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Abstract

We study transition matrices for projected dynamics in the energy-magnetization space, mag-

netization space and energy space. Several single-spin-flip dynamics are considered, such as the

Glauber and Metropolis canonical ensemble dynamics, and the Metropolis dynamics for three mul-

ticanonical ensembles: the flat energy-magnetization histogram, the flat energy histogram and the

flat magnetization histogram. From the numerical diagonalization of the matrices for the projected

dynamics we obtain the sub-dominant eigenvalue and the largest relaxation times for systems of

varying size. Although the projected dynamics is an approximation to the full state space dynam-

ics, comparison with some available results, obtained by other authors, shows that projection in

the magnetization space is a reasonably accurate method to study the scaling of relaxation times

with system size. For each system size, the transition matrices for arbitrary single-spin-flip dynam-

ics are obtained from a single Monte-Carlo estimate of the infinite temperature transition-matrix.

This makes the method an efficient tool to evaluate the relative performance of any arbitrary local

spin-flip dynamics. We also present new results for appropriately defined average tunneling times

of magnetization and compare their finite-size scaling exponents with results of energy tunneling

exponents available for the flat energy histogram multicanonical ensemble.

PACS numbers: 02.50.-r, 02.70.Tt, 05.10.Ln, 64.60.Ht.
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I. INTRODUCTION

The dynamical critical behavior of statistical physics models is a problem that attracts

considerable attention[1–4]. From a fundamental point of view one is interested in the iden-

tification and characterization of the different dynamical universality classes, known to be

more restricted than the static ones. Different algorithms for canonical ensemble simula-

tions have been proposed belonging to different universality classes[5, 6]. Still, increasing

relaxation times with system size are a major limitation to the statistical precision of the

numerical estimates obtained in the simulations. New algorithms, aiming to estimate the

number of states of a given energy, have also been proposed[7–9]. These algorithms simulate

a multicanonical ensemble with the advantage that a single simulation provides information

on the properties of the system in a wide temperature range. However, such algorithms also

suffer from slowing down with increasing system size and the study of their dynamical prop-

erties with simple and efficient methods is essential to ascertain their relative performance.

Many numerical methods have been used to study stochastic dynamics of statistical

physics models. These methods measure the largest relaxation time of the dynamics, a time

which increases with system size according to dynamic finite-size scaling theory. The exact

diagonalization of the transition matrix in the full state space can be done only for very small

systems. To overcome this limitation, one can instead estimate by Monte-Carlo methods

the auto-correlation function of the slowest observable in the system, that whose long time

behavior gives the largest relaxation time. Although this method is free of systematic errors,

one needs to consider very long simulation runs to get a reasonably small statistical error in

the auto-correlation function. Several other methods have been used, including a variational

technique[3, 4] allowing the estimation of the sub-dominant eigenvalue of the full state-space

transition matrix.

Projected dynamics was proposed to study metastability and nucleation in the Ising

model[10–15]. The idea behind this method is to derive a dynamics in a restricted space

of one or several variables. Choosing appropriately such variables and neglecting non-

Markovian memory terms one hopes that the resulting approximated Markovian dynamics

is a good approximation to the full state space dynamics. The usefulness of the method

has been proved in the context of the study of metastability in the Ising model where the

direct dynamic Monte-Carlo simulation is unable to cope with the large time-scale of the
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problem[14]. The non-lumpability of the full state-space transition rate matrix with respect

to energy and magnetization classification of the states leads to the upcoming of mem-

ory terms when projecting the dynamics in these restricted spaces[14, 18]. To recover the

Markovian character of the dynamics, these memory terms are neglected and the resulting

projected dynamics becomes only approximated.

