analytic expressions. Alrdad a
low number of individuals the expressions obtained increase very rapidtymplexity.
However, we can make use of numerical simulations in order to obtain the digirof
winners for a number of playerS > 3. We will also restrict our analysis to the random
case.

4 ‘ ‘ ‘ ‘ \
\\ - 1Std
\ —_ n
\ - 2rd
3+ \\ 3 |
\ - 4th
\
\\ 7
f(x) 2 N R Figure 9.13  Histogram of the
. e | classified corresponding to the ran-
\\ et b dom truel forN = 4 players.

In Fig. 9.13 we show a histogram corresponding to the classification obtaimeal
the game is played by players. The fourth classified would correspond to the distribu-
tion of players eliminated from the game in first place, the third classified waltido
one eliminated in second place and so on. The distribution of the fourth aalssiifows
that individuals eliminated firstly in the game are those with higher markmanships. |
deed, the maximum is locatedat= 1, indicating then that the better you are the higher
the probability of being eliminated first. Another aspect we can extract thasrfigure
has to deal with the distribution of first and second classifieds: thesesaovrespond to
the case where there are only two players left in the game, i.e., to a duetfditegiit is
more likely in this situation that players with lower markmanships are eliminated firstly
rather than those with higher markmanships (that is the reason why thefoutlie sec-
ond classified presents a maximum in the origin). It is worth mentioning thatglfea
4 players the histogram associated to the first classified — i.e., the winner $fuleé—
presents a maximum for a value of< 1. This result implies that the best performing
player does not correspond anymore to the player with the highest magkipaas it
happened wheV = 3. Indeed, the optimum value is locatedzin- 0.49.

For greater values aV, we can develop a simple theory that helps us to understand
the distribution. The mechanics of this collective game is quite simple: we start&ro
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Figure 9.14. Left panel: Distribution of the first, second and third classifieds coomrding to the
random truel forN = 30 players. The solid line corresponds to the numerical values, and circles
correspond to the theoretical calculation. Right panel: Distribution rarfgiomg the 3°¢ classified

(left side) to the30®" (right side).
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Figure 9.15. Different histograms
of the first classifieds when playing
the random N-uel corresponding to
different values ofN = 3, 4, 10,
25 and50.



9.5 Generalization to N players : N—uels 129

set of N players whose markmanship is uniformly distributed betw@ei). Then, each
time step one player is chosen randomly, and then he aims to the remaining pidyer w
the highest markmanship. This process continues until there is only orecsueft.

A similar distribution can be obtained if we consider a seNohumbersay, ..., ayN
uniformly distributed in the interval0, 1). As the probability density function describ-
ing each numbes; is equal tol we havef(ai,...,an) = 1. If we classify them in
increasing value such that < as < ... < ay, we need to consider all different ways
of ordering these terms through the inclusion of a factorial term in the piiityalensity
function and consequentlf(a1, . ..,anx) = N!. Thus, if we consider that these numbers
are beingsuppresseth decreasing order, that is, greater numbers are eliminated first, we
can calculate the distribution of termg occupying the jth place in the classification as

1 1

a a a 1
fj(a) = /da1 /dag . / daj_l /daj+1 / daj+2 s / daNf(al, ..,aN)
0 a1 aj—2 an_—

a j41 1

a a a 1 1 1
= N!/dalfdag s / daj_lfdajﬂ / daj+2 . / daN. (9.11)
0 al aj_2 a

aj+1 aN-1

The first set of integralsf; da; ... [ ,daj_1 gives as a resulﬁfj_—_ll),; on the
i .

1 . (1_a)N*j .
other hand, the second sﬁ;l]t dajii... faNil day gives " Joining both results
Eq. (9.11) yields

o ‘a]_l(lfa)N_] CdT (1 —a)NH
Jita) = N N =1~ BGN =+ 1) (9.12)
whereB(j, N — j + 1) accounts for the binomial coefficient. In Fig. 9.14 we have

plotted the distributions corresponding to different classifieds, obtaoresl $et of NV =
30 players. We compare the results obtained through numerical simulations ls®lid
with the theoretical description explained above —circles—. We can déducehe right
panel in Fig. 9.14 that the theoretical description works rather well with ldesidieds
ranging from the third up to the last one, the thirtieth. However, we carregethe right
panel from Fig. 9.14 that it does not work quite well for the first andsdalassifieds.
This is so because our approach considers that playediai@atedaccording to their
markmanship: the higher is the markmanship of a player, the higher the fitybab
being suppressed from the game. But when there are two players le& gathe, we
know from duel analysis carried out in Sec. 9.3 that the opposite is trugniBcase:
players with low markmanship are those with higher probability of being eliminated.
This is the reason why our approach does not provide a good desergbtibe first and
second classifieds.
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Our next step would be then the survey for different valued/ofFig. 9.15 shows
the histogram of the winners of a N—uel when varyiNig It can be clearly seen that for
values of N > 4 the optimum/maximum value of the distribution is indeed progressively
enhanced and shifted towards zero whéis increased.
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Conclusions

This thesis has considered two kinds of paradoxical games: Parsogaioes and truels.
We now summarize the main original results as well as outlining some of the ptvege
for future work.

We have introduced in Chapter 3 a new version of Parrondo’s gameslimglthe
self—transitionprobability. The original Parrondo games are then a special case with
self-transition probabilities set to zero. Discrete—time Markov chain andigsis been
performed for these new games, showing that Parrondo’s paradoacstilts if the ap-
propriate conditions are fulfilled. New expressions for the rates of winhawve been
obtained, with the result that under certain conditions a higher rate of vgrithan in
the original games can be obtained. We have also studied the region ofgtarspace
where the paradox exists with the self-transition variables, concludinth#nptirameter
space of the original games is a limiting case of maximum volume — as the self-transitio
probabilities increase in value the volume shrinks to zero. However, déisigiecrease
in volume, the rates of winning that can be obtained are higher than in theadiggimes.

One of the main results of the thesis concerns the quantitative relation esdblish
between Parrondo’s games and the Brownian ratchet in Chapter 4. W/&é&en able to
write the master equation describing the Parrondo’s games as a consistestizhtion
of the formalism of the Fokker—Planck equation for an overdamped Baowparticle.

In this way we can relate the probabilities of the garfes . .., pr—1} to the dynami-

cal potentiall’(x). Our approach yields a periodic potential for a fair game and a tilted
potential for an unfair game, with positive slope for losing games and nedati win-
ning games. The resulting expressions, in the litnit — 0 could be used to obtain the
effective potential for a flashing ratchet as well as its current. Thisioelalso works

in two ways: we can obtain the physical potential corresponding to a gebbébilities
defining a Parrondo game, as well as the current and its stationarybgitybaistribu-
tion. Inversely, the probabilities corresponding to a given physicalnpielecan also be
obtained. Our relations work both in cases of additive and multiplicative nefiseving
that the former case is equivalent to the original Parrondo’s gameseaséhe latter

131
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corresponds to Parrondo’s games with self—transition probability alredidyduced in
Chapter 3.

