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Resum

Des del descobriment per part del botànic R. Brown al segle XIX de la presència d’un
moviment err̀atic en sistemes de tamany microscòpic, ḿes tard conegut com a moviment
Brownià, grans avenços van ocórrer en el camp dels procesos estocàstics durant els anys
seg̈uents. La inevitable presència de renou (o termes en les equacions del moviment que
provenen de l’eliminació de graus de llibertat microscòpics, i que noḿes es podien des-
criure de manera probabilı́stica) en un sistema es pensava que jugava un paperdestructiu.
Recentment, però, han aparegut moltes situacions en les quals el renou pot jugar un paper
constructiu. Aix́ı doncs, feǹomens com laresoǹancia estoc̀astica[1] mostra que el renou
pot millorar les propietats de transmissió d’un sistema1. Tamb́e trobam les transicions de
fase indüıdes per renou, en les quals la presència de renou pot donar lloc a una transició
de fase de no-equilibri cap a un estat de ruptura de simetria [2].

Un altre aplicacío interessant té a veure amb feǹomens de transport: el renou pot ser
emprat per a obtenir moviment unidireccional, açò és, es podenrectificar les fluctuacions
causades pel renou tèrmic de l’ambient, obtenint aixı́ una corrent neta en el sistema.
Aquest model es coneix com amotor Brownìa. Bàsicament consisteix en un sistema
de petita escala que es troba sotmès a fluctuacions tèrmiques les quals són rectificades
mitjançant qualque tipus d’asimetria (ja sigui espaial o temporal) present enel sistema.
Aquest feǹomen de transport es coneix comefecte ratchet. Depenent de la forma en
la qual aquesta asimetriáes introdüıda podem distingir entre diferents tipus de motors
Brownians. De totes maneres, el nostre interès es centrarà en un sol tipus de motor
Brownià conegut com aflashing ratchet, i que es caracteritza per una partı́cula que es veu
sotmesa a un potencial asimètric que s’enćen i s’apaga periòdicament o aleatòriament.

El flashing ratchet servı́ com ainspiració al fı́sic espanyol Juan M.R. Parrondo per
a model.lar un exemple de caire pedagògic amb dos jocs A i B en els quals ocorria un
efecte similar. Va crear aquests jocs l’any 1996, i els presentà de manera informal a
Torino, Itàlia [3]. Aquests jocs, ḿes tard coneguts com ajocs de Parrondo, eren dos
jocs justos (o incĺus jocs perdedors) quan s’hi jugava a un d’ells solament, mentre que
si un els combinava de forma periòdica o incĺus aleat̀oria, s’obtenia com a resultat un
joc guanyador. Llavors aquest exemple mostrava d’una manera molt senzilla com quan

1Per a ser ḿes precisos, existeix un valoròptim per a l’amplitud del renou, reflectit per la presència d’un
màxim quan dibuixam larelació entre la senyal i el renouen funcío del renou.
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dues diǹamiques es combinaven no necesàriament donaven com a resultat unasumade
dinàmiques. Tot el contrari, s’obtenia un resultat que era totalment inesperat. El resultat
d’obtenir un joc guanyador a partir de dos jocs justos o perdedors es coneix com a la
paradoxa de Parrondo[4–8].

Des de la seva aparició, aquests jocs varen atreure molt d’interès en altres camps,
com per exemple teoria d’informació qùantica [9–12], teoria de control [13,14], sistemes
d’Ising [15], formacío d’estructures [16–18], resonància estoc̀astica [19], caminates ale-
atòries i difusions [20–24], sistemes dinàmics discrets [25–27], economia [28,29], motors
moleculars en biologia [30, 31], biogènesis [32] i diǹamica de població [33, 34]. Tamb́e
han estat tractats com a processos de naixement i mort [35] i autòmates cel.lulars [36].

No obstant aix̀o, a pesar de que la connexió entre el flashing ratchet i els jocs de Par-
rondo era patent, no existia una relació precisa i quantitativa entre ambdós. És la finalitat
doncs d’aquesta tesi poder aprofundir en aquesta connexió entre els jocs de Parrondo i
el flashing ratchet. La tesi es divideix en deu capı́tols, dels quals el Capı́tol 1 constitu-
eix una breu introducció als conceptes preliminars necessaris per a un millor enteniment
dels caṕıtols posteriors. Hi presentam els conceptes bàsics de la teorı́a de processos es-
tocàstics, aix́ı com altres de teoria de cadenes de Markov i teoria de la informació.

El Caṕıtol 2 est̀a dedicat a una explicació detallada del ratchet Brownià. Concre-
tament ens centrarem en el flashing ratchet, explicant el mecanisme fı́sic que es troba
darrera l’efecte ratchet. En aquest capı́tol tamb́e presentam detalladament els jocs de
Parrondo tal com varen ser definits, juntament amb un anàlisi mitjançant cadenes de
Markov a temps discret que ens conduirà a l’obtencío de la distribucío de probabilitats
estacioǹaries aix́ı com els ritmes de guany dels jocs. A més a ḿes, presentarem de ma-
nera resumida altres versions dels jocs de Parrondo que podem trobar en altres treballs, i
que es diferencien dels originals en les regles emprades per a escollir les probabilitats.

Els jocs A i B que apareixen a la paradoxa de Parrondo poden considerar-se com un
proćes de difusío sota l’accío d’un potencial extern. No obstant això, no tenen la forma
general d’un proćes natural de difusió, ja que el capital sempre canvia amb cada joc,
mentre que en el cas més general de difusió la part́ıcula pot moure’s cap amunt o cap
avall o romandre en la mateixa posició en un temps donat. En el Capı́tol 3 presentam
una nova versió dels jocs de Parrondo, en els quals consideram una nova probabilitat
de transicío. Introdüım la probabilitat anomenadaself-transition, amb la qual el capital
del jugador pot romandre igual després d’haver jugat. Per tant aquesta nova versió pot
considerar-se com una evolució natural dels jocs de Parrondo, dels quals els jocs originals
en constitueixen un cas particular.

Despŕes d’introdüır aquesta nova versió dels jocs, procedim a derivar una relació
quantitativaentre els jocs de Parrondo i el model fı́sic del ratchet Brownià. El treball
original de Parrondo no feia aquesta comparació detallada. Aquesta relació funciona
en ambd́os sentits: emprant la nostra relació és possible obtenir nous jocs partint de
potencials f́ısics molt simples; de forma semblant,és possible generar nous models fı́sics
que presenten l’efecte ratchet a partir de la descripció tèorica d’un joc. El Caṕıtol 4 est̀a
doncs dedicat a mostrar aquesta relació entre els jocs de Parrondo i el flashing ratchet,
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demostrant que pot ser establerta de forma rigurosa.
Per a ampliar encara ḿes l’analogia establerta entre els jocs de Parrondo i el ratchet

Brownià, analitzam al Capı́tol 5, des del punt de vista de la teoria de la informació, la
relacío entre el corrent (o guany) dels jocs i l’entropia de la informació (tamb́e coneguda
com anegentropy). Aquesta relacío, establerta anteriorment per al ratchet Brownià [37],
presenta un efecte molt similar i per tant reforça l’equivalència entre els dos models.

Un altre punt d’inter̀es fa refer̀encia als intercanvis energètics en els motors Browni-
ans. Aquesta q̈uestío ha estat estudiada durant els darrers anys, i fins i tot podem trobar
en la bibliografia existent diferents definicions per a l’eficiència. A ḿes, aquesta q̈uestío
ha subscitat interès per al cas dels jocs de Parrondo [8] ja que no existia una connexió
clara entre l’energia que s’injecta al sistema, l’energia que se n’obté i en conseq̈uència
l’efici ència dels jocs. Per tant el Capı́tol 6 est̀a dedicat a un estudi de la relació entre
l’efici ència d’un sistema fı́sic i els jocs de Parrondo. Emprant el formalisme introduı̈t
prèviament en el Capı́tol 4, desenvolupam un m̀etode per avaluar l’eficiència dels jocs
combinant resultats tant de models discrets com de continuus.

Tots els caṕıtols anteriors determinen, des de diferents perspectives, la relació com-
pleta que existeix entre els jocs de Parrondo i el model del flashing ratchet. Cal destacar
que en aquests jocśunicament hi interv́e un sol jugador. Llavors, el següent pas a fer
inclou un estudi de jocs amb més d’un jugador:́es a dir, elsjocs de Parrondo col.lectius.
Ambdós Caṕıtols 7 i 8 est̀an dedicats als jocs col.lectius. Per una banda, estudiam al
Caṕıtol 7 diversos casos d’un joc col.lectiu introduı̈t per Toral [38], en els quals s’es-
tableix una redistribució de capital entre els jugadors. Obtenim, per a diferents combi-
nacions dels jocs A i B, resultats analı́tics per al guany mitj̀a d’un sol jugador. D’altra
banda, introdüım al Caṕıtol 8 una nova versió de jocs col.lectius que presenten, a més de
l’efecte de Parrondo, una inversió de corrent sota determinades circumstàncies. Aquesta
nova propietat es caracteritza per obtenir un joc que pot ser guanyador o perdedor d’a-
cord amb la freq̈uència de canvi entre els diferents jocs, un resultat que no s’observa per
al cas d’un sol jugador. Analitzam en detall aquests nous jocs i explicamqualitativament
el mecanisme que es troba darrera aquesta inversió de corrent.

El Caṕıtol 9 fa refer̀encia a l’altre tema principal d’estudi d’aquest tesi. Consideram
l’anàlisi d’un altre tipus de jocs en els quals tamb té lloc un resultat paradògic. Aquests
jocs es coneixen com atruels, i poden considerar-se com a una extensió del duel a on hi
participen tres individuus. De forma resumida, l’efecte paradògic que s’obt́e en aquests
jocs és que el jugador ḿes fort (o amb ḿes aptituds) no necessàriament guanyarà el
joc, sińo que en alguns casos el jugador més feble posseeix la major probabilitat de
sobreviure.

Aquests jocs varen ser estudiats des del punt de vista de la teoria de jocs [39–42].
En aquest Capı́tol 9 reprodüım els resultats existents d’aquest camp en un llenguatge
que, segurament, un fı́sic troba ḿes adequats per a un millor enteniment: el dels proces-
sos estoc̀astics. Obtenim les probabilitats de supervivència per a cada jugador, aixı́ com
la distribucío de guanyadors per a diferentes versions dels jocs analitzats. També em-
pram les simulacions dels jocs (un procediment amb ordinador i amb llarga tradició en la
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fı́sica) per tal d’entendre els resultats en aquelles situacions en les quals moltsjugadors
competeixen entre ells emprant les regles delstruels. A més, estudiam l’efecte d’incloure
una depend̀encia espaial en el sistema i una generalització dels truels per a ḿes de tres
jugadors.

Finalment, en el Capı́tol 10 extraiem les conclusions sobre el treball presentat, aixı́
com les futures lı́nies de treball que cal seguir.

Pau Amengual

Juliol 2006
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Preface

Since the discovery by the botanist R. Brown in the nineteenth century of thepresence
of an erratic movement in small-scale systems, later known as Brownian motion, great
advances occurred in the field of stochastic processes in subsequentlyyears. The unavoid-
able presence of noise (or terms in the movement equations coming from the supression
of microscopic degrees of freedom, which can only be described in a probabilistic man-
ner) in a system was supposed to play a destructive role. Very recently,however, there
have appeared many situations in which noise can lead to a constructive effect. For exam-
ple, phenomena of stochastic resonance [1] shows that noise can enhance the transmis-
sion properties of a system2. We also find phase transitions induced by noise, where the
presence of noise may induce a nonequilibrium phase transition to a symmetry breaking
state [2].

Another interesting application deals with transport phenomena: noise can be used
in order to obtain directed motion, i.e., one can rectify unbiased fluctuations caused by
thermal environment obtaining a net current in the system. This model is known in the
literature as Brownian motor. Basically it consists on a small-scale system subjected to
thermal fluctuations which arerectified through some sort of asymmetry (either spatial
or temporal) present in the system. This transport effect is known asratchet effect. De-
pending on the way the asymmetry is introduced we may distinguish betwen different
kinds of Brownian motors. However, our interest is focused on one class of Brownian
motor known asflashing ratchet, characterized by a particle subjected to an asymmetric
potential that is switchedonandoff either periodically or randomly.

The flashing ratchet served asinspirationto the Spanish physicist Juan M.R. Parrondo
to design a pedagogical example with two coin tossing games A and B where a similar
effect took place. He devised the games in 1996, presenting them in unpublished form
in Torino, Italy [3]. These games, later known asParrondo games, were both fair games
(or even losing) when played alone, whereas if one combined them either ina periodic
or even random fashion a winning game was obtained. Therefore this example showed
in a simple manner that two dynamics, when combined, do not necessarily givea result
being simply asumof dynamics. All the contrary, it might turn to be a totally unexpected

2To be more precise, there exists an optimal value of the noise amplitude, reflected by the presence of a
maximum when plotting the signal to noise ratio in terms of noise.
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8 Preface

outcome. The result of a winning game out of two fair/losing games is known in the
literature asParrondo’s Paradox[4–8].

Since their appearance, these games attracted much interest in other fields,for exam-
ple quantum information theory [9–12], control theory [13, 14], Ising systems [15], pat-
tern formation [16–18], stochastic resonance [19], random walks anddiffusions [20–24],
discrete dinamical systems [25–27], economics [28, 29], molecular motors inbiol-
ogy [30, 31], biogenesis [32] and population dynamics [33, 34]. Theyhave also been
considered as quasi-birth-death processes [35] and lattice gas automata[36].

However, even though the connection between the flashing ratchet and Parrondo’s
games was patent, there was no precise and quantitative relation between both. There-
fore it is the aim of this thesis to deepen into this connection between Parrondogames
and the flashing ratchet. The thesis is divided into ten Chapters, from whichChapter 1
constitutes a brief introduction to the necessary preliminary concepts needed for a better
understanding of succeeding chapters. We present some basic concepts taken from the-
ory of stochastic processes, as well as others from Markov chain theory and information
theory.

Chapter 2 is devoted to a detailed explanation of the Brownian ratchet. Concretely
we focus on the flashing ratchet, explaining the physical mechanism behindthe ratchet
effect. In this Chapter we also explain in detail the original Parrondo’s games as they
were defined, together with a detailed analysis by means of discrete-time Markov chains
leading to the distribution of stationary probabilities as well as the rates of winning of the
games. Besides, we briefly present other versions of Parrondo gamespresent in the liter-
ature, differentiating from the originals on the rules used for selecting the probabilities.

Games A and B appearing in Parrondo’s paradox can be thought of as diffusion pro-
cesses under the action of a external potential. However, they do not have the more
general form of a natural diffusion process, because the capital willalways change with
every game played, whereas in the most general diffusion process a particle can either
move up or down or remain in the same position at a given time. In Chapter 3 we present
a new version of Parrondo’s games, where a new transition probability is taken into ac-
count. We introduce aself-transitionprobability, that is, the capital of the player now can
remain the same after a game played. Thus the significance of this new versionis a nat-
ural evolution of Parrondo’s games, from which the original games consitute a particular
case.

After introducing this new version of Parrondo games, we proceed to derive aquanti-
tativerelation between Parrondo’s games and the physical model of the Brownian ratchet.
Parrondo’s original work did not make such a detailed comparison. The interest goes both
ways: using our detailed comparison it is possible to derive new games starting from very
simple physical potentials; similarly, it is possible to generate new physical modelsthat
undergo the ratchet effect starting from some game theoretical description. Chapter 4 is
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thus dedicated to present this relation between Parrondo’s games and the flashing ratchet,
showing that it can be established in a rigorous way.

To extend further the analogy between Parrondo games and the Brownianratchet, we
analyze in Chapter 5, from the point of view of information theory, the relation between
the current (or gain) from the games and the information entropy (also known as negen-
tropy). This relation, already established for the Brownian ratchet [37], presents a similar
effect and hence reinforces the equivalence between both models.

Another point of interest concerns the energetics of Brownian motors. This ques-
tion has been addressed in recent years, finding in the literature different definitions of
efficiency. It has also raised interest in case of Parrondo games [8] as there is no clear
connection between energy input, energy output and consequently the efficiency in the
games. Thus, Chapter 6 is dedicated to a study of the relation between the energetics
of a physical system and Parrondo’s games. Making use of the formalismintroduced
previously in Chapter 4, we develop a method for evaluating the efficiency of the games
combining results from both discrete and continuous models.

All previous Chapters determine, from different perspectives, a complete relation
existing between Parrondo’s games and the flashing ratchet. These gamesare played by
one player only. Therefore, our next step involves a study of a game withmore than
one player: i.e.collective Parrondo games. Both Chapters 7 and 8 are dedicated to
collective games. On one hand we study in Chapter 7 various cases from acollective
game introduced by Toral [38], where a redistribution of capital takes place amongst
players. We obtain, for different combinations of games A and B, analytical results for
the average gain of a single player. On the other hand, we introduce in Chapter 8 a
new version of collective games presenting, appart from the Parrondoeffect, a current
inversion under certain circumstances. This new feature is characterized by an outcome
that can be winning or losing according to the frequency of change between the differen
games, a result that is not observed in single player games. We analyze in detail these
new games and explain qualitatively the mechanism behind this current inversion.

Chapter 9 is committed to the second main subject of study of the present thesis.It
considers the analysis of another kind of games where, again, a counter-intuitive result
takes place. These are the so–called truel games, and can be thought ofas an extension
of a duel played by three individuals. In brief, the paradoxical resultappearing in these
games is that the player with the highest performance does not necesarrilywin the game,
instead, even the weakest possesses a higher probability of winning in some cases.

These games were studied from the pont of view of game theory [39–42].In this
Chapter 9 we reproduce the existing results of this field in a language that, hopefully, a
physicist finds more comfortable to understand: that of stochastic processes. We obtain
the survival probabilities of each player, as well as the distribution of winners for the dif-
ferent versions of the games analyzed. We also use simulations of the games(a computer
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procedure with long tradition in physics) in order to understand the actual outcome in
a situation in which many agents compete amongst themselves using the rules of truels.
Furthermore, we study the effect of including spatial dependence in the system and a
generalization of the truels to more than three players.

Finally, in Chapter 10 conclusions about the present work will be drawn,together
with perspectives about future work.

Pau Amengual

July 2006
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Chapter 1

Introduction

In the following sections of the present Chapter we introduce some basic concepts that
will be used in foregoing Chapters. First we will present briefly some concepts on the
theory of stochastic processes in Sec. 1.1, Markov processes in Sec.1.2 and the Fokker-
Planck equation in Sec.1.3. These will be followed by some introductory concepts about
Markov chain theory in Sec.1.4 and finally some concepts on information theory in
Sec. 1.5.

1.1 Stochastic processes

A stochastic process can be thought of as a system that evolves probabilistically in
time, or more explicitly, a system where there exists at least one time–dependentran-
dom variable. Denoting this stochastic variable asX(t), we can measure its actual value
x1, x2, x3, . . . at different timest1, t2, t3, . . . and so obtain the joint probability density
of the variableX(t)

P (x1, t1;x2, t2;x3, t3; . . .) (1.1)

which denotes the probability that we measured the valuex1 at timet1, valuex2 at time
t2,. . ., etc.

Using these probability density functions we can also defineconditional probability
densitiesthrough

P (x1, t1;x2, t2; . . . | y1, τ1; y2, τ2; . . .) =
P (x1, t1;x2, t2; . . . ; y1, τ1; y2, τ2; . . .)

P (y1, τ1; y2, τ2; . . .)
,

(1.2)
where it’s been assumed that the times are ordered, i.e.,t1 ≥ t2 ≥ t3 ≥ . . . ≥ τ1 ≥ τ2 ≥
. . ..

The simplest stochastic process is that of complete independence

P (x1, t1;x2, t2;x3, t3; . . .) =
∏

i

P (xi, ti) (1.3)

1
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which means that the value ofX at time t is completely independent of its values at
previous – or posterior – times.

The next step is to consider processes where the future state of the system depends on
its actual state. This kind of processes are known in the literature asMarkov processes.

1.2 Markov processes

This class of processes are characterized by the so calledMarkov property. A Markov
process can be defined as a stochastic process with the property that for any set ofsuc-
cessivetimes, i.e.t1 ≥ t2 ≥ t3 ≥ . . . ≥ τ1 ≥ τ2 ≥ . . ., one has

P (x1, t1;x2, t2; . . . | y1, τ1; y2, τ2; . . .) = P (x1, t1;x2, t2; . . . | y1, τ1). (1.4)

This previous statement means that we can define everything in terms of simple condi-
tional probabilitiesP (x1, t1 | y1, τ1). For instance,P (x1, t1;x2, t2 | y1, τ1) = P (x1, t1 |
x2, t2; y1, τ1)P (x2, t2 | y1, τ1) and using the Markov property (1.4) we find

P (x1, t1;x2, t2; y1, τ1) = P (x1, t1 | x2, t2)P (x2, t2 | y1, τ1) (1.5)

and for the general case it can be written

P (x1, t1;x2, t2;x3, t3; . . . xn, tn) = P (x1, t1 | x2, t2) P (x2, t2 | x3, t3) . . .

. . . P (xn−1, tn−1 | xn, tn) P (xn, tn) (1.6)

provided thatt1 ≥ t2 ≥ t3 ≥ . . . ≥ tn.
There are many processes in nature where this property appears. Oneof the most

studied processes successfully described using this Markov propertyis the Brownian
motion, presented in more detail in the next Section.

1.2.1 Brownian motion

The botanist Robert Brown discovered in 1827 that small particles suspended in water
were found to be in a very animated and irregular motion. Initially it was supposed to
represent some manifestation of life, though after some studies this option wasrejected,
as the same behavior was also observed in other fine particles suspension–minerals, glass
. . . . The solution to this mysterious movement had to await a few decades, untila sat-
isfactory explanation came through the work of Albert Einstein in 1905 [43]. The same
explanation was independently developed by Smoluchowski [44], who was responsible
for much of the later systematic development and for much of the experimental verifica-
tion of Brownian motion theory.

Einstein’s work had primarily two main premises:
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• The motion of the particles is caused by the exceedingly frequent impacts on the
pollen grain of the incessantly moving molecules of liquid in which it is suspended.

• The motion of these particles can only be described probabilistically in terms of
frequent and statistical independent impacts, due to the erratic and irregular (and
so complicated) movement that the particles carry out.

This process is the best known example of Markov process. We have thepicture of a
particle that makes random jumps back and forth over a given set of coordinates, for
instance over the X–axis in one dimension. The jumps may have any length, but the
probability for large jumps falls off rapidly. Moreover, the probability is symmetrical in
space and independent of the starting point.

Hence, we can summarize the basic steps that Einstein took in order to derivehis
Brownian motion theory.

The first point to consider is that each individual particle executes a motionwhich
is totally uncorrelated from the motion of all other particles; it will also be considered
that the displacement of the same particle, but taken at different time intervals, are also
independent processes – as long as these time intervals are not taken too small.

Then a characteristic time intervalτ can be introduced, which is small compared to
the observation time intervals, but large enough so that the approximation of independent
successive time intervalsτ is correct.

Now we considern particles suspended in a liquid. In a time intervalτ , the x–
coordinate of the particles will increase by an amount∆, where this quantity may have
different values – either positive or negative – for different particlesin the same time
interval. We will also consider that there exists a certain distribution law for∆, given by
the functionφ(∆). The number of particles that will shift their position with an interval
between∆ and∆ + d∆ will be given by the expression

dn = nφ(∆) d∆ (1.7)

where ∞
∫

−∞

φ(∆)d∆ = 1 (1.8)

The functionφ is only distinct from zero for small values of∆, and it also follows
the property

φ(∆) = φ(−∆) (1.9)

which implies that there exists no preferred direction of movement for the particles.
We can now study how the diffusion coefficient depends onφ. Let P (x, t) be the

number of particles per unit volume at(x, t). We compute the distribution of particles at
time t + τ from the distribution at timet. From the definition of the functionφ(∆), we
can obtain the number of particles which at timet + τ are found between the pointsx
andx+ dx. One obtains
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P (x, t+ τ) =

∞
∫

−∞

P (x−∆, t)φ(∆)d∆. (1.10)

But sinceτ is very small, we can Taylor expandP (x, t+ τ)

P (x, t+ τ) = P (x, t) + τ
∂P

∂t
. (1.11)

Besides, we can also Taylor expand the functionP (x−∆, t) in powers of∆

P (x−∆, t) = P (x, t)−∆
∂P (x, t)

∂x
+

∆2

2!

∂2P (x, t)

∂x2
+ . . . (1.12)

Introducing the results from Eq. (1.11,1.12) into the integral Eq. (1.10) weobtain the
following expression

P +
∂P

∂τ
τ = P

∞
∫

−∞

φ(∆) d∆− ∂P

∂x

∞
∫

−∞

∆φ(∆) d∆ +
∂2P

∂x2

∞
∫

−∞

∆2

2
φ(∆) d∆. (1.13)

Due to the symmetry property Eq. (1.9), the odd terms of Eq. (1.13) – secondterm,
fourth term, etc. – vanish, whereas for the remaining terms, that is, first term, third term,
etc. each one is very small compared to the previous one. Introducing Eq.(1.8) in the
last equation, setting

1

τ

∞
∫

−∞

∆2

2
φ(∆) d∆ = D, (1.14)

and keeping only the first and third terms on the right hand side,

∂P

∂t
= D

∂2P

∂x2
. (1.15)

We can clearly identify the latter equation as the diffusion equation, andD as the
diffusion coefficient. The solution for an initial condition att = 0 given byn(x) =
n δ(x) is

P (x, t) =
n√
4πD

e−
x2

4Dt√
t

(1.16)

which is a Gaussian function centered at the origin. Using this result we calculate the
averages
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〈x〉 = 0 (1.17)

〈x2〉 = 2Dt. (1.18)

This result was derived by Einstein assuming a discrete–time assumption, thatis ,
that the impacts occurred only at times0, τ, 2τ, . . . , and both Eqs. (1.15,1.16) are to be
regarded as only approximations, whereτ is considered so small thatt can be thought as
being continuous.

1.2.2 Langevin’s equation

After Einstein presented his theory about Brownian motion, Langevin [45]presented
another method quite different from Einstein’s work. In brief, his theorycan be explained
as follows.

From statistical mechanics it was already known that the mean kinetic energy of a
Brownian particle at equilibrium should reach a value

<
1

2
mv2 >=

1

2
kT (1.19)

whereT denotes the absolute temperature,k is the Boltzmann constant,m the mass
andv the velocity of the Brownian particle.

We can distinguish two different forces acting on the particle, namely,

• A viscous drag. Assuming that the expression of the force is analogous tothe
macroscopic hydrodynamic equation, for a low Reynolds number we can write
down the following expression for the drag force−6πηadxdt , η being the viscosity
anda the diameter of the particle, assuming it to be spherical.

• A fluctuating forceξ coming from the consideration of the impacts of the fluid
particles upon the Brownian particle. The unique consideration about this force is
that it can be either positive or negative with the same probability. The ensemble
may consist on many particles in the same field, far enough from each other so that
they cannot influence mutually. Or it may also be considered as a unique particle,
where the time intervals between measurements are large enough not to influence
each other.

The stochastic properties ofξ are given regardless of the velocityv of the particle. Its
average vanishes,< ξ >= 0, and its autocorrelation function reads

< ξ(t)ξ(t′) >= δ(t− t′) (1.20)

The latter expression comes from the consideration that successive collisions are un-
correlated and practically instantaneous.
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Writing down Newton’s equation of motion for the particle we get

m
d2x

dt2
= −6πηa

dx

dt
+ ξ (1.21)

This equation is usually known as Langevin equation. Multiplying Eq. (1.21) by x,
and after a little algebra we obtain

m

2

d2

dt2
(x2)−mv2 = −3πηa

d(x2)

dt
+ x ξ (1.22)

wherev = dx
dt . Averaging over a large number of particles and making use of

Eq. (1.19) we obtain an equation for< x2 >

m

2

d2

dt2
< x2 > +3πηa

d

dt
< x2 >= kT, (1.23)

where the term< xξ > has been set to zero due to the irregularity of the fluctuating
force ξ. This assumption implies that the variation suffered by the x variable can be
considered as independent from the variation that the fluctuating forceξ experiences1

< xξ >=< x >< ξ > (1.24)

The general solution to Eq. (1.23) is

d

dt
< x2 >=

kT

3πηa
+ C e

−6πηat
m (1.25)

whereC is an arbitrary constant.
Considering that the exponential in Eq. (1.25) decays very rapidly, we can dismiss

this term and so the solution for the average square distance< x2 > reads

< x2 > − < x2
0 >=

(

kT

3πηa

)

t (1.26)

Now we can compare Eq. (1.26) with Eq. (1.18) to obtain the following relation

D =
kT

6πηa
= µkT (1.27)

whereµ is the mobility of the Brownian particle.
This important result, known as thefluctuation–dissipationtheorem, relates a quan-

tity D pertaining to statistically unpredictable dynamical fluctuations to a quantity which
involves deterministic, steady state properties.

1This can be thought as equivalent to the assumption made by Einstein whenhe considers that for a suf-
ficiently large time intervalτ , the displacements∆ suffered by the Brownian particle within two successive
time intervals are independent.
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1.3 The Fokker–Planck equation

This section aims to be a brief explanation on how to obtain the time evolution of the
probability density function for the system under consideration. Its name comes from the
work of Fokker [46] and Planck [47]. The former studied Brownian motion in a radiation
field and the latter attempted to build a complete theory of fluctuations based on it.

1.3.1 Derivation of the Fokker–Planck equation

If we consider a Markov process, we can write a master equation as

∂P (x, t)

∂t
=

∫

{

W (x | x′)P (x′, t)−W (x′ | x)P (x, t)
}

dx′ (1.28)

where the termW (x | x′) denotes the transition probability between statesx andx′.
P (x, t) denotes the probability of finding the system at positionx at timet, and must be
normalized, that is

∞
∫

−∞

dxP (x, t) = 1 (1.29)

If x corresponds to a discretized variable, the master equation takes the form

dPn(t)

dt
=
∑

n

{Wnn′Pn′(t)−Wn′nPn(t)} . (1.30)

Written in this form clearly the master equation is a gain–loss equation. The firstterm
on the right hand side of Eq. (1.30) corresponds to the gain of staten due to transitions
from different statesn′ to n, whereas the second term is a loss term due to the transitions
from the staten to other statesn′.

Planck derived the Fokker–Planck equation as an approximation to the master equa-
tion (1.28). He expressed the transition probabilityW (x | x′) as a function of the sizer
of the jump and of the starting point

W (x | x′) = W (x′; r), r = x− x′. (1.31)

Then (1.28) can be rewritten in the form

∂P (x, t)

∂t
=

∫

W (x− r; r)P (x− r, t)dr − P (x, t)

∫

W (x;−r)dr (1.32)

At this stage two assumptions are made,
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• Only small jumps occur, i.e.,W (x′; r) is a sharply peaked function ofr but varies
slowly with x′. Then there will exist someδ > 0 such that

W (x′; r) ≈ 0 for | r |> δ (1.33)

W (x′ + ∆x; r) ≈W (x′; r) for | ∆x |< δ. (1.34)

• The second assumption is that the solutionP (x, t) also varies slowly withx, mak-
ing possible a Taylor expansion of the termP (x−r, t) in terms ofP (x, t) obtaining

∂P (x, t)

∂t
=

∫

W (x; r)P (x, t) dx−
∫

r
∂

∂x
{W (x; r)P (x, t)} dr

+
1

2

∫

r2
∂2

∂x2
{W (x; r)P (x, t)} dr − P (x, t)

∫

W (x;−r)dr. (1.35)

The first and fourth terms on the right hand side of Eq. (1.35) vanish, whereas the
other two remaining terms are named as

F (x) =

∞
∫

−∞

rW (x; r)dr (1.36)

D(x) =

∞
∫

−∞

r2W (x; r)dr, (1.37)

and they correspond to the first and second jump moments ofW (x; r), respectively.
The first jump moment corresponds to the so calleddrift term –F (x)–, and the second
moment to thediffusion term–D(x) –. Then the final result is

∂P (x, t)

∂t
= − ∂

∂x
[F (x)P (x, t)] +

1

2

∂2

∂x2
[D(x)P (x, t)] (1.38)

In conclusion, we have derived the Fokker–Planck equation starting from the master
equation governing the transitions between different states from the system.

1.3.2 The Fokker–Planck equation in one dimension

For a one dimension we can write the following Fokker–Planck equation – as derived in
the previous section –

∂P (x, t)

∂t
= − ∂

∂x
[F (x, t)P (x, t)] +

1

2

∂2

∂x2
[D(x, t)P (x, t)] . (1.39)
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HereD(x, t) is the diffusion term andF (x, t) is the drift term usually written as
F (x, t) = −∂V (x,t)

∂x , introducing a potential functionV (x, t). The stochastic process
whose probability density function obeys Eq. (1.39) is equivalent to the stochastic process
described by the Ito stochastic differential equation

ẋ = F (x, t) +
√

D(x, t) ξ(t) (1.40)

where ξ(t) is a gaussian white noise of mean zero and correlation given by<
ξ(t)ξ(t′) >= δ(t− t′).

Defining aprobability currentJ(x, t) as

J(x, t) = F (x, t)P (x, t)− 1

2

∂

∂x
[D(x, t)P (x, t)] (1.41)

Eq. (1.39) can be rewritten in the form of a continuity equation

∂P (x, t)

∂t
+
∂J(x, t)

∂x
= 0 (1.42)

1.3.3 Boundary conditions

The Fokker–Planck equation is a second–order parabolic differentialequation, and in
order to find its solution we need an initial condition as well as some boundary conditions
where the variablex is constrained. For a more general case, in more than one dimension,
we can write

∂tP (x, t) = −
∑

i

∂

∂xi
F (x, t)P (x, t) +

1

2

∑

i,j

∂2D(x, t)
∂xi∂xj

(1.43)

which can also be written as a continuity equation

∂P (x, t)
∂t

+
∑

i

∂Ji(x, t)
∂xi

= 0 (1.44)

The previous equation has the form of a local conservation law, and so itcan be
rewritten in an integral form. Considering a regionR with boundaryS we have

∂P (R, t)

∂t
= −

∫

S

dS n̂(x) · J(x, t) (1.45)

where we have defined the total probability in regionR asP (R, t) =
∫

R dxP (x, t),
andn̂(x) is an outward vector pointing normal toS. Eq. (1.45) indicates that the total loss
of probability in the regionR is given by the surface integral ofJ(x, t) over regionR.
The currentJ(x, t) also has the property that a surface integral over any surfaceS gives
us the net flow of probability across that surface. Depending on the existing boundary
conditions, we will impose different conditions, such as
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Reflecting barrier In this case there is no flow of probability through surfaceS, which
can be thought of as the particle not leaving regionR. In this case it is required
that

n̂(x) · J(x, t) = 0, ∀ x ∈ S (1.46)

Absorbing barrier For this case when the particle reaches the boundary, it is removed
from the system. As a consequence, the probability of finding the particle in the
boundary is strictly zero,

P (x, t) = 0,∀x ∈ S (1.47)

Periodic boundary conditions The process takes place in a closed interval[a,b], where
the two end points are identified with each other. This implies the following set of
conditions to be fulfilled

lim
x→b−

P (x + mL, t) = lim
x→a+

P (x + mL, t)

lim
x→b−

J(x + mL, t) = lim
x→a+

J(x + mL, t). (1.48)

where the quantitymL accounts for a displacement in any direction equal to the period-
icity of the system.