In this article we study the projected dynamics behavior for the square lattice, nearest-

neighbor, Ising model, in the energy and magnetization spaces for two local spin flip algo-

rithms. Namely, the Glauber and the Metropolis et al.[16, 17] critical canonical ensemble

dynamics, and three multicanonical algorithms: the flat energy-magnetization histogram,

the flat energy histogram and the flat magnetization histogram dynamics. Although the

dynamics associated with the transition rate matrices in these restricted spaces are only

approximate, we show, by comparison with full state space results, that they can be used

to get reasonably accurate estimates of the dynamical properties. From the numerical di-

agonalization of these matrices, and the determination of their sub-dominant eigenvalue,

we compute the largest relaxation times for systems of varying size. The method proposed

can be applied to other models and other dynamics thus leading to a simple and efficient

estimation of the scaling with system size of the largest relaxation time. Such studies are

needed to assess the relative performance of Monte-Carlo simulation algorithms.

Projected dynamics transition rate matrices were also considered in the context of the

transition matrix Monte-Carlo[19, 20]. Using an acceptance probability written in terms of

the infinite temperature energy space transition matrix it is possible to perform simulations

that visit with equal probability the spectra of energies of the model, thus doing flat en-

ergy histogram simulations. For the case of the Ising model that we consider in this work

this algorithm is easily generalized to simulations with a flat energy and magnetization his-

togram. We use this flat energy-magnetization histogram ensemble to numerically estimate

the infinite temperature transition rate matrix in the space of energy and magnetization

from which all the results presented in this work were derived.

For multicanonical algorithms, average tunneling times between the ground-state and

states with higher energy (for example zero energy) have been considered[21]. It has been

shown that these tunneling times may scale differently with system size when we consider

going up (from a low energy to a high energy) or going down in the energy[22]. We present

new results, using projected dynamics, for average tunneling times of magnetization in
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several multicanonical ensembles that show a similar behavior. We compare our results

with those of other authors for tunneling times in the energy space.

The new method proposed in this paper to study approximately the local dynamics is effi-

cient because: (1) the dynamic exponents estimates are reasonably accurate when compared

with corresponding quantities obtained by other methods; (2) any, arbitrary, single-spin-flip

dynamics can be studied from a single Monte-Carlo estimation of an infinite temperature

transition matrix in the energy-magnetization space (corresponding to acceptance of all

the proposed configurations); the consideration of a specific dynamics comes only from the

weighting of this matrix with the corresponding acceptance probability; (3) the dimensional

reduction achieved by the projection allows the application of matrix diagonalization tech-

niques for bigger system sizes.

The outline of the paper is as follows: in section II we discuss the projection procedure, in

section III we show how the infinite temperature transition matrix is computed from Monte-

Carlo simulations for different system sizes and we define the projected transition matrices

for the different ensembles and dynamics considered, in section IV we present results for

the largest relaxation times and the corresponding dynamical exponents, in section V we

define and compute tunneling times in the magnetization space and their finite-size scaling

exponents and, finally, in section VI we summarize our main conclusions.

II. PROJECTED DYNAMICS

The Markov chain master equation in the full state space is:

dP (~σ, t)

dt
=

∑

~σ′

[W (~σ, ~σ′)P (~σ′, t) − P (~σ, t)W (~σ′, ~σ)], (1)

where ~σ denotes a state of the system, P (~σ, t) is the probability for the system to be in a

given state at time t and W (~σ, ~σ′) is the transition rate from state ~σ′ to ~σ. In the case of

an Ising model ~σ ≡ (σ1, ..., σN) specifies the state of each of N spins of the system, σi, that

can take two values, σi = ±1. The transition rate obeys detailed balance

Pst(~σ)W (~σ′, ~σ) = Pst(~σ
′)W (~σ, ~σ′) (2)
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relatively to a stationary distribution, Pst(~σ), which we consider to be an arbitrary function

Pst(E(~σ), M(~σ)), of the energy E(~σ) = −∑

〈i,j〉 σiσj (where the sum is over all neighbor

pairs 〈i, j〉), and the magnetization M(~σ) =
∑

i σi.