With the relations introduced for the cases of additive and multiplicative noise,
have now a precise and of general validity connection between indivihaavnian
ratchets and single Parrondo’s games. This work confirms Parroadgieal intuition
based on a flashing ratchet is correct with rigour.

Besides, the similarity between the original Parrondo’s games and the flaatghgt
is further extended to the field of information theory. In Chapter 5 we haamtified
the amount of transfer of information (negentropy) for the original ¢*ato’s games
as well as other versions. The relation between the gain in the games andritygye
difference follows a similar behavior for every version of the games ardlyshowing
its robustness, and it is the equivalent of the result obtained in the cése Bfownian
ratchets. In the case of the original Parrondo’s paradox mixing two gatnmesd B,
we have obtained analytically an estimation of the entropy considering thaafilc
originates from a combination of two ergodic sources, reflecting the diffevinning
probabilities when the capital is a multiple of three or not. We have shown that the
entropy behaves very differently for low and high values of the delagrpater;: while
for &; = 1 there is a monotonic dependence on the switching parametbe relation
between the gain and the current is only apparent for large valugs of

In Chapter 6 we have rewritten the master equations describing the alterbation
tween two Parrondo games A and B with different transition probabilities, yp4 as
a conveniently discretized set of Fokker—Planck equations for a Baowparticle. In
the particular casep + Y4 = 1, we have obtained analytical expressions for the sta-
tionary probabilities in terms of the potential function already developed irptehd.
Using this analogy we have been able to provide suitable definitions for gngyeimput,
energy output, average gain and efficiency of the Parrondo games=fii¢ciency quan-
tifies the relationship between the gain of the games (the energy auitputs directly
related to the current) and a convenient measure of the difference between the probabil-
ities defining the games (given by their difference in the potentials). We énalaated
the efficiency for biased and unbiased games and studied its depermtetiee mixing
probability~y, showing that it shares many qualitative features with the continuous model
of a flashing Brownian ratchet. Our results provide a framework for @img different
Parrondian or discrete-time ratchets, and should provide a basis faeahsh=of higher
efficiency discrete systems.

Once a quantitative connection between Parrondo’s games and a Bngpariicle
has been established in the case of a single player, we turn our attentionctsthef
collective games.

Chapter 7 has been devoted to a theoretical analysis of the collective gamoes
duced in ref. [38]. We have analyzed the alternation of the original dagef@endent
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game B with different versions of game A, in which a redistribution of capitadglace
amongst the players. It has been shown that for all cases it is possilsid &m equation
describing the evolution (on average) of capital for a single playersargtisingly, this
equation turns to be the same for all cases studied. Besides, for thef candam dif-
fusion to nearest neighbors it has been possible to find, in a firstxdppation, a direct
relation with a set ofV coupled Brownian particles. This coupling was present in the
noise terms, conserving on average the mean value of the position, aaris @adth the
discrete model.

In Chapter 8 we have presented a new type of collective Parrondo gahiey
present, besides the Parrondo effect, a current inversion whgmgahe alternation
probabilityy between the two games A and B. The novelty introduced in these games lies
on the fact that the current inversion appears from the combination @fextive game
—i.e., game B — and a totally unbiased, state independent, game A. Analyticakexp
sions for the games have been obtained for a finite number of playersdistngte—time
Markov chain techniques. We have also been able to explain qualitativetgdlen of
this current inversion.

In the last Chapter 9 we have performed a detailed analysis of the truielg,the
methods of Markov chain theory. Hence, we have been able to repradaclanguage
which is more familiar to the Physics community most of the results of the origingl-ana
sis by Kilgour [40]. In particular, we have obtained the survival philitees for every
truel game and for arbitrary values of markmanship$ andc, as well as their equi-
librium points. Besides computing the optimal rational strategy, we have ddcos
computing the distribution of winners in a truel competition. We have shown ttihein
random case, the distribution of winners still has its maximum at the highesibfms
marksmanship: = 1, despite the fact that in some cases players with a lower marks-
manship have a higher probability of winning the game. In the sequential Gagsg, a
player performs better on average if he has intermediate values of the nmestkimar his
is reflected in the fact that the distribution of winners has a maximurm<atl.

We have reinterpreted the random truel as an opinion model, obtaining ili&ggm
points and the distribution of winners. As it happened in the random truedjstréoution
of winners presents a maximum at= 1, indicating that on average the opinion most
likely to become majority is that with the highest convincing probability.

We have also analyzed the effect of including a spatial dependence martlem
and sequential truels, as well as the opinion model. We distinguish two reginties in
dynamics: one being characterized by truel competitions, and a secarattgrized by
duel competitions due to the diffusion of players to neighboring sites in the giie
winning population will result from a balance between these two regimes.

Finally, we have shown the effect of generalizing the random truel to tharethree
players. In this case, already fémplayers we highlight the appearance of an optimum
value for the markmanship which is lower than one, a similar effect as in theesgg|
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truel but in this case it appears due to an increase of the number of plalyarther-
more, asN is increased, this optimal value shifts towards lower and lower values of the
markmanship.

10.1 Perspectives and future work

Once a complete relation has been established between the physical ntbédlaghing
ratchet and Parrondo games for a single player, we should focusutwre fwork on
the establishment of a similar relation between collective games and collectivesmod
of Brownian particles. As in the single case, it would be desirable to obtaétatian
between the probabilities defining the collective game and the drift andidiffosatrices
defining a multivariate Fokker-Planck equation. Furthermore, we coutdaddtain an
effectivepotential yielding an unbiased potential for fair games and biased foirunfa
games, as it occurs for the single player case. This connection shoakl general as
possible, so that it can be applied to a wider range of collective games.

Concerning the collective games introduced in Chapter 8, it remains agamaps-
tion the possible implications of these findings in the field of the Brownian rateket,
well as the possibility of finding a physical model equivalent to this collegame.

Regarding truel games, our next step would involve a deeper study di/ttemics
of these games in terms of the spatial grid used. Small-world or even sealadtworks
could be introduced in the model so as to analyze the effect of differpakdgies on the
final population comparing the results obtained for the two-dimensional grid.

Furthermore, it would be worth studying a generalization of the sequenit&ll tw
a number of players greater than three. It seems reasonable to caeittiderfor the
random truel and the opinion model that the unique equilibrium point is diyethe
strongest opponent strategilowever, for the sequential truel the situation turns to be far
different. This case entails a greater complexity in determining its equilibriumgaia
the number of strategies feasible is quite large.

An interesting extension for truel games would be that of including a dyndrmed
on selection and evolution. We could allow strategies to evolve, in the serigdahers
would modify their own strategy if they contemplate the possibility of improving their
own payoff. Hence we could study the evolution of the strategies adogtttlplayers
and check whether they tend to a fixed set. On the other hand, we couldllalsdhe
fithess —markmanship— of the players to change/evolve over time, thestfidsgng the
dynamics of the system under this scheme.