1.3.4 Stationary properties

Given a stochastic processX(t), we say thatX(t) is a stationary process ifX(t) and
the processX(t + t0) have the same statistics for anyt0. This property is equivalent to
saying that all joint probability densities satisfy time translation invariance, thatis

P (x1, t1;x2, t2; . . . ;xn, tn) = P (x1, t1 + t0;x2, t2 + t0; . . . ;xn, tn + t0) (1.49)

and therefore such probabilities are only functions of the time differencesti − tj . In
the particular case of the one–time probability, it is independent of timet and it can be
written asPs(x). Furthermore, if the stationary Markov process satisfies

lim
t→∞

P (x, t|x0, 0) = Ps(x) (1.50)

then we can construct from the stationary Markov process a nonstationary process whose
limit as time becomes large is the stationary process. It can be defined fort, t′ > t0 by

P (x, t) = Ps(x, t|x0, t0)P (x, t|x′, t′) = Ps(x, t|x′, t′) (1.51)

So if Eq. (1.50) is satisfied, we find that ast → ∞ or t0 → −∞, P (x, t) → Ps(x)
and the rest of probabilities become stationary because the conditional probability is also
stationary. This process is known as ahomogeneous process.
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For a homogeneous process, the drift and diffusion terms of the Fokker–Planck
equation are time independent. Then, returning to the1D case, in the stationary state
∂P (x,t)
∂t = 0 and soP (x, t) = P s(x) becomes independent of time. From Eq. (1.39) we

have

d

dx
[F (x)P (x)]− 1

2

d2

dx2
[D(x)P (x)] = 0. (1.52)

And using Eq. (1.42) we havedJ(x)
dx = 0, orJ(x) = J = Constant.

If the process takes place in the interval(a, b), it must be satisfied thatJ(a) = J(x) =
J(b) = J ; so if one of the boundary conditions is reflecting, it means that both of them
must be reflecting, and thenJ = 0.

If the boundaries are not reflecting, the condition of constant currentrequires them to
be periodic. In that case we may use the boundary conditions given by (1.48).

1.3.4.a Zero–current case

If J = 0, Eq. (1.52) can be rewritten as

F (x)P s(x) =
1

2

d

dx
[D(x)P s(x)] (1.53)

with solution

P s(x) =
N
D(x)

e
2

R x
a dx′

F (x)
D(x) (1.54)

N being a normalization constant ensuring that
∫ b
a dxP

s(x) = 1.

1.3.4.b Periodic boundary conditions

For the case where we have a non–zero current Eq. (1.52) can be written as

F (x)P s(x)− 1

2

d

dx
[D(x)P s(x)] = J. (1.55)

In this case the currentJ is completely determined by the boundary conditions

P s(a) = P s(b) (1.56)

J(a) = J(b). (1.57)

For calculating the stationary probability density functionP s(x) we can integrate
Eq. (1.55) to obtain
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P s(x) = P s(a)





∫ x
a

dx′

ψ(x′)
D(b)
ψ(b) +

∫ b
x

dx′

ψ(x′)
D(a)
ψ(a)

D(x)
ψ(x)

∫ b
a

dx′

ψ(x′)



 (1.58)

and the current is determined through

J =

[

D(b)

ψ(b)
− D(a)

ψ(a)

]

P s(a)
∫ b
a

dx′

ψ(x′)

(1.59)

1.3.5 Particle current

Once the stationary probability density function (1.58) and the probability current (1.59)
are obtained, the next quantity of interest is theparticle current< ẋ >, defined as the
ensemble average over the velocities. Its relation with the probability currentJ(x, t) is

J(x, t) :=< ẋ(t)δ(x− x(t)) > (1.60)

from where we derive

< ẋ >=

∞
∫

−∞

dxJ(x, t) (1.61)

and using Eq. (1.42) can be written as

< ẋ >=
d

dt

∞
∫

−∞

dxxP (x, t). (1.62)

1.4 Markov–chain theory

This section is devoted to a class of Markov processes in discrete–time and discrete space.
We call such processes Markov chains. We may define a Markov chain as a sequenceX0,
X1,. . . of discrete random variables with the property that the conditional distribution
of Xn+1 given X0,X1, . . . ,Xn depends only on the value ofXn but not further on
X0,X1, . . . ,Xn−1; i.e., for any set of valuesh, j, . . . , k belonging to the discrete state
space,

prob(Xn+1 = k|X0 = h, . . . ,Xn = j) = prob(Xn+1 = k|Xn = j) (1.63)

Thus the conditional probability distribution forXn depends only on the value ofX

at the latest timen− 1.
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1.4.1 A two–state Markov chain

We will consider a simple example of a two–state Markov chain. This is the simplest
non–trivial state space. Let’s denote by1 and0 the two states of the Markov chain. If
the system is found in state0, there will be a probabilityα of a transition to state1, and
a probability1 − α of remaining in the same state. Similarly, when the system is found
in state1, there will be a probabilityβ of a transition to state0, and1 − β of remaining
in 1. These probabilities are calledtransition probabilities, and can be represented by a
transition matrixT as

T =

(

1− α α
β 1− β

)

(1.64)

The matrix element in position(j, k) denotes the conditional probability of a transi-
tion to statek at timen + 1 given that the system is in statej at timen. The transition
probabilities considered here do not depend on time.

Let the column vectorPn = (Pn0 , P
n
1 )T denote the probabilities of finding the system

in states0 or 1 at timen when the initial probabilities of the two states are given by
P0 = (P 0

0 , P
0
1 )T . Consider the system to be in state0 at timen. This state can be

reached in two mutually exclusive ways: either state0 was occupied at timen − 1 and
no transition occurred at timen; this event may happened with probabilityPn−1

0 (1−α).
Alternatively, the system could happenned to be in state1 at timen − 1 followed by a
transition from state1 to state0 at timen; this latter event has probabilityPn−1

1 β.Thus
we can obtain the following recurrence relations

Pn0 = (1− α)Pn−1
0 + βPn−1

1 (1.65)

Pn1 = αPn−1
0 + (1− β)Pn−1

1 (1.66)

(1.67)

which can be put in matrix form asPn = T · Pn−1, and iterating we obtain

Pn = T2 · Pn−2 = . . . = Tn · P0. (1.68)

Thus, given the initial probabilitiesP0 and the transition matrixT, we can find the
state occupation probabilities at any timen by means of Eq. (1.68). One question arises
naturally, and it concerns the possibility of whether the system reaches a situation of
statistical equilibrium after a sufficiently long time, where the occupation probabilities
Pn are independent of the initial conditions. If this happens there exists an equilibrium
probability distributionπ = (π0, π1) whenn→∞ satisfying

π = Tπ −→ (I− T)π = 0 (1.69)

From where it follows through the normalization conditionπ0 + π1 = 1 that
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π0 =
β

β + α
, π1 =

α

β + α
(1.70)

Therefore, if the initial probability distribution coincides withπ, the distributionPn

is stationary, i.e., it does not change in time.
If we want to find the time dependent probabilitiesPn given a set of initial proba-

bilities P0, we need to evaluate the matrixTn. For this purpose we can use the spectral
representation ofT. Let us assume thatT has distinct eigenvaluesλ1, λ2. Then, we can
find a2× 2 matrixQ such that

T = Q

(

λ1 0
0 λ2

)

Q−1 (1.71)

where the columnsq1, q2 of Q are solutions of the equationsTqi = λiqi. Hence we have

Tn = Q

(

λn1 0
0 λn2

)

Q−1 (1.72)

The eigenvalues ofT are the solutions of the equation|T − λI| = 0, from where it
follows the equation(1 − α − λ)(1 − β − λ) − αβ = 0. The solutions areλ1 = 1 and
λ2 = 1 − α − β andλ1 6= λ2 provided thatα + β 6= 0. We obtain for matricesQ and
Q−1

Q =

(

1 α
1 −β

)

, Q−1 =
1

α+ β

(

β α
1 −1

)

(1.73)

Thus,

T = Q

(

1 0
0 1− α− β

)

Q−1 (1.74)

Recall thatλ2 = 1−α−β is less than one in modulus, unlessα+β = 0 orα+β = 2.
For a general timen we have

Tn =
1

α+ β

(

1 α
1 −β

)(

1 0
0 (1− α− β)n

)(

β α
1 −1

)

=
1

α+ β

(

β α
β α

)

+
(1− β − α)n

α+ β

(

α −α
−β β

)

. (1.75)

We can easily identify the first term in Eq. (1.75) as

(

π0 π1

π0 π1

)

, while the second

term tends rapidly to zero with increasingn, as long as|1−α−β| < 1. Thus asn→∞,

Tn →
(

π0 π1

π0 π1

)

(1.76)
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and from Eq. (1.68) we obtain

Pn →
(

π0 π1

π0 π1

)

P0 =

(

π0

π1

)

= π (1.77)

Therefore the limiting state occupation probability exist and are independentof the
initial conditionsP0.

1.4.2 General case of a Markov chain

We turn to a more general case in which our Markov chain may be composed of either
a finite or infinite number of states. We have a sequence of discrete randomvariables
X0,X1, . . . having the property that given the value ofXm for any instant timem, then
for any later time instantm + n the probability distribution ofXm+n is completely
determined and the values ofXm−1,Xm−2, . . . at times earlier thanm are irrelevant to
its determination2. Thus, ifm1 < m2 < . . . < mr < m < m+ n

prob(Xm+n = k|Xm1 , . . . ,Xmr ,Xm) = prob(Xm+n = k|Xm). (1.78)

Besides, we will consider the case ofhomogeneousMarkov chains, which are char-
acterized by possesing a stationary state when the conditional probability (1.78) depends
only on the time intervaln, not onm. For this kind of chains we can define then–step
transition probabilities

pnjk = prob(Xm+n = k|Xm = j) = prob(Xn = k|X0 = j) (m,n = 1, 2, . . .).
(1.79)

Particularly we are interested in theone-step transition probabilities

p1
jk = pjk = prob(Xm+1 = k|Xm = j). (1.80)

Since our system must realize a transition to some state from any statej (in this case
we also include the possibility of a transition to the same statej), we have

∞
∑

k=0

pjk = 1. (1.81)

Based on the previous results, a general transition matrixT would read

T =









p00 p01 . . .
p10 p11 . . .
. . .
. . .









, (1.82)

2i.e., if we have complete knowledge of the present state of the system, wecan determine the probability
of any future state without reference to the past.
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and it is known as astochastic matrix, with the properties that its elements are non-
negative and that its row sums are unity If the Markov chain definingT has a finite
number of statesl, then the stochastic matrixT is alxl square matrix.

Let P0 = {p0
0, p

0
1, . . .}T denote the column vector for the initial state occupation, and

Pn = {pn0 , pn1 , . . .}T the vector of occupancy probabilities at timen. It can be shown,
using arguments similar to those used for the two-state Markov chain, that

Pn = TPn−1 = . . . = TnP0 (n = 1, 2, . . .). (1.83)

1.4.3 Classification of states

According to their limiting behavior, we can classify the states of a Markov chain. Sup-
pose that initially we are in statej; we callj a recurrentstate if the ultimate return to this
state is a certain event, that is, if the probability of returning to statej after some finite
length of time is one. In this case the time of first return will be a random variablecalled
the recurrence timeand the state is calledpositive-recurrentor null-recurrentaccording
as the mean recurrence time is finite or infinite respectively. On the other hand, if the
ultimate return to statej has probability less than one the state is calledtransient. At this
point we definefnjj as the probability that the next occurrence of statej is at timen, i.e.,
f1
jj = pjj , and forn > 1

fnjj = prob(Xr 6= j, r = 1, . . . , n− 1;Xn = j|X0 = j). (1.84)

In other words we can say that conditional on statej being occupied initially,fnjj is
the probability that statej is avoided at times1, 2, . . . , n−1 and entered at timen. Given
that the chain starts in statej the sum

fj =

∞
∑

n=1

fnjj (1.85)

is the probability that statej is eventually re-entered. Iffj = 1 then statej is re-
current while if fj < 1 statej is transient. Thus, conditional on starting in a tran-
sient statej, there is a positive probability1 − fj that statej will never be re-entered,
while for a recurrent state re-entrance is a certain event. For a recurrent state, therefore,
{fnjj , n = 1, 2, . . .} is a probability distribution and the mean of this distribution

µj =
∞
∑

n=1

nfnjj , (1.86)

is the mean recurrence time.
Similarly, given that the chain starts in statej the sum

fjk =
∞
∑

n=1

fnjk (1.87)



1.4 Markov–chain theory 17

is the probability of ever entering statek, and is known asfirst passage probability
from statej to statek. If fjk = 1 then

∑∞
n=1 nf

n
jk is themean first passage timefrom

statej to statek.
Let us suppose that when the chain starts in statej, subsequent occupations of that

state can only occur at timest, 2t, 3t,. . . wheret is an integer greater than1; chooset to be
the largest integer with this property. Then statej is calledperiodicwith periodt andpnjj
vanishes except whenn is an integral multiple oft. A state which is not preiodic is called
aperiodic. Essentially it has period1. An aperiodic state which is positive-recurrent is
calledergodic.

An important property of ergodic systems concerns the existence of a unique row
vectorπ of limiting occupation probabilities called theequilibrium distribution, which is
formed by the inverse of the mean recurrence times. Thus a finite ergodic system settles
down in the long run to a condition of statistical equilibrium independent of the initial
conditions.

Another important classification can be done regarding thecommunicationbetween
different states from a Markov chain. Statej is said to beaccessiblefrom statei if for
some integern ≥ 0, fnij > 0: i.e., statej is accessible from satei if there is positive
probability that in a finite number of transitions statej can be reached starting from state
i. Two statesi andj, each accessible to the other, are said tocommunicate. If two states
i andj do not communicate, then either

fnij = 0 ∀n ≥ 0,

or
fnji = 0 ∀n ≥ 0,

(1.88)

or both relations are true. This concept of communication is an equivalencerelation.
We can now partition the totality of states into equivalence classes. The states inan

equivalence class are those which communicate with each other. We say thatthe Markov
chain isirreducible if the equivalence relation induces only one class, i.e., a process is
irreducible if any state communicates with any other.

1.4.4 Existence of stationary distributions for stochasticmatrices

The basic theorem that demonstrates the existence of a stationary probabilitydistribution
is thePerron-Frobeniustheorem [48]. The basic results of this theorem are:

Given an irreducible matrixA, if every matrix componentaij is nonnegative, we
write A ≥ 0. Then

• i) A has a real positive eigenvalueλ1 with the following properties;

• ii) corresponding toλ1 there is an eigenvectorx all of whose elements may be
taken as positive, i.e., there exists a vectorx > 0 such that

Ax = λ1x; (1.89)
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• iii) if α is any other eigenvalue ofA then

|α| ≤ λ1; (1.90)

• iv) λ1 increases when any element ofA increases;

• v) λ1 is a simple root of the determinantal equation

|λI− A| = 0. (1.91)

• vi)

λ1 ≤ maxj

(

∑

k

ajk

)

, λ1 ≤ maxk





∑

j

ajk



 . (1.92)

If λ1 itself is the only eigenvalue of modulusλ1 then matrixA is said to beprimitive.
Besides, note that point (vi) gives an upper bound toλ1 as the largest row sum or largest
column sum of matrixA. Thus, if we are dealing with a stochastic matrix such asT,
we know from the previous theorem that has an eigenvalue1 sinceT · 1 = 1, where1
is a column vector of1’s. Besides, it follows from (1.90), (1.92) that no eigenvalue can
exceed1 in modulus.

An important aspect we can extract is that the nature of a finite chain is determined
by the properties of the eigenvalues ofT which have unit modulus. Another point is that
the limiting values of transition probabilities are approached exponentially fast,the rate
of approach being determined in general by the eigenvalue of largest modulus less than
unity.

If the finite Markov chain is ergodic then its transition matrixT is irreducible and
primitive, with a simple eigenvalue1 which exceeds all other eigenvalues in modulus
(conversely, ifT is primitive and irreducible then the system is ergodic). According to the
theorem of Perron and Frobenius described above, there is a positivecolumn eigenvector
π = {πj} satisfyingTπ = π and we can normalize this vector so that

∑

πj = 1.
Besides, the system is ergodic and

lim
n→∞

pnkk =
1

µk
= πk > 0, (1.93)

the limit approached exponentially fast and uniformly for allj andk. Conversely
if the system is ergodic thenT is primitive and irreducible. Thus, given the necessary
conditions for the stochastic matrix, there exists a limiting value for the occupancy prob-
abilities, being that of the stationary probability distributionπ.
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1.5 Information Theory

The information theory was introduced in the seminal paper by Shannon [49] in 1948.
Basically this work studies certain problems of the transmission of messages through
channels involving communication systems. These communication systems can be di-
vided in three main categories: discrete, continuous and mixed. By a discretesystem it
is meant one where the signal and the message are a sequence of discretesymbols – for
example, the telegraphy. A continuous system is one where the message andthe signal
are both continuous, e.g., the television. The last one is the mixed system, where both
discrete and continuous variables appear, for instance the pulse code-modulation (PCM)
for the transmission of speech.

The case of our interest here deals with discrete systems. Basically we candistinguish
three main parts: the information source, the communication channel (throughwhere the
signal is transmitted) and the receiver. Generally, a discrete channel willmean a system
where a sequence of choices from a finite set of elementary symbolsα1, . . . , αn can be
transmitted from one point to another.

1.5.1 Discrete and ergodic sources

We can think of the information source as generating the message, symbol bysymbol.
The source will choose successively symbols according to certain probabilities depend-
ing, in general, on preceding choices as well as the particular symbols in question.

We may define anergodic sourceas a source that generates strings of symbols
α1, α2, . . . with the same statistical properties. Thus the symbols frequencies obtained
from particular sequences will, as the length of the message increase, approach definite
limits independent of the particular sequence.

In some cases a messageL that is not homogeneous statistically speaking, can be
considered as composed of pieces of messages coming from various pure ergodic sources
L1, L2, L3, . . . that is

L = Π1 L1 + Π2 L2 + Π3 L3 + . . . (1.94)

whereΠi corresponds to the probability of the component sourceLi.

1.5.1.a Shannon Entropy

For a single source we may define the entropy as

H = −
∑

i

pj log(pj) (1.95)

wherepj denotes the probability of emitting a given symbolαj . This quantity was in-
troduced by Shannon for measuring, in some sense, how much lack of information is
produced by such a source. It can also be regarded as a measure ofhow much “choice”
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is involved in the selection of the symbol emitted by the source or of the uncertainty of
the outcome.

The information entropy represents the average information content of a message.
Some of its most interesting properties are

1. H = 0 if and only if all thepi but one are zero, this one having the value unity.
Thus only when we are certain of the outcome doesH vanish. OtherwiseH is
positive.

2. For a givenn, H is a maximum and equal tolog n when all thepi are equal, i.e.:
1
n .

3. Any change toward equalization of the probabilitiesp1, p2, . . . , pn increasesH.

The Shannon entropy gives the minimum transfer rate – bit rate – at which a message
can be transmitted without losing any information content. For instance, we canconsider
an information source that emits only two symbols, either1 or 0 with probabilityp and
q = 1− p respectively. The corresponding expression for the entropy of the source reads

H = −p log p− q log q = −p log p− (1− p) log(1− p) (1.96)

In Fig. 1.1 we plot the entropy as a function of the probabilityp of emitting the symbol
1. It can be appreciated how the entropy of the message generated by the source acquires
its maximum whenp = 1

2 , corresponding to the value where both symbols have the same
probability of being emitted, and therefore the uncertainty of the resulting message is
maximum.

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

h Figure 1.1. Plot of the variation
of the entropy of the source when
varying the probabilityp of emit-
ting symbol1.

If we now consider a sourceL, composed itself of a mixture of different sourcesLi
with probability Πi, the resulting entropy of the system will depend on the entropy of
each individual source in the following way
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H =
∑

i

ΠiHi = −
∑

i,j

Πip
j
i log pji (1.97)

wherepji denotes the probability of emitting a symbolαj by the sourceLi.

1.5.1.b Entropy of a message

Given a message composed of a set of symbolsα1, α2, . . ., successive approximations of
the actual entropy of the message can be obtained. As a first step, it can be considered that
all the symbols have been emitted by the source with a fixed and independent probability.
Therefore, we can measure the frequencies of all the symbols of the alphabet present in
the message, estimating from them their probabilities using Eq. (1.95).

Next thing to consider are the so–calledblock entropies. We must calculate the prob-
abilities of words constructed with symbols from the alphabetα1, α2, α3, . . . , αn, and
thereafter obtain their corresponding block entropies

Hn = −
∑

α1,...,αn

p(α1, . . . , αn) log[p(α1, . . . , αn)]. (1.98)

This quantity measures the average amount of information contained in a wordof length
n. From Eq. (1.98) we can then evaluate the differential entropy

hn = Hn −Hn−1

= −
∑

α1,...,αn

p(α1, . . . , αn) log[p(αn|α1, . . . , αn−1)], (1.99)

that gives the new information of then-th symbol if the preceding(n − 1) symbols are
known; p(αn|α1, . . . , αn−1) is the conditional probability forαn being conditioned on
the previous symbolsα1, . . . , αn−1. The Shannon entropy is then

h = lim
n→∞

hn (1.100)

The latter expression gives the average amount of information per symbolif all correla-
tions are taken into account, and the limit approaches monotonically the actual value of
h from above, i.e., all thehn are upper bounds onh.

For a numerical estimation of Eq. (1.98) we must count the number of timesn that
the wordα1, . . . , αn is contained in the message, and then obtain its probability withn

N ,
whereN is the total length of the message.

The actual problem of evaluating the Shannon entropy in this way is that the number
of possible words increases exponentially as the length of the wordn increases. In order
to obtain good statistical results when calculating the word probabilities we must have
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a sufficiently long message when evaluating the probabilities of large words3, which in
fact is a considerable inconvenient.

There exist other ways of evaluating the entropy of a message. An interesting algo-
rithm developed by A. Lempel and J. Ziv [50] permits the calculation of the entropy of a
message, and it will be explained in the next section.

1.5.2 Lempel and Ziv algorithm

In 1977, Abraham Lempel and Jakob Ziv created the lossless4 compressor algorithm
LZ77. This algorithm is present in programs such asgzip,arj, etc. It was later mod-
ified by Terry Welch in1978 becoming the LZW algorithm, and this is the algorithm
commonly found today.

It was originally designed to obtain the algorithmic complexity of a binary string5 [51].
Basically it is a dictionary based or substitutional encoding/decoding algorithm, creating
a dictionary during the process of encoding and decoding of a certain message.

For a useful example of how the algorithm6 works, we will encode/decode the fol-
lowing binary string10010110100111011100101, of lengthn = 23.

1.5.2.a Encoding process

First, we will partition the chain into wordsB1, B2, .. of variable block length –Lempel
& Ziv parsing–

10010110100111011100101 (1.101)

So we obtain the following words:B1 = 1, B2 = 0, B3 = 01, B4 = 011, B5 = 010,
B6 = 0111,B7 = 01110,B8 = 0101.

This words are then coded as(prefix+newbit) =(pointer to the last occurrence, new-
bit): (01) = (0 + 1) = (2, 1), (011) = (01 + 1) = (3, 1), (010) = (01 + 0) = (3, 0),
(0111) = (011 + 1) = (4, 1), (01110) = (0111 + 0) = (6, 0), (0101) = (010 + 1) =
(5, 1). We have then the following pairs

(0, 1) (0, 0) (2, 1) (3, 1) (3, 0) (4, 1) (6, 0) (5, 1) (1.102)

Once the pairs for eachBj are obtained, we replace each pair(i,s) by the integerIj =
2i+ s.

3the necessary length of the message also increments exponentially withn
4it assures that the original information can be exactly reproduced fromthe compressed data
5Algorithmic complexityof a binary string is the length in bits of the shortest computer program able to

reproduce the string and to stop afterward
6we will make use of the LZ78 algorithm, which is simpler than its original LZ77



1.5 Information Theory 23

(0, 1)→ I1 = 20 + 1 = 1 (3, 0)→ I5 = 23 + 0 = 6
(0, 0)→ I2 = 20 + 0 = 0 (4, 1)→ I6 = 24 + 1 = 9
(2, 1)→ I3 = 22 + 1 = 5 (6, 0)→ I7 = 26 + 0 = 12
(3, 1)→ I4 = 23 + 1 = 7 (5, 1)→ I8 = 25 + 1 = 11

(1.103)

Each integerIj is then expanded to base two, and the binary expansions are padded
with zeroes on the left so that the total length of bits is⌈log2(2j)⌉, where the brackets⌈ ⌉
denote the upper integer value oflog2(2j). We obtain in this way the stringsWj .

j Ij Binary string ⌈log2(2j)⌉ Wj Binary string
1 1 1 ⌈log2(2)⌉ = 1 W1 1

2 0 0 ⌈log2(4)⌉ = 2 W2 00

3 5 101 ⌈log2(6)⌉ = 3 W3 101

4 7 111 ⌈log2(8)⌉ = 3 W4 111

5 6 110 ⌈log2(10)⌉ = 4 W5 0110

6 9 1001 ⌈log2(12)⌉ = 4 W6 1001

7 12 1100 ⌈log2(14)⌉ = 4 W7 1100

8 11 1011 ⌈log2(16)⌉ = 4 W8 1011

Finally we just need to concatenate the binary wordsWj to obtain the encoded string:
1001011110110100111001011. Clearly, the length of the encoded string is not much
shorter than the original in this case, but it must be kept in mind that the algorithm be-
comesoptimalas the length of the string increases7

1.5.2.b Decoding process

The decoding process is much simpler than the encoding. We just need to know the size
alphabet of the source that created the string. From the previous sectionwe obtained the
encoded string1001011110110100111001011 with an alphabet equal to2.

The first thing to do is to divide the string in blocks of size⌈log2(2j)⌉ : 1·00·101·111·
0110 ·1001 ·1100 ·1011; then convert these blocks into integer form :1, 0, 5, 7, 6, 9, 12, 11
; we divide by the size alphabet,2 in this case, and we keep the quotientq and remainder
r, (q, r) : (0, 1), (0, 0), (2, 1), (3, 1), (3, 0), (4, 1), (6, 0), (5, 1).

Finally we convert these pairs into words using the same formalism than in the encod-
ing process, and we join them to obtain the original binary string10010110100111011100101.

1.5.2.c Properties of the LZ algorithm

An important property of the LZ algorithm is that it relates the compression factor to the
entropy of the compressed string.

7Because the length of the wordsBj that will be substituted increases linearly with the binary string,
whereas the length of the wordsWj increases logarithmically.
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Thecompression factor(CF) of strings is the ratio between the compression lengthc
and the original lengthn

CF =
c

n
. (1.104)

Theoptimality ratioγ(n) is defined as the ratio between the compression factor and
the entropy per characterh of the source

γ(n) =
CF

h
, (1.105)

it is said that the compression isasymptotically optimalif γ(n)→ 1 asn→∞.
Lempel and Ziv showed that their dictionary–based algorithmsLZ77, LZ78 give

asymptotically optimal compression for strings generated by an ergodic stationary pro-
cess, that is, as the length of the file to compressn → ∞ the ratio of the length of the
compressed file withn tends to the entropy per characterh.

This algorithm together with the previous definitions explained above will be used in
Sec. 5 for establishing a relation between Parrondo’s games and information theory.



Chapter 2

The Brownian ratchet and
Parrondo’s games

In some physical and biological systems, combining processes may lead to counter-
intuitive dynamics. For example, in control theory, the combination of two unstable
systems can cause them to become stable [52]. In the theory of granular flow, drift can
occur in a counter-intuitive direction [53, 54]. Also the switching between two transient
diffusion processes in random media can form a positive recurrent process [55]. Other
interesting phenomena where physical processes drift in a counter-intuitive direction can
be found (see for example [56–60]). One part of the present chapter will be devoted to
another example where a counter–intuitive result takes place: the flashingratchet. This
is characterized by directed motion obtained from the random or periodic alternation of
two relaxation potentials acting on a Brownian particle, none of each producing any net
flux.

Parrondo’s paradox [5–7] shows that the combination of two losing games, can give
rise to a winning game. This paradox is a qualitative translation of the physicalmodel of
the flashing ratchet into game-theoretic terms. These games were first devised in 1996
by the Spanish physicist Juan M.R. Parrondo, who presented them in unpublished form
in Torino, Italy [3], as a pedagogical illustration of the flashing ratchet.

The first part of this chapter, Sec. 2.1, will be devoted to the explanation of the Brow-
nian ratchet, also including the original model of the Smoluchowski–Feynman ratchet,
that brought the idea of the ratchet effect; and finally we will focus on a detailed expla-
nation of the flashing ratchet model.

Afterwards, in Sec. 2.2 we present the original Parrondo games as theywere de-
signed and explain thoroughly the basics of the so-calledParrondo paradox, unraveling
the mechanism behind it. Furthermore, some other versions of Parrondo games that ap-
peared later on will be also shown at the end of this section.

25
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2.1 Smoluchowski–Feynman ratchet

Is it possible to obtain useful work out of unbiased random fluctuations?In the case of
macroscopic devices we can find many ways of accomplishing this task, for example a
wind–mill, the self–winding wristwratch, etc. But when dealing with the microscopic
world, this case becomes more subtle. A clear example of this problem was illustrated in
the conference talk by Smoluchowski in Münster 1912 (and published as a proceedings–
article in [61]) and later popularized and extended in Feynman’s Lectureson Physics [62].

2.1.1 Ratchet and pawl

The ratchet and pawl model consists on an axis with a paddle located at oneend, and
a circular saw with a ratchet–like shape on the other end, see Fig. 2.1 for details. This
device is surrounded by a thermal bath at equilibrium at temperatureT . If left alone, the
system would perform a rotatory, random, Brownian motion due to the collisions of the
gas molecules with the paddles.

Figure 2.1. Plot of the ratchet and
pawl device.

We can modify this picture by introducing a pawl in order to rectify this randomfluc-
tuations. Hence in this way rotations would be favored in one precise direction, allowing
the saw–teeth to rotate clockwise – as depicted in Fig. 2.1 –, whereas it would block the
saw–teeth to rotate in the counter–clock direction. So intuitively it seems that thisgadget
would perform a net rotation clockwise, and if a weight is added to the axis itcould even
perform some work lifting the weight.

Based on the previous reasoning we could conclude that the device constructed this
way would constitute aperpetuum mobileof the second kind, therefore violating the
second law of thermodynamics. However, this naive expectation is wrong.In spite of the
asymmetry of the device, no preferred motion is possible. The reason is the following:
due to the microscopic size of the machine, not only the paddles are subjectedto the
fluctuations due to the collisions with the gas particles, but also the pawl is exposed to
them. These collisions of the particles with the pawl would, occasionally, lift thepawl.
Then the ratchet could rotate counter–clockwise as it would not have anyopposing force.
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As a result the ratchet and pawl device would have no preferred direction of rotation.
This Smoluchowski–Feynman’s ratchet and pawl device was introduced as a pedagogic
example of the second law of thermodynamics.

We can modify the previous picture by considering that the gas surrounding the pad-
dles and the gas surrounding the ratchet have different temperatures.In this case an
equilibrium situation no longer exists. This second model was introduced by Feynman
[62], and later revised by Parrondo [63].

A simplified stochastic model known as Brownian ratchet will be presented in the
next section, capturing the essential features of the Smoluchowski–Feynman’s ratchet
and pawl device.

2.1.2 Brownian ratchet

We will consider the motion of a Brownian particle of massm under the effect of a po-
tentialV (x, t) that can be time–dependent, a friction force−ηẋ(t), a forceF (t) exerted
by an external agent and a stochastic force

√

D(x, t)ξ(t), whereD(x, t) = 2ηkT (x, t) is
the noise strength or noise intensity, proportional to the temperature. Newton’s equation
of motion for this system can be expressed as

mẍ(t) + V ′(x, t) = −ηẋ(t) + F (t) +
√

D(x, t)ξ(t). (2.1)

The terms on the left hand side account for the deterministic, conservativepart,
whereas the terms on the right hand side account for the dissipative terms due to the
interaction of the Brownian particle with its environment and the external agent. Usually
the time–dependent external forceF (t) is split in two terms, a constant termF and a
time–dependent termy(t), and so it can be written asF (t) = F + y(t).

The potentialV (x, t) used in Eq. (2.1) must fulfill the following conditions

• Periodicity. It must be periodic with period L, that is,V (x, t) = V (x + L, t) for
all x andt.

• Asymmetry. This asymmetry can be established in many ways, the simplest con-
sisting on spatial asymmetry, that occurs when for any value ofx there exists no
∆x such thatV (−x, t) = V (x+ ∆x, t), in some sense this condition accounts for
some kind of spatial anisotropy. A typical example of an asymmetric potential is

V (x, t) = V0

[

sin

(

2πx

L

)

+
1

4
sin

(

4πx

L

)]

· [1 +W (t)], (2.2)

where the functionW (t) represents the time dependence of the potential, if there
is any.

The stochastic force or thermal noiseξ(t) generally is considered to beGaussian
white noiseof zero mean< ξ(t) >= 0 and correlations
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< ξ(t)ξ(s) >= δ(t− s) (2.3)

For the systems we will study, the inertia termmẍ(t) is negligible, and so Eq. (2.1)
can be written as

ηẋ(t) = −V ′(x(t), t) + F + y(t) +
√

D(x, t)ξ(t). (2.4)

The latter equation can be considered as a generalized equation describing the dy-
namics of an overdamped Brownian particle.

2.1.2.a Reduced probability variables

As our interest is focused mainly on transport in periodic systems, we can introduce the
reduced probability densityandreduced probability currentas

P̂ (x, t) :=
∞
∑

n=−∞
P (x+ nL, t), (2.5)

Ĵ(x, t) :=
∞
∑

n=−∞
J(x+ nL, t). (2.6)

And from Eqs. (1.29,1.61) we get

P̂ (x+ L, t) = P̂ (x, t), (2.7)

L
∫

0

dxP̂ (x, t) = 1, (2.8)

< ẋ > =

L
∫

0

dxĴ(x, t) (2.9)

AsP (x, t) is solution of the Fokker–Planck equation (1.39), it follows from the peri-
odic condition introduced above,V (x, t) = V (x+L, t), thatP (x+nL, t) is also solution
for any integer valuen. Introducing expressions (2.5) and (2.6) into the Fokker–Planck
equation (1.39), it can be rewritten as a continuity equation for the reducedprobabilities

∂P̂ (x, t)

∂t
+
∂Ĵ(x, t)

∂x
= 0, (2.10)

where
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Ĵ(x, t) = F (x, t) P̂ (x, t)− 1

2

∂

∂x
[D(x, t) P̂ (x, t)]. (2.11)

Therefore, in order to obtain the particle current is sufficient to solve theFokker–
Planck equation (1.39) with periodic boundary conditions, together with the initial con-
ditions. Besides, operating with

∫ x0+L
x0

dx x . . . on both sides of Eq. (2.10) we obtain

< ẋ >=
d

dt





x0+L
∫

x0

dxxP̂ (x, t)



+ LĴ(x0, t), (2.12)

wherex0 denotes the initial position of the particle. Essentially, we distinguish two
contributions to the particle current: the first term on the right hand side of Eq. (2.12)
accounts for the motion of the center of mass, and the second term isL times the reduced
probability currentĴ(x0, t) measured at the reference pointx0. If the reduced dynamics

reaches a steady state, characterized bydP̂ (x,t)
dt = 0, then the reduced probability current

Ĵ(x0, t) = Ĵst becomes independent ofx0 andt, and the particle current becomes

< ẋ >= LĴst. (2.13)

The particle current can also be calculated through the time-averaged velocity of a
single realizationx(t) of the stochastic process described by Eq. (2.1), i.e.

< ẋ >= lim
t→∞

x(t)

t
, (2.14)

independent of the initial conditionx(0).

2.1.2.b Ratchet effect

The so–called ratchet effect takes place when a given set of conditions are accomplished.

• First, we must have a spatially periodic system.

• Second, there must be some asymmetry in the system, for example spatial asym-
metry.

• Last but not least, the system must be out of equilibrium.

Depending on the way these conditions are accomplished, we may distinguish different
types of ratchets.
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2.1.3 Classes of ratchets

There are two main groups of ratchets that can be derived from Eq. (2.4). The first group
considers those systems where the termy(t) = 0, these are thepulsating ratchets; the
second group considers those where there is no time dependence in the potentialV (x, t),
i.e.W (t) = 0, and they are known astilting ratchets.

2.1.3.a Pulsating ratchets

Within this group, we can also distinguish the following types of ratchets

Fluctuating potential ratchets They are obtained when the time dependence of the po-
tentialW (t) is additive, that isV (x, t) = V (x)[1 + W (t)]. This group contains
as a special case theon–off ratchet, also known asflashing ratchet, consisting on
W (t) having only two possible values:0 (ON state) and−1 (OFF state).