The detailed balance equation can be summed for all ~σ states with a given energy

E = E(~σ) and magnetization M = M(~σ), and all ~σ′ states with energy E ′ = E(~σ′) and

magnetization M ′ = M(~σ′), to obtain:

∑

~σ,~σ′

Pst(~σ)W (~σ′, ~σ)δE,E(~σ)δE′,E(~σ′)δM,M(~σ)δM ′,M(~σ′) = (3)

∑

~σ,~σ′

Pst(~σ
′)W (~σ, ~σ′)δE,E(~σ) δE′,E(~σ′) δM,M(~σ)δM ′,M(~σ′)

being δa,b the Kronecker delta. Since the stationary distribution is assumed to be a function

of the energy and magnetization only, it can be taken out of the summation, giving

p(E, M)T (E ′, M ′; E, M) = p(E ′, M ′)T (E, M ; E ′, M ′) (4)

where p(E, M) is the stationary probability for a macrostate characterized by an energy E

and a magnetization M , obtained by multiplying the corresponding microstate probability

Pst(E, M) by Ω(E, M), the number of states with energy E and magnetization M . In this

expression, we have defined,

T (E ′, M ′; E, M) =
1

Ω(E, M)

∑

~σ,~σ′

W (~σ′, ~σ)δE,E(~σ)δE′,E(~σ′)δM,M(~σ)δM ′,M(~σ′) (5)

as the transition matrix between energy and magnetization states (E, M) and (E ′, M ′).

Summing the master equation in the same way we would obtain the evolution equation for

the time dependent probability p(E, M, t) for the system to have energy E and magnetization

M at time t:

dp(E, M, t)

dt
=

∑

E′,M ′

[T (E, M ; E ′, M ′; t)p(E ′, M ′, t) − p(E, M, t)T (E ′, M ′; E, M ; t)], (6)

with a time-dependent transition matrix:

T (E ′, M ′; E, M ; t) =
1

p(E, M, t)

∑

~σ,~σ′

P (~σ, t)W (~σ′, ~σ)δE,E(~σ)δE′,E(~σ′)δM,M(~σ)δM ′,M(~σ′) (7)
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This time dependent matrix approaches the transition rate matrix in Eq. (5) for large times

when P (~σ, t)/p(E, M, t) → 1/Ω(E, M). The so-called projected dynamics neglects this time

dependence and considers instead the Markov process associated with T (E ′, M ′; E, M):

dp(E, M, t)

dt
=

∑

E′,M ′

[T (E, M ; E ′, M ′)p(E ′, M ′, t) − p(E, M, t)T (E ′, M ′; E, M)]. (8)

Starting with the projection operator technique, in a discrete time formulation, the approx-

imation can be regarded as equivalent to dropping out some memory terms[12]. Note that

the dynamics of the Markovian process associated with these transition matrices would be

equivalent to the full state space dynamics if it were lumpable[18] with respect to a classi-

fication of the states in terms of energy and magnetization. However, this is known not to

be the case for canonical ensemble dynamics[14], although the flat magnetization ensemble

that we study later is lumpable with respect to a magnetization classification of the states.

Further projection on the energy space can be done by summing for all M and M ′ the

detailed balance condition in the E, M space (Eq.4) :

p(E)
∑

M,M ′

p(E, M)

p(E)
T (E ′, M ′; E, M) = p(E ′)

∑

M,M ′

p(E ′, M ′)

p(E ′)
, T (E, M ; E ′, M ′) (9)

which is a detailed balance relation p(E)T (E ′; E) = p(E ′)T (E; E ′) in the energy space with

a projected transition matrix

T (E ′; E) =
∑

M,M ′

p(E, M)

p(E)
T (E ′, M ′; E, M). (10)

Note that for the ensembles where Pst(~σ) depends just on the energy (and not on the

magnetization) the previous expression can be simplified to:

T (E ′; E) =
1

Ω(E)

∑

M,M ′

Ω(E, M)T (E ′, M ′; E, M) =
1

Ω(E)

∑

~σ,~σ′

W (~σ′, ~σ)δE,E(~σ)δE′,E(~σ′) (11)

with Ω(E) =
∑

M Ω(E, M) is the number of states with energy E. If Pst(~σ) depends on

energy and magnetization simultaneously the above simplification can not be done.