Appendix A

Collective Parrondo games with
redistribution of capital

A.1 Distribution to a randomly selected player

Our starting point is the general master equation (7.3) which we reprdduee

N N
P(Clv~-’cN§T+1) = Z Z mp(cl7~~7Cj+1a~~7cj/717"701\];7—)_}—

N
1— . . .
+ v E |:aC]1P(cl,..,c]~1,..,cN;‘r) + CLSJ Pey,.enim) + CL? Pler,eiti,enst) | (Al)

From Eq. (A.1) we can obtain the probability density function for a singlegslgy
i.e., P(c;;7), performing the following sum

P(Cj;T-‘rl) = Z Pey,...enim+1). (AZ)

C1,--Cj—1,Cj+41,--CN

For simplicity we will calculate separately the two contributions of Eq. (A.1) to this
sum, the first one being that of ganié, and the second being that of garBe Let us
first calculate the sum for gam#&
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N N
# Z Z Z P(c1,..,cj/Jrl,..,cj//71,..,01\1;7') =
N(N - 1) C1..Ci1,Ci c =1 g —
+Cj—1,Cj4+1-CN Lg'=1 5"=1
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Carrying out the sun we obtain

Z P(chrl T)

l/ 1
”#J

ClyeeyCj—1,Cj415--CN

N
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?:4 J ;; J”;;}]
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We now proceed with the second term of Eq. (A.1), that of gdire

N
Z Z |: Cl, -C 17"7CN;T) +a’(c)j/P(C17"7cN;T)+

€1..,Cj—1,Cj+1,--CN j

C;/
+a1] P(Clv“7cj/+17"7cl\7;7—):| =

+ CLl ]‘_)(017 Lei+1,.ensT) + Z

= % [P(Cj+1;7‘) + (N — 2)P(cj;7—) + P(Cj*l;T):l . (A.4)
Z |:ac_j1P(cl7..,Cj—1,..,cN;7') + aSjP(cl,..7cN;T)+

C1.,C5—1,Cj+1,--CN

P(c1 weir—1neniT) + agjlp(cl,..,cN;T)—l—

j'=1
J'#j

For simplicity we will omit the coeﬁicien% until the final result for gamés is obtained.
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+ G,ij/P(cl,..,cj/+1,..,cN;7-)):| = |:ac_j1P(c]-—1;T) + a(c)jP(Cj;T) + aijP(ch;r)—i-

N
+ Z Z(ac_jllp(c]-,cj/—l;f) + agj/P(c]-,cj/;T) + a?/ P(Cj,cj/—‘rl;T)) . (A5)
j'=1 cjr
J'#J
By means of normalization conditian’;*' +ag’ +ay” "' = 1, the previous expres-
sion can be simplified obtaining

N
CLc_jlp(Cj—l;T) + ang(Cj;T) + aijP(Cj-i-l;T) + Z Z P(Cj,cj/;r) =
j'=1 ¢
i (A.6)

1-— . . .
= il |:ac_JlP(Cj—1;’T) + (I(C)J P(C]';’T) + (Iig P(Cj-‘rl;T) + (N — 1)P(cj;7-):| .

N

Finally, adding both results (A.4) and (A.6) we obtain the final expressiorthie
evolution of the probability for a single playgmwith capitalc;

1— . . ,
P(cjir+1) = N’y [aiJlP(ijl;T) + agj Pejim) + a(ljj P(CjJrl;T)] +
N—(1+
+ % |:P(Cj+1;7') + P(c]'fl;r)} + A(N’Y)P(Cjﬂ') (A7)

A.2 Distribution to nearest neighbor with constant probabilities

In this section we calculate the equation for a single plgy@hen alternating between
the original Parrondo gamé and another version of the redistributing garie in which
there are different probabilitigs. andp; of giving a coin to neighboj + 1 on the right

and toj — 1 on the left respectively. The master equation describing the evolution of
P(cyi,e,..cn;7+1) Of @ll N players is given by Eq. (7.10), that is

N
o
Plei,...enm+1) = N D1 P(c1,..,cj/71—l,cj/—‘rl,..,cN;T) + pr P(c1,..,cj/+1,c]~/+1—1,..,cN;T) +
Jj'=1
N
l—n ¢ cj cj
+T Z CL_IP(cl,..,Cj—l,cN;T) + ag Per,ejenst) + ay Plerycj+1,enim) | -
Jj=1

(A.8)



138 Appendix A: Collective Parrondo games with redistributafrcapital

Again, the sumzcl_cj_hcj%._w must be performed on the previous equation in
order to obtain the single probability density function. As already calculatétkipre-
vious section, the result of the sum for the term corresponding to dairisegiven by
Eq. (A.6); therefore, we need only to calculate that of gatfigthus we havé

N
Z Z [plpcl, seyr_1—Lej+1,. CN;T)+pTP(Cl, il =1, CNST)] =

C1;-+,Cj—1,Cj+1,--CN ]/7

- F

C15:,Cj—1,Cj+1,-,CN

D1 P(Cl,..,Cj,17176j+1,..,CN;T) + pr P(Cl,..,Cj+1,8j+171,..,(2]\];T)+

+pl P(Cl,..,Cj71,0j+1+1,..,cN;T) +p7- P(Cl,‘.,Cj+1+1,Cj+271,..,CN;T)+

+ P(Cl:~'7Cj—2_Lcj—l“l‘la“:CN;T) + Pr P(Cl,'~7Cj—1+1,cj—17--uCN§T)+

N
Z plP (c1,.- Cir_1 10/+1 JCNST) +prP(Clv C/+1C’+1 1,..en5 T))] =
j'=1
J'#00EL
N
= | Ples+1m) + Pe;—1m) + Plesm) + Y [pu Plesim) + pr Plegim)] | =
=1
J'#00L

= % |:P(cj+1;7—) + P(cj—1;7) + (N — 2)P(c]~;r) . (A9

Again, the result obtained for gam#&’ when the capital is redistributed to nearest
neighbors agrees with that of random distribution of capital between glayeis re-
markable though that the final result does not depend on the actualhilitées p; and
p-. Therefore, joining results from Egs. (A.6) and (A.9) we obtain the saguateon
governing the evolution aP(c;;r) for a single playey, namely, Eq. (A.7).

A.3 Distribution to nearest neighbor with capital dependent
probabilities

This section will be dedicated to the derivation of the equation for the evolofidine
probability for a single playef, when alternating between a new version of gaffien

which the probabilities do depend on the capital of the neighbors, anditheadigame
B. Our starting point is the master equation for the total probabiity - ,cn;r+1), i.€.,

Eq. (7.23),

2Again, we omit the coefficienf; until the final result for gamel” is obtained.
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N
E [ i’ NP C1,..,Cj/+1,..,cj//71,..,CN;T):|+

ZP

P(cl, HCN3TH])

J

N
-y c; cir cir
_— E ajlp(q,..,c-/71,..,CN;7') + CLDJ Pe,enim) + (Il] P(cl,..,cj/Jrl,..,cN;T) ,
T

(A.10)

where, as in previous cases, garléis played with probabilityy and gameB with
probability 1 — ~

We must perform the SU@cl..,cj_l,ch,.AcN in Eq. (A.10) in order to obtain the
single distributionP(¢;;r). However, from a previous calculation we already know the
result corresponding to the term of gamBec.f. Eq. (A.6). Therefore, we need only to
calculate the remaining sum, that corresponding to gafhé