Traveling potential ratchets They have potentials of the formV (x, t) = V (x−W (t)).

2.1.3.b Tilting ratchets

This group is characterized byW (t) = 0, and so the potential is time–independent
V (x, t) = V (x). Within this group we will distinguish three types of ratchets depending
on the time dependence ofy(t) in Eq. (2.4)

Fluctuating force ratchets They are obtained wheny(t) is a stationary stochastic pro-
cess. It can be another Gaussian white noise, hence we are dealing with an effective
Smoluchowski-Feynman ratchet, or it can be a Gaussian colored noise. The for-
mer case needs a correlated (non-white), Gaussian or non-Gaussian noise (colored
noise) in order to obtain directed transport. The latter case is representedby a
Ornstein–Uhlenbeck noise with an exponentially decaying correlation.

Rocking ratchet It is obtained wheny(t) is periodic.

Asymmetrically tilting ratchet We explained before that one essential ingredient for
the ratchet effect was the existence of an asymmetry in the system. If our potential
V (x) is symmetric the source of asymmetry can be introduced through the term
y(t), imposing it to be non–symmetric.

From all these different kinds of ratchets, we will now focus on theflashing ratchet
model and analyze it a little closer.
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2.1.4 The flashing ratchet

This system is characterized by a Brownian particle subjected to a potential that is
switched on and off either periodically or stochastically – depending on the timede-
pendence of the functionW (t). This scheme was introduced by Ajdari and Prost [56].
The model can be described through the equation

ηẋ(t) = −V ′(x(t)) [1 +W (t)] +
√

D(x, t)ξ(t), (2.15)

whereV (x) is a spatially periodic and asymmetric potential, and usually a potential
such as the one in Eq. (2.2) is used – in Fig. 2.2 we can see a plot of the potential for
the parametersL = 3 andV0 = 1. The functionW (t) is restricted to two values0, −1,
switching on and off the potential, andD(x, t) = 2ηkT (x, t) is the noise strength.

0 0.5 1 1.5 2 2.5 3
x
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-0.5
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V
(x

)

Figure 2.2. Plot of the asymmetric
potential (2.2) with the parameters
L = 3 andV0 = 1.

The ratchet mechanism(or ratchet effect) can be explained as follows. Imagine a
landscape with a few Brownian particles moving freely. At a given instant, aratchet–like
potential is switched on:W (t) = 1, and the particles (assuming the thermal energykT
to be much smaller than the potential amplitude) are eventually confined to one of the
potential wells located atx0, see Fig. 2.3. When the potential is switched off:W (t) =
−1, the particles are subjected only to the thermal noiseξ(t) and start to diffuse.

If we let the particles diffuse for a large enough time interval, a small fractionof
them will reach the vicinity of the next potential well1 at x0 + L. Repeating this cycle
many times, a net current of particles is obtained〈ẋ〉 > 0. In Fig. 2.4 – left panel –
we see the plot of the net current vs the natural logarithm of the flip rate2 γ for a single
Brownian particle. It can be clearly identified the existence of an optimal switching rate
that produces the maximum current.

1due to the asymmetry in the potential of Fig. 2.3, is more likely that the particleswill reach the potential
well located on the right than the one on the left, as the distance is shorter in theformer case.

2The flip rateγ accounts for the probability of switching the potentialonor off per time unit.
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ON

ON

OFF

a)

b)

c)

Figure 2.3. Three differ-
ent stages of theon-off cy-
cle for the case of the flash-
ing ratchet. In case a) the
potential ison and the par-
ticles get trapped in a poten-
tial well; in stage b) the po-
tential is off and the parti-
cles spread due to diffusion;
finally, in stage c) some par-
ticles have diffused up to the
vicinity of the next potential
well, and so when the poten-
tial is on again, there are a
certain number of particles
located in the next potential
well. The flux of particles
due to the asymmetry in the
potential in this case is to the
right.

We can modify this picture introducing an external forceF acting against the particle.
Even with this opposing force applied on the particle, theratchet effectis still present for
sufficiently small values ofF . We see in Fig. 2.4 – right panel – how the current is
positive and different from zero up to a value of the applied forceF = F0, beingF0 the
so–calledstopping force. It is worth noting that for this case, the particle is doing work
against the external force applied.
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Figure 2.4. Left panel: Plot of the average particle current versus the logarithm ofthe flip rate. Right
panel: Plot of the average particle current versus the applied externalforceF .
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2.1.5 Atemperatureratchet

A variation of the flashing ratchet, which also may lead to the same result, consists on
the temperatureratchet. In this case the Brownian particles are exposed to an alterna-
tion between ahot and acold temperature (for instance, we could expose the Brownian
particles to temperatures such thatVkThot

≪ 1, and V
kTcold

≫ 1), and simultaneously a
ratchet–like potential as the one depicted in Fig. 2.2. Thus, when the particlesare ex-
posed to thecold temperature, the particles are pinned at a potential minimum due to the
relatively high amplitude of the potential compared to the low temperature. In a second
stage, when temperature now is increased toThot, the particles effectively do notfeelthe
potential and begin to diffuse. Afterwards, when the temperature is cold again, there will
be a certain number of particles that will have diffused up to the vicinity of the potential
well on the right, and on average that number will be greater than those thatgot to the
vicinity of the potential well on the left. On average, as in the case of the flashing ratchet
model, there will be a net flux of particles to the right (as long as the asymmetry inthe
potential is the one depicted in Fig. 2.3).

2.2 A discrete–time flashing ratchet : Parrondo’s games

2.2.1 Description of the games

Parrondo’s two original games are as follows. Game A is a simple coin tossing game,
where a player increases (decreases) his capital in one unit if heads (tails) show up. The
probability of winning is denoted byp and the probability of losing isq = 1− p.

Game B is a capital dependent game, where the probability of winning depends upon
the actual capital of the player, modulo a given integerM . Therefore if the capital isi the
probability of winningpi is taken from the set{p0, p1, . . . , pM−1} aspi = pimodM . In
the original version of game B, the numberM is set equal to three and the probability of
winning can take only two values,p1, p2, i.e. game B uses two different coins according
to whether the capital of the player is multiple of three or not. The two games are rep-
resented diagrammatically in Fig. 2.5 using branches to represent wins and losses with
probabilities given by the terms in brackets.

The numerical values corresponding to the original Parrondo’s games [5] are:







p = 1
2 − ǫ,

p1 = 1
10 − ǫ,

p2 = 3
4 − ǫ,

(2.16)

whereǫ is a small biasing parameter introduced to control the three probabilities. For
a value ofǫ equal to zero, both games are fair games, whereas ifǫ is small and positive
both games are losing. In both cases, the combined game results in a winning game.

Intuitively, we could think of a potential representing games A and B – for thesim-
plest case ofǫ = 0 – through the following reasoning: the winning and losing proba-
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Game A Game B
( Capital divisible by M, otherwise )( p, 1−p )

L

W WL L

W

1( p  , 1−p  )1 ( p  , 1−p  )2 2

Figure 2.5: Probability trees for games A and B.

bilities for game A are independent of the site and equal to1
2 . Therefore it would be

equally likely a forward or a backward transition. Then the barriers of thepotential that
one would find would be of equal height, as depicted in Fig. 2.6a.

pq pq pq pq

0−2 −1

a)

1 2

p
2 q

2
q

1p
2

q
2p

1

q
1

p
1 q

2
p

2

q
2 p

2

−1−2 0 1 2−3

b)
Figure 2.6. a) Schematic po-
tential related to game A. b)
Schematic potential related to
game B.

For the case of game B, we must take into account the dependence of the winning
probabilities with the current capital of the player. When the capital is multiple ofthree
the winning probability is very small, i.e.p1 = 1

10 , this translates into a high potential
barrier between this site and the one located on the right. However, for the sites that
correspond to the capital of the player not being multiple of three the winning probability
is rather high,p2 = 3

4 , and so the potential barriers must be placed in a way that it is
favored a forward transition than a backward transition. One possible way of depicting
the potential is found in Fig. 2.6b.

In Fig. 2.7 we can see a plot of the average gain for a player that alternates between
games A and B, either periodically or stochastically. For both kind of alternations, it can
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be seen that the resulting game is a winning game. When the player alternates period-
ically between games A and B, it follows a fixed sequence of plays for game Aand B.
For example, the sequence[3, 2] implies that the player will play game A three times in
a row, followed by game B two times. The case of random mixing between games is
obtained as follows: the player will decide on each time step if he plays game A orB
with probabilityγ and1 − γ respectively3. In Fig. 2.7 we have plotted the random case
for a value ofγ = 1

2 .
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Figure 2.7. Plot of the average
gain over 100 plays of either game
A or B alone – both of them losing
games –, although any combination
of them, either periodic or stochas-
tic results in a winning game. The
notation[a, b] indicates, for the pe-
riodic case, that we playa times
game A, followed byb times game
B. For the random case games A
and B are alternated with a proba-
bility γ = 1

2
.

2.2.2 Theoretical analysis of the games

One way of analyzing these games is through discrete–time Markov chains [64]. Each
value of capital is represented by a state, and the transition probabilities between these
states are determined by the rules of the games. In this section we will analyze the games
A, B and the randomized game AB with this technique in order to obtain the stationary
probability distributions.

2.2.2.a Analysis of game B

Either game A and B can be represented through discrete–time Markov chains. When
playing game B alone, we could represent the evolution of the capital with an infinite
Markov chain as the one depicted in Fig. 2.8. However, this Markov chain can be simpli-
fied inasmuch as there exists a periodicity in the system (we can see how the transition
probabilities repeat eachM = 3 states). Thus, game B can be reduced to a Markov chain
with three states0, 1 and2 –see Fig. 2.9 for details– representing the value of the capital
modulo three. The transition probabilities between states will be given by the winning
(pi) and losing (qi) probabilities for each state.

3From now on the randomized game will be referred to as game AB.
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Figure 2.8. Discrete–time
Markov chain corresponding
to game B.

We are interested in obtaining the probabilities of finding the capital of the player in
each of these states. We can write down a set of equations that describe the evolution
with the numbern of games played – which in some sense would be equivalent to the
time– of the probabilitiesΠB

0 , ΠB
1 andΠB

2 of finding the capital of the player in states0,
1 and2 respectively. These equations are

ΠB
0 (n+ 1) = p2 ΠB

2 (n) + (1− p2) ΠB
1 (n), (2.17)

ΠB
1 (n+ 1) = p1 ΠB

0 (n) + (1− p2) ΠB
2 (n), (2.18)

ΠB
2 (n+ 1) = p2 ΠB

1 (n) + (1− p1) ΠB
0 (n). (2.19)

We can explain how these evolution

12

0
p

2

q1

q2

q2

1p

p
2

Figure 2.9. Diagram representing the different
states of game B, as well as the allowed transi-
tions between these states.

equations are obtained through the following
example: imagine that we are in state1 at
timen+1. We could have got to this state by
two ways: one would be if we were in state
0 at a previous time stepn (with probabil-
ity ΠB

0 (n)) and we had won with probability
p1; on the other hand, we could have been
in state2 at timen (with probabilityΠB

2 (n))
and lost with probability(1− p2).

Eq. (2.18) is obtained through this rea-
soning, and the rest of equations can be ob-
tained following the same procedure.

Defining the column vectorΠB(n) =
[

ΠB
0 (n),ΠB

1 (n),ΠB
2 (n)

]T
we can rewrite the

previous set of equations in a matrix form asΠB(n + 1) = TBΠB(n), where we have
defined a transition matrix for game B as

TB =





0 1− p2 p2

p1 0 1− p2

1− p1 p2 0



 . (2.20)

Our objective is to obtain the stationary probabilities, that occurs when the distri-
bution of capital in the states0, 1 and2 does not change from one game to the next.
This implies that the distribution of probabilities is independent of the number of games
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playedn and invariant under the action of the matrixTB, i.e. ΠB = TBΠB. Matrix TB is
a stochastic matrix as the elements of each column sum up to one, and from Sec.1.4.4 we
do know that there must be a stationary solution fulfilling the equation(I−TB)ΠB = 0.
The solution for vectorΠB that corresponds to the eigenvalueλ = 1 is

ΠB =
1

D





1− p2 + p2
2

1− p2 + p1p2

1− p1 + p1p2



 , (2.21)

and whereD = 3− p1 − 2p2 + 2p1p2 + p2
2 is a normalization constant. Introducing the

probabilities for game B described in (2.16) whenǫ = 0 we obtain

ΠB =
1

13





5
2
6



 . (2.22)

2.2.2.b Analysis for game A

For the simplest case of game A we can make use of the previous result obtained for
game B, as we need only to substitute the winning probabilitiesp1 andp2 by p. The
result for the stationary probabilitiesΠA obtained whenǫ = 0 reads

ΠA =
1

3





1
1
1



 , (2.23)

a logical result as all transition probabilities are equal.

2.2.2.c Analysis for the randomized game

Recalling that the randomized game is based on the combination of games A and B with
probabilityγ and1−γ respectively, we can define an equivalent set of probabilitiesp′1, p

′
2

characterizing this mixed game AB. The transition probabilities thus are

p′1 = γ p+ (1− γ) p1, (2.24)

p′2 = γ p+ (1− γ) p2. (2.25)

In order to solve for the vector of stationary probabilitiesΠAB we can introduce the
previous expressions forp′1 andp′2 into Eq. (2.21). For the case ofǫ = 0 and a mixing
probabilityγ = 1

2 we obtain

ΠAB =
1

709





245
180
284



 . (2.26)
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2.2.2.d Average winning probabilities

There are different ways of obtaining the average winning probabilities for these games,
or equivalently, the conditions under which the games are losing, fair or winning. One
of them makes use of the stationary probability distribution obtained in previoussections
for games A, B and the randomized game AB. The average winning probabilitypwin
over all the states is then defined as

pwin =
M−1
∑

i

pi Πi. (2.27)

Thus, a game will be fair on average ifpwin = 1
2 , losing if pwin < 1

2 and winning if
pwin >

1
2 . Substituting the set of winning probabilities (2.16) forǫ = 0 and the stationary

probabilities for games A, B and AB given by Eqs. (2.22),(2.23) and (2.26) respectively,
we obtain

pAwin =
1

2
, (2.28)

pBwin =
1

2
, (2.29)

pABwin = 0.5144. (2.30)

This reflects what has been previously presented, namely, that games A and B are fair
and the combined game AB is winning. For arbitrary values of{p, p1, p2}, we can easily
obtain the set of conditions to be fulfilled in order to reproduce the same effect imposing
thatpAwin <

1
2 (losing game A),pBwin <

1
2 (losing game B) andpABwin >

1
2 (winning game

AB),

1− p
p

> 1, (2.31)

(1− p1)(1− p2)
2

p1p2
2

> 1, (2.32)

(1− p′1)(1− p′2)2
p′1p

′2
2

< 1. (2.33)

Perhaps another way of envisioning the appearance of this paradox is by looking
at the parameter space of the winning probabilities{p1, p2}. In Fig. 2.10 we plot the
curve in parameter space{p1, p2} separating the winning –upper part– from the losing
–lower part– region. The point marked as A corresponds to the set of values of a fair
game A (ǫ = 0), whereas the point marked as B corresponds to that of fair game B. The
line joining both points shows the evolution of the winning probabilities{p′1, p′2} of the
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randomized game AB when increasingγ from zero (point A) to one (point B). It can be
seen that due to the local concavity of the losing region, when moving from one point to
another we cross the winning region, i.e., the values obtained by mixing these two sets A
and B give as a result a winning game. Therefore, if we want to reproduce the paradox
for any other two sets of values, we need only two points in the fair/losing region where
the line between them crosses the winning region.

0 0.2 0.4 0.6 0.8 1
p

2

0

0.2

0.4

0.6

0.8

1

p
1 A

B

Losing Region

Winning Region Figure 2.10. Parameter space
{p1, p2} where it is plotted the di-
vision line between a winning and
a losing game. The evolution of
the transition probabilities{p′

1, p
′
2}

when varying the mixing probabil-
ity γ is represented with the red
line. Whenγ = 0 the probabili-
ties correspond to game A, whereas
for γ = 1 correspond to game B.

Besides, we can also obtain the region in parameter space{p1, p2, p} where the para-
dox occurs. Fig. 2.11 shows the three surfacesΠa, Πb andΠab delimiting the winning
and losing regions either for game A, game B and the randomized game AB (fora mix-
ing probabilityγ = 1

2 ) respectively. In case of game A the losing region corresponds to
the lower half of surfaceΠa, wherep < 1

2 ; for game B the losing volume is located on
the right side of surfaceΠb, and for the randomized game the winning volume is located
on the upper side of surface AB. Thus the unique region fullfiling all conditions at once
corresponds to the small volume on the front left side of Fig. 2.11, which is also bounded
by the planep1 = 0.

2.2.2.e Rates of winning

With the stationary probabilities obtained for the games it is possible to find the rateof
winning as a function of the number of games played,r(n). The rate of winning can be
obtained by subtracting the probability of losing from the probability of winning. Thus,
we have

d〈Xn〉
dn

≡ r =
M−1
∑

i=0

2 Πi pi − 1. (2.34)

For the simplest case of game A, the rate of winning isrA = 2p− 1. For game B the
corresponding rate of winning isrB = 2 p2− 1 + 2 Π0 (p1− p2). Substituting the set of
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Figure 2.11. Probability space{p1, p2, p} where surfacesΠA, ΠB andΠAB delimiting winning and
losing regions are plotted. The region where the paradox is obtained is located on the front left side,
that is, the small triangle bounded also by thep1 = 0 plane.

probabilities (2.16) withǫ 6= 0 we obtain

rA = 2p− 1 = −2 ǫ, (2.35)

rB =
3(p1p

2
2 − q1q22)

2 + p1p2 + q1q2 − p2q2
= −6ǫ

(

80ǫ2 − 8ǫ+ 49
)

240ǫ2 − 16ǫ+ 169

= −1.74 ǫ+ 0.119ǫ2 − 0.358ǫ3 +O(ǫ4), (2.36)

rAB = −6(ǫ− 0.01311)
(

ǫ2 − 0.0369ǫ+ 0.7151
)

3ǫ2 − 0.1ǫ+ 2.216

= 0.0254− 1.9368ǫ+ 0.01361ǫ2 − 0.085ǫ3 −O(ǫ4). (2.37)

It can be checked that for values of small and positive values ofǫ both rates of winning
of games A and B are negative, whereas for the randomized game AB is positive.

2.2.2.f Other ways of evaluating the rates of winning

Besides the method described in the previous section, we can also derive the same result
with another approach based on existing results from continuous–time random walks [65]
on the set of integers. In this system we can calculate which is the first passage time
T (i→ i+ 1) to go from sitei to sitei+ 1, considering all transitions shown in Fig.2.12,
through the following expression
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T (i→ i+1) =< τi > pi+[< τi > +T (i→ i+1)]ri+[< τi > +T (i−1→ i+1)]qi.
(2.38)

where< τi > is the average resi-

i−1 i i+1

r

pqi

i

i

Figure 2.12. Diagram corresponding to the al-
lowed transitions from statei to statesi + 1 and
i − 1.

dence time at sitei. The first term on the
rhs of the previous equation accounts for
the probability that after a time< τi >
the particle has made a transition to site
i + 1 with probability pi; the second term
accounts for the probability that the particle
after a time< τi > remains in sitei with
probability ri and then jumps toi + 1 in a
timeT (i→ i+ 1); finally the last term considers the probability that the particle makes
a transition to sitei− 1 with probabilityqi after a time< τi > plus the time it takes for
the particle then to jump to sitei+ 1, i.e.,T (i− 1→ i+ 1).

After some algebra manipulation, and recalling thatT (i− 1→ i+ 1) = T (i− 1→
i) + T (i→ i+ 1), we obtain the following expression

T (i→ i+ 1) =
< τi >

pi
+ T (i− 1→ i)

qi
pi
. (2.39)

Iterating Eq. (2.39) we can obtain a general expression for the mean first passage time
from sitei to sitei+ 1 as

T (i→ i+ 1) =
< τi >

pi
+

i
∑

j=−∞

[

qi
pi
. . .

qj
pj

< τj−1 >

pj−1

]

. (2.40)

and sinceT (i→ i+n) = T (i→ i+1)+T (i+1→ i+2)+. . .+T (i+n−1→ i+n)
we obtain

T (n0 → n) =
n−1
∑

r=n0





< τr >

pr
+

r
∑

j=−∞

qr
pr
. . .

qj
pj

< τj−1 >

pj−1



 . (2.41)

Therefore, once we have obtained a general expression for the meanfirst passage
time considering continuous–time, we can simply particularize it to the discrete–time
case recalling that< τi >= 1 ∀i ,

T (n0 → n) =
n−1
∑

r=n0





1

pr
+

r
∑

j=−∞

qr
pr
. . .

qj
pjpj−1



 . (2.42)

From a previous section we know that the Parrondo games can be described through a
Markov chain that eventually is reduced to a three–state Markov chain dueto the period-
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icity in the transition probabilities. Thus, we are interested in particularizing the previous
result (2.42) for a periodic system with arbitrary periodL, obtaining

T (i→ i+ 1) =

∑L
j=0

∏i
k=i−j+1 qk

∏i−j+L−1
k=i+1 pk

∏L
k=1 pk −

∏L
k=1

. (2.43)

Finally we can obtain the general expression for the rate of winning –or equivalently
the velocity– through

r =
L

∑L
i=1 T (i→ i+ 1)

=
L
[

∏L
k=1 pk −

∏L
k=1

]

∑L
i=1

{

∑L
j=0

∏i
k=i−j+1 qk

∏i−j+L−1
k=i+1 pk

} , (2.44)

which after some manipulation leads to the same expression of the current obtained
through discrete–time Markov chain analysis, c.f. Eq. (2.36). Eq. (2.44)has a simple
interpretation if we think of the rate of winning as a velocity, thus it is nothing buta
quotient between a distance (L) and the time it takes to cover it (

∑L
i Ti). The general

result (2.44) agrees with other studies of one–dimensional hopping modelswith arbitrary
periodL [66].

2.3 Other classes of Parrondo’s games

We have seen in previous sections that Parrondo’s paradox appearswhen one combines
a simple coin tossing game, either unbiased or negatively biased, with anotherunbiased
(or negatively biased) game where the coin to be used depends on the actual capital of
the player. Whatever sort of alternation between these games, either stochastically or
randomly, leads to a positively biased game. However, we might wonder if there exist
different games giving a similar effect, without considering the modulo rule introduced
in game B.

Parrondo et al. [4] introduced a new version for game B, where a player uses four
different coins depending on its previous history of wins and losses. Onthe other hand,
effects of cooperation between players in Parrondo’s games have been considered by
Toral [38,67]. In the following sections we will briefly present the basics of these games.

2.3.1 History dependent games

As already mentioned, Parrondoet al [4] devised a new game B (which we will refer
to as game B’) where the winning probabilities of a player depend on his/her previous
history of wins and losses. Therefore we have two games: game A is identical to the
original game, that is, there is a winning probabilityp and a losing probabilityq = 1− p.
For game B’ there are four probabilities{p1, p2, p3, p4} that will be used depending on
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whether the player won or lost in the two previous rounds. If subscriptn denotes the
round played we can summarize the probabilities in the following table,

n− 2 n− 1 Winning probability
Loss Loss p1

Loss Win p2

Win Loss p3

Win Win p4

(2.45)

Originally they were assigned the following set of values















p = 1
2 − ǫ,

p1 = 9
10 − ǫ,

p2 = p3 = 1
4 − ǫ,

p4 = 7
10 − ǫ.

(2.46)

whereǫ accomplishes the same task than in the original games, i.e. whenǫ = 0 both
games are fair and whenǫ > 0 they are losing games; however, any sort of combination
between both (either periodic or stochastic) gives rise to a winning game, see for example
Fig. 2.13.
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Figure 2.13. Plot of the average
gain of a single player versus the
number of plays for Parrondo’s his-
tory dependent games A and B’, as
well as a periodic and a random
combination of them. Simulations
were performed using the probabil-
ities defined in (2.46) together with
ǫ = 0.003.

Furthermore, even when two games like game B’ are combined, we still reproduce
the paradox [68].

2.3.1.a Analysis of the games

These games can also be described through discrete–time Markov chains.For game B’
we may distinguish four different states:{LL,LW,WL,WW}. As a result we obtain
the Markov chain represented in Fig. 2.14.

We can write down a set of evolution equations for the set of probabilities{ΠB′

ll ,Π
B′

lw ,Π
B′

wl ,Π
B′

ww}
as
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WW

WLLL

LW

p
2

q2
q4

q3

1p

p
3

q1

p4

Figure 2.14. Diagram representing the differ-
ent states of the history dependent game B’, as
well as the allowed transitions between these
states.

ΠB′

ll (n+ 1) = (1− p3) ΠB′

wl(n) + (1− p1) ΠB′

ll (n), (2.47)

ΠB′

lw(n+ 1) = p3 ΠB′

wl(n) + p1 ΠB′

ll (n), (2.48)

ΠB′

wl(n+ 1) = (1− p2) ΠB′

lw(n) + (1− p4) ΠB′

ww(n), (2.49)

ΠB′

ww(n+ 1) = p2 ΠB′

lw(n) + p4 ΠB′

ww(n). (2.50)

Which can be put in matrix form asΠB′
(n+ 1) = TB′Π

B′
(n), whereTB′ accounts

for the transition matrix between these states and is given by

TB′ =









1− p1 0 1− p3 0
p1 0 p3 0
0 1− p2 0 1− p4

0 p2 0 p4









, (2.51)

andΠB′
(n+1) = {ΠB′

ll (n+1),ΠB′

lw(n+1),ΠB′

wl(n+1),ΠB′

ww(n+1)}T is the column
vector of occupancy probabilities for the states. As already explained in Sec. 1.4.4 we
know there exists a stationary probability distribution forΠ

B′
such that(I−TB′)ΠB′

=
0, and whose solution reads

Π
B′

=
1

D′









(1− p3)(1− p4)
p1(1− p4)
p1(1− p4)
p1p2









, (2.52)

whereD′ = p1p2 + (1 + 2p1 − p3)(1 − p4). Once we have obtained the stationary
probability distribution for game B’ we can easily obtain that of game A and the ran-
domized AB’; the former case would be equivalent to settingpi = p ∀i, whereas for the
second case we would substitutepi by p′i = γ p+ (1− γ) pi for i = 1, . . . , 4.

Using the probabilities for game A and B’ withǫ = 0, and for the randomized AB’
with γ = 1

2 , we obtain for the stationary distributions
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ΠA =
1

4









1
1
1
1









, ΠB′
=

1

22









5
6
6
5









, ΠAB′
=

1

429









100
112
112
105









. (2.53)

The average winning probabilities (2.27) arepAwin = pB
′

win = 1
2 , pAB

′

win = 0.512. Thus,
the necessary conditions for the paradox to occur are accomplished, that is, we have two
fair/losing games that when combined give as a result a winning game.

Finally, for arbitrary values{p, p1, p2, p3, p4} the following set of conditions needs
to be fulfilled in order to reproduce the Parrondo effect

1− p
p

> 1,

(1− p3)(1− p4)

p1p2
> 1,

(1− p′3)(1− p′4)
p′1p

′
2

< 1. (2.54)

2.3.2 Collective games

Once reviewed an alternative group of Parrondo games where the capital dependent rules
of game B have been substituted for history rules, we turn to another sort of Parrondo
games introduced by Toral [38, 67] where the Parrondo effect is alsoobtained but for a
set ofN players (collective games). In one of these games [67], game B is substituted
by another game that depends on the state of a player’s neighbor. We refer to this state
as whether a player has win or lost the previous game. The other version [38] considers
a redistribution of capital between a set ofN players. We will now briefly explain both
games.

2.3.2.a Cooperative games

A group of N players with capitalsCi, i = 1, . . . , N are arranged in a circle so that
each player has two neighbors. A player chosen randomly for playing either can play
game A with probabilityγ or game B with probability1− γ. These players are labelled
as winners/losers depending on whether they have won/lost the previousround played.
Game A is the same as the original, where a player has a winning probabilityp and a
losing probability1 − p. Probabilities for game B depend on the state of the neighbors
i − 1 and i + 1 of player i. In the following table we have summarized the different
combinations available with their corresponding winning probabilities
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playeri− 1 playeri+ 1 Winning probability
Loser Loser p1

Loser Winner p2

Winner Loser p3

Winner Winner p4

(2.55)

The games are classified according to the behavior of the total capitalC(t) =
∑

iCi(t). Thus, a winning game is one for which the average value of the total capital
C(t) increases with time, and similarly for losing and fair games. Fig. 2.15 shows the av-
erage gain per player〈C(t)〉

N for the set of probabilitiesp = 0.5, p1 = 1, p2 = p3 = 0.16,
andp4 = 0.7. We can see how the Parrondo effect is again reproduced: playing ei-
ther game A or B reports no winnings on average, whereas an alternation between both
increases the average capital per player with time.

Figure 2.15. Average capital per
player, 〈C(t)〉

N
versus timet. The

probabilities defining the games
are: p = 0.5, p1 = 1, p2 = p3 =
0.16, p4 = 0.7. These results show
that game A is fair, game B is a los-
ing game, but when games A and B
are combined (AB) or in the [2, 2]
alternationAABBAABB . . ., the
result is a winning game. Results
are shown forN = 50, 100, and
200 players.

2.3.2.b Capital redistribution between players

The other version of collective games [38] substitutes the randomizing effect of game A
by a game that redistributes the capital between the players. Depending on the way the
capital is redistributed we may distinguish different versions for this new game A:

• Game A’: A unit of capital is given to a randomly selected player (with probability
1
N ).

• GameA′′: A unit of capital is given to a nearest neighbor with probabilities that
depend on the capital difference between playersp(i → i ± 1) ∝ max[Ci −
Ci± 1, 0], with p(i → i + 1) + p(i → i − 1) = 1 andCi denotes the current
capital of playeri.

These versions of game A are clearly fair, as they only redistribute the capital between
different players, keeping the total amount of capital constant. The mechanism of plays
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Figure 2.16. Average capital per player,〈C(t)〉/N , versus time,t (in units of games per player) for
different combinations of games A and B. We find the evolution of the capital when players only play
game A (γ = 1), game B (γ = 0) and a combination of both (γ = 1

2
). Upper panel: Combination

of the new game A’ with the original game B with probabilities:p1 = 0.1 − ǫ, p2 = 0.75 − ǫ.
Middle panel: Alternation between the new game A’ and game B’ with probabilities: p1 = 0.9 − ǫ,
p2 = p3 = 0.25 − ǫ, p4 = 0.7 − ǫ, with ǫ = 0.01. Lower panel: Alternation between the gameA′′

and game B with probabilities:p1 = 0.9 − ǫ, p2 = p3 = 0.25 − ǫ, p4 = 0.7 − ǫ, with ǫ = 0.01.
These figures have been obtained considering an ensemble ofN = 200 players; the results have been
averaged over10 realizations of the games. In all cases, the initial condition is that of zero capital,
Ci(0) = 0 , ∀i = 1, . . . N .
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can be described as follows: we have a set ofN players, and each time step a random
playeri is chosen for playing. In one version of these collective games, the player chooses
to play either game A’ or the original capital dependent game B; another version involves
an alternation between game A’ and the history dependent game B’, alreadyexplained
in a previous section. A third version includes an alternation between gameA′′ and the
capital dependent game B.

Fig. 2.16 shows the evolution of the average capital per player versus time for the
three different versions explained previously. In all cases, the Parrondo effect is again
reproduced, i.e., the resulting game from the combination of any version of game A with
any other game B turns to be a winning game. This result emphasizes the fact that it
is better, collectively speaking, for an individual player to redistribute part of its capital
between other players, in order to increase on average the total amount of capital.



Chapter 3

Parrondo’s games with
self–transition

The aim of this Chapter is to study a new version of Parrondo’s games, where a new
transition probability is taken into account. We introduce aself-transitionprobability,
that is, now the capital of the player can remain the same after a game played witha
probability that will be denoted byri, i = 0, . . . ,M − 1 (for simplicity the case of
M = 3 will be considered).

As we will show, the significance of this new version is a natural evolution ofPar-
rondo’s games, which will be of particular interest in a succeeding chapter, when the
quantitative relation between Parrondo’s games and the Brownian ratchetis established.

3.1 Analysis of the new Parrondo games with self-transitions

3.1.1 Game A

We start with the new game A, where the probability of winning isp, the probability of
remaining with the same capital will be denoted asr, and the losing probability is given
by q = 1− r − p .

Following the same reasoning as [7] we will calculate the probabilityfj that the
capital reaches zero in a finite number of plays. Let us assume that initially wehave a
given capital ofj units. From Markov chain analysis [64] we find

• fj = 1 for all j ≥ 0, and so the game is either fair or losing; or

• fj < 1 for all j > 0, in which case the game can be winning because there is a
certain probability that the capital can grow indefinitely.

We are looking for the set of numbers{fj} that correspond to the minimal non-
negative solution of the equation

49
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fj = p · fj+1 + r · fj + q · fj−1 , j ≥ 1 (3.1)

with the boundary condition

f0 = 1 . (3.2)

Eq.(3.1) can be put in the following form

fj =
p

1− r · fj+1 +
q

1− r · fj−1 , (3.3)

whose solution, for the initial condition (3.2), isfj = A · [(1−p−r
p )j − 1] + 1, where

A is a constant. For the minimal non-negative solution we obtain

fj = min

[

1,

(

1− p− r
p

)j
]

. (3.4)

So we can see that the new game A is a winning game for

1− p− r
p

< 1, (3.5)

is a losing game for
1− p− r

p
> 1, (3.6)

and is a fair game for
1− p− r

p
= 1. (3.7)

3.1.2 Game B

We now analyze the new game B. Like game A, we have introduced the probabilities
of a self-transition in each state, that is, if the capital is a multiple of three we have a
probabilityr1 of remaining in the same state, whereas if the capital is not a multiple of
three then the probability isr2. The rest of the probabilities will follow the same notation
as in the original game B, so we have the following scheme







mod(capital, 3) = 0→ p1, r1, q1

mod(capital, 3) 6= 0→ p2, r2, q2.
(3.8)

Now let gj be the probability that the capital will reach the zeroth state in a finite
number of plays, supposing an initial capital ofj units. Again, from Markov chain theory
we have
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• gj = 1 for all j ≥ 0, so game B is either fair or losing; or

• gj < 1 for all j > 0, in which case game B can be winning because there is a
certain probability for the capital to grow indefinitely.

For j ≥ 1, the following set of recurrence equations must be solved:

g3j = p1 · g3j+1 + r1 · g3j + (1− p1 − r1) · g3j−1, j ≥ 1
g3j+1 = p2 · g3j+2 + r2 · g3j+1 + (1− p2 − r2) · g3j , j ≥ 0
g3j+2 = p2 · g3j+3 + r2 · g3j+2 + (1− p2 − r2) · g3j+1, j ≥ 0 .

(3.9)

As in game A, we are looking for the set of numbers{gj} that correspond to the
minimal non-negative solution. Eliminating termsg3j−1, g3j+1 andg3j+2 from (3.9) we
get

[p1p
2
2+(1−p1−r1)(1−p2−r2)2]·g3j = p1p

2
2 ·g3j+3+(1−p1−r1)(1−p2−r2)2 ·g3j−3 .