The transition matrix T (E; E ′) can be used to define a Markov chain dynamics in the

restricted energy space:

dp(E, t)

dt
=

∑

E′

[T (E; E ′)p(E ′, t) − p(E, t)T (E ′; E)]. (12)
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In the same way we can obtain a detailed balance relation in the magnetization space:

p(M)
∑

E,E′

p(E, M)

p(M)
T (E ′, M ′; E, M) = p(M ′)

∑

E,E′

p(E ′, M ′)

p(M ′)
T (E, M ; E ′, M ′), (13)

which is a detailed balance relation p(M)T (M ′; M) = p(M ′)T (M ; M ′) in the magnetization

space with a projected transition matrix

T (M ′; M) =
∑

E,E′

p(E, M)

p(M)
T (E ′, M ′; E, M). (14)

The transition matrix T (M ; M ′) can be used to define a Markov chain dynamics in the

restricted magnetization space:

dp(M, t)

dt
=

∑

M ′

[T (M ; M ′)p(M ′, t) − p(M, t)T (M ′; M)]. (15)

Regardless of the approximation assumed in the projected dynamics, the detailed balance

relations satisfied by the transition matrices defined above assure that the long time behavior

of the related stochastic processes defined by Eqs. (8), (12) and (15) are still characterized

by the correct stationary probability distributions p(E, M), p(E) and p(M), respectively.

In the following sections, we study single-spin-flip dynamics in the canonical ensem-

ble characterized by the stationary distribution at inverse temperature β, Pst(~σ) =

exp(−βE(~σ))/Z as well as three multicanonical ensembles with flat energy-magnetization,

flat energy and flat magnetization histograms with Pst(~σ) = 1/Ω(E, M), Pst(~σ) = 1/Ω(E)

and Pst(~σ) = 1/Ω(M), respectively. Note that Ω(M) =
∑

E Ω(E, M) is exactly known to

be Ω(M) =
(

N
N+M

2

)

and that an efficient numerical scheme (not used by us in the present

work) developed by Beale [23] allows to compute exactly Ω(E) for the two-dimensional Ising

model for moderate system sizes N . The number of states Ω(E, M) for the two dimensional

Ising model was also numerically calculated before by using an entropic sampling method

and the broad-histogram method[11, 24]. We are not aware of previous studies concerning

the flat magnetization ensemble studied in the present work.

III. NUMERICAL CALCULATION OF TRANSITION MATRICES

We now explain our method to compute numerically the transition matrices

T (E ′, M ′; E, M), T (E ′; E) and T (M ′; M) defined in Eqs. (5), (10) and (14), respectively.
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We start by recalling that for single-spin-flip dynamics the transition rate W (~σ′, ~σ) can be

separated in a proposal step and an acceptance step. In the proposal step we choose, with

equal probability, one of the spins of the system and propose to flip it. Thus a given system

state may have a non-zero transition rate to N other system states that differ in the state of

a single spin. In the acceptance step we accept the proposed configuration with a probability

a(E ′, M ′; E, M) that we assume depends only on the energy and magnetization of the initial

and final configurations.

Consider the detailed balance relation (4) when we sample with equal probability all the

states of the system. This is the case, for example, of the canonical ensemble Metropolis et

al. algorithm at infinite temperature when we accept all the proposed configurations. The

probability to measure an energy E and magnetization M is then equal to Ω(E, M)/2N

since all states have equal probability. Thus we can write the relation,

Ω(E, M)T∞(E ′, M ′; E, M) = Ω(E ′, M ′)T∞(E, M ; E ′, M ′), (16)

known as the broad-histogram equation[25, 26]. For a general single-spin-flip algorithm

characterized by a(E ′, M ′; E, M) we can write,

T (E ′, M ′; E, M) = T∞(E ′, M ′; E, M)a(E ′, M ′; E, M), (17)

with T∞(E ′, M ′; E, M) = 〈N(~σ, ∆E, ∆M)〉E,M/N the normalized average, in the constant

energy and magnetization ensemble, of the number of configurations N(~σ, ∆E, ∆M) with