E E Dy j //P cl,‘.,cj/+1,4.,cj//—1,..,cN;7—) =

€1.-Cj—1,Cj41--CN j,j""=1

= E E pj 1P Cl’ -C _17Cj’+11'~7CN;T)+

C1..Cj—1,Cj+1--CN j'=1

+pj g1 Pler ety —Loenin)] = > [Pjj—1P(eres1=Liej+luenim)+

C1..Cj—1,Cj41.-.CN
—+ pj7j+1P(Cl,..Cj+1,Cj+1—1..,CN;T) =+ Dj+1,5 P(Cl,.‘,C]'—1,Cj+1+1,‘.,CN;T)+

+pjt142 Plercizi—lejro—1,enim) + pj—1,j—2 Plei,cj—a—1cj_1+1,.en57m)+
N

+Ppi—14 P(cl,..,Cj,l—ﬁ-l,Cj—l,..,cN;T) + it ir—1 Pler,nea =1+l en5m)+
J—14 Y J J
J'=1
LA
J#i-1j+1

+ Dyt +1 P(cl,..,cj/+1,cj/+1—1,..,cN;7-)] —

E [pjj—1P(cj1=Les+1ei00im) + P j+1P(ej-1,041e501—15m)] +

Cj—1
Cj+1

+ E [Pj11,P(ci—Licjr+lciraim) + Djr1j12P(cjcirtlieira—1im)]+

Cj+1,Cj42

%As in previous calculations, we omjt until the final result ford” is obtained
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+ Z [pjfl,j72P(Cj_2—1,Cj_1+1,6j;T) + pjfl,jp(cj_g,cj_l—i-l,cj—l;'r)]—I—

Cj—2,Cj—1

N
+ Z Z[pj/J/,lP(cj/ 1—Leyt+leyym) + Dy +1P(c; et —1; ’T)]
J'#i—
(A.11)

In the last part of Eq. (A.11) we have splitted the sum g¥ento four terms. The
three first factors correspond to those in which the probabijitigslepend on the capital
c; of player j; the last factor is simply the sum over the rest of terms wiagrig not
present. We can perform the sum in the latter factor substituting the eipressrp; ;
obtaining

Z Z C]/+1+c I_— |:c] +1P(C] Lyt leyegT)+
J'#j-15+1 I

+ i1 P(cj_yejtle—leim ):| =

N
1
= Z Z W |:C] +1P(c v_1—1 cj/+1,cj,'r)+cjl_1p(c i1 _1,C5 41— 1,¢537)
= €315 +1
d #J
J'#i-1,5+1
1 N
cit_1—1—>cir_4
- {c§,+1 1_>cj,+1} = Y Pem=(N-3)Pem. (Al2)
7=t
"#j
J'#i-1,5+1
Due to the summations carried out fpic;, ,, we have changed the values tor,
Ciryq

andcj 1, increasing their values in one unit. We can now proceed with the remaining
three sums in Eq. (A.11). The sum with terms., ¢;_; results in

E |:pj7j1P(cj_1l,cj+1,cj+1;'r) + pj7j+1P(cj_1,c]~+1,cj+11;7):| =

Cj—1,Cj+1

Cj Ci_
Z J+1 Jj—=1
|: P(Cj,1,0j+176j+1;T) —+ P(Cj,1,6j+1,6j+1;7) =
e e, LG TG Cj+1 + ¢im1
j—1,Cj+1
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— Z P(Cj_170j+1,6j+1;7') - P(Cj—FLT). (A13)

Cj—1,Cj+1

We are left now with the terms corresponding to the sums for, c;+» and that for
¢j—1,cj—2. In order to solve them, we must assume the following set of hypothesis,

P(cj—1,¢j12:7)=P(cj,cip2—1;7)
P(C]’7271,C‘7’;T)HP(CJ’727C]'71;T) T (A14)

In some sense, this hypothesis might imply that for large timéso individuals
become indistinguishable. Therefore, by means of hypothesis (A.14arevable to
perform the remaining sums as

{ L2 Plej—lejn+lejam) + oty P(Cj70j+1+176j+2157)}+

cj2te—1 cjate;—1
Gj+1
&
2

cj cj—2 _
+ E : [ch]-lp(%'zl:cg‘lﬂvcg‘ﬁ) + chJJrcjl‘P(CjZ7cjl+l7cj1§T):| =

Cj—2
Cj—1
B Z [Cj:;ifj*l * Cj+zc+jcjfl} P(cj—1.cj42i7)+
Cj+2
. Ljﬂ;jﬁz_l * Cj;jlfj_l} P(cj_9,¢5;7) = P(e;—1;7) + P(ejir).  (A.15)

Cj_Q

Finally, joining results from Eqgs. (A.12),(A.13),(A.15) we obtain the desnesilt
for the term corresponding to gamg

N
’y P —
N Djr 7 Plet el e 1, enim) | =
j',3"=1

c1..cN

= % [P(ijl;T) + (N — 2)P(Cj;’7') + P(Cj+1;7')] (A16)

Finally, joining both Egs. (A.6) and (A.16) what we obtain is exactly the same-eq
tion as (A.7) for the evolution of the probability(,;) of a single playey;.






Appendix B

Survival probabilities for duels and
fruels

In this Appendix we will deduce the expressions corresponding to tvé/aliproba-
bilities when playing either a duel or a truel. Both games can be describedisctie—
time Markov chains with a finite number of states. Besides, they are chazadtéry
the existence of a certain numberatfsorbing statesvhich means that once the system
reaches this state, it never leaves it (they correspond to those statesthdre is only
one survivor in the game). As we are dealing with finite Markov chains, giitat [64]
that this system will eventually end up in one of its absorbent states. We wilt&fcu-
late the survival probabilities for the simplest case of duels in Sec. B.1wfetidhen by
their analogous in truels in Secs. B.2, B.2, B.3 and B.4.

B.1 Duels

In Fig. B.1 we show a Markov chain with three stafgg, 2 corresponding to the ran-
dom duel and also the opinion model. The Table in Fig. B.1 shows the coréspce
between the players remaining on the game and their corresponding sthtetdhe
random duel and the opinion model.

Random Duel Opinion Duel

n, P, States Players Opinions
TN 0 AB AB
@ @ 1 A AA

2 B BB

Figure B.1. Table: description of the different states for the random duel and opmiadel. Dia-
gram: Markov chain corresponding to both the random duel and opmael with two opinions.

From Markov chain theory[41] we can calculate the probabﬂﬁyhat starting from

143
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statei we eventually end up in stageafter a sufficiently large number of steps. We are
interested in calculating the probability that starting from state end up either in state
1 or state2. The set of equations to be solved are

1

uy = pmu% + T‘()u% (B.1)
ug = p02u§ + roug (B.2)
where the transition probabilitigs; between states are given by :
1 1 1
—Z2—_a—-b — —— B.3
7o 2[ a |, po1 26% Po2 5 (B.3)

Recalling that by definitiomg = 1 we may solve Egs. (B.1), (B.2) obtaining

p02
1-— To ’

Po1
1 —T0 ’

up = ud = (B.4)

Substituting the transition probabilities in the previous set of equations we dbgain
survival probabilities for player Au}) and player B ¢2)

a b
a+b’ B A
We may now consider the Markov chain describing the sequential duel.cdinis
posed of four state®, 1, 2, 3 and is depicted in Fig. B.2. The table from Fig. B.2 shows

the relation between the states and the players that are still on the game.

a— (8.5)

o . o States| Remaining players
o 0 AB
OROOIOCIEN Y
\p/ 2 A
10 3 B

Figure B.2. Table: description of the different states for the sequential duel. Diagvéarkov chain
with four states corresponding to the sequential duel.