(3.10)
Considering the same boundary condition as in game A,g0 = 1, the last equation has

a general solution of the formg3j = B ·
[

(

(1−p1−r1)(1−p2−r2)2

p1p22

)j
− 1

]

+ 1, where B is

a constant. For the minimal non-negative solution we obtain

g3j = min

[

1,

(

(1− p1 − r1)(1− p2 − r2)2
p1p2

2

)j
]

. (3.11)

It can be verified that the same solution (3.11) will be obtained solving (3.9) for g3j+1

andg3j+2, leading all them to the same condition for the probabilities of the games.
As with game A, game B will be winning if

(1− p1 − r1)(1− p2 − r2)2
p1p2

2

< 1, (3.12)

losing if

(1− p1 − r1)(1− p2 − r2)2
p1p2

2

> 1, (3.13)

and fair if

(1− p1 − r1)(1− p2 − r2)2
p1p2

2

= 1. (3.14)
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3.1.3 Game AB

Now we will turn to the random alternation of games A and B with probabilityγ. As in
a previous chapter this game will be named as game AB. For this game AB we havethe
following (primed) probabilities

• if the capital is a multiple of three

{

p′1 = γ · p+ (1− γ) · p1,
r′1 = γ · r + (1− γ) · r1, (3.15)

• if the capital is not multiple of three

{

p′2 = γ · p+ (1− γ) · p2,
r′2 = γ · r + (1− γ) · r2. (3.16)

The same reasoning as with game B can be made but with the new probabilitiesp′1,
r′1, p′2, r′2 instead ofp1, r1, p2, r2. Eventually we obtain that game AB will be winning if

(1− p′1 − r′1)(1− p′2 − r′2)2
p′1p

′2
2

< 1, (3.17)

losing if

(1− p′1 − r′1)(1− p′2 − r′2)2
p′1p

′2
2

> 1, (3.18)

and fair if

(1− p′1 − r′1)(1− p′2 − r′2)2
p′1p

′2
2

= 1. (3.19)

The paradox will be present if games A and B are losing, while game AB is winning.
In this framework this means that the conditions (3.6), (3.13) and (3.17) mustbe satisfied
simultaneously. In order to obtain sets of probabilities fulfilling theses conditions we
have first obtained sets of probabilities yieldingfair A and B games but such that AB is
a winning game, and then introducing a small biasing parameterǫ making game A and
game B losing games, but still keeping a winning AB game. As an example, we give
some sets of probabilities that fulfill these conditions:

(a) p = 9
20 − ǫ, r = 1

10 , p1 = 9
100 − ǫ, r1 = 1

10 , p2 = 3
5 − ǫ, r2 = 1

5 ,
(b) p = 9

20 − ǫ, r = 1
10 , p1 = 509

5000 − ǫ, r1 = 1
10 , p2 = 7

10 − ǫ, r2 = 1
20 ,

(c) p = 9
20 − ǫ, r = 1

10 , p1 = 3
25 − ǫ, r1 = 2

5 , p2 = 3
5 − ǫ, r2 = 1

10 ,
(d) p = 1

4 − ǫ, r = 1
2 , p1 = 3

25 − ǫ, r1 = 2
5 , p2 = 3

5 − ǫ, r2 = 1
10 .
(3.20)
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3.2 Properties of the Games

3.2.1 Rate of winning

If we consider the capital of a player at play numbern,Xn moduloM , we can perform a
discrete-time Markov chain analysis of the games with a state-space{0, 1, . . . ,M − 1}1.
For the case of Parrondo’s games we haveM = 3, so the following set of difference
equations for the probability distribution can be obtained:

P0(n+ 1) = p2 · P2(n) + r1 · P0(n) + q2 · P1(n),
P1(n+ 1) = p1 · P0(n) + r2 · P1(n) + q2 · P2(n),
P2(n+ 1) = p2 · P1(n) + r2 · P2(n) + q1 · P0(n),

(3.21)

which can be put in a matrix form asP(n+ 1) = T · P(n), where

T =





r1 q2 p2

p1 r2 q2
q1 p2 r2



 (3.22)

and

P(n) =





P0(n)
P1(n)
P2(n)



 . (3.23)

In the limiting case wheren → ∞ the system will tend to a stationary state (c.f.
Sec. 1.4.4) characterized by

Π = T ·Π, (3.24)

wherelimn→∞ P(n) = Π.

Solving (3.24) is equivalent to solving an eigenvalue problem. As we are dealing with
Markov chains and the transition matrix obtained is a stochastic matrix, we know that
there will be an eigenvalueλ = 1 and the rest will be under1 (see thePerron-Frobenius
theorem in Sec. 1.4.4 for further details). Forλ = 1 we obtain the following eigenvector
giving the stationary probability distribution in terms of the games’ probabilities.

Π ≡





Π0

Π1

Π2



 =
1

D





(1− r2)2 − p2 · (1− p2 − r2)
(1− r1)(1− r2)− p2 · (1− p1 − r1)
(1− r1)(1− r2)− p1 · (1− p2 − r2)



 , (3.25)

whereD is a normalization constant given by

1As in the original Parrondo games, we can reduce the infinite state Markovchain to anM finite Markov
chain.
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D = (1−r2)2 +2(1−r1)(1−r2)−p2(2−p2−r2−r1−p1)−p1(1−p2−r2). (3.26)

The rate of winning at then–th step, has the general expression

r(n) ≡ E[Xn+1]− E[Xn] =
∞
∑

i=−∞
i · [Pi,n+1 − Pi,n] . (3.27)

Using these expressions it is possible to obtain the stationary rate of winning for the
new games introduced in the previous section. The results are, for game A:

rstA = 2p+ r − 1, (3.28)

and for game B

rstB = 2p2 + r2 − 1 + [q2 − p2 + p1 − q1] ·Π0

=
3

D
(p1p

2
2 − (1− p1 − r1)(1− p2 − r2)2), (3.29)

whereD is given by (3.26).
It is an easy task to check that whenr1 = r2 = 0 we recover the well-known ex-

pressions for the original games obtained in [8]. To obtain the stationary rate for the
randomized game AB we just need to replace in the above expression the probabilities
from (3.15) and (3.16).

Within this context the paradox appears whenrstA ≤ 0, rstB ≤ 0 andrstAB > 0. If, for
example, we use the values from (3.20d) and a switching probabilityγ = 1/2, we obtain
the following stationary rates for game A, game B and the random combination AB:

rstA = −2ǫ,

rstB =
−ǫ (441− 120ǫ+ 1000ǫ2)

231− 40ǫ+ 500ǫ2
, (3.30)

rstAB =
93− 9828ǫ+ 1920ǫ2 − 32000ǫ3

2 (2499− 320ǫ+ 8000ǫ2)
.

which yield the desired paradoxical result for smallǫ > 0.
We can also evaluate the stationary rate of winning when both the probability of

winning and the self-transition probability for the games vary with a parameterǫ asp =
p − ǫ

2 andr = r + ǫ, so that normalization is preserved. Using the set of probabilities
derived from (3.20d), namelyp = 1

4 − ǫ
2 , r = 1

2 + ǫ , p1 = 3
25 − ǫ

2 , r1 = 2
5 + ǫ , p2 =

3
5 − ǫ

2 , r2 = 1
10 + ǫ, the result is:
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rstA = 0,

rstB =
−ǫ (21− 20ǫ)

2 (77− 200ǫ+ 125ǫ2)
, (3.31)

rstAB =
31− 164ǫ+ 160ǫ2

2 (833− 2600ǫ+ 2000ǫ2)
,

again a paradoxical result.
A comparison between the expressions for the rates of winning of the original Par-

rondo games [8] and the new games can be done in two ways. The first oneconsists
in comparing two games with the same probabilities of winning, say original game A
with probabilitiesp = 1

2 andq = 1
2 and the new game A with probabilitiespnew = 1

2 ,
rnew = 1

4 andqnew = 1
4 . In this case we can think of the ‘old’ probability of losing

q as taking the place of theself-transitionprobability rnew and the new probability of
losingqnew. In this way we obtain a higher rate of winning in the new game A than in the
original game – remember that the new game A has an extra termr in the rate of winning
compared to the original rate, and this extra term is what gives rise to the higher value.
The same reasoning applies for game B, leading to the same conclusion.

The other possibility could be to compare the two games with the same probability
of losing. In this case, we follow the same reasoning as before, but now we can imagine
the ‘old’ probability of winning as replacing the winning and self-transition probabilities
of the new game. What we now obtain is a lower rate of winning for the new game
compared to the original one. An easy way of checking this is by rewriting (3.28) and
(3.29) as

rstA = p− q, (3.32)

rstB =
3

D
(p1p

2
2 − q1q22).

So for the same value ofq but a lower value ofp we obtain a lower value for the rates
of game A and B.

We now explore the range of probabilities in which the Parrondo effect takes place.
We restrict ourselves to the caseM = 3 andγ = 1/2 used in the previous formulae.

The fact that we have introduced three new probabilities complicates the representa-
tion of the parameter space as we have six variables altogether, two variables{p, r} from
game A and four variables{p1, r1, p2, r2} coming from game B. In order to simplify this
high number of variables, some probabilities must be set so that a representation in three
dimensions will be possible. In our case we will fix the variables{r, r1, r2} so that the
surfaces can be represented in the parameter space{p, p1, p2}.

In Fig. 3.1 we can see the resulting region where the paradox exists for thevariables
r = 1

4 , r1 = 1
8 andr2 = 1

10 . It is possible to show that the volume where the paradox
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Figure 3.1. Parameter space corresponding to the valuesr = 1
4
, r1 = 1

8
andr2 = 1

10
. The actual

region where the paradox exists is delimited by the planep1 = 0 and the triangular region situated at
the frontal face, where all the planes intersect.

takes place, gradually shrinks to zero as the variablesr, r1 andr2 increase from zero to
their maximum value of one.

Although it still remains an open question, we have not been able to obtain the equiv-
alent parameter space to Fig. 3.1 with the fixed variablesp, p1, p2 and with the parameter
space variablesr, r1, r2 instead – it is possible to obtain the planes for games A and B,
but not for the randomized game AB.

3.2.2 Simulations and discussion

We have analyzed the new games A and B, and obtained the conditions in order to repro-
duce the Parrondo effect. We now present some simulations to verify that the paradox is
present for a different range of probabilities – see Fig. 3.2. Some interesting features can
be observed from these graphs. First it can be noticed that the performance of random or
deterministic alternation of the games drastically changes with the parameters.

We use the notation[a, b] to indicate that game A was playeda times and game Bb
times. The performance of the deterministic alternations[3, 2] and[2, 2] remain close to
one another, as can be seen in Fig. 3.2. However the alternation[4, 4] has a low rate of
winning because as we play each game four times, that causes the dynamics of games
A and B to dominate over the dynamic of alternation, thereby considerably reducing the
gain.

The performance of the random alternation is more variable, obtaining in somecases
a greater gain than in the deterministic cases – see Fig. 3.2c.

In figures (3.3a) and (3.3b) a comparison between the theoretical rates of winning for
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Figure 3.2. Average gain as a function of the number of games played coming from numerical
simulation of Parrondo’s games with different sets of probabilities. The notation[a, b] indicates that
game A was playeda times and game Bb times. The gains were averaged over 50 000 realizations
of the games. a) Simulation corresponding to the probabilities (3.20a) andǫ = 1

500
; b) probabilities

(3.20b) andǫ = 1
200

; c) probabilities (3.20c) andǫ = 1
200

; d) probabilities (3.20d) andǫ = 1
200
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Figure 3.3. Comparison of the theoretical rates of winning – dashed lines – together withthe rates
obtained through simulations – solid lines. All the simulations were obtained by averaging over
50 000 trials and over all possible initial conditions. a) The parameters correspond to the ones used in
equations (3.30). b) The parameters correspond to the ones used in equations (3.31).



58 Chapter III

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

γ

G
ai

n

Figure 3.4. Comparison between
the theoretical and the simulation
for the gain vs gamma, for the fol-
lowing set of probabilities :p = 1

3
,

r = 1
3
; p1 = 3

25
, r1 = 2

5
and

p2 = 3
5
, r2 = 1

10
. The simulations

were carried out by averaging over
50 000 trials and all possible initial
conditions.

games A, B and AB given by (3.30) and (3.31) and the rates obtained through simulations
is presented. It is worth noting the good agreement between both results.

It is also interesting to analyze the evolution of the average gain obtained from the
random alternation of game A and game B when varying the mixing parameterγ. In
Fig. 3.4 we compare the theoretical curves and the ones obtained through simulations. As
in the original games, the maximum gain obtained for this set of parameters is obtained
for a value aroundγ ∼ 1

2 [69]. For other sets of the game probabilities, though, the
optimalγ differs fromγ = 1

2 .



Chapter 4

Relation between Parrondo’s
games and the Brownian
ratchet

Parrondo’s games were originally inspired by the model of the flashing ratchet. How-
ever, no direct relation was ever established between both. In this chapter we address
a quantitative relation between the variables defining a game, i.e., the winning and los-
ing probabilities, and the physical variables defining a Brownian ratchet. Depending on
the game considered, a different formulation will be obtained: it will be shown that the
original Parrondo’s games can be derived from a Langevin equation with additive noise,
and Parrondo’s games with self–transition can be related to a Langevin equation using
multiplicative noise in the sense of Ito.

4.1 Additive noise

The evolution in time of the games can be described through a master equation with
discrete timeτ . This time increases by one at every coin toss. If we denote byPi(τ) the
probability that at timeτ the capital of the player is equal toi, we can write a general
master equation as

Pi(τ + 1) = ai−1Pi−1(τ) + ai0Pi(τ) + ai1Pi+1(τ), (4.1)

whereai−1 is the probability of winning when the capital isi − 1, ai1 is the prob-
ability of losing when the capital isi + 1, and, for completeness, we have introduced
ai0 as the probability that the capitali remains unchanged (a possibility not considered
in the original Parrondo games). In accordance with the rules of the game described in
Sec. 2.2, the probabilities{ai−1, a

i
0, a

i
1} do not depend on time and they satisfy the nor-

malization conditionai+1
−1 +ai0+ai−1

1 = 1, which ensures the conservation of probability:

59
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∑+∞
i=−∞ Pi(τ + 1) =

∑+∞
i=−∞ Pi(τ) = 1 if

∑+∞
i=−∞ Pi(0) = 1.

We can rewrite Eq. (4.1) by making use of the normalization condition for the transi-
tion probabilities:

Pi(τ + 1)− Pi(τ) = ai−1Pi−1(τ) + (ai0 − 1)Pi(τ) + ai1Pi+1(τ)

= ai−1Pi−1(τ)− (ai+1
−1 + ai−1

1 )Pi(τ) + ai1Pi+1(τ)

= ai−1Pi−1(τ)− ai+1
−1 Pi(τ)− ai−1

1 Pi(τ) + ai1Pi+1(τ)

= − [Ji+1(τ)− Ji(τ)] . (4.2)

where the currentJi(τ) is given by:

Ji(τ) =
1

2
[FiPi(τ) + Fi−1Pi−1(τ)]− [DiPi(τ)−Di−1Pi−1(τ)] , (4.3)

andFi = ai+1
−1 − ai−1

1 ,Di = 1
2(ai+1

−1 + ai−1
1 ). This form is a consistent discretization

of the Fokker–Plank equation for a probabilityP (x, t)

∂P (x, t)

∂t
= −∂J(x, t)

∂x
, (4.4)

with a current

J(x, t) = F (x)P (x, t)− ∂[D(x)P (x, t)]

∂x
, (4.5)

with an arbitrary driftF (x), and diffusionD(x). If ∆t and∆x are, respectively,
the time and space discretization steps, such thatx = i∆x andt = τ∆t, it is clear the
identification

Fi ←→
∆t

∆x
F (i∆x), Di ←→

∆t

(∆x)2
D(i∆x). (4.6)

The discrete and continuum probabilities are related byPi(τ) ↔ P (i∆x, τ∆t)∆x

and the continuum limit can be taken by considering thatM = lim
∆t→0,∆x→0

(∆x)2

∆t
is a

finite number. In this caseFi ↔M−1∆xF (i∆x) andDi ↔M−1D(i∆x).
From now on, we restrict ourselves to the caseai0 = 0 (which corresponds to the

original Parrondo’s games). Sincepi = ai+1
−1 we can rewrite the termsDi, Fi as

Di ≡ D =
1

2
, (4.7)

Fi = −1 + 2pi. (4.8)

and the currentJi(τ) = −(1−pi)Pi(τ)+pi−1Pi−1(τ) is nothing but the probability
flux from i−1 to i. We are interested in solving our system for the stationary case. In this
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regime we know thatPi(τ) ≡ P sti and the current does not depend on sitei, acquiring a
constant valueJi ≡ J . The stationary solutions for the probabilityP sti are found solving
the recurrence relation (4.3) for a constant currentJ together with the boundary condition
P sti = P sti+L:

P sti = Ne−Vi/D



1− 2J

N

i
∑

j=1

eVj/D

1− Fj



 , J = N
e−VL/D − 1

2
∑L

j=1
eVj/D

1−Fj

. (4.9)

whereN is the normalization constant obtained from
∑L−1

i=0 P
st
i = 1. In these ex-

pressions we have introduced the potentialVi in terms of the probabilities of the games1

Vi = −D
i
∑

j=1

ln

[

1 + Fj−1

1− Fj

]

= −D
i
∑

j=1

ln

[

pj−1

1− pj

]

, (4.10)

The case of zero currentJ = 0, implies a periodic potentialVL = V0 = 0. This
latter condition leads to

∏L−1
i=0 pi =

∏L−1
i=0 (1− pi) for a fair game, a requirement already

obtained when analyzing the games with discrete–time Markov chains,c.f. Eq. (2.32). In
this case, the stationary solution can be written as the exponential of the potential P sti =
Ne−Vi/D. Note that Eq. (4.10) reduces in the limit∆x→ 0 toV (x) = −M−1

∫

F (x)dx

orF (x) = −M ∂V (x)
∂x , which is the usual relation between the driftF (x) and the potential

V (x) with a mobility coefficientM .
The inverse problem of obtaining the game probabilities in terms of the potential

requires solving Eq. (4.10) forFi with the boundary conditionF0 = FL
2:

Fi = (−1)ieVi/D





∑L
j=1(−1)j [e−Vj/D − e−Vj−1/D]

(−1)Le(V0−VL)/D − 1
+

i
∑

j=1

(−1)j [e−Vj/D − e−Vj−1/D]



 .

(4.11)
These results allow us to obtain the stochastic potentialVi (and hence the currentJ)

for a given set of probabilities{p0, . . . , pL−1}, using (4.10); as well as the inverse: obtain
the probabilities of the games given a stochastic potential, using (4.11). Note that the
game resulting from the alternation, with probabilityγ, of a game Awith pi = 1/2, ∀i
and a game B defined by the set{p0, . . . , pL−1} has a set of probabilities{p′0, . . . , p′L−1}
with p′i = (1− γ)1

2 + γpi. For theFi’s variables, this relation yieldsF ′
i = γFi, and the

related potentialV ′ follows from (4.10).
We give now two examples of the application of the above formalism. In the firstone

we compute the stochastic potentials of the fair game B and the winning game AB, the

1In this, as well as in other similar expressions, the notation is such that
P0

j=1 = 0. Therefore the
potential is arbitrarily rescaled such thatV0 = 0.

2The singularity appearing for a fair gameVL = V0 in the case of an even numberL might be related to
the lack of ergodicity explicitely shown in [31] forL = 4. In this case additional conditions on the potential
are required for the existence of a fair game, and will be further explained in the next section.
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Figure 4.1. Upper panel: potentialVi obtained from (4.10) for the fair game B defined byp0 =
1/10, p1 = p2 = 3/4. Lower panel: potential for the randomized game AB, withp′

0 = 3/10, p′
1 =

p′
2 = 5/8 resulting from the random alternation of game B with a game A with constant probabilities

pi = p = 1/2, ∀i.
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random combination with probabilityγ = 1/2 of game B and a game A with constant
probabilities, in the original version of the paradox [5]. The resulting potentials are
shown in Fig. 4.1. Note that the potential for game B takes different values at each point
i mod 3 even though the probabilities were equal fori = 1, 2 mod 3. The resulting
asymmetry in the potential is the required one for the existence of the ratchet effect. On
the other hand, the potential of the combined game AB has a non-zero and negative mean
slope, as it corresponds to a winning game.
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Figure 4.2. Upper panel: Ratchet
potential (2.2) in the caseL = 9,
A = 1.3. The dots are the dis-
crete valuesVi = V (i) used in
the definition of game B. Lower
panel: discrete values for the poten-
tial V ′

i for the combined game AB
obtained by alternating with prob-
ability γ = 1/2 games A and B.
The line is a fit to the empirical
form V ′(x) = −Γx + αV (x) with
Γ = 0.009525, α = 0.4718.

The second application considers as input the potential (2.2), setting the time–
dependent functionW (t) = 1, which has been widely used as a prototype for ratch-
ets [70,71]. Using (4.11) we obtain a set of probabilities{p0, . . . , pL−1} by discretizing
this potential with∆x = 1, i.e. settingVi = V (i). Since the potentialV (x) is peri-
odic, the resulting game B defined by these probabilities is a fair one and the currentJ is
therefore zero. Game A, as always is defined bypi = p = 1/2, ∀i. We plot in Fig. 4.2
the potentials for game B and for the randomized game AB, the random combination
with probabilityγ = 1/2 of games A and B. Note again that the potentialV ′

i is tilted as
corresponding to a winning game AB. As shown in Fig. 4.3, the currentJ depends on
the probabilityγ for the alternation of games A and B.
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Figure 4.3. Current J resulting
from equation (4.9) for game AB
as a function of the probabilityγ
of alternation of games A and B.
Game B is defined as the discretiza-
tion of the ratchet potential (2.2) in
the caseA = 0.4, L = 9. The
maximum gain corresponds toγ =
0.57.

4.2 The case ofL even

A problem arises when finding the probabilitiespi using (4.11) for a periodic poten-
tial (corresponding to a fair game) when the number of pointsL is even. This is ob-
vious since the periodicity conditionVL = V0 gives a zero value for the denominator
(−1)Le2(V0−VL) − 1 in (4.11). In order to be able to find solutions for the probabilities,
the numerator has to vanish as well. This is equivalent to the condition:

∑

k

e−2V2k =
∑

k

e−2V2k+1 , (4.12)

which, in terms of the stationary probabilities, becomes:

∑

k

P st2k =
∑

k

P st2k+1. (4.13)

This condition implies that one can have a fair game in the case of an even number
L only if the probability of finding an even value for the capital equals that of finding an
odd value. To our knowledge, this curious property, which emerges naturally from the
relation between the potential and the probabilities, has not been reported previously.

It turns out that one has to be careful when discretizing a periodic potential V (x) in
order to preserve this property. Otherwise, there will be no equivalentParrondo game
with zero current. The simple identificationVi = V (iλ) might not satisfy this require-
ment, but we have found that a possible solution is to shift the origin of thex-axis, i.e.
settingVi = V ((i + δ)λ) for a suitable value ofδ. For example, in Fig. 4.4 we plot the
difference

d(δ) =
∑

i

e−2V ((2i+δ)λ) −
∑

i

e−2V ((2i+1+δ)λ), (4.14)
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Figure 4.4. Plot of d(δ) as
given by Eq. (4.14) versus dis-
placementδ. The unique zero
crossing is atδ = −0.068616.

as a function ofδ in the case of the potential (2.2) andλ = 1/4 (which corresponds to
L = 4 points per period). We see that there is only one value that accomplishesd(δ) = 0,
namelyδ = −0.068616.

Once the proper value ofδ is found, it follows from Eq. (4.11) that there are infinitely
many solutions for the probabilities. They can be found by varying, say,p0, such that
for each value ofp0 we will get a set of probabilities{p0, . . . , pi, . . . , pL−1}. Solutions
satisfying the additional requirement thatpi ∈ [0, 1], ∀i, will exist only for a certain
range of values ofp0 ∈ [0.0025, 0.68]. Some of the different solutions are plotted in
Fig. 4.5. Some numerical values are :

• p0 = 0.125, p1 = 0.8167766, p2 = 0.3927740, p3 = 0.7082539

• p0 = 0.25, p1 = 0.6335531,p2 = 0.5289900, p3 = 0.6070749

• p0 = 0.3525, p1 = 0.4833099, p2 = 0.6406871, p3 = 0.5241081

• p0 = 0.50, p1 = 0.2671062, p2 = 0.8014221, p3 = 0.4047168

An additional criterion to choose between the different sets of probabilitiesis to im-
pose the maximum “smoothness” in the distribution of thepi’s. For instance, one could
minimized the sum

∑L−1
i=0 (pi+1 − pi)2. In our example this criterion yieldsp0 = 0.3525

and the other values follow from the previous table.

4.3 Multiplicative Noise

We go now a step forward, and calculate how these previous expressions obtained for
the stationary probability, current and the defined potential vary when weconsider the
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4
,

δ = −0.068616 varying the value
of p0. The continuous line corre-
sponds to the “optimal” solution,
p0 = 0.3525 (see the text).

caseai0 6= 0 (which is equivalent tori 6= 0). As stated previously, considering this term
implies that the player has a certain probability of remaining with the same capital after
a round played.

The drift and diffusion terms now read

Fi = ai+1
−1 − ai−1

1 = 2pi + ri − 1, (4.15)

Di =
1

2
(1− ai0) =

1

2
(1− ri). (4.16)

It can be appreciated that both terms, the diffusionDi as well as the driftFi, may vary
on every site. Using Eq. (4.3) and considering the stationary casePi(τ) = P sti together
with a constant currentJi = J , we may solve for the probability distribution obtaining

P sti =
J

1
2Fi −Di

−
(

1
2Fi−1 +Di−1

1
2Fi −Di

)

P sti−1. (4.17)

The previous equation can be put in a general form asxi = ai + bixi−1, from which
a solution can be derived solving recursively forxn,

xn =

[

n
∏

k=1

bk

]

· x0 +
n
∑

j=1

aj ·





n
∏

k=j+1

bk



 . (4.18)

Applying the latter result to the stationary probability we have

P stn =

[

n
∏

k=1

Dk−1 + 1
2Fk−1

Dk − 1
2Fk

]

· P st0 − J
n
∑

j=1

1

Dj − 1
2Fj





n
∏

k=j+1

Dk−1 + 1
2Fk−1

Dk − 1
2Fk



 .

(4.19)
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We can solve for the currentJ using Eq. (4.17) together with the periodic boundary
conditionP stL = P st0

J =
P st0 ·

(

∏L
k=1

[ 1
2
Fk−1+Dk−1

Dk− 1
2
Fk

]

− 1
)

∑L
j=1

1
Dj− 1

2
Fj

∏L
k=j+1

[ 1
2
Fk−1+Dk−1

Dk− 1
2
Fk

] . (4.20)

An effective potentialcan be defined in a similar way to its continuous analog as

Vi = −
i
∑

j=1

ln





1 + 1
2
Fj−1

Dj−1

1− 1
2
Fj

Dj



 = −
i
∑

j=1

ln





pj−1

1−rj−1

1−pj−rj
1−rj



 . (4.21)

It is important to note that, as in the previous caseai0 = 0, the potential must verify
periodic conditionsV0 = VL when the set of probabilities define a fair game. It is an easy
task to check that using Eq. (4.21) together with a periodic boundary condition, what we
obtain is the fairness condition for a given set of probabilities defining a Parrondo game
with self–transition(c.f. (3.14)), that is

L
∏

k=1

pi =
L
∏

k=1

qi =
L
∏

k=1

(1− pi − ri). (4.22)

By means of Eq. (4.21) we can obtain the stationary probability (4.19) and current
(4.20) in terms of the defined potential as

P stn = e−Vn





D0 · P st0

Dn
− J

n
∑

j=1

eVj

Dn

(

1− 1
2
Fj

Dj

)



 , (4.23)

where

J =
P st0

[

D0 −DL · eVL
]

∑L
j=1

eVj
„

1− 1
2

Fj
Dj

«

. (4.24)

These are the new expressions which, together with Eqs. (4.15) and (4.16) allow us
to obtain the potential, current and stationary probability for a given set ofprobabilities
{pi, ri, qi} defining a Parrondo game withself–transition. We will now show that the
set of Eqs. (4.21),(4.23),(4.24) can be related in a consistent form with the continuous
solutions corresponding to the Fokker–Planck equation of a process withmultiplicative
noise.

Given a Langevin equation with multiplicative noise

ẋ = F [x(t), t] +
√

B[x(t), t] · ξ(t), (4.25)
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interpreted in the sense of Ito, we can obtain its associated Fokker–Planckequation
given by Eq. (4.4) recalling thatD(x, t) = 1

2B(x, t). The general solution for the sta-
tionary probability density functionP (x, t) is given by

P st(x) =
e

R x Ψ(x)dx

D(x)
·



N − J
x
∫

e−
R x′ Ψ(x′′)dx′′dx′



 , (4.26)

whereN is a normalization constant andΨ(x) = F (x)
D(x) . Making use of the period-

icity and the normalization conditionP (0) = P (L) and
∫ x
0 P (x)dx = 1 we obtain the

following expressions forN andJ

N = P (0) ·D(0) J =
P (0) ·

(

D(0)−D(L)e
R L
0 Ψ(x)dx

)

∫ L
0 e−

R x′

0 Ψ(x′′)dx′′dx′
. (4.27)

Comparing the discrete equations for the current and stationary probability(4.23-
4.24) with the continuous solutions (4.26-4.27) we have the following equivalences

P st0 ·D0 ≡ P (0) ·D(0), (4.28)

Dj ≡ D(x), (4.29)

eVn ≡ e
R x Ψ(x)dx, (4.30)

n
∑

j=1

eVj

(

1− 1
2
Fj

Dj

) ≡
x
∫

e−
R x′ Ψ(x′′)dx′′dx′. (4.31)

It is clear the identification of the terms in Eqs. (4.28) and (4.29). Now we need to
demonstrate the equivalence given by Eqs. (4.30) and (4.31). If we define adiscretised
functionasψj =

Fj−1

Dj−1
and we use the Taylor expansion up to first order of the logarithm

ln (1 + x) ≈ x we get
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Vn = −
n
∑

j=1

ln

(

1 + 1
2ψj−1

1− 1
2ψj

)

≈ −1

2

n
∑

j=1

(ψj−1 + ψj) =

= −
(

1

2
ψ0 +

n−1
∑

k=1

ψk +
1

2
ψn

)

, (4.32)

n
∑

j=1

eVj

1− 1
2ψj

=
n
∑

j=1

eVj−ln (1− 1
2
ψj) ≈

n
∑

j=1

e−
1
2(

Pj
k=1[ψk−1+ψk]−ψj) =

=
n
∑

j=1

e−( 1
2
ψ0+

Pj
k=1 ψk+ 1

2
ψj)+ 1

2
ψj . (4.33)

It can be clearly seen that Eq. (4.32) corresponds to the numerical integration of the
functionΨ(x) defined previously, but with a∆ = 1 (the difference in the sign is due to
the way we have defined our potential). It can be demonstrated that when∆ 6= 1 both
expressions agree up to first order in∆,

Vn∆ = −∆

(

1

2
ψ0 +

n−1
∑

k=1

ψk +
1

2
ψn

)

. (4.34)

In the case of Eq. (4.33) what we obtain is nearly the Simpson’s numerical integration
method but for an extra term. As in the previous case, when∆ 6= 1 then we have up to a
first order an extra∆ term,

n
∑

j=1

eVj∆

1− 1
2ψj∆

≈ ∆ ·
n
∑

j=1

e−∆( 1
2
ψ0+

Pj
k=1 ψk∆+ 1

2
ψj∆)+ 1

2
∆ψj∆ . (4.35)

So when∆ → 0 the contribution of theextra term can be neglected as compared to
that of the sum.

We can also perform the inverse process, that is, to obtain the set of probabilities
{pi, ri, qi} for a given potentialVi. If we defineAn = 1

2
Fn
Dn

= pn−qn
pn+qn

, we need only to
solve Eq. (4.21) forAn obtaining

An = (−1)n · eVn





∑L
j=1(−1)j(e−Vj − e−Vj−1)

(−1)L · eV0−VL − 1
+

n
∑

j=1

(−1)j ·
(

e−Vj − e−Vj−1
)



 .

(4.36)
Once these values are obtained, we must solve for the probabilities togetherwith the

normalization conditionpi + ri + qi = 1. Since we have a free parameter in the set of
solutions, we can fix theri values on every site and the rest of parameters can be obtained
through
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pi = 1
2(1 +Ai)(1− ri), (4.37)

qi = 1
2(1−Ai)(1− ri). (4.38)

In this way what we have is a method for inverting aneffectivepotential, fixing a
parameter that in our case is the diffusion in every site (remember that the parameterri is
related to the diffusion coefficient by Eq. (4.16) or is also equivalent to the temperature).

The fact that we can obtain different sets of probabilities, both describing different
dynamics but coming from the same potentialV (x), it is not surprising. We need only
to remember that a system with multiplicative noise is equivalent, in the sense that both
possess the same stationary probability distribution, to another system with additive noise

ẋ = F (x) +D(x) · ξ(t) −→ ẋ = F̄ (x) + ξ(t), (4.39)

but with a renormalized drift term̄F (x) given byF̄ (x) = −∂V̄
∂x , whereF (x) = −∂V

∂x

andV̄ =
∫ F (x)
D(x)dx+ lnD(x).



Chapter 5

Parrondo’s games and
Information theory

Recently, Arizmendiet. al [37] quantified the transfer of information – negentropy –
between a Brownian particle and the nonequilibrium source of fluctuations acting on it.
These authors coded the particle motion of a flashing ratchet into a string of0’s and1’s ac-
cording to whether the particle had moved to the left or to the right respectively, and then
compressed the resulting binary file using the Lempel and Ziv algorithm (seeSec. 1.5.2
for details). They obtained in this way an estimation of the entropy per character h as
the ratio between the lengths of the compressed and the original file, for a sufficiently
large file length. They applied this method to estimate the entropy per character of the
ergodic source for different values of the flipping rate, with the result that there exists a
close relation between the current in the ratchet and the net transfer of information in the
system. The aim of the present Chapter is to apply this technique to the discrete–time
and space version of the Brownian ratchet, i.e., Parrondo’s games.

5.1 Parrondo’s games and Information Theory

Some previous works in the literature have related Parrondo’s games and information
theory. Pearce [72] considers the relation between the entropy and the fairness of the
games, and the region of the parameter space where the entropy of game A isgreater than
that of B and the randomized game AB. Harmeret. al [73] study the relation between the
fairness of games A and B and the entropy rates considering two approaches. The first
one calculates the entropy rates not taking into account the correlations present on game
B, finding a good agreement between the region of maximum entropy rates and the region
of fairness. The second approach introduces these correlations, obtaining lower entropy
rates and no significant relation between fairness and entropy rates forgame B.

The goal of this chapter is to relate the current or gain in Parrondo’s games with the
variation of information entropy of the binary file generated using techniques similar to

71
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those in [37]. In the next section we will present numerical results coming from sim-
ulations of different versions of Parrondo’s games: in the cooperative games [38, 67],
one considers an ensemble of interacting players; in the history dependent games [4,68],
the probabilities of winning depend on the history of previous results of winsand loses;
finally, in the games with self–transition (c.f. Chapter 3), there is a non–zero probability
ri that the capital remains unchanged (not winning or losing) in a given toss of the coins.
Finally, we offer in Sec. 5.3, a theoretical analysis that helps to understand the behavior
observed in the simulations.
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Figure 5.1. Comparison of the
average gain per game (solid line)
with the entropy difference∆h
(symbols) as a function of the
switching rateγ, for several values
of the delay timeδt, as shown in the
legend, and the following versions
of the Parrondo’s games: Upper
panel: Original Parrondo’s combi-
nation of games A and B with prob-
abilities: p = 1

2
, p0 = 1
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and

p1 = 3
4
. Lower panel: Parrondo’s

combination of gamesA andB in-
cluding self–transitions. The values
for the probabilities are:p = 9
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, p0 = 3
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, r0 = 2
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, p1 = 3

5

andr1 = 1
10

.

5.2 Simulation results

We have performed numerical simulations of the different versions of the games. In every
case, the evolution of the capital of the player has been converted to a string of bits where
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bit 0 (resp., 1) corresponds to a decrease (resp., increase) of the capital afterδt plays of
the games. It will be shown that the delay timeδt between capital measurements is a
relevant parameter.

An estimation of the entropy per characterh, is obtained as the compression ratio
obtained with thegzip (v. 1.3) program, that implements the Lempel and Ziv algorithm
(although it has been stressed by some authors that this is not the best compressing al-
gorithm one can find in the literature). The simplicity in the use of this algorithm (as
it is already implemented “for free” in many operating systems) is an added value, as it
will become apparent in the following when we consider strings of symbols generated by
more than one ergodic source. As suggested in [37], we expect that thenegentropy,−h,
which accounts for the known information about the system, is related in some way with
the average gain in the games.