energy E ′ = E + ∆E and magnetization M ′ = M + ∆M that can be obtained from con-

figuration ~σ by flipping a single spin. The idea of calculating the microcanonical average of

the number of possible updates from a state of energy E to a state of energy E ′ was first

introduced in [25, 26]. It was later shown[27] that, for an arbitrary reversible procedure for

updating a configuration (a proposal), not necessarily one that updates a single spin, an

equation similar to eq. (16) is always satisfied by the microcanonical average 〈N(~σ, ∆E)〉E
interpreted, more generally, as the average of the number of possible ways (independently

of the proposal probabilities) of changing the state of the system from one with energy E

to another with energy E ′ = E + ∆E.

The numerical determination of T∞(E ′, M ′; E, M) can be done from the estimator:

T∞(E ′, M ′; E, M) =
1

NHsim(E, M)

Nm
∑

k=1

N(~σk, ∆E, ∆M)δE,E(~σk)δM,M(~σk) (18)
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where the summation is done over the Nm configurations generated by the Monte-Carlo

procedure. Hsim(E, M) is the energy and magnetization histogram of the simulation. It

can be seen that this is the correct estimator, whatever the simulation ensemble[27] we are

using, by considering that,

〈N(~σ, ∆E, ∆M)〉E,M =
1

Ω(E, M)

∑

~σ

N(~σ, ∆E, ∆M)δE,E(~σ)δM,M(~σ) (19)

=

〈

N(~σ, ∆E, ∆M)δE,E(~σ)δM,M(~σ)

Psim(~σ)Ω(E, M)

〉

sim

where Psim(~σ) is the probability to visit a particular state in the simulation ensemble whose

averages are denoted by 〈. . . 〉sim and noting that Hsim(E, M) = NmPsim(~σ)Ω(E, M) with

Psim(~σ) dependent only on E and M .

For the two-dimensional square lattice, nearest-neighbor, Ising model each spin can have

between zero and four nearest neighbors in the same state of the spin. When this spin flips

there are five possible energy changes, ∆E, and two magnetization changes, ∆M . Thus,

one needs to count the number of spin flips that lead to a energy and magnetization change

in each of these possible ten classes.

In this work we have estimated T∞(E ′, M ′; E, M) by doing transition matrix Monte-

Carlo simulations in the above-mentioned Ising model of size N = L2 with an acceptance

probability a(E ′, M ′; E, M) = min
(

1, T∞(E,M ;E′,M ′)
T∞(E′,M ′;E,M)

)

. From eqs. (4) and (17) we can see that

this choice leads to a flat energy and magnetization histogram. The algorithm starts with an

initial estimate of T∞(E ′, M ′; E, M) that is improved as more configurations are generated.

We have used the n-fold way simulation algorithm of Kalos and Lebowitz[20, 28] and the

number of simulated spin flips per number of spins was 108 for each of the systems studied,

L = 3, ..., 21, 30. Note that, when one considers an n-fold way simulation, the histogram of

energy and magnetization, Hsim(E, M) is the average time spent in a given value of energy

and magnetization. This may differ from the average number of hits to a particular energy

and magnetization value. In this case, the expression (18) should be modified to weight each

of the generated configurations with the estimated average time spent in these configurations

(a small but systematic error arises in the results if this weighting is not done).

The projected transition matrices in the energy-magnetization space, T (E ′, M ′; E, M)

are obtained from the simulation estimates of T∞(E ′, M ′; E, M) by using eq. (17). We

consider the following dynamics: (1) the Metropolis canonical ensemble dynamics with
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a(E ′, M ′; E, M) = min (1, exp(−β(E ′ − E))) (2) the Glauber canonical ensemble dynam-

ics with a(E ′, M ′; E, M) = 1
2

(

1 − tanh(β
2
(E ′ − E))

)

(3) the flat energy and magnetiza-

tion histogram Metropolis dynamics with a(E ′, M ′; E, M) = min
(

1, T∞(E,M ;E′,M ′)
T∞(E′,M ′;E,M)

)

, (4) the

Metropolis flat energy dynamics (also known as entropic sampling) with a(E ′, M ′; E, M) =

min
(

1, Ω(E)
Ω(E′)

)

and (5) the Metropolis flat magnetization dynamics with a(E ′, M ′; E, M) =

min
(

1, Ω(M)
Ω(M ′)

)

.