The set of equations to be solved are

ug = poaus + porut (B.6)
uy = poru (B.7)
ul = ploug (B.8)
ui = pisul + poug (B.9)

where
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por=1—a, pe=a, ppo=1-0, p13=> (B.10)
The general solutions for Egs. (B.6)—(B.9) are

01
u(%:p$7 u%:&7 (B.11)
1 = poip1o 1 = poip1o
which, after substituting the transition probabilities give as a result
b(1 —
TA=uf = “ B = Uy = (1-a) (B.12)

1-(1-a)(1-b)’ 1-(1-a)(1-b)’

B.2 Random firing

For this game there are seven possible states according to the remaining.plhyese

are labeled a8, 1,...,6. The allowed transitions between states are shown in the dia-
gram in Fig. B.3, wherg;; denotes the transition probability from state statej (the
self—transition probability;; is denoted by).

f P,
0 — States| Remaining players
01 p24
‘. r 0 ABC

\O-O

e

al H-O
SIS, BESOGURY R

W > >

Figure B.3. Table with the description of all possible states for the random firing ganaediagram
representing the allowed transitions between the states shown in the table.

From Markov chain theory [64] we can evaluate the probabﬂftjfnat starting from
state; we eventually end up in statg after a sufficiently large number of steps. In
particular, if we start from stat@ (with the three players active), the nature of the game
is such that the only non-vanishing probabilities ageu anduf corresponding to the
winning of the game by player A, B and C respectively. The relevantfsgjuations is
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4 4 4 4 4
Uy = Po1l Uy + Po2 Uy + po3 U3 + 7o Uy,

Ug = po1 u$ + po2 uS + pos ungTo US,
U“;) = P15 Ug + T u‘;’,
u% = P uji + 7o u%,
u§ = ry u§ + p26u27

5

Ug = po1 U? + Po2 Ug + po3 u% + 70 U87
4 4 4
Uy = P14 Uy + 11 uq,

6 _ 6
Uy = T1 Uyq,
5 5
Uy = T2 Uy,
4 _ 4
U3—7”3U3,

6 _

u3 = r3 uj + p3s ug, u§ = 13 u§ + psg ul.
(B.13)
We can solve the previous set of equations«py u3 andu§, considering that by

definitionug = 1Vj. The solutions are

uo= Po1 P14 Po2 P24
© o A-m)(d-r) (L-ro)(1—72)
5 Po1 P15 Po3 P35
ug = , B.14
O T Q-ro)d—-7m1) (1—ro)(l—r3) (8.14)
- Po2 P26 Po3 P36
b =

(1 —7“0)(1 —7“2) (1 —T‘U)(l —7"3).

We can now derive the expressions for the transition probabilities Remember
that we denote by the probability that player A eliminates from the game the player he
has aimed at (and similarly férandc), and thatP, 3 (o« =A,C,B andg = A,B,C,0) the
probability of playera choosing playef (or into the air if 3 = 0) as a target when it is
his turn to play (a situation that only appears when the three players aret)a \We
have then:

ro =1 — 3(a(l — Pag) + b(1 — Ppo) + c(1 — Po)), po1 = 3(aPac + bPpc),
poz = 3(aPap + cPcp), po3 = 3(0Ppa + cPca),
P14 = P24 = la, P15 = P35 = %b,
P26 = P36 = 3, ri=1-2%(a+b),
ro=1-4%(a+c), rg=1—3(b+c).

(B.15)

B.3 Sequential firing

As in the random firing case, we describe this game as a Markov chain sedhpfl 1
different states, also with three absorbent sta@estO and11. In Fig. B.4 we show the
corresponding diagram for this game, together with a table describingsslilppe states.
Based on this diagram, we can write down the relevant set of equatiotigftransition
probabilitiesu? :
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p1e
Rs
—  T—a
I O
p611 @ﬁ/
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States| Remaining players

0 ABC

1 ABC

2 ABC

3 BC

4 AC

5 BC

6 AB

7 AC

8 AB

9 C

10 B

11 A

Figure B.4. Table: Description of the different states of the game for the case okségl firing.
The highlighted player is the one chosen for shooting in that state. Diag@rame representing all
the allowed transitions between the states shown in the table for the case ef withusequential

firing in the order G- B — Awith a > b > c.

9 _ 9 9 9
Uy = Po3Us + Po1u] + Poatly,

10 _ 10 10
Uy~ = po3Uz  + Po1uy ,

U(l)l = porui® + posuy’, ul® = proud® + Plsugl,o + p16ué0,
U? = p12u3 + plsug, U%l = p12u§1 + p16u(1;1,
uyt = stuél + pzw%l + P20U(1]1, uy = PQ?U? + onug,
uy’ = p28u5130 + p2ou(1)0, u% = p35ug,
ul? = pg5ui® + p310, ul = paru?, (B.16)
uyt = p47u%1 + P41, Ug = p53ug + D59,
U%O = p53U;1),0, uéo = p68u§1§07
Uél = p68“51;1 + D611, U? = prau + pro,
ut = praujt, ud® = pgeui® + ps 1o,
Uslgl = P86ué1
The general solutions for the probabilitie$ «” andu}! are given by
ug _ 1 [ p59(Po3pss + po1pis) 4 pr9(Poapar + p01p12p27)]
1 —po1p12p20 | 1 — p35ps3 1 — parpra ’
U 1 [p310(P03 + Po1P15P53) . Poips 10(P16P68 + p12p28)]
0 1 — po1p12p20 | 1 — p35ps3 1 — pespse ’
WA 1 [ pa11(pos + porp12p27P74) ., Poips 11(p16 + p12p28p86)}
0 1 — po1p12p20 | 1 — pa7pra 1 — pespss ’

(B.17)
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with transition probabilities given by

po1 = (1 —c¢) +cPco, pos = cPca, pos = cFPeB,
pi2 = (1 = b) +bPpo, pi5 =0bPpa, p16 = bPoa,
p20 = (1 —a) +aPao, p2r = aPag, pag = aPac,
P35 =pse = 1 — b, P310 = ps10 = b,

par =pes = 1 —a, D411 = P611 = @,

pss =pra=1—g¢, P59 = P19 = C.

B.4 Convincing opinion

For this model we show in Fig. B.5 the diagram of the allowed states and trassition
together with a table describing the possible states.

4 p45
O@,Jp @ States| Opinions
ABC
cCCcC
BBB
AAA
CCB
BBC
ACC
AAC
ABB
AAB

[an)

© 00 3 T = W N

Figure B.5. Table: description of the different states of the opinion model. Diagraimerse repre-
senting the allowed transitions between the states.