In the upper panel of Fig. 5.1 we compare the average gain in the randomized game
AB with the value of the entropy difference∆h = h(γ = 0) − h(γ) as a function of
the probabilityγ and for different delay timesδt. We find indeed a qualitative agreement
between the increase in the gain and the decrease in entropy as theγ parameter is varied.
This decrease in the entropy of the system implies that there exists an increase in the
amount of known information about the system. Notice that the compression rate depends
on δt, and that theγ value for which there is the maximum decrease in entropy agrees
with the value for the maximum gain in the games. This agreement is similar to the one
observed when applying this technique to the Brownian flashing ratchet [37].

Similar results are obtained in other versions of Parrondo’s games. For instance, in
the lower panel of Fig. 5.1 we compare the average gain and the entropy difference in the
games with self–transition [74]. Again in this case the maximum gain coincides with the
γ value for the minimum entropy per character for all values ofδt.

Finally, in Fig. 5.2 we present the comparison in the case of the history dependent
games [4] (upper panel), and cooperative games [67] (lower panel),showing all of them
the same features as in previous cases. We may conclude from these results that there
exists, as it happens for the Brownian ratchet, a close relation between theentropy and the
average gain. In the next section we will develop a simple argument that helps explaining
this relation.

5.3 Theoretical analysis

As stressed in Sec. 5.1, the entropy per character of a text produced by an ergodic source
is1 H = −∑i pi · log(pi), wherepi denotes the probability that the source will emit
a given symbolαi, and the sum is taken over all possible symbols that the source can
emit. For instance, if we consider game A as a source of two symbols,0 (losing) and1
(winning) , the Shannon entropy according as a function of the probabilityp of emitting
symbol1 (i.e. the probability of winning) is given by Eq. (1.96). In Fig. 5.3 we compare

1Units are taken such that all logarithms are base2.
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this expression with the compression factorh obtained using thegzip algorithm. As
shown in this figure for the case of a single source, the compression factor of thegzip
algorithm does give a good approximation to the Shannon entropy.
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Figure 5.3. Comparison between
the theoretical value obtained for
the Shannon entropy – solid line
– with the numerical values – cir-
cles – obtained with thegzip al-
gorithm for a single source emitting
two symbols with probabilityp.

From now on, we restrict our analysis to the case of the original Parrondo’s paradox
combining games A and B, as explained in Sec. 2.2. For the combined game AB we
must distinguish two states, that is, when the capital is multiple of three and when itis
not. Therefore, we can think of the randomized game AB as originated by twosources
depending on whether the capital is multiple of3 or not. The probability of emitting
symbol1 when using the first source will be denoted byq0, whereas the same probability
will be q1 when using the second source.

Let us first consider the caseδt = 1, i.e. we store the capital after each single play
of the games. According to the expression (1.97) for the entropy of a mixedsource, the
Shannon entropy for the combined game AB is:

H = −Π0[q0 log(q0) + (1− q0) log(1− q0)]− (1−Π0)[q1 log(q1) + (1− q1) log(1− q1)],
(5.1)

beingΠ0 the stationary probability than in a given time the capital is a multiple of3.
From the Markov chain analysis in Sec. 2.2.2 we know that the stationary probability Π0

is given by

Π0 =
1− q1 + q21

3− q0 − 2q1 + 2q0q1 + q21
. (5.2)

In Fig. 5.4 we compare the Shannon entropyH given by the previous formula with
the numerical compression factorh as a function of the probabilityγ of mixing games A
and B. Although certainly not as good as in the case of a single game, in this case, the
gzip compression factor gives a reasonable approximation to the Shannon entropy of the
combined game AB. It is worth noting that in this case ofδt = 1 the entropy increases
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with γ, corresponding to a decrease of the information known about the system.In order
to relate the entropy difference with the current gain, we need to considerlarger values
for δt.
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Figure 5.4. Plot of Shannon negen-
tropy (solid line) for the combina-
tion game AB according to expres-
sion (5.1), together with the numer-
ical values (circles) obtained with
the compression factor of thegzip
algorithm in the case whenδt = 1
step.

Forδt ≫ 1 the system gradually loses its memory about its previous state. Therefore,
the different measures are statistically independent and they can be considered as gener-
ated by a single ergodic source. For this single source, the probability of winning after
one single play of the games ispw = Π0 q0 + (1 − Π0) q1. However, we are interested
in calculating the winning probabilityp> afterδt plays. In order to have a larger capital
afterδt plays it is necessary that the number of wins overcomes the number of losses in
single game plays. The distribution of the number of wins follows a binomial distribution
and the probabilityp> is given by:

p> =

δt
2
∑

k=0

(

δt
k

)

· pδt−kw · (1− pw)k. (5.3)

The corresponding Shannon entropy for this single source is:

H = −p> · log(p>)− (1− p>) · log(1− p>). (5.4)

We compare in Fig. 5.5 the Shannon entropy coming from this formula and the one
obtained by the compression ratio of thegzip program for two different values ofδt =
500, 1000. In both cases, there is a reasonable agreement between both results. Moreover,
as shown in Figs. 5.1 and 5.2 the entropy follows closely the average gain ofthe combined
games.
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Chapter 6

Efficiency of discrete–time
ratchets

Since the field of Brownian ratchets acquired its importance, there have been numerous
studies on the energetics of these microscopic devices [70, 75–77]. However, finding
the ratchet efficiency in the discrete case uptil now has been an outstanding open prob-
lem. We have shown earlier in Chapter 4 the connection established between the Fokker-
Planck equation associated to a Brownian ratchet, and the master equation describing
Parrondo’s games. Therefore, Parrondo’s games can be considered as being a discrete–
time and discrete–space version of the continuous flashing ratchet model [56,78].

While this approach gives much insight and allows straightforward development of
games starting from suitable potentials, finding the correct formalism for describing the
efficiency of the discrete ratchet and relating it back to the continuous case, has been
problematic [8].

It is the aim of this Chapter to deepen this relationship in order to calculate the effi-
ciency of the games. We develop an efficient method for obtaining the stationary proba-
bilities and probability current for a discrete–time and space ratchet in terms of a poten-
tial function. We combine the new methods presented herein together with known results
from ratchet theory in order to calculate the efficiency of the discrete ratchet. This allows
to gain new insight into the games behavior by quantifying the relation between the gain
and the dissimilarity between games A and B.

The Chapter is organized as follows: in Sec. 6.1 we present our theoretical model,
followed in Sec. 6.2 of the calculation of the efficiency.

79



80 Chapter VI

6.1 Theoretical model

6.1.1 Continuous model

We consider the following version of the flashing ratchet: letx(t) represent the position
of a Brownian particle whose dynamics can be described through the Langevin equation

ẋ(t) = −V ′(x) · ζ(t) + f +D(x) · ξ(t), (6.1)

where

1. ξ(t) accounts for white noise,

2. ζ(t) is a form of dichotomous noise that switches on (state B,ζ(t) = 1) and off
(state A,ζ(t) = 0) the potentialV (x),

3. f is a constant external force acting on the particle

4. D(x) is the diffusion function.

If V (x) is periodicV (x + L) = V (x), then the individual dynamics corresponding
to the off and on states both yield〈x(t)〉 = 0 (for f = 0). However, it is known that if the
potential has a certain degree of spatial asymmetry, the combined dynamics can rectify
the white noise fluctuations obtaining directed motion,〈x(t)〉 6= 0, this is the case of
the flashing ratchet. Without loss of generality, we will considerV (x) to be of the form
given by Eq. (2.2) but settingW (t) = 0, that is,

V (x) = V0

[

sin

(

2πx

L

)

+
1

4
sin

(

4πx

L

)]

, (6.2)

although other similar potentials can perform the same task.
It can be demonstrated that the previous Langevin equation is equivalentto a set of

Fokker-Planck equations describing the transitions of the particle betweenstates A and
B [56,78] as:

∂PA(x, t)

∂t
= −∂JA(x, t)

∂x
− ωA→BPA(x, t) + ωB→APB(x, t), (6.3)

∂PB(x, t)

∂t
= −∂JB(x, t)

∂x
− ωB→APB(x, t) + ωA→BPA(x, t), (6.4)

wherePA(x, t) (resp.PB(x, t)) denotes the probability of finding the particle in state
A (resp. B) at a given positionx and timet. Theωα→β term accounts for the transi-
tion rate between statesα andβ. The probability currentsJA andJB are given by the
expressions
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JA(x, t) = f PA(x, t)− ∂[D(x)PA(x, t)]

∂x
,

JB(x, t) = [f − V ′(x)]PB(x, t)− ∂[D(x)PB(x, t)]

∂x
. (6.5)

In this model, once attained the stationary regime we havePA(x, t) = PA(x) and
PB(x, t) = PB(x); the total current in this regime is constant [79] and given byJ =
JA(x) + JB(x).

6.1.2 Discrete model

Based on the previous model, we can elaborate a set of equations describing the evolution
of the capital when alternating between games A and B, namely, they would be equivalent
to the set (6.3),(6.4) but for discrete time and space. The set of master equations are

PAi (τ + 1) = (1− γA→B)[pAi−1P
A
i−1(τ) + rAi P

A
i (τ) + qAi+1P

A
i+1(τ)]+

γB→A[pBi−1P
B
i−1(τ) + rBi P

B
i (τ) + qBi+1P

B
i+1(τ)], (6.6)

PBi (τ + 1) = (1− γB→A)[pBi−1P
B
i−1(τ) + rBi P

B
i (τ) + qBi+1P

B
i+1(τ)]+

γA→B[pAi−1P
A
i−1(τ) + rAi P

A
i (τ) + qAi+1P

A
i+1(τ)], (6.7)

wherePAi (τ) is the probability that the player plays game A with a capitali at time
τ ; pAi , rAi andqAi are the probabilities of winning, drawing and losing, respectively, when
playing gameA with a capitali, and a similar notation for gameB. They satisfy the
normalization conditionpAi + rAi + qAi = 1. This notation generalizes the original games
for which theself–transition probabilitiesarerAi = rBi = 0. Note that the probabilities
pAi , rAi , qAi , pBi , rBi andqBi repeat periodicallypAi+L = pAi , etc. with periodicityL.

For the original Parrondo games we know that periodL = 3 and the winning proba-
bilities are given bypAi = 1

2−ε, pB0 = 1
10−ε, pB1 = pB2 = 3

4−ε. Finally,γα→β accounts
for the transition probability between stateα andβ. The particular case considered in the
original games in which the probability of playing gameA andB is γ and1− γ, respec-
tively, independently of the previously played game, implies thatγAB = 1−γBA = 1−γ.

Then, following the approach of Chapter 4, it is possible to rewrite Eqs. (6.3),(6.4) in
the Fokker-Planck form as

PAi (τ+1)− PAi (τ) = −
[

JAi+1(τ)− JAi (τ)
]

− γA→BP
A
i (τ) + γB→AP

B
i (τ), (6.8)

PBi (τ+1)− PBi (τ) = −
[

JBi+1(τ)− JBi (τ)
]

+ γA→BP
A
i (τ)− γB→AP

B
i (τ), (6.9)

with a currentJA
i (τ)= 1

2 [F
A
i P

A
i (τ)+FA

i−1P
A
i−1(τ)]−[DA

i P
A
i (τ)−DA

i−1P
A
i−1(τ)], whereFAi =

pAi − qAi , DA
i = 1

2(1 − rAi ), and similarly forJBi (τ). This form stresses the similarity
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of the continuum and discrete descriptions (compare with Eqs. (6.3)-(6.5)) and it is easy
to show that the currents are also given by the net flux between consecutive states, i.e.,
JAi (τ) = pAi · PAi (τ)− qAi+1 · PAi+1(τ) andJBi (τ) = pBi · PBi (τ)− qBi+1 · PBi+1(τ).

In general, it is not possible to solve the previous equations to obtain the probabilities
PA,Bi (τ) as a function of the set of probabilitiespA,Bi , rA,Bi , qA,Bi andγα→β, even in the
steady state where the left-hand-sides of (6.8) and (6.9) vanish. A remarkable exception
is that of the caseγAB = 1− γBA = 1− γ discussed above. In this case it turns out that
the total probabilityPi(τ) = PAi (τ) + PBi (τ) satisfies a master equation

Pi(τ + 1) = pi−1Pi−1(τ) + riPi(τ) + qi+1Pi+1(τ), (6.10)

wherepi = λpAi + (1 − λ)pBi , ri = λrAi + (1 − λ)rBi andqi = λqAi + (1 − λ)qBi .
Furthermore, it is possible to show that the steady state solutions satisfyPAi = γPi and
PBi = (1 − γ)Pi. This result allows us to find an analytic solution to Eqs. (6.6),(6.7)
for PAi andPBi in the stationary regime. The solution is based upon on the correspond-
ing expression derived from Eq. (6.10) in the periodic steady-state regime for Pi (see
Chapter 4 for further details)

Pi = e−Vi





D0 · P0

Di
− J

i
∑

j=1

eVj

Di

(

1− 1
2
Fj

Dj

)



 , (6.11)

whereFi = γFAi + (1 − γ)FBi , Di = γDA
i + (1 − γ)DB

i and the value ofP0 has
to be found using the normalization condition

∑L−1
i=0 Pi = 1. The potentialVi is given

by Eq. (4.21), and the total currentJ can be obtained from Eq. (4.24) and coincides with
the net flux between statesi and i + 1, J = pi Pi − qi+1 Pi+1. Notice that although
J = JAi + JBi is a constant independent ofi in the steady state, it can not be assured that
JAi andJBi are constant as well. Finally, the average gain is obtained by multiplying the
current by the periodicity of the system, i.e.G = JL.

In Fig. 6.1 we have plotted the stationary probabilitiesPAi , PBi for the caseL = 3.
We can see the agreement between the stationary probability distributionΠi obtained
through the analysis with discrete–time Markov chains (c.f. 2.21) and their corresponding
equivalentsPAi + PBi obtained with the current method.

Let us remark that in the case of playing a single game, either gameA or B (corre-
sponding formally to settingγ = 1 or γ = 0, respectively) it is possible to obtain the
corresponding steady state solutions in term of potential functionsV A

i andV B
i , defined

as in Eq.(4.21) but using the corresponding probabilities(pAi , q
A
i , r

A
i ) or (pBi , q

B
i , r

B
i )

instead of(pi, qi, ri).
So far, we have introduced a method that allows the calculation of the stationary

properties, such as the probabilitiesPAi , PBi andPi, and the currentsJAi , JBi andJ .
We turn now to the problem of evaluating efficiency for our discrete–time system. This
has been problematic [8] because there was no clear way of evaluating theenergy input
or energy output of the system when dealing only with probabilities defining the games.
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Figure 6.1. Plot of the station-
ary probabilities for gamesA and
B versus the mixing probabilityγ.
The inset shows that the sum of
both probabilitiesPAB(i) = P A

i +
P B

i agrees with the expressions ob-
tained for the stationary probabili-
tiesΠi obtained for the mixed game
AB through Markov chain analysis.

With the formalism introduced earlier, a direct relation can be established between these
games and the physical model of the ratchets so as to obtain an estimation of the efficiency
for the discrete–time case.

6.2 Efficiency

Let us now evaluate the efficiency of our system. We will use the definition ofthe ef-
ficiency as the ratioη = Eout/Ein, and we will provide with suitable definitions for the
energy output,Eout, and input,Ein, of the system.

Let us begin byEin, defined as the energy that must be supplied to the system for
switching between the two potentials. In order to evaluate this energy input in our sys-
tem we need potential functions related to each of the two games. Therefore, if we are
dealing with probabilities defining our games A and B, we will make use of Eq. (4.21)
for obtaining the potential for each game.

The energy input can be calculated theoretically by means of a probability flux
balance. In the stationary regime, the net flux from a given game, say gameA, and state
i, towards the other game B and the same statei can be calculated through the difference
equationJA→B

i = JAi−1− JAi . Clearly the net currentJA→B
i equals the opposite current

from game B to game A, that is,JA→B
i = −JB→A

i , whereJB→A
i = JBi−i − JBi (see

Fig.6.2). Therefore the input energy can now be obtained asEin =
∑L−1

i=0 J
A→B
i · (V B

i −
V A
i ).

For the energy output, we will use the definition introduced in [80], whereEout is
defined as theminimumenergy inputEin required to accomplish the same task as the
engine. The novelty of this definition is that it permits the evaluation of the efficiency for
a Brownian particle even in the absence of an external loadf (it includes in the evaluation
of the power output the work done by the Brownian particle against the friction force).
This leads toEout = fv + Γv2, beingv the mean velocity of the Brownian particle and
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Γ the friction coefficient. In our systemΓ has been rescaled to 1 and the mean velocity
corresponds to the average gainG. We thus obtainEout = fJL+J2L2 as the expression
to be used for determining the energy output of our system. Once the expressions for the
energy input and energy output of the system have been obtained, we can compute the
efficiency for both fair and biased games.

In the case of fair games,ǫ = 0

JA
i−1

JA
i

JAB
i

JB
i

JB
i−1

JBA
i

i i

GAME A GAME B

Figure 6.2. Diagram showing the net probability cur-
rentJAB from gameA to gameB.

leads tof = 0 and Eout = J2L2.
We consider first the original Parrondo
games as defined before. The results
are shown in Fig.6.3 where we plot the
energy input, energy output and the ef-
ficiency for those games, as a function
of the mixing probabilityγ. Notice
that the efficiency attains its maximum
value, η = 0.011, at γ = 0.362 ap-
proximately, as seen in Fig. 6.3(c).

We consider now still fair games
A and B, but now the probabilities
pAi andpBi are obtained from suitable
ratchet potentialsV A(x) andV B(x). In particular we choose a flat potentialV A(x) = 0
while V B(x) is given by Eq. (6.2) withL = 5 andV0 = 0.35. For the fair games con-
sidered here, the force isf = 0. The probabilitiespAi andpBi are obtained by inverting
Eq. (4.21) (recall the trivial resultpAi = 1/2). The results are displayed in Fig. 6.4. No-
tice that the the maximum value for the efficiencyη = 3.554 × 10−3 is obtained when
γ = 0.358.

In these two cases of fair games the system possesses a low efficiency mainly because
it works in an irreversible manner, far from its equilibrium state. It is worth remarking
that the magnitude obtained for the efficiency agrees with other studies for the on-off
ratchets [81,82].

Now we turn to biased games and study the dependence of the efficiency onthe
parameterf . Given a set of probabilitiespi defining a game it is possible to computef
as the average slope,(VL − V0)/L, of the associated potentialVi given by Eq. (4.21).
Applying this method to gamesA andB of the original Parrondo paradox, it is possible
to relatef to the biasing parameterǫ. However, the average slope,fA, resulting from
game A is different from the slopefB resulting from game B. Since we want to study the
effect that a common forcef has on the efficiency, we have chosen a different approach:
we first compute the potentialsV A

i and V B
i using the unbiased probabilitiespAi and

pBi with ǫ = 0, then we modify the potentials by tilting them with a common slope,
V ′A

i = V A
i − fi andV ′B

i = V B
i − fi, and then compute the probabilities of the biased

gamep′Ai andp′Bi using the inverse of Eq. (4.21). The energy input, output and efficiency
are then computed using the above defined formalism with the potentialsV ′A

i andV ′B
i .
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Figure 6.3. In these figures,
we consider the original Parrondo
games defined by a periodL = 3
and the following set of probabili-
ties pA

i = 1
2
− ε, pB

0 = 1
10

− ε,
pB
1 = pB

2 = 3
4
− ε in the fair

caseǫ = 0. Using the analogy ex-
plained in the text, we have com-
puted the energy input (a) and en-
ergy output (b) as a function of the
mixing probability γ. The maxi-
mum energy input is atγ ≈ 0.479,
close to the case of maximum alter-
nation between the games, whereas
the maximum for the energy out-
put (or the maximum gainG) is lo-
cated atγ ≈ 0.415. The efficiency
η = Ein/Eout is displayed in panel
(c). Its maximum valueη = 0.011
occurs atγ ≈ 0.362.
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Figure 6.4. We plot the energy in-
put (a), energy output (b) and effi-
ciency (c) versus the mixing prob-
ability γ in the case of fair games
whose probabilities have been ob-
tained from ratchet potentials (see
the main text for the values of the
parameters). The maximum energy
input is atγ ≈ 0.481, whereas the
maximum for the energy output is
atγ ≈ 0.413. The maximum value
for the efficiencyη = 3.554×10−3

occurs forγ ≈ 0.358.
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Figure 6.5. Plot of the efficiency
versus the external loadf for dif-
ferent values of the probabilityγ
for the original Parrondo’s games.
From top to bottomγ = 0.4, 0.2,
0.6 and 0.8. The highest values
for the efficiency are attained for
γ = 0.4, a value close to theγ of
maximum current.

The results are shown in Fig. 6.5 where we plot the efficiency for the original Parrondo’s
games as a function of the external forcingf for different values of the mixing probability
γ. Two features can be highlighted. On one hand it can be appreciated thatthe efficiency
attains a maximum value forf 6= 0, corresponding to a lower value for the current than
in the case of null forcing. This effect has also been found in other models, for example
in [81,82]. On the other hand, we also find a non–monotonic dependenceof the position
of the maxima for the efficiency depending on the probabilityγ [81,82].





Chapter 7

Collective games

This Chapter will be devoted to the development of a theoretical analysis fora collective
game which considers the redistribution of capital between players. Thesecollective
games, already described in Sec. 2.3.2, are based on the alternation between a game
A and game B. In [38] different games B are used, however, we will restrict ourselves
to the case were game B is the original Parrondo game whose probabilities depend on
the capital of the player. Game A is basically a mechanism of redistribution of capital
between players. Two versions are used in [38]: the first one considers a redistribution
of capital to a randomly selected player; the second considers a redistribution of capital
to a neighboring player with probabilities that do depend explicitly on the capitalof the
players.

In Sec. 7.1 we present the analysis when alternating between the original game B
and the new gameA′, consisting on a redistribution of capital to a randomly selected
player; Sec. 7.2 considers the alternation of the capital dependent game Bwith another
gameA′′ with constant probabilities. Finally, we analyze the alternation of game B
with a version of gameA′′ where the probabilities depend on the capital of the players
in Sec.7.3, although this dependence will be slightly different in order to facilitate the
analysis.

7.1 Distribution of capital to a randomly selected player

Let us denote byP (c1,c2,...,cN ;τ) the probability that at a given timeτ player 1 has a
capitalc1, player2 capitalc2,. . . and so on. This probability density function must fullfill
the normalization condition

∑

c1,c2,...,cN

P (c1,c2,...,cN ;τ) = 1. (7.1)

The marginal probability for a single playerj is obtained simply by carrying out the
summation over all players butj, i.e.,

89
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P (cj ;τ) =
∑

c1

∑

c2

. . .
∑

cj−1

∑

cj+1

. . .
∑

cN

P (c1,c2,...,cN ;τ) (7.2)

We can write down an evolution equation for the probability density functionP (c1,c2,...,cN ;τ)

for a set ofN players alternating between gameA′ with probabilityγ and game B with
probability1− γ. The equation is given by

P (c1,c2,...,cN ;τ+1) =
γ

N

N
∑

j=1

N
∑

j′=1
j′ 6=j

1

(N − 1)
P (c1,...,cj+1,...,cj′−1,...,cN ;τ)+

+

(

1− γ
N

) N
∑

j=1

[a
cj
−1P (c1,...,cj−1,cN ;τ) + a

cj
0 P (c1,...,cN ;τ) + a

cj
1 P (c1,...,cj+1,cN ;τ)].

(7.3)

Therhsof Eq. (7.3) is composed of the following terms:

• The first term accounts for the evolution of the capital when gameA′ (capital re-
distribution) is played; with the termγ denoting the probability of playing game
A′, and 1

N being the probability of choosing playerj. Inside the summation we
find the term 1

N−1 indicating the probability for playerj′ of being chosen. The
termP (c1,...,cj+1,...,cj′−1,...,cN ;τ) inside the summation accounts for the probability
at timeτ of finding playerj with capitalcj + 1 and playerj′ with capitalcj′ − 1.
Both summations forj andj′ are done in order to consider all possible combina-
tions between the players.

• The second term accounts for the evolution when the selected player playsgame
B instead of gameA′. The term1−γ

N includes the probability of playing game B
times the probability of choosing playerj. The term in brackets corresponds to
the master equation when playerj plays game B alone (we are following the same
notation as the one used in Chapter 4).

By means of property (7.2) and after some algebra, we can derive the master equation
corresponding to the evolution of the probability for a single playerj with capitalcj at
time τ (all the details are explicitly given in Appendix A.1) as

P (cj ;τ) =
1− γ
N

[a
cj
−1P (cj−1;τ) + a

cj
0 P (cj ;τ) + a

cj
1 P (cj+1;τ)]+

+
γ

N
[P (cj+1;τ) + P (cj−1;τ)] +

N − (1 + γ)

N
P (cj ;τ). (7.4)

It can easily be checked that the latter equation fulfills the normalization condition
for a single player

∑

cj
P (cj ,τ) = 1. Rewritting Eq. (7.4) as a continuity equation we

obtain the following expression
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P (cj ,τ+1)−P (cj ,τ) =
1− γ
N

[a
cj
−1P (cj−1,τ)− (a

cj−1
1 + a

cj+1
−1 )P (cj ,τ) + a

cj
1 P (cj+1,τ)]+

+
γ

N
[P (cj+1,τ)− 2P (cj ,τ) + P (cj−1,τ)]. (7.5)

From now on we drop the indexj, as we are dealing only with one player, and the
capital of playerj will be denoted instead byi, thusP (cj ,τ) ≡ Pi(τ).

As we have seen, we have been able to obtain the equation governing the evolution
of the probabilityPi(τ) for a single player. Taking a closer look to Eq. (7.5) we can
conclude that the effect of gameA′ of a diffusion of capital from playerj to another
randomly chosen playerj′ is equivalent, from the point of view of a single playerj, to a
diffusion of capital of that player only. Therefore, we may define a currentJi as

Ji =

(

1− γ
N

)

[ai−1Pi−1(τ)− ai−1
1 Pi(τ)] +

γ

N
[Pi−1(τ)− Pi(τ)]. (7.6)

Assuming that the system eventually attains a stationary state, we can solve Eq.(7.6)
for Pi(τ), assuming a constant currentJi = J ∀i andPi(τ) = Pi, obtaining

Pn =
n
∏

k=1

Ak · P0 −
n
∑

j=1

J

(1− γ)aj−1
1 + γ

n
∏

k=j+1

Ak, (7.7)

whereAk =
(1−γ)ak

−1+γ

(1−γ)ak−1
1 +γ

. The constantsP0 andJ are obtained from the periodicity1

Pn = Pn+L and normalization condition
∑L−1

k=0 Pk = 1. The currentJ reads

J =
P0

[

∏L
k=1Ak − 1

]

∑L
j=1

QL
k=j+1Ak

(1−γ)ak−1
1 +γ

, (7.8)

and

P0 =
1

∑L
n=1

∏n
k=1Ak −

QL
k=1 Ak−1

PL
j′=1

QL
k=j′+1

Ak

(1−γ)a
j′−1
1 +γ

(

∑L
n=1

∑n
j′=1

QL
k=j′+1 Ak

(1−γ)aj′−1
1 +γ

) . (7.9)

In Fig. 7.1 we plot the currentJ of a single player in terms of the mixing probability
γ between gamesA′ and B. We check this result with numerical values obtained through
simulation withN = 1000 players.

1As players alternate between the original Parrondo game B and the new game A, we can consider, as
in the analysis of the original games, that the system is periodic with periodicityL (whereL is given by
periodicity of game B).
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Figure 7.1. Plot of the theoretical
– continuous line – and numerical
current – circles –J versus the mix-
ing probabilityγ for a single player.
The probabilities used for game B
are that of the original Parrondo
game B:p0 = 1

10
, p1 = p2 = 3

4
.

7.2 Redistribution of capital to a nearest neighbor with con-
stant probabilities

In this section we present a collective Parrondo game obtained from the alternation of
the original Parrondo game B with a new diffusing gameA′′. However, in this case
the diffusion of capital of gameA′′ takes place only to nearest neighbors. We consider
a general case where with probabilitypr playerj will give a coin to its neighborj + 1
located on the right, and with probabilitypl the coin will be given to the neighborj−1 on
the left. Then, the general master equation describing the time evolution of the probability
density functionP (c1,c2,...,cN ;τ+1) when a set ofN players alternate between gameA′′

with probabilityγ and game B with probability1− γ is given by

P (c1,...,cN ;τ+1) =
γ

N

N
∑

j′=1

[

plP (c1,..cj′−1−1,cj′+1,..cN ;τ) + prP (c1,..cj′+1,cj′+1−1,..cN ;τ)
]

+

+
1− γ
N

N
∑

j=1

[a
cj
−1P (c1,..,cj−1,..,cN ;τ) + a

cj
0 P (c1,...,cN ;τ) + a

cj
1 P (c1,..,cj+1,..,cN ;τ)]. (7.10)

All details of the calculation can be found in Appendix A.2. As a result we obtain the
same equation for a single player as the one obtained previously,c.f. Eq. (7.5).

An interesting case appears whenpl = pr = 1
2 . It corresponds to a random distri-

bution of capital amongst nearest neighbors. For this case the master equation obtained
is
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P (c1,..,cN ;τ+1) =
1− γ
N

N
∑

j=1

[

a
cj
−1P (c1,..,cj−1,..,cN ;τ) + a

cj
0 P (c1,..,cN ;τ)+

+a
cj
1 P (c1,..,cj+1,..,cN ;τ)

]

+
γ

2N

N
∑

j=1

[

P (c1,..,cj−1−1,cj+1,..,cN ;τ)+P (c1,..,cj+1,cj+1−1,..,cN ;τ)

]

.

(7.11)

Which, after some manipulation, can be written in a continuity form as

P (c1,..,cN ;τ+1)− P (c1,..,cN ;τ) =

=
1− γ
N

N
∑

j=1

[

a
cj
−1P (c1,..,cj−1,..,cN ;τ)− (a

cj−1
1 + a

cj+1
−1 )P (c1,..,cj ,..,cN ;τ)+

+ a
cj
1 P (c1,..,cj+1,..,cN ;τ)

]

+
γ

2N

N
∑

j=1

[

P (c1,..,cj−1−1,cj+1,..,cN ;τ)− 2P (c1,..,cN ;τ)+

+ P (c1,..,cj+1,cj+1−1,..,cN ;τ)

]

. (7.12)

We already know from a previous chapter –c.f. Chapter 4– that the term correspond-
ing to game B is equivalent, in the continuous form, to a ratchet potential acting on the
Brownian particle. Therefore, we next proceed to find the equivalentmodel in the con-
tinuous form to that of gameA′′.

Let us consider only gameA′′, thus we may setγ = 1 in Eq. (7.12) which leads to
the following equation

P (c1,..,cN ;τ+1)− P (c1,..,cN ;τ) =
1

2N

N
∑

j=1

[

P (c1,..,cj−1−1,cj+1,..,cN ;τ)− 2P (c1,..,cN ;τ)+

+ P (c1,..,cj+1,cj+1−1,..,cN ;τ)

]

(7.13)

We may introduce the step-operators [83]E andE−1, which are defined by its effect
on an arbitrary functionf(n)

Ef(n) = f(n+ 1), E−1f(n) = f(n− 1), (7.14)

and that can be expanded in a Taylor series as
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E = 1 + ∂
∂x + 1

2
∂2

∂x2 + 1
3!

∂3

∂x3 + . . . ,

E−1 = 1− ∂
∂x + 1

2
∂2

∂x2 − 1
3!

∂3

∂x3 + . . . .
(7.15)

Then, rewritting Eq. (7.13) using the previous operators we obtain

P (c1,..,cN ;τ+1)− P (c1,..,cN ;τ) =
1

2N

N
∑

j=1

[

(E−1
j−1Ej + EjE

−1
j+1 − 2)P (c1,..,cN ;τ)

]

=

=
−1

2N

N
∑

j=1

[

∇j+1 − 2∆j +∇j−1 + ∆j(∇j−1 +∇j+1)
]

P (c1,..,cN ;τ) =

=
1

2N

N
∑

j=1

[

2(∆j −∇j)−∆j(∇j−1 +∇j+1)
]

P (c1,..,cN ;τ). (7.16)

Where we have defined the terms∆j and∇j so that they can be directly related
to an expansion with partial derivatives as∆j = Ej − 1 = ∂

∂x + 1
2
∂2

∂x2 + . . ., and

∇j = 1− E−1
j = ∂

∂x − 1
2
∂2

∂x2 + . . ..
Regarding thel.h.sof the previous equation as the discretization of a time derivative

∂P (c1,...,cN ;τ)
∂τ , and substituting on ther.h.sthe terms∆j and∇j by their partial derivatives

expansions, to a first approximation, we obtain

∂P (c1,..,cN ;τ)

∂τ
=
−1

2N

N
∑

j=1

{∂2P (c1,..,cN ;τ)

∂cj−1∂cj
−2

∂2P (c1,...,cN ;τ)

∂c2j
+
∂2P (c1,..,cN ;τ)

∂cj∂cj+1

}

. (7.17)

This equation can be compared to the general Fokker–Planck equation for more than
one dimension [83]

∂P (c1,..,cN ;τ)

∂τ
= −

N
∑

j=1

∂F (c1,..,cN ;τ)P (c1,..,cN ;τ)

∂ci
+

1

2

N
∑

i,j=1

∂2Bij(c1,..,cN ;τ)P (c1,..,cN ;τ)

∂ci∂cj

(7.18)
With the result that for gameA′′ there is no drift, i.e., the termF (c1,...,cN ;τ) = 0, and

the diffusion matrixBij(c1,...,cN ;τ) is given by

B =
1

N

















2 −1 0 0 . . . 0 −1
−1 2 −1 0 . . . 0
0 −1 2 −1 0 . . . 0

. ..

.
−1 0 . . . 0 −1 2

















(7.19)
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The diffusion matrix is related to the diffusion coefficientsdij of the Langevin equa-
tion ẋi = fi({x}) + dij({x})ξi throughBij = dd

T =
∑

k dikdjk. This set of equations
has an infinite set of solutions due to the symmetry property ofBij = Bji. Therefore, we
must choose the appropriate solution for this system, which to our consideration might
be

d =
1√
N

















1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0
0 0 1 −1 0 . . . 0

. ..

.
−1 0 . . . 0 0 1

















(7.20)

Then, the equivalent set of Langevin equations would be given by

ẋ1 =
1√
N

(ξ1 − ξ2),

ẋ2 =
1√
N

(ξ2 − ξ3),

·
· (7.21)

ẋN =
1√
N

(ξN − ξ1).

This set of equations clearly preserves normalization as〈∑i ẋi〉 = 0. They could
also be rewritten in the forṁx1 = η1√

N
, ẋ2 = η2√

N
, ... ẋN = ηN√

N
, with the properties:

〈ηiηi+1〉 = −1 and〈η2
i 〉 = 2.

Finally, the complete solution would consider the inclusion of a drift term coming
from game B, which as stated previously it consisted on a ratchet–like potential. In
Fig. 7.2 we plot the average current for a set ofN = 40 Brownian particles alternating
between a state characterized by Eqs. (7.21) and a state with a ratchet–like potential. The
ratchet effect is obtained as expected, and the curve presents (as in the single particle
case) an optimum flip-rate value for which the system attains a maximum current.

7.3 Distribution of capital with capital dependent probabili-
ties

In this section we derive the equation when the probabilities for gameA′′ depend ex-
plicitely on the actual value of the capital of the players. However, as statedpreviously,
we will make use of a set of probabilities slightly different from those defined in [38]. In
order to facilitate our analysis, the following probabilities for gameA′′ will be used
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Figure 7.2. Plot of the average
current per particle in terms of the
natural logarithm of the flip rate
when they are subjected to a state
where a ratchet–like potential –c.f.
Fig. (2.3)– is acting, and another
state characterized by Eqs. (7.21).
The number of particles isN = 40,
and the results have been obtained
averaging over1000 realizations.

pj,j+1 =
cj−1

cj+1 + cj−1
pj,j−1 =

cj+1

cj+1 + cj−1
(7.22)

wherepj,j+1 denotes the probability that playerj gives away one unit of capital to
playerj + 1, andpj,j−1 is the probability that playerj − 1 receives the coin instead.
Clearly, these probabilities fulfill the normalization conditionpj,j+1 + pj,j−1 = 1. and
the way they are defined – i.e., the probability of playerj + 1 receiving a coin from
playerj being proportional to the capital of playerj− 1 – accomplishes the same task as
those defined in [38], that is, those players with less capital possess a higher probability
of receiving the coin than those with higher amounts of capital. The only inconvenient is
that the capital of the players must remain positive in order to avoid negativevalues for
the probabilities.

The master equation for this game is given by

P (c1,..,cN ;τ+1) =
γ

N

N
∑

j′=1

N
∑

j′′=1

pj′,j′′P (c1,..,cj′+1,..,cj′′−1,..,cN ;τ)+

+
(1− γ)
N

N
∑

j′=1

[a
c′j
−1P (c1,..,cj′−1,..,cN ;τ) + a

cj′
0 P (c1,..,cN ;τ) + a

cj′
1 P (c1,..,cj′+1,..,cN ;τ)]

(7.23)

where the termpj′,j′′ denotes the probability that playerj′ gives a unit of capital to
playerj′′. We are interested, as in previous cases, in obtaining the stationary probability
distribution for a single player. Therefore, we must perform the sum (7.2) in Eq. (7.23) in
order to obtain the single player distributionP (cj ; τ). A comparison between Eqs. (7.23)
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and (7.3) yields that the sum
∑

c1,..,cj−1,cj+1,..,cN
of the term corresponding to game B

gives as a result Eq. (A.6).
The most difficult part comes from gameA′′. The second term on therhsof Eq. (7.23)

must be developed in terms ofj′ and then perform the sum
∑

c1,..,cj−1,cj+1,..,cN
. The

calculations are shown in Appendix A.3. Nevertheless, the main result is thatagain,
even though the probabilities of diffusing capital depend explicitly on the capital of the
players, the equation we obtain for the probability density function for a single player
agrees with the previous results, that is, Eq. (7.4).





Chapter 8

Reversals of chance in
collective games

Cooperative versions of the games, played by a set ofN players, have been studied
previously. As already explained in Sec. 2.3.2, ref. [67] considers a set of N players
arranged in a ring such that at each round a player is chosen randomly toplay either
game A or B. The original game A is combined with a new game B, for which the
winning probability depends on the state (winner/loser) of the nearest neighbors of the
selected player. A player is said to be a winner (loser) if he has won (lost) his last game.
In [38], Toral considers again a set ofN players, but game A is replaced by another game
based on a redistribution of capital. When combining this new game with the original
game B, the paradox is reproduced.

In this Chapter we present a new version of collective games with new paradoxical
features when they are combined. Besides reproducing the Parrondo effect, where a
winning game is obtained from the alternation of two fair games, another feature appears:
the games show under certain circumstances a current inversion when varying γ. In
other words, the value of the mixing probabilityγ determines whether you end up with
a winning or a losing game AB. As shown in [15], it is not possible to obtain a current
inversion in a single player set–up using the standard rules of the original games when
game A is state independent. For the collective games considered here, we are able to
obtain a current inversion even if one of the games used (game A) uses noinformation
at all about the present state of the system. And so this current inversionis a collective
genuine effect, without a corresponding analog in the single player game.

The chapter is organized as follows: in Sec. 8.1 we present the games in detail as
well as a theoretical analysis by means of discrete–time Markov chain theory, obtaining
analytical expressions for the stationary probabilities for a finite number ofplayers; we
also provide some qualitative insight into this new current inversion effect.Finally, in
Sec. 8.2 we offer a qualitative picture of the impossibility of a current inversion using the
original games.

99
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8.1 The games

The games will be played by a set ofN players. In each round, a player is selected
randomly for playing. Then, with probabilitiesγ and1 − γ respectively game A or B is
played. Game A is the original game in which the selected player wins or loses one coin
with probabilitypA and1−pA respectively. The winning probabilities in game B depend
on the collective state of all players. Again, as in [67], a player is said to bea winner or
a loser when he has won or lost respectively his last game. More precisely, the winning
probability can have three possible values, determined by the actual numberof winnersi
within the total number of playersN , in the following way

pBi ≡ probability to win in game B =















p1
B if i > 2N

3 ,

p2
B if N

3 ≤ i ≤ 2N
3 ,

p3
B if i < N

3 .

(8.1)

.........

r0 r r1 Np

q

0

1

p p
1

2
q

N−1

N
q

... ... ...

σ σ σ0 1 N

Figure 8.1. Different states and
allowed transitions forN players.
The arrows indicate the state of
each player being a winner (arrow
up) or a loser (arrow down).

8.1.1 Analysis of the games

The main quantity of interest is the average gain of the collection ofN players when
playing the stochastic game AB. Since the winning probability of game B only depend
on the total number of winners, it is sufficient to describe the games using a set ofN + 1
different states{σ0, σ1, . . . , σN}. A stateσi is the configuration wherei players are
labeled as winner andN − i as loser. Transitions between the states will be determined
by the forward transition probabilitypi, the backward transition probabilityqi, and the
probability for remaining in the same stateri, see Fig. 8.1.

Denoting asPi(t) the probability of finding the system in stateσi at the t–th round
played, we can write the equation governing its time evolution as

Pi(t+ 1) = pi−1Pi−1(t) + riPi(t) + qi+1Pi+1(t), (8.2)

with 0 ≤ i ≤ N and where the transition probabilities are given by
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pi =
N − i
N

[

γ pA + (1− γ) pBi
]

, (8.3)

ri =
2i−N
N

[

γ pA + (1− γ) pBi
]

+
N − i
N

, (8.4)

qi =
i

N

[

γ (1− pA) + (1− γ) (1− pBi )
]

. (8.5)

These transition probabilities have been obtained through the following reasoning: if
we recall that in statei there areN − i losers andi winners, the only way that we can go
forward to statei + 1 is by choosing a player labelled as a loser – with probabilityN−i

N
– and that player winning the game. So if there is a probabilityγ of playing gameA and
a probability1 − γ of playing gameB, the combined winning probability will be given
by γ pA + (1− γ) pBi . Considering these two contributions, the forward transition (8.3)
from statei to statei + 1 is obtained. The transition probabilitiesri andqi follow from
the same reasoning.

The set of transition probabilities(pi, qi, ri) must satisfy the normalization condition
pi + ri + qi = 1, which implies for the probabilitiesPi(t) that

∑N
i=0 Pi(t) = 1, as long

as
∑N

i=0 Pi(t = 0) = 1.
This system ofN + 1 equations can be solved in the stationary state, where the

probabilities no longer depend on timePi(t) = P st
i . In this case Eq. (8.2) can be rewritten

as

(pi + qi)P
st
i = pi−1P

st
i−1 + qi+1P

st
i+1. (8.6)

Considering that the system is bounded by states0 andN we have

p0P
st
0 = q1P

st
1 ,

(p1 + q1)P
st
1 = p0P

st
0 + q2P

st
2 ,

(p2 + q2)P
st
2 = p1P

st
1 + q3P

st
3 ,

...

(pi + qi)P
st
i = pi−1P

st
i−1 + qi+1P

st
i+1,

...

(pN−1 + qN−1)P
st
N−1 = pN−2P

st
N−2 + qNP

st
N ,

qNP
st
N = pN−1P

st
N−1. (8.7)

Writing the previous set of equations in terms of the stationary probability at the
origin P0 we get
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P st1 =
p0

q1
P st0 ,

P st2 =
p1

q2
P st1 =

p0p1

q1q2
P st0 ,

P st3 =
p2

q3
P st2 =

p0p1p2

q1q2q3
P st0 ,

. . .

P stN =
pN−1

qN
P stN−1 =

p0p1p2 . . . pN−1

q1q2q3 . . . qN
P st0 . (8.8)

Note that these solutions entail the detailed balance property between two neighbor-
ing statespiP sti = qi+1P

st
i+1. This is due to the reflecting boundary conditions ati = 0

and i = N . Through the normalization condition
∑N

i=0 P
st
i = 1 we may obtainP st0 .

Thus, the general solution can be written as

P st
i =

1

Z
p0 p1 · · · pi−1 qi+1 qi+2 · · · qN , (8.9)

or equivalently,

P0 =
1

Z
q1q2q3 . . . qN

P1 =
1

Z
p0 q2q3 . . . qN

P2 =
1

Z
p0p1 q3q4 . . . qN

P3 =
1

Z
p0p1p2 q4q5 . . . qN

. . .

PN =
1

Z
p0p1p2 . . . pN−1 (8.10)

whereZ is the normalization factor. Once the stationary probabilities are calculated,
we can obtain the average winning probability over all states for the stochastic combina-
tion AB (mixing probabilityγ) from

pABwin =
N
∑

i=0

[

γ pA + (1− γ) pBi
]

P st
i . (8.11)

The average gain can then easily be evaluated through the expressionJAB = 2pABwin −
1.

The properties of the separate games A and B can be obtained by replacingin the
previous expressionsγ by 1 or 0 respectively.
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Figure 8.2. a)Plot of the cur-
rent versus the mixing probabil-
ity γ between games A and B for
N = 4 with probabilitiespA = 1

2
,

p1
B = 0.79, p2

B = 0.65 andp3
B =

0.15. b) Plot of the current versus
the mixing probabilityγ between
games A and B forN = 3 with
probabilitiespA = 1

2
, p1

B = 0.686,
p2

B = 0.423 andp3
B = 0.8.

N p2
B

2 p1B−1

p1B−p3B−1
.

3
(p1B−1)(p3B+1)+

√
(p1B−2)(p1B−1)p3B(p3B+1)

(p1B+p3B−1)

4
(p1B−1)2(p3B+1)

1+p3B+(p1B−2)(p1B+p1Bp
3
B−(p3B)2)

5

[

1− p3B
p1B−1

√

5+2p1B(p1B−3)

1+2p3B(1+p3B)

]−1

Table 8.1: Condition onp2
B in order that game B is fair forN = 2, . . . , 5.
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8.1.1.a The Parrondo effect

We know that the Parrondo effect appears when from the combination oftwo fair games,
we obtain a winning game. Clearly, game A is fair forpA = 1/2. For game B the set of
values{p1

B, p
2
B, p

3
B} giving a fair game is more difficult to determine because it depends

on the total number of playersN . The conditions onp2
B for a fair game B have been

found analytically by a symbolic manipulation program up toN < 13. In Table 8.1
we find listed the conditions of fairness forp2

B up toN = 5. When playing only game
B (γ = 0), the following symmetry in the stationary distribution can be deduced from
Eq.(8.9)

P
st,{p1B ,p2B ,p3B}
i = P

st,{1−p3B ,1−p2B ,1−p1B}
N−i . (8.12)

This property implies thatpABwin is unaffected by the parameter transformation:{p1
B, p

2
B, p

3
B} →

{1−p3
B, 1−p2

B, 1−p1
B}. It also means that for the parameter set{p1

B, p
2
B = 1/2, 1−p1

B},
the stationary probability distribution is symmetric over the states, i.e.P st

i = P st
N−i.

Therefore, when combining this with game A, i.e., alternating two games with symmet-
ric probability distributions, always yields a fair game, independent of the values ofγ,
N andp1

B. To see the Parrondo effect, we need another, non-trivial, parameterset which
yields a fair game B. For example, forN = 4 we obtain a fair game B whenp1

B = 0.79,
p2
B = 0.65 andp3

B = 0.15. The stochastic combination with game A reproduces the
desired Parrondo effect, see Fig. 8.2.a .

8.1.2 Results

8.1.2.a Two players

ForN = 2 players, there are3 different states. Fig. 8.3.a shows the regions in parameter
space{γ, p1

B, p
3
B} where the mixing(0 < γ < 1) between games A and B results in a

fair, winning or losing game. Note thatp2
B is fixed by the condition to have a fair game

B, see Table 8.1. Besides the casep1
B = 1 − p3

B, valid for any number of players, also
p1
B = p3

B results in a fair game forN = 2, independent of the alternation probability
γ. From Eq. (8.9), one can deduce thatp1

B = p3
B andp1

B = 1 − p3
B imply a symmetric

distributionP st
i over the states, i.e.P st

0 = P st
2 . As mentioned before, this property

prohibits any net current in the system. For all other values ofp1
B andp3

B the Parrondo
effect appears, that is, game AB is either a winning or a losing game, cf. Fig. 8.3.a.

8.1.2.b Three players

Fig. 8.3.b shows forN = 3 the surfaces in parameter space{γ, p1
B, p

3
B} where AB is a

fair game. Besides the planep1
B = 1− p3

B, there is a second, curved surface with values
of γ different from0 and1 which results inJAB = 0. This curved surface is not uniform
in γ and is therefore the collection of points of flux reversal between a winningand losing
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Figure 8.3. a) N = 2. The
regions in parameter space
for for which pAB

win = 0.5,
0.499 and 0.501, indicating
the regions where AB is fair
(blue), losing (red) and win-
ning (green) respectively. The
blue diagonal planes show the
situationsp1

B = 1 − p3
B and

p1
B = p3

B , for which AB is
fair, independent ofγ. b)N =
3. The regions in parame-
ter space for which the mix-
ing (0 < γ < 1) between
game A and B results in a fair
game. Besides the trivial di-
agonal plane, there is a curved
plane – not uniform inγ – for
whichJAB = 0.
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game AB. This implies that, depending on the value ofγ we can either have a winning
game or a losing game by alternating between two fair games. For example, in Fig.8.2.b
we have plotted the currentJAB vs. γ for the set of probabilitiespA = 1

2 , p1
B = 0.686,

p2
B = 0.423 andp3

B = 0.8. For low values ofγ the resulting game is a losing game,
whereas for high values ofγ the game turns to be a winning game, cf. Fig 8.2.b. In both
regions there exists an optimal value forγ giving a maximum current. We can provide
a qualitative picture that may help understanding the mechanism by which the current
inversion phenomenon takes place.

When playing exclusively game B (γ = 0), the stationary distributionP st
i is not

homogeneous. This is reflected by the fact that the central states{σ1, σ2} have a higher
occupancy probability (P sti ) than the boundary states{σ0, σ3}. On the other hand, if we
look to the winning probability, it is higher in the latter set of states rather than in the
former one (p1

B, p
3
B > p2

B).
Indeed, the central states can be labelled aslosingstates, as when combining game B

with game A for any0 ≤ γ < 1, the average losing probabilitypli = γ(1 − pA) + (1 −
γ)(1 − pBi ) < 1

2 , i.e., it is more likely on average for a player to lose money rather than
to win when being in one of these states. On the other hand, for the boundary states the
contrary is true: it is more likely to win money rather than to lose for any0 ≤ γ < 1, so
we can refer to them aswinningsites, i.e.,pwi = γpA + (1− γ)pBi > 1

2 .
When combining game B with A, the resulting game will be fair, losing or winning

depending on the net balance between the occupancy probabilities and theaverage win-
ning probability on each set of central and boundary states. For lowγ values (playing
game B more often), the high occupancy probability of{σ1, σ2} is the dominant part, and
due to the low winning probability on these sites the resulting game is a losing game. On
the contrary, for higherγ values (playing game A more often), the winning probability on
the boundary sites{σ0, σ3} is high enough to compensate their low occupancy, resulting
in a winning game.

8.1.2.c N players

For a general number of players, we have not been able to find the analytical expressions
for a fair game B. Nevertheless, we will show numerically that the results forN = 3
are representative for anyN . This is illustrated by Fig. 8.4, where the parameter space
{p2
B, p

3
B} giving a fair game B is shown, corresponding to a fixedp1

B = 0.4 and different
values ofN . As shown, the different curves seem to converge to a limiting curve asN
increases. Note that all curves intersect at the trivial point{p1

B = 0.4, p2
B = 0.5, p3

B =
0.6}.

We can also obtain the parameter space where the current inversion takesplace, for
different values ofN . For clarity reasons we show in Fig. 8.5 only a vertical slice corre-
sponding to a fixedγ = 0.4, and different values ofN . Again, the regions for which a
flux inversion exists, doesn’t seem to depend much onN . The only exception isN = 4,
for which the curve bends in the other direction. This is a consequence ofthe fact that
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Figure 8.4. Plot of the parameter space{p2
B , p3

B} for a fixedp1
B = 0.4 that gives a fair game B

for different values ofN = 3, 10, 30, 50, 100, 200 and300. As it can be seen, the curves seem to
converge to a limiting curve asN increases.

for N = 4 there exists only one state (namelyσ2) where the probabilityp2
B is used. This

is confirmed by our findings when we modify the definition of game B such that there is
for anyN only one state wherep2

B is used. The fact that all curves of inversion points are
symmetric upon reflection about the planep1

B = 1− p3
B is a consequence of the property

of Eq. (8.12).

8.2 Parrondo’s games and the current inversion

As stated previously and shown in [15], the effect of a current inversion when varying the
mixing probabilityγ is not possible when combining the original game B with a state in-
dependent type game A. One way of understanding the reason is throughthe quantitative
relation established in Chapter 4 between the Brownian ratchet and Parrondo’s games. It
was shown that a fair or unfair paradoxical game corresponds to a periodic or tilted po-
tential respectively in the model of a Brownian ratchet. Thus, the question now reduces
to explain why there is no current inversion in the flashing ratchet model when varying
the rate of alternation between the potentials.

In the flashing ratchet model, the appearance of a flux when alternating between a flat
and an asymmetric potential is due to a rectification process. From Fig. 2.3 we see that
the asymmetry present in the ratchet potential will always favor a rightwardmovement
of the Brownian particles. Thus, whatever the rate of alternation between statesON
(asymmetric potential) andOFF (diffusive state), the induced current will always be
unidirectional. It is clear then that no current inversion may take place under this scheme
unless some other parameters rather than the flip rate are varied.
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Figure 8.5. Plot of the points in parameter space{p1
B , p3

B} where (forγ = 0.4 fixed) AB is a fair
game. Results for different values of the total number of playersN = 3, 4, 10, 20, 30, 40 and50 are
shown. The diagonal line shows the common planep1

B = 1 − p3
B , that corresponds to a fair game B

for any number of playersN .



Chapter 9

Truels and N–uels

In this Chapter we present a detailed analysis using Markov chain theory of some versions
of truel games in which three players try to eliminate each other in a series of one-to-one
competitions, using the rules of the game. These games were first studied by Kilgour [42]
from the point of view of game theory. Our treatment reproduces the expressions for the
winning probability of each player, including the equilibrium points. Furthermore we
give expressions for the distribution of winners in a truel competition. In Section 9.1 we
introduce some basic concepts on game theory and the main notions of truel games in
Sec 9.2. In Sec. 9.3, and in order to introduce the general methods in an simpler context,
we present a detailed analysis for the case of duels. Afterwards, Sec.9.4 is devoted
to the analysis of the strategies –9.4.1– in the random –Sec. 9.4.2– and sequential –
Sec. 9.4.3– versions of truels, together with an analysis of the opinion modelin Sec. 9.4.4.
In Sec. 9.4.5 we present the distribution of winners when playing the truel games as well
as the opinion model. We study the effect of introducing spatial dependence in these
models in Sec. 9.4.6, and finally truels are generalized to more than three players in
Sec. 9.5. Most of the details of the calculations are left for Appendices B and C, showing
here only the main results.

9.1 Introduction

Making a decision is not an easy task, and it turns to be even more difficult when more
than one person is involved, with the result depending of all decisions taken. Besides,
in everyday life we encounter many situations in which we are posed with dilemmas
appearing from the confrontation of our own interests with that of other individuals or the
society surrounding us. Thus we are frequently required to take decisions, with outcomes
that not necessarily are those one expecteda priori. Does exist a rational way of behaving
in those situations?

A formal answer to this question was not found until the mid 40’s, when the math-
ematician J. von Neumann (1903-1957) published in collaboration with the Princeton
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economist Oskar Morgenstern the bookTheory of games and economic behavior[84].
In this book von Neumann establishes the foundations of what was later coined asgame
theory. He realized that saloon games (like poker,. . . ) raised simple dilemmas that could
encounter analogous conflicts in economy, politics, everyday life or evenwar situations.
Following the words of the authors, a game isa conflictive situation where one has to
take a decision knowing that others also take decisions, and the outcome ofthe conflict
is determined, in some way, from all decisions taken.

Strictly speaking, game theory can be considered as a formal study of conflict and
cooperation, a branch of mathematical analysis developed to study decisionmaking in
conflict situations. They appear when two or more decision makers having different
objectives act on the same system or share the same resources. The main purpose of game
theory is to consider situations where instead of agents making decisions as reactions to
exogenous prices, their decisions are strategic reactions to other agentsactions. The goal
for all agents is always trying to obtain the maximum payoff, which can be understood
as a quantity reflecting the desirability of an outcome to a player, for whateverreason.
The expected payoff incorporates the player’s attitude towards risk. These agents (or
decision makers) can either be individuals, groups, firms, or any combination of these. In
game theory,gameshave always been a metaphor for more serious interactions in human
society.

We may distinguish betweencooperative game theoryand non-cooperative game
theory. The former case investigates coalitional games, characterized by a high-level
description, specifying only what payoffs each potential group, or coalition, can obtain
by the cooperation of its members. The latter case is concerned with the analysis of
strategic choices. The details of the ordering and timing of players’ choicesare essential
to establish the outcome of the non-cooperative games.

von Neumann solved non-cooperative games in the case ofpure rivalries, i.e., two
person zero-sum games, in which one person’s gain is another’s loss,so the payoffs al-
ways sum to zero. In1950, John Forbes Nash [85] demonstrated that finite games have
always an equilibrium point, at which all players choose actions which arebest for them
given the opponents’ choices. This proposal applied to a much wider class of games with-
out restrictions on the payoff structure or the number of players [86,87]. The idea ofNash
equilibrium1 is that a set of strategies, one for each player, would be stable if nobodyhad
a unilateral incentive to deviate from the strategy they have adopted. This equilibrium
notion supposed a key concept of non–cooperative game theory, revolutioning the use of
game theory in economics, and has been object of analysis since then. It was later de-
veloped by Harsanyi [88], who extended the Nash equilibrium to a largerclass of games
of incomplete information, where a player making a decision cannot always observe all
previous decisions neither know other players’ preferences.

Since the pioneering work of von Neumann and Morgenstern, game theoryhas de-

1We will return later in this Chapter to the concept ofNash equilibria, explaining it in more detail in
Sec. 9.4.2.
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veloped considerably and has found many applications in numerous fields such as eco-
nomics, social science, political science and evolutionary biology. In the following Sec-
tions we will present a detailed study of a non-cooperative game known astruel, offering
an alternative analysis more adequate to the physics community to that conducted by
Kilgour [42] in the field of game theory.

9.2 Introduction: truel games

A truel game can be considered as the extension of a duel played by threeindividuals.
These players, which will be named as A, B and C, possess different markmanships, that
is, the probability of hitting a chosen target. Markmanships will be denoted asa, b andc
for players A, B and C respectively. Without loss of generality we will assume throughout
this Chapter that the players are labeled such thata > b > c. In this game all players
share the same goal: to eliminate all the opponents. The game ends when there isonly
one survivor left, the winner of the game. The mechanics of the truel can be described
by the following steps:

1. Each round – or time-step –, one of the truelists is chosen for playing.

2. He then decides who will be his target and, with a certain probability – the mark-
manship – he does achieve the goal of eliminating that opponent from the game.

3. Whatever the result obtained by the player, steps one and two are repeated again
until there is only one survivor.

Based on the rules used for selecting the players, we may distinguish between three
main types of truels:

• Random truel. Each round one of the remaining players is chosen randomly with
equal probability.

• Sequential truel. In this case there exists an established firing order, which will be
followed throughout the whole game. We allow players with worst markmanship
to shoot firstly, followed then by players with better markmanship. Accordingto
the notation introduced earlier, the firing order in the sequential truel is C–B–A.

• Simultaneous truel. In this truel all players shoot at the same time.

A paradoxical or counter–intuitive result appears in this game, as the “truelist” with
the highest markmanship does not necessarily possess the highest survival probability.
This paradoxical result was already mentioned in the early literature on truels [42]. These
games were formally introduced for the first time by Kinnaird in 1946 [89], although the
nametruel was coined later by Shubik [90] in the 1960s.

We find in the literature other models similar to the truel game that present also coun-
terintuitive results, like for instance therock–scissors–papergame. This game has been
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applied to some convective instabilities in rotating fluids [91], as well as to population
dynamics [92, 93]. It consists on a system with three species interacting witheach other
in such a way that they create a competitive loop (recall that in therock–scissors–paper
game a rock beats a pair of scissors, scissors beat a sheet of paper and paper beats a rock).
The paradoxical effect in this model is that the least competitive species might be the one
with the largest population and, when there are oscillations in a finite population, to be
the least likely to die out. This game has also been applied to a voter model [94, 95]
obtaining again a paradoxical result, namely, an initial damage and suppression of one
candidate may later lead to an enhancement of the same candidate.

Different versions of the truels vary on the number of tries (or “bullets”)available
to each player, on whether they are allowed to “pass”, i.e. missing the shooton pur-
pose (“shooting into the air”), on the number of rounds being finite or infinite, etc. All
these modifications lead to games with different outcomes [39–41]. Besides,they can
be further extended through the introduction of coalitions between the truelists, that is,
the appearance of cooperations between different players so that they can set a common
target (these games are known ascooperative truels[96]), in such a way that they can
obtain greater benefits from that coalition improving their own survival probability. We
will restrict ourselves to the case of unlimited ammunition, and the game will continue
until there is only one player left (so that there is no upper limit in the number ofrounds);
besides, players are also allowed to lose their turn by shooting into the air, a possibility
that turns out to be useful in some particular cases.

The strategy of each player consists in choosing the appropriate target when it is his
turn to shoot. Rational players will use the strategy that maximizes their own probability
of winning (considered as the payoff) and hence the ensemble of players will chose the
strategy given by the Nash equilibrium point. In a series of seminal papers[39–41],
Kilgour has analyzed the games and determined the equilibrium points under a variety of
conditions.

In this Chapter, we analyze the games from the point of view of Markov chain theory.
Besides being able to reproduce some of the results by Kilgour, we obtain theprobability
distribution for the winners of the games. We restrict our study to the case in which there
is an infinite number of bullets and consider two different versions of the truel: random
and fixed sequential choosing of the shooting player.

Furthermore, we consider a variation of the game in which instead of eliminating the
competitors from the game, the objective is to convince them on a topic, making thetruel
suitable for a model of opinion formation.

9.3 The duels

In this simpler game we consider two players, A and B, with markmanshipsa and b
respectively, such thata > b. We will consider the random duel in which the person
to shoot next is randomly selected with equal probability between the two players, as
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well as the sequential version in which the bad player, B, starts shooting and then they
alternate fires. In any case, the game continues until there is only one survivor. If we take
the model as an opinion model, the game continues until one player has convinced the
other and hence both share the same opinion. Clearly, in a duel it makes no sense for a
player to lose his opportunity to eliminate the opponent by shooting into the air andthe
only meaningful strategy is to shoot into the other player.

An analytical study done with Markov chains for both the random duel andthe opin-
ion model shows that both models can be described through the same Markovchain with
three states (see Appendix B.1 for further details). If we denote the survival (or convinc-
ing) probabilities of players A and B asπA andπB respectively we have

πA =
a

a+ b
, πB =

b

a+ b
, (9.1)

a result that indicates that the higher the markmanship of a given player, thehigher the
survival (convincing) probability in the random duel (opinion model).

Turning to the case of the sequential duel, this game can be described with a Markov
chain with four states. The analytical expressions obtained for the survival probabilities
are

πA =
a

1− (1− a)(1− b) , πB =
b(1− a)

1− (1− a)(1− b) , (9.2)

A closer study of Eqs. (9.2) shows that even though the worst player B starts shooting
first, he achieves a higher survival probability than A only when
b > a

1+a . Thus, in the sequential duel the unfavorable situation of player B havinga
lower markmanship than A is partially compensated by being the one shooting in first
place.

9.4 The truels

9.4.1 Strategies in truels

If a third individual comes into play, the previous situation of a duel is no longer simple.
Now every player in the truel must consider all possible actions that other opponents
may take and their corresponding outcomes. In this case, we must considerstrategies
and make use of some concepts of game theory. For concreteness, and without loss of
generality, we consider that the third player C has the lowest marksmanship,c, such that
a > b > c.

It turns out that strategies followed by the players are a key point in determining
the winner of the truel. As explained previously, all players in the truel share the same
goal: to be the only one surviving the truel.This can be explicitly imposed through the
inclusion of a “payoff”, a concept introduced in game theory and that corresponds to
some sort of reward the player receives for achieving the goal. In order to maximize
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their payoff, players have to chose strategies that maximize their survivalprobability.
When the three players are still in the game, a player has three possible strategies: two
correspond to choosing one of the two opponents and the third strategy is toshoot into
the air (or missing the shot on purpose). If one of the three players has been removed
from the game, we are in a duel situation and, as discussed before, the only strategy is to
aim at the remaining opponent. We also assume that strategies adopted by the players are
non–cooperative, in the sense that alliances or pacts between them are not allowed.

9.4.2 Random firing

Let us first fix the notation. We denote byPAB, PAC andPA∅ the probability of player
A shooting into player B, C, or into the air, respectively, with equivalent definitions for
players B and C. These probabilities verifyPAB + PAC + PA∅ = 1. We will consider
only “pure” strategies, namely, only one of these three probabilities is takenequal to
1 and the other two equal to02. Finally, we denote byπ(a; b, c) the probability that
player with marksmanshipa wins the game when playing against other two players with
marksmanshipsb andc. This definition impliesπ(a; b, c) = π(a; c, b) andπ(a; b, c) +
π(b; a, c) + π(c; a, b) = 1. Recall that we use the conventiona > b > c.

The corresponding Markov chain for this game is composed of 7 different states
labeled as ABC, AB, AC, BC, A, B, C according to the players remaining in thegame.
Three of these states, A, B and C are absorbent states. The details of thecalculation for
the winning probabilities as well as a diagram of the allowed transitions betweenstates
are shown in Appendix B.2. We now discuss the results in different cases.

Let us first imagine that players do not adopt any thought strategy and each one
shoots randomly to any of the other two players. Clearly, this is equivalent tosetting
PAB = PAC = PBA = PBC = PCA = PCB = 1/2. The winning probabilities in this
case are:

π(a; b, c) =
a

a+ b+ c
, π(b; a, c) =

b

a+ b+ c
, π(c; a, b) =

c

a+ b+ c
, (9.3)

a result indicating that the player with the higher marksmanship possesses thehigher
probability of winning. Identical result is obtained if players include shooting in the air
as one of their equally likely possibilities.

It is conceivable, though, that players will not decide the targets randomly, but will
use some strategy in order to maximize their winning probability. As explained pre-
viously, completely rational players will choose strategies that are best responses (i.e.
strategies that are utility–maximizing) to the strategies used by the other players.This
defines an equilibrium point when all players are better off keeping their actual strat-
egy than changing to another one. Accordingly, this equilibrium point can be defined

2Another possibility that we do not consider in this game is the“mixed” strategy, which consists on taking
two or more of the probabilities strictly greater than 0.
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as the set of probabilitiesPαβ (with α =A,B,C andβ =A,B,C,∅) such that the win-
ning probabilities have a local maximum. This idea, that is nothing but the concept of
Nash equilibriaintroduced earlier, is clarified with the following example: in Table 9.1
we present the different survival –or winning– probabilitiesπA, πB andπC of players
A, B and C respectively for different strategies adopted by the playerswhen they play
the random truel. These values are calculated considering that player A has100% of
effectiveness (a = 1), player B has80% (b = 0.8) and player C50% (c = 0.5).

Let us start by looking in Table 9.1 at the set of strategies given by{C,C,B}, which
consists on player A aiming at player C, player B aiming at player C and playerC aiming
at player B. In this case we can see how the player with the highest survival probability is
A with a 58% percentage of winning, followed by player B with34.8% percentage and
finally player C with a very low percentage of7.2%. If player C analyzes this situation,
he concludes that if players A and B adopt these strategies in the game, it is better for
him to change his own strategy and instead of aiming to B, set as a new target player A.
Reasoning in this way, he increases his survival probability up to a8.5%.

A B C πA πB πC

C C B 0.58 0.348 0.072
C C A 0.434 0.481 0.085
C A B 0.386 0.407 0.207
C A A 0.2415 0.541 0.2175
B C B 0.628 0.155 0.217
B C A 0.483 0.288 0.229
B A B 0.4348 0.214 0.3512
B A A 0.29 0.348 0.362

Table 9.1. Table corresponding to the survival probabilitiesπA, πB andπC of players A, B and C
respectively, for the different set of strategies adopted in the case ofthe random truel. Player A has
100% of effectiveness, player B an80% and player C a50%.

Once we are found in the set{C,C,A}, we can follow the same reasoning but for
player B, and see that it is better for him to change his strategy –aiming at player C–
setting as a new target player A (increasingπB from 48.1% to 54.1%). This leads us
to the set{C,A,A}. Now it is the turn of player A who decides to change strategy and
set B as a new target thus leading the the set BAA whereπA has indeed increased from
24.2% to 29.0%.

Executing the same procedure for the rest of strategies, we see that all lead to the
same strategy set:{B,A,A}. This is the uniqueNash equilibrium pointof the random
truel, meaning that no player improves his survival probability by changinghis strategy,
as long as the rest of players keep theirs. Therefore, this set corresponds to a local maxi-
mum of all survival probabilities of the players. Besides, when all players use their ’best’
strategy{B,A,A} we are lead to the paradoxical result that the player with the worst
marksmanship can become the player with the highest winning probability. This some-
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what surprising result can be easily understood if one realizes that players set as primary
target either player A or B, leaving player C as the last option and therefore increasing
his winning expectation.

The strategy{B,A,A} is known [40, 42] as thestrongest opponent strategy, as all
players aim at the opponent with the highest markmanship. For the random truel it is the
equilibrium point whatever markmanshipsa, b andc, as long as the conditiona > b > c
is fulfilled (in Appendix C.1 is shown the demonstration for arbitrary valuesa, b andc).

Using this strategy, the winning probabilities for the random truel are

π(a; b, c) =
a2

(a+ c)(a+ b+ c)
,

π(b; a, c) =
b

a+ b+ c
, (9.4)

π(c; a, b) =
c(c+ 2a)

(a+ c)(a+ b+ c)
.

This set can be obtained from Eqs. (C.1) from Appendix C withPAB = PCA =
PBA = 1 andPAC = PA∅ = PBC = PB∅ = PCB = PC∅ = 0.

In Fig. 9.1 we plot by colour code the region in parameter space in which each player
possesses the highest survival probability when playing the random truel, varying mark-
manshipsb and c and keepinga fixed and equal to1. It can be appreciated that the
region of player A is larger than the ones for B and C. In this figure, markmanshipa
has been set to its highest possible value1, because other valuesa 6= 1 can be related
through the scaling relationsπ(a; b, c) = π(1; b/a, c/a), π(b; a, c) = π(b/a; 1, c/a),
π(c; a, b) = π(c/a; 1, b/a).