The corresponding set of equations describing this convincing opiniaelnas de-



B.4 Convincing opinion 149
rived from the diagram, are
u(l) = Tou(l) + p06ué + po4ui + p05ué + p07u%’
Ug = Toug + p04U42; + Posug + posug + P09U§7
Ug = Toug + posug + pogug + p07U§ + pOGU%,
U}; = 7‘4%11 + p45u51; + P41, UZ = 7”4u421 + p45ug,
u% = Tsu% + psaug, u% = 7“5“% + psaud + ps2,
Ufl,- = 7“616(1; + P67U% + pe1, Ug = rﬁu% + p67U?7’,
u} = roug + preug, w3 = r7ud + preug + pr3,
u% = Tsug +p89u3 + ps2, Ug = Tsug +p89Ug,
ué = Tgug + p98U§, uS = ng + Pgsug + Do3.
(B.18)
And the general solution for the probabilitie§, 2 andu3 is
Wl 1 [pe1(pos(1l —77) + porpre) . par(pPoa(l —75) + pospsa) |
0 1—ro | (1 =re)(1 —7r7) —perpre (1 —ra)(1 —75) — paspsa |’
W2 - 1 [ps2(poapas + pos(1 —74)) | ps2(pos(l —79) 4 poopos) |
0 1—7r9 [(1—7r4)(1—75) —paspsa (1 —178)(1 —r9) — psopos |’
8o 1 [ p73(Posper + po7(1 —16)) | Po3(Po9(1l — 78) + Pospso) |
0 1—rg [(1—re)(1—r7) —perpre (1 —rg)(1—r9) — pgopos |’
(B.19)

where the transition probabilities are given by

Poa = %CPCAa DPo6 = %CPCB,

Pos = 3bPpa, po7 = 3aPag,

P41 = P61 = 2 P45 = P98 = %b»

P52 = ps2 = 30, P67 = P9 = 3

ro—l[ 3—a—b—(, ry=3(1—c)+3(1-b),

= 1—0) (l—b), re —

1-b)+2(1—a).

gl o9ty
%gl—c) g(l—a), ng%(l—b)—i-z
-3

Pos = %bPBCa
poy = zaPac,
P54 = P16 = éC,
P73 = P93 = 34,

(B.20)






Appendix C

Equilibrium points for fruels and
the opinion model

In this Appendix we will demonstrate the existence of equilibrium points for thet tr
games. Concretely we will show that either for the random truel and théoopmodel
there exists a unique equilibrium point which is the so-cadieoingest opponent strategy
For the sequential truel we will show the existence of two equilibrium pointeidging
on the values of the markmanshipg, ¢ of the players.

C.1 Random firing

Let us denote byr4(Pao, Pan, Pac) the survival probability for player A given the
values of the probability s€tP4o, Pap, Pac} defining the strategy followed by player
A (the same notation follows for players B and C).

The general expressions o (Pag, Pap, Pac), 758(Ppo, Pea, Ppc) and
mco(Peo, Poa, Pop) with arbitrary values for the probabilities defining the strategies
and the markmanships b andc is too lengthy to present here. Instead, we will show the
following terms:

abla+c)Ppc+a(a+b)cPop

7L 0.0) = Tt + ) (6(Paa + Pro) + c(Poa + Pon))’
7a(0.1,0) = a(a®+ (Ppcb+ b+ cPog)a+ be(Ppe + Pop)) ,
(a+b)(a+c)la+b(Ppa+ Ppc)+ c(Poa+ Pop))
74(0,0,1) = a(a+c)(a +bPpc) + ala+ b)c Pcp ,
(a+b)(a+c)(a+b(Ppa+ Ppc)+ c(Pca+ Pcg))
75(1,0,0) = ab(b+ ¢)Psc + bla+ b)cPoa

(a+0b)(b+c)(a(Pap + Pac) + c(Pca+ Pc))’
151
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b(b(b + cPoa) + a(b(Pac + 1) + c(Pac + Pca)))

m5(0,1,0) = (a+b)(b+c)(b+ a(Pap + Pac) + c(Pca + PoB))’
B b(b+¢)(b+aPac) +bla+b)c Poa
m5(0,0,1) = (a+b)(b+c)(b+ a(Pap + Pac) + c(Pca + Pop))’
ac(b+c)Pap+bcla+c)Ppa
me(1,0,0) = (a+c)(b —l-(C)(CL(])DAB + PAC() + b()PBA + Ppc))’ €
(01.0) cle(c+bPpa) + a(c(Pag + 1) + b(Pag + Pga)))
Y T @+ )b+ 0)(c+ a(Pap + Pac) + b(Ppa + Poc))’
B c(b+¢)(c +aPap) +be(a+c)Ppa
7c(0,0,1) =

(a+¢)(b+c)(c+a(Pap + Pac) + b(Ppa + Ppc))’

We are interested in evaluating for all players which terfi, 0,0), =(0,1,0),
(0,0, 1) is greater depending on the values dob andc. This will give us the equilib-
rium point of the system. For that purpose we may define new téfras

S1 = ma(1,0,0) — mw4(0,1,0),
Se = ma(1,0,0) —7mA(0,0,1),
S3 = ma(0,1,0) — 74(0,0,1),

Ss = 7g -

S7 = 7c(1,0,0) — 7(0,1,0),
Ss = 7c(1,0,0) — 7m(0,0,1),
Sog = mc(0,1,0) — 7(0,0,1).

(1,0,0) )
(1,0,0) )
(0,1,0) )
Si = 7p(1,0,0) — 75(0,1,0),
(1,0,0) — 75(0,0,1), (C.2)
S = 75(0,1,0) —75(0,0,1),
(1,0,0) = mc(0,1,0)
(1,0,0) = mc(0,0,1)
) )

Thus, substituting the set of probabilities (C.1) in the previous expresaiuhafter
some manipulation we obtain

Sy = a?(=b(aPpa—cPpc+b(Ppa+Ppc))—(a+b)cPoa)
1= (a+b)(atc)0(Psa+Pec)+c(Poa+Pc))(atb(PsatPec)+c(Pca+PcE))’
S, — a?((b=c)cPop—(a+c)(bPpa+cPoa))
2 (a+b)(a+c)(b(Ppa+Ppc)+c(Pca+Pcr))(at+b(Pea+Ppc)+c(Pca+Pcn))’
Sy = a?(b—c)

(a+b)(a+c)(a+b(Ppa+Ppc)+c(Pca+Pcg))’

Sy — b?(—a(bPap—cPac+a(Pap+Pac))—(a+b)cPcp)
4= (atb)(b+c)(@(Pap+Pac)+c(PoatPop))(b+a(Pap+Pac)+c(PcatPcr))’

[ b%(a(b+c)Pap—acPoa+c(bPop+c(Poa+Pog)))
5 (a+b)(b+c)(a(Pap+Pac)+c(Poca+Pcop))(b+a(Pap+Pac)+c(Poa+PcB))’
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Sy — b2(a—c)
6 = (atb)(b+c)(b+a(Pap+Pac)+c(Pcat+Por))’

S — ?(—a(=bPap+cPac+a(Pap+Pac))—blatc)Ppc)
7 (a+c)(b+c)(a(Pap+Pac)+b(Pea+Prc))(cta(Pap+Pac)+b(Pea+Prc))’

G — _ c2(a(b+c)Pac—abPpa+b(cPec+b(Pea+Pic)))
8 (a+c)(b+c)(a(Pap+Pac)+b(Ppa+Ppc))(c+a(Pap+Pac)+b(Ppa+Ppc))’

_ (a—b)c?
So = (a+c)(b+c)(c+a(Pap+Pac)+b(Ppa+Prc)) " (C.3)

We can clearly see that all denominators in the previous expressiorisietig posi-
tive. Therefore, if we want to evaluate the sign$yfwe need only to analyze the sign of
the numerator.