9.4.3 Sequential firing

In this version of the truel there is an established order of firing. The players will shoot
in increasing value of their marksmanship, i.e., ifa > b > c the first player to shoot
will be player C, followed by player B and the last to shoot is player A. The sequence
repeats until only one player remains. Again, we have left for Appendix B.3 the details of
the calculation of the winning probabilities. In Appendix C.2 we reproduce theanalysis
of the optimal strategies which agrees with that obtained by Kilgour [40]. Themain
result is that there are two equilibrium points depending on the value of the function
g(a, b, c) = a2(1− b)2(1− c)− b2c−a b (1− b c): if g(a, b, c) > 0 the equilibrium point
is the strongest opponent strategyPAB = PBA = PCA = 1, while for g(a, b, c) < 0 it
turns out that the equilibrium point strategy isPAB = PBA = PC∅ = 1, where the worst
player C is better off by shooting into the air and hoping that the second bestplayer B
succeeds in eliminating the best player A from the game. Player C would use thenext
turn to try to eliminate the remaining player, becoming the winner of the truel.
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Figure 9.1. Diagramb vs c settinga = 1 where it is plotted with color codes which is the player
with the highest survival probability for the case of the random truel andusing the optimal strategy,
as given by Eq. (9.4). Black color corresponds to the region where player A has the highest winning
probability, red color corresponds to player B having the highest winningprobability and finally the
green color corresponds to player C being the player with the highest survival probability.
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Figure 9.2. Same as Fig. 9.1 in the case that players play sequentially in increasing order of their
marksmanship.
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The winning probabilities for this case, assuminga > b > c, are given by

π(a; b, c) =
(1− c)(1− b)a2

[c(1− a) + a][b(1− a) + a]
,

π(b; a, c) =
(1− c)b2

(c(1− b) + b)(b(1− a) + a)
,

π(c; a, b) =
c[bc+ a[b(2 + b(−1 + c)− 3c) + c]]

[c+ a(1− c)][b+ a(1− b)][a+ b(1− a)] , (9.5)

if g(a, b, c) > 0, and

π(a; b, c) =
a2(1− b)(1− c)2

[a+ (1− a)c][a+ b(1− a) + c(1− a)(1− b)] ,

π(b; a, c) =
b
(

b(1− c)2 + c
)

[b+ (1− b)c][a+ b(1− a) + c(1− a)(1− b)] ,

π(c; a, b) =

ac(1−b)(1−c)
a+c(1−a) + c(b+c(1−2b))

b+c(1−b)
[a+ b(1− a) + c(1− a)(1− b)] , (9.6)

if g(a, b, c) < 0. Again, as in the case of random firing, the paradoxical result appears
that the player with the smallest marksmanship has the largest probability to win the
game.

Due to the imposed firing order (C-B-A), player A is the last one to shoot. Therefore,
the a priori advantageous situation given by a high marksmanship is partially lost. This
is reflected in Fig. 9.2, since the region where player A is the favorite has decreased
considerably compared to that of Fig. 9.1. In fact, the a priori worst player C is the
favorite in a larger number of occasions. We explained previously that there were two
equilibrium points in the sequential truel,{B,A,A} and{B,A, ∅}. The last one is the
relevant in the small green region located in the black region seen in Fig. 9.2.

9.4.4 Opinion model

We reinterpret the truel as a game in which three people holding different opinions, A, B
and C, on a topic, aim to convince each other in a series of one-to-one discussions. The
marksmanshipa (resp.b, c) are now interpreted as the probabilities that player holding
opinion A (resp. B or C) have of convincing another player of adopting this opinion. The
main difference with the previous games is that the number of players present is always
constant and equal to three, a fact that will strongly conditionate the results.

The states belonging to the Markov chain for this model are ABC, AAB, ABB,AAC,
ACC, BBC, BCC, AAA, BBB and CCC. As in previous cases, we have leftthe analysis
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of the convincing probabilities for Appendix B.4. We consider only the random case in
which the person that tries to convince another one is chosen randomly amongst the three
players.

The study of equilibrium points (c.f. App. C.3) reveals the existence of a unique
equilibrium point corresponding again to the strongest opponent strategy, in which each
player tries to convince the opponent with the highest marksmanship. The probabilities
of a final consensus opinion being A, B or C, assuminga > b > c are given by

π(a; b, c) =
a2
[

2cb2 + a
(

(a+ b)2 + 2(a+ 2b)c
)]

(a+ b)2(a+ c)2(a+ b+ c)
,

π(b; a, c) =
b2(b+ 3c)

(b+ c)2(a+ b+ c)
,

π(c; a, b) =
c2
[

c3 + 3(a+ b)c2 + a(a+ 8b)c+ ab(3a+ b)
]

(a+ c)2(b+ c)2(a+ b+ c)
, (9.7)

respectively. Notice that, as before, they satisfy the scaling relationsπ(a; b, c) =
π(1; b/a, c/a), π(b; a, c) = π(b/a; 1, c/a), π(c; a, b) = π(c/a; 1, b/a). As in previous
cases, we have plotted in Fig. 9.3 in colour code the opinion with the highest probability
of becoming majority. In this case opinion A becomes majority nearly for all values
of b andc. Only for a small region opinion C can become the majority opinion. This
overwhelming dominion of A can be understood if we recall that the total number of
players always remains the same throughout the game. Only the opinions heldby the
players change. So, once opinion A convinces either a player with opinionB or a player
with opinion C, it is very likely that it will eventually become the majority opinion due
to its highconvincingprobability.

9.4.5 Distribution of winners

Imagine that we set up a league scheme: everybody plays against everybody else. Sets
of three players are chosen randomly amongst a population whose marksmanship are
uniformly distributed in the interval(0, 1). The distribution of winners is characterized
by a probability density function,f(x), such thatf(x)dx is the proportion of winners
whose marksmanship lies in the interval(x, x+ dx). This distribution is obtained as:
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Figure 9.3: Same as Fig.9.1 for the convincing opinion model.

f(x) =

∫

da db dc [π(a; b, c) δa + π(b; a, c) δb + π(c; a, b) δc] =

=

∫

db dc π(x; b, c) +

∫

da dc π(x; a, c) +

∫

da db π(c; a, b) =

= 3

1
∫

0

db

1
∫

0

dc π(x; b, c). (9.8)

whereδi accounts for the Dirac deltaδ(x− i).
We may also consider a variation of the competition in which the winner of one game

keeps on playing against other two randomly chosen players. The resulting distribution
of players,f̄(x), can be computed as the steady state solution of the recursion equation:

f̄(x, t+ 1) =

∫

da db dc [π(a; b, c) δa + π(b; a, c) δb + π(c; a, b) δc] f̄(a, t)

= f̄(x, t)

∫

db dc π(x; b, c) +

∫

da dc π(x; a, c)f̄(a, t) +

∫

da db π(c; a, b)f̄(a, t),

(9.9)

performing the variable changea→ b in the second integral, and

{

a→ b
b→ c

in the

third one we obtain



9.4 The truels 121

f̄(x) =
1

3
f̄(x)f(x) + 2

1
∫

0

db

1
∫

0

dc π(x; b, c)f̄(b) (9.10)

For the case of the random truel, with players using the random strategy whose
winning probabilities are given by Eq. (9.3), the distribution of winners isf(x) =
3x [x lnx− 2(1 + x) ln(1 + x) + (2 + x) ln(2 + x)]. In Fig. 9.4 we observe that the
functionf(x) attains its maximum atx = 1 indicating that the best marksmanship play-
ers are the ones which win in more occasions. For the same strategy set, the distribution
of winners if the winner keeps on playing is3 f̄(x) = 2x.

If, on the other hand, players adopt the equilibrium point strategy, Eq. (9.4), the
resultingf(x) has been plotted in Fig. 9.5. Notice that, despite the paradoxical result
mentioned before, the distribution of winners still has it maximum atx = 1, indicating
that the best marksmanship players are nevertheless the ones who win in more occasions.
In the same figure, we have also plotted the distributionf̄(x) of the competition in which
the winner of a game keeps on playing. In this case, the integral relation Eq.(9.10) has
been solved numerically.
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Figure 9.4. Distribution functionf(x) for the winners of truels of randomly chosen triplets (solid
line) in the case of players using random strategies, Eq. (9.3); distribution f̄(x) of winners in the case
where the winner of a truel remains in the competition (dashed line).

In Fig. 9.6 we plot the distribution of winnersf(x) andf̄(x) in a competition where
players play the sequential truel. As before, the solid line corresponds tothe former truel
competition and the discontinuous line corresponds to the competition where the winner
of the truel goes on playing. Notice that now the distribution of winnersf(x) has a

3The result is more general: ifπ(a; b, c) = G(a)/[G(a)+G(b)+G(c)], for an arbitrary functionG(x),
the solution isf̄(x) = G(x)/

R 1

0
G(y)dy.
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Figure 9.5. Similar to Fig.(9.4) in the case of the competition where players use the rational strategy
of the equilibrium point given by Eq.(9.4).

maximum atx ≈ 0.57. This result reflects the counter–intuitive result obtained earlier,
and is that players who perform better on average arenot those with higher markmanship,
instead, are those withintermediatevalues.
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Figure 9.6. Same as Fig.9.4 in the case that players play sequentially in increasing order of their
marksmanship. Notice that now both distributions of winners present maxima for x < 1 indicating
that the best a priori players do not win the game in the majority of the cases.

Similarly to other versions, we plot in Fig. 9.7 the distribution of winning opinions,
f(x) andf̄(x). As in the case of the random truel, we can observe how the player most
favored on average is the one with the highest markmanship available.
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Figure 9.7: Same as Fig.9.4 for the convincing opinion model.

9.4.6 Truels with spatial dependence

A natural step forward in the truels would involve the introduction of a spatialstructure
in the system. This reflects the fact that players do not interact with any other player,
but only with those which are closer in some sense. Although one could devise some
sort of social network of interaction [97,98], we consider here a simpletwo dimensional
lattice. In this case we have a set ofN individuals arranged in a grid, each surrounded
by four nearest neighbor links. The lattice is initialized by putting randomly on each
site one player of groups A, B or C in the respective proportionsxA, xB andxC , (xA +
xB + xC = 1) and respective marksmanshipsa, b andc. An important ingredient of this
generalization is that players never shoot to a person of the same group.

The rules of the randomcollective truelare as follows:

1. One of the remaining players is chosen at random.

2. The chosen player selects randomly two players amongst the occupied neighbors
sites and the three of them play a random truel. The losers of the truel are elimi-
nated from the system. If the chosen player has only one neighbor, the twoof them
will play a duel with the loser being removed from the system. If no neighborsare
left, the player will walk to a randomly chosen neighbor site.

3. Steps 1 and 2 are repeated until all the survivors belong to the same group.

In step 2, it is possible that some of the chosen players belong to the same group.
In this case, they observe strictly the rule of no shooting between members ofthe same
group. Accordingly, it could happen that there is more than one survivor of that game. In
any event, players use the strongest–opponent strategy. If, for example, the three players
in a truel belong to groups A, A and B, the two A players will aim at B, while B willaim
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to one of the two A (again chosen at random). The outcome of that particularsituation
could be either player B eliminating both A players or player B being eliminated by the
two players A. Since the analytical treatment appears rather difficult, we present now the
results coming from a direct numerical simulation of the aforementioned rules.We use
throughout this section the valuesa = 1, b = 0.8, c = 0.5 for the marksmanships.

In Fig. 9.8 we show some snapshots concerning different stages of a simulation car-
ried out for the random truel. The initial population proportion wasxA = 0.3, xB = 0.3
andxC = 0.4. We can see how in early stages of the run, populations B and C diminish
considerably whereas group A resists and eventually becomes the winnerof thecollective
truel.

In this collective truel, the group that will survive at the end depends, for a fixed
values of the marksmanships, on the initial proportions of players. This dependence is
summarized in Fig. 9.9, where we plot in a color code the group that has the highest
winning probability as a functions of the initial proportions.

Figure 9.8. Snapshots corresponding to different stages of a simulation carried out for the random
truel with initial proportionsxA = 0.3 (black colour),xB = 0.3 (red colour) andxC = 0.4 (green
colour). The total number of players isN = 2500 arranged in a two–dimensional grid.

It is easy to modify step 2 by considering the rule of the sequential truel by which
players shoot in inverse order to their marksmanship. A typical realization isshown in
Fig. 9.10. In this occasion the winning group is the weakest one, group C.This survival
of the weakesteffect is also present in the diagram of Fig. 9.11, as now groups B and C
have increased the region in parameter space where they win the truel, compared to the
diagram of the random truel in Fig.9.9.

It is possible to distinguish two different regimes in the dynamics. Almost all truel
competitions take place during the first steps where a large fraction of the population
is removed. At the end of this first regime, the largest remaining population is the one
that possesses the higher survival probability when playing a single truel and the system
presents many empty sites. Later, in a second regime, players start to diffuse to neighbor-
ing sites increasing the appearance of duel encounters. Consequently, the evolution will
result from a balance between the population favored by the existence ofduels(the one
with the highest marksmanship), and the one favored by possessing a highproportion of
the remaining population.

Finally, in Fig. 9.12 we show some snapshots of a simulation carried out for the
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Figure 9.9. Diagram where it is shown the winning group in colour code (black colour corresponds
to group A, red to group B and green to group C) in terms of initial proportionsxA, xB andxC , for a
set ofN = 400 players arranged in a two–dimensional grid and playing the random truel.The results
are obtained after averaging over10000 realizations.

Figure 9.10. Snapshots corresponding to different stages of a simulation carried out for the sequential
truel with an initial population ofxA = 0.3 (black colour),xB = 0.3 (red colour) andxC = 0.4
(green colour) for a set ofN = 2500 players arranged in a spatial two–dimensional grid.
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Figure 9.11. Diagram where it is shown the winning group in colour code (black colour corresponds
to group A, red to group B and green to group c) in terms of the initial proportionsxA, xB andxC ,
for a set ofN = 400 players arranged in a two–dimensional grid that play the sequential truel.The
probabilities have been obtained averaging over100000 realizations.

case of the opinion model. As it happened in the three players case, the totalnumber of
players remains constant troughout the simulation, only the opinions held by the players
may vary. For the set of marksmanships chosena = 1, b = 0.8 and c = 0.5 we
find that the opinion most likely to become majority opinion is always the one with
highest marksmanship, A. This occurs even for very small initial proportion xA and it is
a reflection of the large region in parameter space where A becomes the favorite opinion,
as it was shown in Fig. 9.3.

Figure 9.12. Snapshots corresponding to different stages of a simulation of the opinion model, carried
out with an initial population ofxA = 0.3 (black colour) ,xB = 0.3 (red colour) andxC = 0.4 (green
colour) for a set ofN = 2500 players arranged in a spatial two–dimensional grid.
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9.5 Generalization to N players : N–uels

We have shown for three players the existence of an interesting anda priori counter–
intuitive result where the player with the highest markmanship does not win thetruel in
all cases. But, what happens if there are more than three players? For ageneral case
of N players, it is rather difficult to obtain exact analytic expressions. Already for a
low number of individuals the expressions obtained increase very rapidlyin complexity.
However, we can make use of numerical simulations in order to obtain the distribution of
winners for a number of playersN > 3. We will also restrict our analysis to the random
case.
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Figure 9.13. Histogram of the
classified corresponding to the ran-
dom truel forN = 4 players.

In Fig. 9.13 we show a histogram corresponding to the classification obtainedwhen
the game is played by4 players. The fourth classified would correspond to the distribu-
tion of players eliminated from the game in first place, the third classified would be the
one eliminated in second place and so on. The distribution of the fourth classified shows
that individuals eliminated firstly in the game are those with higher markmanships. In-
deed, the maximum is located atx = 1, indicating then that the better you are the higher
the probability of being eliminated first. Another aspect we can extract fromthis figure
has to deal with the distribution of first and second classifieds: these curves correspond to
the case where there are only two players left in the game, i.e., to a duel. Therefore, it is
more likely in this situation that players with lower markmanships are eliminated firstly
rather than those with higher markmanships (that is the reason why the curvefor the sec-
ond classified presents a maximum in the origin). It is worth mentioning that already for
4 players the histogram associated to the first classified – i.e., the winner of the4–uel –
presents a maximum for a value ofx < 1. This result implies that the best performing
player does not correspond anymore to the player with the highest markmanship, as it
happened whenN = 3. Indeed, the optimum value is located inx ∼ 0.49.

For greater values ofN , we can develop a simple theory that helps us to understand
the distribution. The mechanics of this collective game is quite simple: we start from a
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Figure 9.14. Left panel: Distribution of the first, second and third classifieds corresponding to the
random truel forN = 30 players. The solid line corresponds to the numerical values, and circles
correspond to the theoretical calculation. Right panel: Distribution rangingfrom the3rd classified
(left side) to the30th (right side).
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set ofN players whose markmanship is uniformly distributed between(0, 1). Then, each
time step one player is chosen randomly, and then he aims to the remaining player with
the highest markmanship. This process continues until there is only one survivor left.

A similar distribution can be obtained if we consider a set ofN numbersa1, . . . , aN
uniformly distributed in the interval(0, 1). As the probability density function describ-
ing each numberaj is equal to1 we havef(a1, . . . , aN ) = 1. If we classify them in
increasing value such thata1 < a2 < . . . < aN , we need to consider all different ways
of ordering these terms through the inclusion of a factorial term in the probability density
function and consequentlyf(a1, . . . , aN ) = N !. Thus, if we consider that these numbers
are beingsuppressedin decreasing order, that is, greater numbers are eliminated first, we
can calculate the distribution of termsaj occupying the j-th place in the classification as

fj(a) =

a
∫

0

da1

a
∫

a1

da2 · ·
a
∫

aj−2

daj−1

1
∫

a

daj+1

1
∫

aj+1

daj+2 · ·
1
∫

aN−1

daNf(a1, .., aN )

= N !

a
∫

0

da1

a
∫

a1

da2 · ·
a
∫

aj−2

daj−1

1
∫

a

daj+1

1
∫

aj+1

daj+2 · ·
1
∫

aN−1

daN . (9.11)

The first set of integrals
∫ a
0 da1 . . .

∫ a
aj−2

daj−1 gives as a resulta
j−1

(j−1)! ; on the

other hand, the second set
∫ 1
a daj+1 . . .

∫ 1
aN−1

daN gives (1−a)N−j

(N−j)! . Joining both results
Eq. (9.11) yields

fj(a) = N !
aj−1(1− a)N−j

(j − 1)!(N − j)! =
aj−1(1− a)N−j

B(j,N − j + 1)
(9.12)

whereB(j,N − j + 1) accounts for the binomial coefficient. In Fig. 9.14 we have
plotted the distributions corresponding to different classifieds, obtained for a set ofN =
30 players. We compare the results obtained through numerical simulations –solidline–
with the theoretical description explained above –circles–. We can deducefrom the right
panel in Fig. 9.14 that the theoretical description works rather well with the classifieds
ranging from the third up to the last one, the thirtieth. However, we can see from the right
panel from Fig. 9.14 that it does not work quite well for the first and second classifieds.
This is so because our approach considers that players areeliminatedaccording to their
markmanship: the higher is the markmanship of a player, the higher the probability of
being suppressed from the game. But when there are two players left in the game, we
know from duel analysis carried out in Sec. 9.3 that the opposite is true for this case:
players with low markmanship are those with higher probability of being eliminated.
This is the reason why our approach does not provide a good description of the first and
second classifieds.
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Our next step would be then the survey for different values ofN . Fig. 9.15 shows
the histogram of the winners of a N–uel when varyingN . It can be clearly seen that for
values ofN ≥ 4 the optimum/maximum value of the distribution is indeed progressively
enhanced and shifted towards zero whenN is increased.
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Conclusions

This thesis has considered two kinds of paradoxical games: Parrondo’s games and truels.
We now summarize the main original results as well as outlining some of the perspectives
for future work.

We have introduced in Chapter 3 a new version of Parrondo’s games including the
self–transitionprobability. The original Parrondo games are then a special case with
self-transition probabilities set to zero. Discrete–time Markov chain analysishave been
performed for these new games, showing that Parrondo’s paradox stilloccurs if the ap-
propriate conditions are fulfilled. New expressions for the rates of winning have been
obtained, with the result that under certain conditions a higher rate of winning than in
the original games can be obtained. We have also studied the region of parameter space
where the paradox exists with the self–transition variables, concluding thatthe parameter
space of the original games is a limiting case of maximum volume – as the self-transition
probabilities increase in value the volume shrinks to zero. However, despitethis decrease
in volume, the rates of winning that can be obtained are higher than in the original games.

One of the main results of the thesis concerns the quantitative relation established
between Parrondo’s games and the Brownian ratchet in Chapter 4. We have been able to
write the master equation describing the Parrondo’s games as a consistent discretization
of the formalism of the Fokker–Planck equation for an overdamped Brownian particle.
In this way we can relate the probabilities of the games{p0, . . . , pL−1} to the dynami-
cal potentialV (x). Our approach yields a periodic potential for a fair game and a tilted
potential for an unfair game, with positive slope for losing games and negative for win-
ning games. The resulting expressions, in the limit∆x → 0 could be used to obtain the
effective potential for a flashing ratchet as well as its current. This relation also works
in two ways: we can obtain the physical potential corresponding to a set ofprobabilities
defining a Parrondo game, as well as the current and its stationary probability distribu-
tion. Inversely, the probabilities corresponding to a given physical potential can also be
obtained. Our relations work both in cases of additive and multiplicative noise, showing
that the former case is equivalent to the original Parrondo’s games, whereas the latter
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corresponds to Parrondo’s games with self–transition probability alreadyintroduced in
Chapter 3.

With the relations introduced for the cases of additive and multiplicative noise,we
have now a precise and of general validity connection between individual Brownian
ratchets and single Parrondo’s games. This work confirms Parrondo’soriginal intuition
based on a flashing ratchet is correct with rigour.

Besides, the similarity between the original Parrondo’s games and the flashingratchet
is further extended to the field of information theory. In Chapter 5 we have quantified
the amount of transfer of information (negentropy) for the original Parrondo’s games
as well as other versions. The relation between the gain in the games and the entropy
difference follows a similar behavior for every version of the games analyzed, showing
its robustness, and it is the equivalent of the result obtained in the case ofthe Brownian
ratchets. In the case of the original Parrondo’s paradox mixing two games, A and B,
we have obtained analytically an estimation of the entropy considering that the capital
originates from a combination of two ergodic sources, reflecting the different winning
probabilities when the capital is a multiple of three or not. We have shown that the
entropy behaves very differently for low and high values of the delay parameterδt: while
for δt = 1 there is a monotonic dependence on the switching parameterγ, the relation
between the gain and the current is only apparent for large values ofδt.

In Chapter 6 we have rewritten the master equations describing the alternationbe-
tween two Parrondo games A and B with different transition probabilitiesγAB, γBA as
a conveniently discretized set of Fokker–Planck equations for a Brownian particle. In
the particular caseγAB + γBA = 1, we have obtained analytical expressions for the sta-
tionary probabilities in terms of the potential function already developed in Chapter 4.
Using this analogy we have been able to provide suitable definitions for the energy input,
energy output, average gain and efficiency of the Parrondo games. The efficiency quan-
tifies the relationship between the gain of the games (the energy outputEout is directly
related to the currentJ) and a convenient measure of the difference between the probabil-
ities defining the games (given by their difference in the potentials). We haveevaluated
the efficiency for biased and unbiased games and studied its dependenceon the mixing
probabilityγ, showing that it shares many qualitative features with the continuous model
of a flashing Brownian ratchet. Our results provide a framework for comparing different
Parrondian or discrete-time ratchets, and should provide a basis for the search of higher
efficiency discrete systems.

Once a quantitative connection between Parrondo’s games and a Brownian particle
has been established in the case of a single player, we turn our attention to thecase of
collective games.

Chapter 7 has been devoted to a theoretical analysis of the collective gamesintro-
duced in ref. [38]. We have analyzed the alternation of the original capital dependent
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game B with different versions of game A, in which a redistribution of capital takes place
amongst the players. It has been shown that for all cases it is possible tofind an equation
describing the evolution (on average) of capital for a single player, andsurprisingly, this
equation turns to be the same for all cases studied. Besides, for the case of random dif-
fusion to nearest neighbors it has been possible to find, in a first approximation, a direct
relation with a set ofN coupled Brownian particles. This coupling was present in the
noise terms, conserving on average the mean value of the position, as it occurs with the
discrete model.

In Chapter 8 we have presented a new type of collective Parrondo games. They
present, besides the Parrondo effect, a current inversion when varying the alternation
probabilityγ between the two games A and B. The novelty introduced in these games lies
on the fact that the current inversion appears from the combination of a collective game
– i.e., game B – and a totally unbiased, state independent, game A. Analytical expres-
sions for the games have been obtained for a finite number of players usingdiscrete–time
Markov chain techniques. We have also been able to explain qualitatively thereason of
this current inversion.

In the last Chapter 9 we have performed a detailed analysis of the truels, using the
methods of Markov chain theory. Hence, we have been able to reproduce in a language
which is more familiar to the Physics community most of the results of the original analy-
sis by Kilgour [40]. In particular, we have obtained the survival probabilities for every
truel game and for arbitrary values of markmanshipsa, b andc, as well as their equi-
librium points. Besides computing the optimal rational strategy, we have focused on
computing the distribution of winners in a truel competition. We have shown that inthe
random case, the distribution of winners still has its maximum at the highest possible
marksmanshipx = 1, despite the fact that in some cases players with a lower marks-
manship have a higher probability of winning the game. In the sequential firingcase, a
player performs better on average if he has intermediate values of the markmanship. This
is reflected in the fact that the distribution of winners has a maximum atx < 1.

We have reinterpreted the random truel as an opinion model, obtaining its equilibrium
points and the distribution of winners. As it happened in the random truel, thedistribution
of winners presents a maximum atx = 1, indicating that on average the opinion most
likely to become majority is that with the highest convincing probability.

We have also analyzed the effect of including a spatial dependence in therandom
and sequential truels, as well as the opinion model. We distinguish two regimes inthe
dynamics: one being characterized by truel competitions, and a second characterized by
duel competitions due to the diffusion of players to neighboring sites in the grid. The
winning population will result from a balance between these two regimes.

Finally, we have shown the effect of generalizing the random truel to morethan three
players. In this case, already for4 players we highlight the appearance of an optimum
value for the markmanship which is lower than one, a similar effect as in the sequential
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truel but in this case it appears due to an increase of the number of players. Further-
more, asN is increased, this optimal value shifts towards lower and lower values of the
markmanship.

10.1 Perspectives and future work

Once a complete relation has been established between the physical model ofthe flashing
ratchet and Parrondo games for a single player, we should focus our future work on
the establishment of a similar relation between collective games and collective models
of Brownian particles. As in the single case, it would be desirable to obtain a relation
between the probabilities defining the collective game and the drift and diffusion matrices
defining a multivariate Fokker-Planck equation. Furthermore, we could also obtain an
effectivepotential yielding an unbiased potential for fair games and biased for unfair
games, as it occurs for the single player case. This connection should beas general as
possible, so that it can be applied to a wider range of collective games.

Concerning the collective games introduced in Chapter 8, it remains as an open ques-
tion the possible implications of these findings in the field of the Brownian ratchet,as
well as the possibility of finding a physical model equivalent to this collectivegame.

Regarding truel games, our next step would involve a deeper study of thedynamics
of these games in terms of the spatial grid used. Small-world or even scale-free networks
could be introduced in the model so as to analyze the effect of different topologies on the
final population comparing the results obtained for the two-dimensional grid.

Furthermore, it would be worth studying a generalization of the sequential truel to
a number of players greater than three. It seems reasonable to considereither for the
random truel and the opinion model that the unique equilibrium point is givenby the
strongest opponent strategy. However, for the sequential truel the situation turns to be far
different. This case entails a greater complexity in determining its equilibrium points, as
the number of strategies feasible is quite large.

An interesting extension for truel games would be that of including a dynamicsbased
on selection and evolution. We could allow strategies to evolve, in the sense that players
would modify their own strategy if they contemplate the possibility of improving their
own payoff. Hence we could study the evolution of the strategies adopted by the players
and check whether they tend to a fixed set. On the other hand, we could alsoallow the
fitness –markmanship– of the players to change/evolve over time, thereforestudying the
dynamics of the system under this scheme.



Appendix A

Collective Parrondo games with
redistribution of capital

A.1 Distribution to a randomly selected player

Our starting point is the general master equation (7.3) which we reproducehere

P (c1,..,cN ;τ+1) =
N
∑

j=1

N
∑

j′=1
j′ 6=j

γ

N(N − 1)
P (c1,..,cj+1,..,cj′−1,..,cN ;τ)+

+
1− γ
N

N
∑

j=1

[

a
cj
−1P (c1,..,cj−1,..,cN ;τ) + a

cj
0 P (c1,..,cN ;τ) + a

cj
1 P (c1,..,cj+1,..,cN ;τ)

]

. (A.1)

From Eq. (A.1) we can obtain the probability density function for a single player j,
i.e.,P (cj ;τ), performing the following sum

P (cj ;τ+1) =
∑

c1,..cj−1,cj+1,..cN

P (c1,..,cN ;τ+1). (A.2)

For simplicity we will calculate separately the two contributions of Eq. (A.1) to this
sum, the first one being that of gameA′, and the second being that of gameB. Let us
first calculate the sum for gameA′

135
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γ

N(N − 1)

∑

c1..cj−1,cj+1..cN

[

N
∑

j′=1

N
∑

j′′=1
j′′ 6=j′

P (c1,..,cj′+1,..,cj′′−1,..,cN ;τ)

]

=

=
γ

N(N − 1)

∑

c1..cj−1,cj+1..cN

[

N
∑

j′′=1
j′′ 6=j

P (c1,..,cj+1,..,cj′′−1,..,cN ;τ)+

+
N
∑

j′=1
j′ 6=j

P (c1,..,cj′+1,..,cj−1,..,cN ;τ) +
N
∑

j′=1
j′ 6=j

N
∑

j′′=1
j′′ 6=j,j′

P (c1,..,cj′+1,..,cj′′−1,..,cN ;τ)

]

. (A.3)

Carrying out the sum
∑

c1,...,cj−1,cj+1,...cN
we obtain

γ

N(N − 1)









N
∑

j′′=1
j′′ 6=j

P (cj+1;τ) +
N
∑

j′=1
j′ 6=j

P (cj−1;τ) +
N
∑

j′=1
j′ 6=j

N
∑

j′′=1
j′′ 6=j,j′

P (cj ;τ)









=

=
γ

N(N − 1)

[

(N − 1)P (cj+1;τ) + (N − 1)P (cj−1;τ) + (N − 2)(N − 1)P (cj ;τ)

]

=

=
γ

N
[P (cj+1;τ) + (N − 2)P (cj ;τ) + P (cj−1;τ)] . (A.4)

We now proceed with the second term of Eq. (A.1), that of gameB 1

∑

c1..,cj−1,cj+1,..cN

N
∑

j′=1

[

a
cj′
−1P (c1,..,cj′−1,..,cN ;τ) + a

cj′
0 P (c1,..,cN ;τ)+

+a
cj′
1 P (c1,..,cj′+1,..,cN ;τ)

]

=
∑

c1..,cj−1,cj+1,..cN

[

a
cj
−1P (c1,..,cj−1,..,cN ;τ) + a

cj
0 P (c1,..,cN ;τ)+

+ a
cj
1 P (c1,..,cj+1,..,cN ;τ) +

N
∑

j′=1
j′ 6=j

(a
cj′
−1P (c1,..,cj′−1,..,cN ;τ) + a

cj′
0 P (c1,..,cN ;τ)+

1For simplicity we will omit the coefficient1−γ
N

until the final result for gameB is obtained.
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+ a
cj′
1 P (c1,..,cj′+1,..,cN ;τ))

]

=

[

a
cj
−1P (cj−1;τ) + a

cj
0 P (cj ;τ) + a

cj
1 P (cj+1;τ)+

+

N
∑

j′=1
j′ 6=j

∑

cj′

(a
cj′
−1P (cj ,cj′−1;τ) + a

cj′
0 P (cj ,cj′ ;τ) + a

cj′
1 P (cj ,cj′+1;τ))

]

. (A.5)

By means of normalization conditiona
cj′+1

−1 +a
cj′
0 +a

cj′−1

1 = 1, the previous expres-
sion can be simplified obtaining









a
cj
−1P (cj−1;τ) + a

cj
0 P (cj ;τ) + a

cj
1 P (cj+1;τ) +

N
∑

j′=1
j′ 6=j

∑

cj′

P (cj ,cj′ ;τ)









=

=
1− γ
N

[

a
cj
−1P (cj−1;τ) + a

cj
0 P (cj ;τ) + a

cj
1 P (cj+1;τ) + (N − 1)P (cj ;τ)

]

.

(A.6)

Finally, adding both results (A.4) and (A.6) we obtain the final expression for the
evolution of the probability for a single playerj with capitalcj

P (cj ;τ+1) =
1− γ
N

[

a
cj
−1P (cj−1;τ) + a

cj
0 P (cj ;τ) + a

cj
1 P (cj+1;τ)

]

+

+
γ

N

[

P (cj+1;τ) + P (cj−1;τ)

]

+
N − (1 + γ)

N
P (cj ;τ) (A.7)

A.2 Distribution to nearest neighbor with constant probabilities

In this section we calculate the equation for a single playerj when alternating between
the original Parrondo gameB and another version of the redistributing gameA′′, in which
there are different probabilitiespr andpl of giving a coin to neighborj + 1 on the right
and toj − 1 on the left respectively. The master equation describing the evolution of
P (c1,c2,..,cN ;τ+1) of all N players is given by Eq. (7.10), that is

P (c1,..,cN ;τ+1) =
γ

N

N
∑

j′=1

[

pl P (c1,..,cj′−1−1,cj′+1,..,cN ;τ) + pr P (c1,..,cj′+1,cj′+1−1,..,cN ;τ)

]

+

+
1− γ
N

N
∑

j=1

[

a
cj
−1P (c1,..,cj−1,cN ;τ) + a

cj
0 P (c1,..,cj ,cN ;τ) + a

cj
1 P (c1,..,cj+1,cN ;τ)

]

.

(A.8)
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Again, the sum
∑

c1..cj−1,cj+1,..,cN must be performed on the previous equation in
order to obtain the single probability density function. As already calculated inthe pre-
vious section, the result of the sum for the term corresponding to gameB is given by
Eq. (A.6); therefore, we need only to calculate that of gameA′′, thus we have2

∑

c1,..,cj−1,cj+1,..cN

N
∑

j′=1

[

pl P (c1,..,cj′−1−1,cj′+1,..,cN ;τ)+pr P (c1,..,cj′+1,cj′+1−1,..,cN ;τ)

]

=

=
∑

c1,..,cj−1,cj+1,..,cN

[

pl P (c1,..,cj−1−1,cj+1,..,cN ;τ) + pr P (c1,..,cj+1,cj+1−1,..,cN ;τ)+

+ pl P (c1,..,cj−1,cj+1+1,..,cN ;τ) + pr P (c1,..,cj+1+1,cj+2−1,..,cN ;τ)+

+ pl P (c1,..,cj−2−1,cj−1+1,..,cN ;τ) + pr P (c1,..,cj−1+1,cj−1,..,cN ;τ)+

N
∑

j′=1
j′ 6=j,j±1

(pl P (c1,..,cj′−1−1,cj′+1,..,cN ;τ) + pr P (c1,..,cj′+1,cj′+1−1,..,cN ;τ))

]

=

=









P (cj+1;τ) + P (cj−1;τ) + P (cj ;τ) +
N
∑

j′=1
j′ 6=j,j±1

[pl P (cj ;τ) + pr P (cj ;τ)]









=

=
γ

N

[

P (cj+1;τ) + P (cj−1;τ) + (N − 2)P (cj ;τ)

]

. (A.9)

Again, the result obtained for gameA′′ when the capital is redistributed to nearest
neighbors agrees with that of random distribution of capital between players. It is re-
markable though that the final result does not depend on the actual probabilitiespl and
pr. Therefore, joining results from Eqs. (A.6) and (A.9) we obtain the same equation
governing the evolution ofP (cj ;τ) for a single playerj, namely, Eq. (A.7).

A.3 Distribution to nearest neighbor with capital dependent
probabilities

This section will be dedicated to the derivation of the equation for the evolutionof the
probability for a single playerj, when alternating between a new version of gameA′′ in
which the probabilities do depend on the capital of the neighbors, and the original game
B. Our starting point is the master equation for the total probabilityP (c1,··· ,cN ;τ+1), i.e.,
Eq. (7.23),

2Again, we omit the coefficientγ
N

until the final result for gameA′′ is obtained.
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P (c1,..,cN ;τ+1) =
γ

N

N
∑

j′,j′′=1

[

pj′,j′′P (c1,..,cj′+1,..,cj′′−1,..,cN ;τ)

]

+

+
1− γ
N

N
∑

j′=1

[

a
c′j
−1P (c1,..,cj′−1,..,cN ;τ) + a

cj′
0 P (c1,..,cN ;τ) + a

cj′
1 P (c1,..,cj′+1,..,cN ;τ)

]

,

(A.10)

where, as in previous cases, gameA′′ is played with probabilityγ and gameB with
probability1− γ.

We must perform the sum
∑

c1..,cj−1,cj+1,..cN in Eq. (A.10) in order to obtain the
single distributionP (cj ;τ). However, from a previous calculation we already know the
result corresponding to the term of gameB, c.f. Eq. (A.6). Therefore, we need only to
calculate the remaining sum, that corresponding to gameA′′, 3

∑

c1..cj−1,cj+1..cN

N
∑

j′,j′′=1

pj′,j′′P (c1,..,cj′+1,..,cj′′−1,..,cN ;τ) =

=
∑

c1..cj−1,cj+1..cN

N
∑

j′=1

[

pj′,j′−1P (c1,..,cj′−1−1,cj′+1,..,cN ;τ)+

+pj′,j′+1P (c1,..,cj′+1,cj′+1−1,..,cN ;τ)
]

=
∑

c1..cj−1,cj+1..cN

[pj,j−1P (c1,..cj−1−1,cj+1..,cN ;τ)+

+ pj,j+1P (c1,..cj+1,cj+1−1..,cN ;τ) + pj+1,j P (c1,..,cj−1,cj+1+1,..,cN ;τ)+

+ pj+1,j+2 P (c1,..,cj+1−1,cj+2−1,..,cN ;τ) + pj−1,j−2 P (c1,..,cj−2−1,cj−1+1,..,cN ;τ)+

+ pj−1,j P (c1,..,cj−1+1,cj−1,..,cN ;τ) +

N
∑

j′=1
j′ 6=j

j′ 6=j−1,j+1

[pj′,j′−1 P (c1,..,cj′−1−1,cj′+1,..,cN ;τ)+

+ pj′,j′+1 P (c1,..,cj′+1,cj′+1−1,..,cN ;τ)] =

=











∑

cj−1
cj+1

[pj,j−1P (cj−1−1,cj+1,cj+1;τ) + pj,j+1P (cj−1,cj+1,cj+1−1;τ)]+

+
∑

cj+1,cj+2

[pj+1,jP (cj−1,cj+1+1,cj+2;τ) + pj+1,j+2P (cj ,cj+1+1,cj+2−1;τ)]+

3As in previous calculations, we omitγ
N

until the final result forA′′ is obtained
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+
∑

cj−2,cj−1

[pj−1,j−2P (cj−2−1,cj−1+1,cj ;τ) + pj−1,jP (cj−2,cj−1+1,cj−1;τ)]+

+
N
∑

j′=1
j′ 6=j,

j′ 6=j−1,j+1

∑

cj′−1
cj′+1
cj′

[pj′,j′−1P (cj′−1−1,cj′+1,cj′+1;τ) + pj′,j′+1P (cj′−1,cj′+1,cj′+1−1;τ)]



























(A.11)

In the last part of Eq. (A.11) we have splitted the sum overj′ into four terms. The
three first factors correspond to those in which the probabilitiespi,i′ depend on the capital
cj of playerj; the last factor is simply the sum over the rest of terms wherecj is not
present. We can perform the sum in the latter factor substituting the expressions forpi,i′
obtaining

N
∑

j′=1
j′ 6=j

j′ 6=j−1,j+1

∑

cj′−1
cj′+1
cj′

1
cj′+1+cj′−1−1

[

cj′+1P (cj′−1−1,cj′+1,cj′+1,cj ;τ)+

+ cj′−1P (cj′−1,cj′+1,cj′+1−1,cj ;τ)

]

=

=
N
∑

j′=1
j′ 6=j

j′ 6=j−1,j+1

∑

cj′−1,cj′+1

1
cj′+1+cj′−1−1

[

cj′+1P (cj′−1−1,cj′+1,cj ;τ)+cj′−1P (cj′−1,cj′+1−1,cj ;τ)

]

=
{

cj′−1−1−→cj′−1
cj′+1−1−→cj′+1

}

=
N
∑

j′=1
j′ 6=j

j′ 6=j−1,j+1

P (cj ;τ) = (N − 3)P (cj ;τ). (A.12)

Due to the summations carried out for
∑

cj′−1
cj′+1

, we have changed the values forcj′+1

andcj′−1, increasing their values in one unit. We can now proceed with the remaining
three sums in Eq. (A.11). The sum with termscj+1, cj−1 results in

∑

cj−1,cj+1

[

pj,j−1P (cj−1−1,cj+1,cj+1;τ) + pj,j+1P (cj−1,cj+1,cj+1−1;τ)

]

=

∑

cj−1,cj+1

[

cj+1

cj+1 + cj−1
P (cj−1,cj+1,cj+1;τ) +

cj−1

cj+1 + cj−1
P (cj−1,cj+1,cj+1;τ)

]

=
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=
∑

cj−1,cj+1

P (cj−1,cj+1,cj+1;τ) = P (cj+1;τ). (A.13)

We are left now with the terms corresponding to the sums forcj+1, cj+2 and that for
cj−1, cj−2. In order to solve them, we must assume the following set of hypothesis,

P (cj−1,cj+2;τ)→P (cj ,cj+2−1;τ)
P (cj−2−1,cj ;τ)→P (cj−2,cj−1;τ)

}

τ →∞ (A.14)

In some sense, this hypothesis might imply that for large timesτ two individuals
become indistinguishable. Therefore, by means of hypothesis (A.14), weare able to
perform the remaining sums as

∑

cj+1
cj+2

[

cj+2
cj+2+cj−1

P (cj−1,cj+1+1,cj+2;τ) +
cj

cj+2+cj−1
P (cj ,cj+1+1,cj+2−1;τ)

]

+

+
∑

cj−2
cj−1

[

cj
cj−2+cj−1

P (cj−2−1,cj−1+1,cj ;τ) +
cj−2

cj−2+cj−1
P (cj−2,cj−1+1,cj−1;τ)

]

=

=
∑

cj+2

[

cj+2
cj+2+cj−1

+
cj

cj+2+cj−1

]

P (cj−1,cj+2;τ)+

+
∑

cj−2

[

cj
cj+cj−2−1

+
cj−2

cj−2+cj−1

]

P (cj−2,cj ;τ) = P (cj−1;τ) + P (cj ;τ). (A.15)

Finally, joining results from Eqs. (A.12),(A.13),(A.15) we obtain the desiredresult
for the term corresponding to gameA′′

∑

c1..cN

γ

N

N
∑

j′,j′′=1

[

pj′,j′′P (c1,..,cj′+1,..,cj′′−1,..,cN ;τ)

]

=

=
γ

N
[P (cj−1;τ) + (N − 2)P (cj ;τ) + P (cj+1;τ)] (A.16)

Finally, joining both Eqs. (A.6) and (A.16) what we obtain is exactly the same equa-
tion as (A.7) for the evolution of the probabilityP (cj ;τ) of a single playerj.





Appendix B

Survival probabilities for duels and
truels

In this Appendix we will deduce the expressions corresponding to the survival proba-
bilities when playing either a duel or a truel. Both games can be described with discrete–
time Markov chains with a finite number of states. Besides, they are characterized by
the existence of a certain number ofabsorbing states, which means that once the system
reaches this state, it never leaves it (they correspond to those states where there is only
one survivor in the game). As we are dealing with finite Markov chains, it is certain [64]
that this system will eventually end up in one of its absorbent states. We will first calcu-
late the survival probabilities for the simplest case of duels in Sec. B.1, followed then by
their analogous in truels in Secs. B.2, B.2, B.3 and B.4.

B.1 Duels

In Fig. B.1 we show a Markov chain with three states0, 1, 2 corresponding to the ran-
dom duel and also the opinion model. The Table in Fig. B.1 shows the correspondence
between the players remaining on the game and their corresponding state forboth the
random duel and the opinion model.

r0

0 21

p p
01 02

Random Duel Opinion Duel
States Players Opinions

0 A B A B
1 A A A
2 B B B

Figure B.1. Table: description of the different states for the random duel and opinion model. Dia-
gram: Markov chain corresponding to both the random duel and opinionmodel with two opinions.

From Markov chain theory[41] we can calculate the probabilityuji that starting from

143
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statei we eventually end up in statej after a sufficiently large number of steps. We are
interested in calculating the probability that starting from state0 we end up either in state
1 or state2. The set of equations to be solved are

u1
0 = p01u

1
1 + r0u

1
1 (B.1)

u2
0 = p02u

2
2 + r0u

2
0 (B.2)

where the transition probabilitiespij between states are given by :

r0 =
1

2
[2− a− b] , p01 =

1

2
a , p02 =

1

2
b (B.3)

Recalling that by definitionujj = 1 we may solve Eqs. (B.1), (B.2) obtaining

u1
0 =

p01

1− r0
, u2

0 =
p02

1− r0
, (B.4)

Substituting the transition probabilities in the previous set of equations we obtainthe
survival probabilities for player A (u1

0) and player B (u2
0)

πA =
a

a+ b
, πB =

b

a+ b
, (B.5)

We may now consider the Markov chain describing the sequential duel. It iscom-
posed of four states0, 1, 2, 3 and is depicted in Fig. B.2. The table from Fig. B.2 shows
the relation between the states and the players that are still on the game.

201

p
01

p
02

p
10

p
13

3

States Remaining players
0 A B
1 A B
2 A
3 B

Figure B.2. Table: description of the different states for the sequential duel. Diagram: Markov chain
with four states corresponding to the sequential duel.

The set of equations to be solved are

u2
0 = p02u

2
2 + p01u

2
1 (B.6)

u3
0 = p01u

3
1 (B.7)

u2
1 = p10u

2
0 (B.8)

u3
1 = p13u

3
3 + p10u

3
0 (B.9)

where
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p01 = 1− a , p02 = a , p10 = 1− b , p13 = b (B.10)

The general solutions for Eqs. (B.6)–(B.9) are

u2
0 =

p02

1− p01p10
, u3

0 =
p01p13

1− p01p10
, (B.11)

which, after substituting the transition probabilities give as a result

πA = u2
0 =

a

1− (1− a)(1− b) , πB = u3
0 =

b(1− a)
1− (1− a)(1− b) , (B.12)

B.2 Random firing

For this game there are seven possible states according to the remaining players. These
are labeled as0, 1, . . . , 6. The allowed transitions between states are shown in the dia-
gram in Fig. B.3, wherepij denotes the transition probability from statei to statej (the
self–transition probabilitypii is denoted byri).

2

1

3

4

5

6

r3

r2

0

r1

5r

r6

4r

r0

p
01

p
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Figure B.3. Table with the description of all possible states for the random firing game, and diagram
representing the allowed transitions between the states shown in the table.

From Markov chain theory [64] we can evaluate the probabilityuji that starting from
statei we eventually end up in statej after a sufficiently large number of steps. In
particular, if we start from state0 (with the three players active), the nature of the game
is such that the only non-vanishing probabilities areu4

0, u5
0 andu6

0 corresponding to the
winning of the game by player A, B and C respectively. The relevant set of equations is
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We can solve the previous set of equations foru4

0, u5
0 andu6

0, considering that by
definitionujj = 1 ∀j. The solutions are

u4
0 =

p01 p14

(1− r0)(1− r1)
+

p02 p24

(1− r0)(1− r2)
,

u5
0 =

p01 p15

(1− r0)(1− r1)
+

p03 p35

(1− r0)(1− r3)
, (B.14)

u6
0 =

p02 p26

(1− r0)(1− r2)
+

p03 p36

(1− r0)(1− r3)
.

We can now derive the expressions for the transition probabilitiespij . Remember
that we denote bya the probability that player A eliminates from the game the player he
has aimed at (and similarly forb andc), and thatPαβ (α =A,C,B andβ = A,B,C,0) the
probability of playerα choosing playerβ (or into the air ifβ = 0) as a target when it is
his turn to play (a situation that only appears when the three players are still active). We
have then:

r0 = 1− 1
3(a(1− PA0) + b(1− PB0) + c(1− PC0)), p01 = 1

3(aPAC + bPBC),
p02 = 1

3(aPAB + cPCB), p03 = 1
3(bPBA + cPCA),

p14 = p24 = 1
2a, p15 = p35 = 1

2b,
p26 = p36 = 1

2c, r1 = 1− 1
2(a+ b),

r2 = 1− 1
2(a+ c), r3 = 1− 1

2(b+ c).
(B.15)

B.3 Sequential firing

As in the random firing case, we describe this game as a Markov chain composed of11
different states, also with three absorbent states:9 , 10 and11. In Fig. B.4 we show the
corresponding diagram for this game, together with a table describing all possible states.
Based on this diagram, we can write down the relevant set of equations forthe transition
probabilitiesuji :
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Figure B.4. Table: Description of the different states of the game for the case of sequential firing.
The highlighted player is the one chosen for shooting in that state. Diagram:scheme representing all
the allowed transitions between the states shown in the table for the case of a truel with sequential
firing in the order C→ B → A with a > b > c.
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The general solutions for the probabilitiesu9
0, u10

0 andu11
0 are given by

u9
0 =

1

1− p01p12p20

[

p59(p03p35 + p01p15)

1− p35p53
+
p79(p04p47 + p01p12p27)

1− p47p74

]

,

u10
0 =

1

1− p01p12p20

[

p3 10(p03 + p01p15p53)

1− p35p53
+
p01p8 10(p16p68 + p12p28)

1− p68p86

]

,

u11
0 =

1

1− p01p12p20

[

p4 11(p04 + p01p12p27p74)

1− p47p74
+
p01p6 11(p16 + p12p28p86)

1− p68p86

]

,

(B.17)



148 Appendix B: Survival probabilities for duels and truels

with transition probabilities given by

p01 = (1− c) + cPC0, p03 = cPCA, p04 = cPCB,
p12 = (1− b) + bPB0, p15 = bPBA, p16 = bPCA,
p20 = (1− a) + aPA0, p27 = aPAB, p28 = aPAC ,
p35 = p86 = 1− b, p3 10 = p8 10 = b,
p47 = p68 = 1− a, p4 11 = p6 11 = a,
p53 = p74 = 1− c, p59 = p79 = c.

B.4 Convincing opinion

For this model we show in Fig. B.5 the diagram of the allowed states and transitions,
together with a table describing the possible states.
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Figure B.5. Table: description of the different states of the opinion model. Diagram: scheme repre-
senting the allowed transitions between the states.

The corresponding set of equations describing this convincing opinion model, as de-
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And the general solution for the probabilitiesu1

0, u2
0 andu3

0 is

u1
0 =

1

1− r0

[

p61(p06(1− r7) + p07p76)

(1− r6)(1− r7)− p67p76
+
p41(p04(1− r5) + p05p54)

(1− r4)(1− r5)− p45p54

]

,

u2
0 =

1

1− r0

[

p52(p04p45 + p05(1− r4))
(1− r4)(1− r5)− p45p54

+
p82(p08(1− r9) + p09p98)

(1− r8)(1− r9)− p89p98

]

,

u3
0 =

1

1− r0

[

p73(p06p67 + p07(1− r6))
(1− r6)(1− r7)− p67p76

+
p93(p09(1− r8) + p08p89)

(1− r8)(1− r9)− p89p98

]

,

(B.19)

where the transition probabilities are given by

p04 = 1
3cPCA, p06 = 1

3cPCB, p08 = 1
3bPBC ,

p05 = 1
3bPBA, p07 = 1

3aPAB, p09 = 1
3aPAC ,

p41 = p61 = 2
3c p45 = p98 = 1

3b, p54 = p76 = 1
3c,

p52 = p82 = 2
3b, p67 = p89 = 1

3a, p73 = p93 = 2
3a,

r0 = 1
3 [3− a− b− c], r4 = 2

3(1− c) + 1
3(1− b),

r5 = 1
3(1− c) + 2

3(1− b), r6 = 2
3(1− c) + 1

3(1− a),
r7 = 1

3(1− c) + 2
3(1− a), r8 = 2

3(1− b) + 1
3(1− a),

r9 = 1
3(1− b) + 2

3(1− a).
(B.20)





Appendix C

Equilibrium points for truels and
the opinion model

In this Appendix we will demonstrate the existence of equilibrium points for the truel
games. Concretely we will show that either for the random truel and the opinion model
there exists a unique equilibrium point which is the so-calledstrongest opponent strategy.
For the sequential truel we will show the existence of two equilibrium points depending
on the values of the markmanshipsa, b, c of the players.

C.1 Random firing

Let us denote byπA(PA0, PAB, PAC) the survival probability for player A given the
values of the probability set{PA0, PAB, PAC} defining the strategy followed by player
A (the same notation follows for players B and C).

The general expressions forπA(PA0, PAB, PAC), πB(PB0, PBA, PBC) and
πC(PC0, PCA, PCB) with arbitrary values for the probabilities defining the strategies
and the markmanshipsa, b andc is too lengthy to present here. Instead, we will show the
following terms:

πA(1, 0, 0) =
a b(a+ c)PBC + a (a+ b)c PCB

(a+ b)(a+ c)(b(PBA + PBC) + c(PCA + PCB))
,

πA(0, 1, 0) =
a
(

a2 + (PBCb+ b+ cPCB)a+ b c(PBC + PCB)
)

(a+ b)(a+ c)(a+ b(PBA + PBC) + c(PCA + PCB))
,

πA(0, 0, 1) =
a(a+ c)(a+ b PBC) + a(a+ b)c PCB

(a+ b)(a+ c)(a+ b(PBA + PBC) + c(PCA + PCB))
,

πB(1, 0, 0) =
a b(b+ c)PAC + b(a+ b)cPCA

(a+ b)(b+ c)(a(PAB + PAC) + c(PCA + PCB))
,

151
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πB(0, 1, 0) =
b(b(b+ cPCA) + a(b(PAC + 1) + c(PAC + PCA)))

(a+ b)(b+ c)(b+ a(PAB + PAC) + c(PCA + PCB))
,

πB(0, 0, 1) =
b(b+ c)(b+ aPAC) + b(a+ b)c PCA

(a+ b)(b+ c)(b+ a(PAB + PAC) + c(PCA + PCB))
,

πC(1, 0, 0) =
a c(b+ c)PAB + b c(a+ c)PBA

(a+ c)(b+ c)(a(PAB + PAC) + b(PBA + PBC))
, (C.1)

πC(0, 1, 0) =
c(c(c+ bPBA) + a(c(PAB + 1) + b(PAB + PBA)))

(a+ c)(b+ c)(c+ a(PAB + PAC) + b(PBA + PBC))
,

πC(0, 0, 1) =
c(b+ c)(c+ aPAB) + b c(a+ c)PBA

(a+ c)(b+ c)(c+ a(PAB + PAC) + b(PBA + PBC))
.

We are interested in evaluating for all players which termπ(1, 0, 0), π(0, 1, 0),
π(0, 0, 1) is greater depending on the values fora, b andc. This will give us the equilib-
rium point of the system. For that purpose we may define new termsSi as

S1 = πA(1, 0, 0)− πA(0, 1, 0),

S2 = πA(1, 0, 0)− πA(0, 0, 1),

S3 = πA(0, 1, 0)− πA(0, 0, 1),

S4 = πB(1, 0, 0)− πB(0, 1, 0),

S5 = πB(1, 0, 0)− πB(0, 0, 1), (C.2)

S6 = πB(0, 1, 0)− πB(0, 0, 1),

S7 = πC(1, 0, 0)− πC(0, 1, 0),

S8 = πC(1, 0, 0)− πC(0, 0, 1),

S9 = πC(0, 1, 0)− πC(0, 0, 1).

Thus, substituting the set of probabilities (C.1) in the previous expressionsand after
some manipulation we obtain

S1 = a2(−b(aPBA−cPBC+b(PBA+PBC))−(a+b)cPCA)
(a+b)(a+c)(b(PBA+PBC)+c(PCA+PCB))(a+b(PBA+PBC)+c(PCA+PCB)) ,

S2 = a2((b−c)cPCB−(a+c)(bPBA+cPCA))
(a+b)(a+c)(b(PBA+PBC)+c(PCA+PCB))(a+b(PBA+PBC)+c(PCA+PCB)) ,

S3 = a2(b−c)
(a+b)(a+c)(a+b(PBA+PBC)+c(PCA+PCB)) ,

S4 = b2(−a(bPAB−cPAC+a(PAB+PAC))−(a+b)cPCB)
(a+b)(b+c)(a(PAB+PAC)+c(PCA+PCB))(b+a(PAB+PAC)+c(PCA+PCB)) ,

S5 = − b2(a(b+c)PAB−acPCA+c(bPCB+c(PCA+PCB)))
(a+b)(b+c)(a(PAB+PAC)+c(PCA+PCB))(b+a(PAB+PAC)+c(PCA+PCB)) ,
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S6 = b2(a−c)
(a+b)(b+c)(b+a(PAB+PAC)+c(PCA+PCB)) ,

S7 = c2(−a(−bPAB+cPAC+a(PAB+PAC))−b(a+c)PBC)
(a+c)(b+c)(a(PAB+PAC)+b(PBA+PBC))(c+a(PAB+PAC)+b(PBA+PBC)) ,

S8 = − c2(a(b+c)PAC−abPBA+b(cPBC+b(PBA+PBC)))
(a+c)(b+c)(a(PAB+PAC)+b(PBA+PBC))(c+a(PAB+PAC)+b(PBA+PBC)) ,

S9 = (a−b)c2
(a+c)(b+c)(c+a(PAB+PAC)+b(PBA+PBC)) . (C.3)

We can clearly see that all denominators in the previous expressions are strictly posi-
tive. Therefore, if we want to evaluate the sign ofSi we need only to analyze the sign of
the numerator.

Assuming thata > b > c we already obtain the result thatS3 > 0, S6 > 0 and
S9 > 0 implying that

πA(0, 1, 0) > πA(0, 0, 1),

πB(0, 1, 0) > πB(0, 0, 1),

πC(0, 1, 0) > πC(0, 0, 1).

Thus, we conclude that aiming at the weakest player it is not a conceivable strategy
for any player and hence we may setPAC = PBC = PCB = 0. This lead us to the
following expressions

S1 =
−a2(a+ b)(bPBA + cPCA)

(a+ b)(a+ c)(bPBA + cPCA)(a+ bPBA + cPCA)
,

S2 =
−a2(a+ c)(bPBA + cPCA)

(a+ b)(a+ c)(bPBA + cPCA)(a+ bPBA + cPCA)
,

S3 =
a2(b− c)

(a+ b)(a+ c)(a+ bPBA + cPCA)
,

S4 =
−ab2PAB(b+ a)

(a+ b)(b+ c)(aPAB + cPCA)(b+ aPAB + cPCA)
,

S5 = − b2(a(b+ c)PAB − cPCA(a+ c)

(a+ b)(b+ c)(aPAB + cPCA)(b+ aPAB + cPCA)
,

S6 =
b2(a− c)

(a+ b)(b+ c)(b+ aPAB + cPCA)
,

S7 =
−aPABc2(a− b)

(a+ c)(b+ c)(aPAB + bPBA)(c+ aPAB + bPBA)
,

S8 =
c2bPBA(a− b)

(a+ c)(b+ c)(aPAB + bPBA)(c+ aPAB + bPBA)
,
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S9 =
(a− b)c2

(a+ c)(b+ c)(c+ aPAB + bPBA)
. (C.4)

It can be clearly seen that whatever valuesa, b, c, PBA andPCA the termsS1 < 0
andS2 < 0; recalling thatS3 > 0 we obtain for player A:πA(0, 1, 0) > πA(0, 0, 1) >
πA(1, 0, 0) and thereforePA0 = PAC = 0, PAB = 1.

Besides, the fact thatS4 < 0 andS6 > 0 imposesπB(0, 1, 0) > πB(1, 0, 0) and
πB(0, 1, 0) > πB(0, 0, 1). Then for player B we obtainPB0 = PBC = 0 andPBA = 1.
Finally,S7 is also negative and together withS9 > 0 we obtainπC(0, 1, 0) > πC(1, 0, 0)
andπC(0, 1, 0) > πC(0, 0, 1). HencePC0 = PCB = 0 andPCA = 1.

As a conclusion, we have demonstrated for the random truel the existenceof a unique
equilibrium point, which is given by the strongest opponent strategy:PAB = PBA = PCA = 1.

C.2 Sequential firing

For the sequential truel we can proceed as in the previous section, and so we may first
present the expressions corresponding toπ(1, 0, 0), π(0, 1, 0), π(0, 0, 1) for players A, B
and C. The expressions are

πA(1, 0, 0) =

acPCB
−ca+a+c −

abPBC(c(PC0−1)+1)
a(b−1)−b

1− (b(PB0 − 1) + 1)(c(PC0 − 1) + 1)
,

πA(0, 1, 0) =

a(cPCB−a(c−1)(b(PB0−1)+1)(c(PC0−1)+1))
−ca+a+c − abPBC(c(PC0−1)+1)

a(b−1)−b
(a− 1)(b(PB0 − 1) + 1)(c(PC0 − 1) + 1) + 1

,

πA(0, 0, 1) =

a(a(b−1)(b(PB0−1)+1)−bPBC)(c(PC0−1)+1)
a(b−1)−b + acPCB

−ca+a+c
(a− 1)(b(PB0 − 1) + 1)(c(PC0 − 1) + 1) + 1

,

πB(1, 0, 0) = −
abPAC(c(PC0−1)+1)

a(b−1)−b − bc(PC0+PCB−1)
b(c−1)−c

1− (a(PA0 − 1) + 1)(c(PC0 − 1) + 1)
,

πB(0, 1, 0) = −
ab(PAC−bPAC)(c(PC0−1)+1)

a(b−1)−b − b(b(c−1)(c(PC0−1)+1)+c(PC0+PCB−1))
b(c−1)−c

(b− 1)(a(PA0 − 1) + 1)(c(PC0 − 1) + 1) + 1
,

πB(0, 0, 1) = −
b(aPAC−b(PACa+a−1))(c(PC0−1)+1)

a(b−1)−b − bc(PC0+PCB−1)
b(c−1)−c

(b− 1)(a(PA0 − 1) + 1)(c(PC0 − 1) + 1) + 1
,

πC(1, 0, 0) =

bc(PB0+PBC−1)
b(c−1)−c − ac(PA0+PAC−1)(b(PB0−1)+1)

−ca+a+c
1− (a(PA0 − 1) + 1)(b(PB0 − 1) + 1)

, (C.5)

πC(0, 1, 0) = −
a(1−c)c(PA0+PAC−1)(b(PB0−1)+1)

−ca+a+c + c(c+b(−PB0−PBC+c(PB0+PBC−2)+1))
b(c−1)−c

(c− 1)(a(PA0 − 1) + 1)(b(PB0 − 1) + 1) + 1
,
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πC(0, 0, 1) =

c(−ac+c+a(c−1)(PA0+PAC−1)(b(PB0−1)+1))
−ca+a+c − b(c−1)c(PB0+PBC−1)

b(c−1)−c
(c− 1)(a(PA0 − 1) + 1)(b(PB0 − 1) + 1) + 1

.

The next step would be to substitute the previous expressions into the termsSi
from (C.2). However, we will not present them because the expressions obtained are
of considerable length. Nevertheless, it can be shown that the termsS3, S6 andS9 are
greater than zero. This implies that we can setPAC = PBC = PCB = 0, simplifying the
expressions forSi which now read

S1 = −a2(1−c)(1−b(1−PB0))(1−c(1−PC0))
(a+c(1−a))(1−(1−a)(1−b(1−PB0))(1−c(1−PC0)))

,

S2 = − a2(1−b)(1−b(1−PB0))(1−c(1−PC0))
(a(1−b)+b)(1−(1−a)(1−b(1−PB0))(1−c(1−PC0)))

,

S3 = a2(b−c)(1−b(1−PB0))(1−c(1−PC0))
(a(b−1)−b)(a(c−1)−c)(−PC0c+c+a(1−b(1−PB0))(1−c(1−PC0))+b(PB0−1)(−PC0c+c−1)) ,

S4 =
b
“

c(PC0−1)

1−(a(PA0−1)+1)(c(PC0−1)+1)
− b(c−1)(c(PC0−1)+1)+c(PC0−1)

(b−1)(a(PA0−1)+1)(c(PC0−1)+1)+1

”

b(c−1)−c ,

S5 = bc(PC0−1)
(b(c−1)−c)(1−(a(PA0−1)+1)(c(PC0−1)+1)) +

b
“

(a−1)b(−PC0c+c−1)

a(b−1)−b
+

c−cPC0
b(c−1)−c

”

(b−1)(a(PA0−1)+1)(c(PC0−1)+1)+1 ,

S6 = b2(a−c)(c(PC0−1)+1)
(a(b−1)−b)(b(c−1)−c)(−cb+b+c+a(b−1)(PA0−1)(c(PC0−1)+1)+(b−1)cPC0)

,

S7 =
c2(−(b−1)(c−1)(PA0−1)(b(PB0−1)+1)a2+b(PA0−b(c−PA0)(PB0−1)−1)a+b2c(PB0−1))

D ,

S8 =
c2((b(c−1)−c)(PA0−1)(−PB0b+b−1)a2−b(b(c−1)−1)(PB0−1)a+b2(c−1)(PB0−1))

D ,

S9 = (a−b)c2
(a(c−1)−c)(b(c−1)−c)(c+a(c−1)(PA0−1)(b(PB0−1)+1)+b(c−1)(PB0−1)) . (C.6)

whereD = (a(c − 1) − c)(b(c − 1) − c)(a(PA0 − 1)(b(PB0 − 1) + 1) + b(PB0 −
1))(c+ a(c− 1)(PA0 − 1)(b(PB0 − 1) + 1) + b(c− 1)(PB0 − 1)).

It can easily be checked that both termsS1 andS2 are negative, which together with
the conditionS3 > 0 give as a result thatπA(0, 1, 0) > πA(0, 0, 1) > πA(1, 0, 0) and
hencePAC = PA0 = 0, PAB = 1. Substituting this result intoS4 andS5 we get

S4 =
−b
(

−c(1−PC0)
a+(1−a)(c−PC0)

+ b(1−c)(1−c(1−PC0))+c(1−PC0)
1−(1−a)(1−b)(1−c(1−PC0))

)

c+ b(1− c) , (C.7)

S5 = bc(1−PC0)
(c+b(1−c))(a+c(1−a)(1−PC0))

−
b
“

(1−a)b(1−c(1−PC0)

b+a(1−b)
+

c(1−PC0)

c+b(1−c)

”

1−(1−a)(1−b)(1−c(1−PC0)) . (C.8)

The previous equations forS4 andS5 are both negative either whenPC0 = 0 or
PC0 = 1. Thus, this result together withS6 > 0 results inπB(0, 1, 0) > πB(0, 0, 1) >
πB(1, 0, 0), thusPBC = PB0 = 0 andPBA = 1.
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Finally, substituting these results into the equationsS7, S8 andS9 we get

S7 =
−c2((1−c)(1−b)2a2−ba(1−bc)−b2c)

(a(1−c)+c)(b(1−c)+c)(a(1−b)+b)(c+a(1−c)(1−b)+b(1−c)) , (C.9)

S8 =
c2((c+b(1−c))(1−b)a2+ba−b2(1−c)(1−a))

(a(1−c)+c)(b(1−c)+c)(a(1−b)+b)(c+a(1−c)(1−b)+b(1−c)) , (C.10)

S9 = (a−b)c2
(c+a(1−c))(c+b(1−c))(c+a(1−c)(1−b)+b(1−c)) . (C.11)

We know thatS9 is positive, implying thatπC(0, 1, 0) > πC(0, 0, 1). Besides, in
order to evaluate the sign in Eq. (C.9) we need only to analyze the numerator,as the
denominator is always positive. Defining the functiong(a, b, c) = (1 − c)(1 − b)2a2 −
ba(1− bc)− b2c we have

• If g(a, b, c) > 0: S7 < 0, S9 > 0

{

πC(0, 1, 0) > πC(1, 0, 0),
πC(0, 1, 0) > πC(1, 0, 0),

−→ PC0 = PCB = 0, PCA = 1

• If g(a, b, c) < 0: S7 > 0, S9 > 0

{

πC(1, 0, 0) > πC(0, 1, 0),
πC(0, 1, 0) > πC(1, 0, 0),

−→ PCA = PCB = 0, PC0 = 1

Hence we see that depending on the sign ofg(a, b, c) the equilibrium point will be
given by the strongest opponent strategyPAB = PBA = PCA = 1 wheng(a, b, c) > 0
or byPAB = PBA = PC0 = 1 wheng(a, b, c) < 0.

C.3 Convincing opinion

Following the same methodology as in previous sections we can write down the solutions
corresponding to the convincing probabilities of opinions A, B and C in terms of the
strategies adopted by the players

πA(1, 0, 0) =
a2(a3−(b(PBA−3)+c(PCA−3))a2+c(c−2b(PBA+PCA−4))a+b c(−PCAb+b−c(PBA−3)))

(a+b)2(a+c)2(a+b+c)
,

πA(0, 1, 0) =
a2(a3−(b(PBA−3)+c(PCA−3))a2+b(b−2c(PBA+PCA−4))a+b c(−PBAc+c−bPCA−3)))

(a+b)2(a+c)2(a+b+c)
,

πA(0, 0, 1) =
a2(a3−(b(PBA−3)+c(PCA−3))a2+c(c−2b(PBA+PCA−4))a+bc(−PCAb+b−c(PBA−3)))

(a+b)2(a+c)2(a+b+c)
,

πB(1, 0, 0) =
b2

“

b−a(PAB−3)

(a+b)2
+

cPCA
(b+c)2

”

a+b+c ,
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πB(0, 1, 0) =
b2((b+c(PCA+2))a2−((PAB−3)b2+2c(PAB−PCA−3)b+c2(PAB−1))a+b2(b+c(PCA+2)))

(a+b)2(b+c)2(a+b+c)
,

πB(0, 0, 1) =
b2

“

b−a(PAB−3)

(a+b)2
+

cPCA
(b+c)2

”

a+b+c ,

πC(1, 0, 0) =
c2(bPBA(a+c)2+(b+c)2(c+a(PAB+2)))

(a+c)2(b+c)2(a+b+c)
,

πC(0, 1, 0) =
c2((c+b(PBA+2))a2+(PABb

2+2c(PAB+PBA+2)b+c2(PAB+2))a+c2(c+b(PBA+2)))
(a+c)2(b+c)2(a+b+c)

,

πC(0, 0, 1) =
c2(bPBA(a+c)2+(b+c)2(c+a(PAB+2)))

(a+c)2(b+c)2(a+b+c)
. (C.12)

And the termsSi read

S1 =
a2(c− b)(2bc+ a(b+ c))

(a+ b)2(a+ c)2(a+ b+ c)
,

S2 = 0,

S3 =
a2(b− c)(2bc+ a(b+ c))

(a+ b)2(a+ c)2(a+ b+ c)
,

S4 = − b2(a− c)(bc+ a(b+ 2c))

(a+ b)2(b+ c)2(a+ b+ c)
,

S5 = 0, (C.13)

S6 =
b2(a− c)(bc+ a(b+ 2c))

(a+ b)2(b+ c)2(a+ b+ c)
,

S7 = − (a− b)c2(2ab+ (a+ b)c)

(a+ c)2(b+ c)2(a+ b+ c)
,

S8 = 0,

S9 =
(a− b)c2(2ab+ (a+ b)c)

(a+ c)2(b+ c)2(a+ b+ c)
.

By the way markmanshipsa, b and c are defined, we see thatS1 < 0, S3 > 0
and thusπA(0, 1, 0) > πA(1, 0, 0) = πA(0, 0, 1); besides,S4 < 0 andS6 > 0 im-
plying thatπB(0, 1, 0) > πB(1, 0, 0) = πB(0, 0, 1); and finallyS7 < 0 andS9 > 0
and soπC(0, 1, 0) > πC(1, 0, 0) = πC(0, 0, 1). Hence, there is only one equilib-
rium point in the opinion model that corresponds to thestrongest opponent strategy:
PAB = PBA = PCA = 1.
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