Assuming thatz > b > ¢ we already obtain the result th& > 0, S¢ > 0 and
Sg > 0 implying that

74(0,1,0) > 74(0,0,1),
m5(0,1,0) > 75(0,0,1),
7c(0,1,0) > 7(0,0,1).

Thus, we conclude that aiming at the weakest player it is not a con¢eisahtegy
for any player and hence we may 98t = Pgc = Pcp = 0. This lead us to the
following expressions

—a2(a + b)(bPBA + CPCA>

S| = ,
! (a+b)(a+c)(bPBA—i—cPCA)(a—i—bPBA—i-cPCA)
o —a%(a+ ¢)(bPga + cPoa)
2 (a+b)(a+c)(bPBA+CPCA)(a+bPBA+CPCA)’
S5 = a’(b—c)
(a+b)(a+c)a+bPga+ cPoa)’
—ab*Pyp(b+ a)
Sy = ,
(a4+0)(b+c)(aPap + cPoa)(b+ aPap + cPca)
G b%(a(b+ c¢)Pag — cPoala + ¢
° T T (a+b)(b+c)(aPap + cPoa)(b+ aPap + cPoa)’
g b%(a — c)
T (a+b)(b+ )b+ aPap + cPoy)’
—aPapc?(a —b)
S7 = ,
(a+c)(b+c)(aPap +bPpa)(c+ aPap + bPpa)
2
P _
S5 = c*bPpa(a —b)

(a+c)(b+c)(aPap +bPpa)(c+ aPap + bPpa)’
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Sy

(a —b)c?

— (C.4)

(a+c)(b+c)(c+ aPap +bPga)

It can be clearly seen that whatever value$, ¢, Pg4 and Pc 4 the termsS; < 0
andS; < 0; recalling thatS; > 0 we obtain for player Ax4(0,1,0) > 74(0,0,1) >
74(1,0,0) and therefore?yyp = Pac = 0, Pap = 1.

Besides, the fact thei;, < 0 andSs > 0 imposesrz(0,1,0) > wp(1,0,0) and
m5(0,1,0) > 75(0,0,1). Then for player B we obtai’zy = Ppc = 0 andPga = 1.
Finally, S7 is also negative and together with > 0 we obtainr(0,1,0) > m¢(1,0,0)
andr¢(0,1,0) > m¢(0,0,1). HencePeg = Pop = 0 andPca = 1.

As a conclusion, we have demonstrated for the random truel the existeacmique
equilibrium point, which is given by the strongest opponent stratBgyis = Pga = Pca = 1.

C.2 Sequential firing

For the sequential truel we can proceed as in the previous sectionpanel may first
present the expressions corresponding(th 0, 0), 7(0, 1, 0), 7(0, 0, 1) for players A, B
and C. The expressions are

74(1,0,0) =

74(0,1,0) =

7I-A(O) 07 1) =

7TB(1a Oa 0) ==

7rB(0a 17 0) =

7(0,0,1) =

mc(1,0,0) =

7I-C(O’ 1’ 0) =

acPcp abPpc(c(Pco—1)+1)

—ca+a+tc a(b—1)—b

L —(b(Pgo — 1) +1)(c(Pco — 1) + 1)

a(cPop—a(c—=1)(b(Ppo—1)+1)(c(Pco—1)+1))  abPpc(c(Pco—1)+1)
—catatc a(b—1)—b

(@—D0Pso— D)+ D(e(Poo— D+ D) +1

a(a(b=1)(b(Po—1)+1)—bPpc)(c(Pco—1)+1) + acPep
a(bfl)fb —ca-+ta+c

(a—1)(b(Ppo— 1)+ 1)(c(Peo—1) + 1)+ 1
abPAc(c(Pco—1)+1) o bc(PC()-i-PCB—l)
a(b—1)—b b(c—1)—c
1—(a(Pa— 1)+ 1)(c(Peog—1)+ 1)’
ab(Pac—bPac)(c(Pco—1)+1)  b(b(c=1)(c(Pco—1)+1)+c(Pco+Pep—1))
a(b—1)—b b(c—1)—c
(b—1)(a(Pao — 1) +1)(c(Pco — 1) +1) +1 ’
b(aPac—b(Pacata—1))(c(Poco—1)+1)  be(Peo+Pop—1)
a(b—1)—b b(c—1)—c
(b—1)(a(Pag — 1) + 1)(c(Poo —1) + 1) +1
be(Ppo+Ppc—1)  ac(Pao+Pac—1)(b(Ppo—1)+1)

b(c—1)—c —cata+c
, C.5
I~ (a(Pao— 1)+ )(0(Ppo— 1) 1) (€9
a(l—c)e(Paog+Pac—1)(b(Ppo—1)+1) | c(ctb(=Ppo—Ppc+c(Ppot+Ppc—2)+1))
—ca+ta+c + b(c—1)—c
(c—1)(a(Pao—1)+1)(b(Po—1)+1)+1 ’
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c(=actcta(c—=1)(Pao+Pac—1)(b(Ppo—1)+1)) _ b(c=1)e(Ppo+Ppc—1)
—cata+tc b(c—1)—c

(c=1)(a(Pao—1) +1)(b(Ppo—1) +1) + 1

The next step would be to substitute the previous expressions into the frms
from (C.2). However, we will not present them because the expressibtained are
of considerable length. Nevertheless, it can be shown that the t&ynig and.Sy are
greater than zero. This implies that we canBgt = Pgc = Pop = 0, simplifying the
expressions fof; which now read

WC(O’ O’ 1) =

Sy = —a?(1—¢)(1-b(1—Ppo))(1—c(1—Pco))
1™ {ate(T=a)) (1= (1=a)(T=b(1—Ppo))(I—c(1-Pco)))’
Sy — — a?(1=b)(1=b(1—Ppo)) (1—c(1—Pgo))
2 (a(1=b)+b)(1—(1—a)(1-b(1—Ppo))(1—c(1—Pco)))’
S — a?(b—c)(1=b(1—Ppo))(1—c¢(1—Pco))
3 = BN -b)(ale-D—a)(—Pooeteta(I—b(I—Ppo))(1—c(1—Pco)) F5(Pao— 1)~ Pooete—T1)
b( e(Pog—1) __ ble=1)(e(Pgg—1)+D)+e(Pog—1) )
S, = \I=@Pao=DFD(E(Peo=0FD — G- D(a(Pag—DFIE(Poo= DD
b(c—1)—c ’
g _ be(Poo—1) n b (afl)z(@icﬁcbﬂfl)+bc<zflf>cf)c)
5 = le—D=a)(I=(a(Pao—D+D(e(Peo—D+D)  G=D)(aPao—D)+1)(e(Poo—1)+1)+1°
S — b?(a—c)(e(Poo—1)+1)
6 (a(b—1)=b)(b(c—1)—c)(—cb+b+c+a(b—1)(Pao—1)(c(Pco—1)+1)+(b—1)cPco)’
s = (=(b=1)(c=1)(Pao—1)(b(Ppo—1)+1)a*+b(Pao—b(c—Pao) (Ppo—1)—1)a+b*c(Ppo—1))
= 5 ,
g — 2 ((b(c—1)—c)(Pao—1)(—Ppob+b—1)a?—b(b(c—1)—1)(Ppo—1)a+b?(c—1)(Ppo—1))
8 — D )

a— 02
89 = Gl TR Tl Pas D P T TR o) (C.6)
whereD = (a(c — 1) — ¢)(b(c — 1) — ¢)(a(Pao — 1)(b(Pgo — 1) + 1) + b(Ppo —
1))(c+ a(c—1)(Pao — 1)(b(Ppo — 1) + 1) + b(c — 1)(Ppo — 1)).
It can easily be checked that both terisand .S, are negative, which together with
the conditionS; > 0 give as a result that4(0,1,0) > 74(0,0,1) > 74(1,0,0) and
hencePsc = P4y = 0, Pap = 1. Substituting this result int§, and.S; we get

b (a+7c(1fpco) )+ b(lfc)(170(17Pco))+c(1*PCO))

T-alcFoo) T T-0-a) (1 D)1 (1 Poo))
- C.7
S c+b(1—c) ’ (€7
(1—a)b(l1—c(1—=Pgq) , c(1—=Pgq)
- be(1—Peo) b bra(1—b) Ry g gy )
s =9 (ate(-a)1=Pea)) ~ ~ T=(=a)(A=B){1=c1=Pco)) (C.8)

The previous equations fd¥, and S5 are both negative either whef,y = 0 or
Peo = 1. Thus, this result together withs > 0 results inT3(0,1,0) > 75(0,0,1) >
m5(1,0,0), thusPgc = Py = 0 andPpa = 1.
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Finally, substituting these results into the equatiShsSs and.Sy we get

—c? ((l—c)(1—b)2a2—ba(1—bc)—b20)
(a(1—c)+c)(b(1—c)+c)(a(1—-b)+b)(c+a(l—c)(1—-b)+b(1—c))

)
c? ((c+b(1—c))(l—b)a2+ba—b2(l—c)(l—a))
(a(1—c)+c)(b(1—c)+c)(a(1—b)+b)(c+a(l—c)(1-b)+b(1—c))’ (C].O)

_ (a—b)c?
Sy = (cta(I—e)(ctb(1—c))(cta(l—c)(I-b)+b(1—c)) (C.11)

Sy = (C.9)

Sg =

We know thatSy is positive, implying thatr<(0,1,0) > 7<(0,0,1). Besides, in
order to evaluate the sign in Eg. (C.9) we need only to analyze the numeaattre
denominator is always positive. Defining the functigfa, b, ¢) = (1 — ¢)(1 — b)%a? —
ba(1 — be) — b%c we have

o If g(a,b,c) >0: 57 <0,59 >0

7c(0,1,0) > mc(1,0,0), - - -
{ 10(0.1.0) > — Poo=FPcp=0,Pca =1

(0,1,0)
o If g(a,b,c) <0:57>0,59 >0

{ mc(1,0,0) > mc(0,1,0), Poa=Fop=0,Pco=1

Hence we see that depending on the sigg(af b, ¢) the equilibrium point will be
given by the strongest opponent strat&ws = Pga = Pca = 1 wheng(a,b,¢) >0
or byPAB =Pa =P =1 Wheng(a, b, C) < 0.

C.3 Convincing opinion
Following the same methodology as in previous sections we can write downltitiess

corresponding to the convincing probabilities of opinions A, B and C in teritteed
strategies adopted by the players

a?(a—(b(Ppa—3)+c(Pca—3))a+c(c—2b(Ppa+Poa—4))a+bc(—Poab+b—c(Ppa—3)))

7TA(17070) = (a+b)2(a+c)2(atbtc) )
a?(a—(b(Ppa—3)+c(Pca—3))a?+b(b—2¢(Ppa+Pca—4))a+bc(—Ppact+c—bPoa—3)))
m4(0,1,0) = (at+b)2(atc)2(atbto) )
0.0.1) = a?(a®—(b(Ppa—3)+c(Pca—3))a’+c(c—2b(Ppa+Poa—4))a+be(—Poab+b—c(Ppa—3)))
m4(0,0,1) = (at+b)2(atc)2(atbto) J
p2(2=alPap=3) | cPcy
75(1,0,0) = ( <a+;fb+c (b+c)2>7
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75(0,1,0) = b2((b+c(Poa+2))a?—((Pap—3)b2+2c(Pap—Poa—3)b+c?(Pap—1))a+b?(b+c(Pca+2)))

(a+b)2(b+c)?(a+b+c) ’
b—a(P —3)  cP,
a(0,0,1) = e w),
cQ(bP Alatc)?+(b+c)%(cta(Pa +2)))
o(1,0,0) = =ttty
- c2((c+b(PBA+2))a2+(PABb2+20(PAB+PBA+2)b+cQ(PAB+2))a+02(c+b(PBA+2)))
mc(0,1,0) = (a+0)2(b+c)2(atbte) )
c2(bPpa(a+c)2+(b+c)?(ct+a(Pap+2))
7c(0,0,1) = Ce: (a+c)2(b+c)2(a+b+c)AB ) : (C.12)
And the termsS; read
g — a%(c — b)(2bc + a(b + c))
! (a+b)>2(a+c)2(a+b+c)
Sy = 0,
S = a?(b — ¢)(2bc + a(b + c))
3 (a+b)>2(a+c)2(a+b+c)
o Pla—obeta(b+20)
4 (a+b)20b+c)2(a+b+c)
Ss = 0, (C.13)
g b%(a — c)(bc + a(b + 2¢))
6 (a+b2(b+c)2(a+b+c)
o o _ (a —b)c2(2ab + (a + b)c)
’ (a+c)2(b+c)2(a+b+c)
SS = 07
g (a —b)c*(2ab + (a + b)c)
9 =

(a+c)2(b+c)?(a+b+c)

By the way markmanships, b and c are defined, we see that < 0, S3 > 0
and thusm4(0,1,0) > 74(1,0,0) = 74(0,0,1); besides,S; < 0 andSg > 0 im-
plying that7z(0,1,0) > 75(1,0,0) = w5(0,0,1); and finally S; < 0 andSy > 0
and sor¢(0,1,0) > mc(1,0,0) = 7¢(0,0,1). Hence, there is only one equilib-
rium point in the opinion model that corresponds to #tmngest opponent strategy
Pap =Ppa =Pca =1
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