For the energy-magnetization space with dimension (N +1)2× (N +1)2 we have obtained

results from the diagonalization of T (E ′, M ′; E, M) up to N = 82. For all the system sizes

studied we have found the stationary probabilities p(E, M) after solving numerically the

system of equations Eq.(8) in the steady state regime[35] :

∑

E′,M ′

[T (E, M ; E ′, M ′)p(E ′, M ′) − p(E, M)T (E ′, M ′; E, M)] = 0. (20)

For the flat energy histogram dynamics we need to know Ω(E) to construct the corre-

sponding acceptance probability. This quantity can be obtained from Ω(E, M) after the

solution of the homogeneous linear system of equations

∑

E′,M ′

[T∞(E, M ; E ′, M ′)Ω(E ′, M ′) − Ω(E, M)T∞(E ′, M ′; E, M)] = 0. (21)

Note that it is possible to compute,

T∞(E ′; E) =
∑

M ′,M

Ω(E, M)

Ω(E)
T∞(E ′, M ′; E, M), (22)

and write a(E ′, M ′; E, M) = min
(

1, T∞(E;E′)
T∞(E′;E)

)

for a flat energy histogram ensemble which

is completely equivalent to a(E ′, M ′; E, M) = min
(

1, Ω(E)
Ω(E′)

)

.

IV. LARGEST RELAXATION TIMES

We have considered a discrete time transition matrix defined as γ(E, M ; E ′M ′) =

T (E, M ; E ′M ′) for (E, M) 6= (E ′, M ′) and γ(E, M ; E, M) = 1 −
∑

E′,M ′ T (E ′, M ′; E, M)

for (E, M) ≡ (E ′, M ′). This corresponds to the Markov chain equation p(E, M, t + 1) =
∑

E′,M ′ γ(E, M ; E ′M ′)p(E ′, M ′, t). The stationary probability distribution corresponds to

an eigenvector with the largest eigenvalue 1. The second largest eigenvalue, λ, determines

the largest relaxation time in the system, τ = −1
N ln λ

. The division by N is needed in order
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for τ to be expressed in units of numbers of Monte-Carlo steps per total number of spins.

The relaxation times increase with system size as τ ∼ Lz , thus being characterized by a

dynamic exponent z.

We have studied the behavior of the projected dynamics at the critical point of the

square lattice Ising model, βcJ = 1
2
ln(1+

√
2) for Glauber and Metropolis et al. acceptance

probabilities. For Glauber dynamics, the eigenvalue results λT (M ;M ′) from matrix T (M ; M ′),

and λT (E,M ;E′M ′) from T (E, M ; E ′M ′) can be seen in Table I together with the eigenvalues

λW for the full state space dynamics obtained from [3, 4] using a variational method. For

small systems L = 3, 4, 5 we have also computed λT (E,M ;E′M ′) from an exact enumeration of

all the system states and the results are in close agreement with the ones obtained from the

Monte-Carlo estimation of T∞(E, M ; E ′, M ′). For given system side, L, the eigenvalues are

close to each other and are observed to obey the inequality λW > λT (E,M ;E′M ′) > λT (M ;M ′).

In Fig.1(a) we plot in a log-log scale the dependence with system size L of the magnetiza-

tion relaxation time τGl
M of the Glauber dynamics and τMet

M of the Metropolis et al. dynamics,

obtained from the sub-dominant eigenvalue of T (M ; M ′), together with the full state space

values τM of [3, 4]. In this graph, the fitted straight lines were obtained neglecting data

for L < 15 and have slopes zGl
M = 2.02, zMet

M = 2.00 and zM = 2.18. However, to obtain a

more reliable estimate of the exponents z a careful analysis taking into account corrections

to scaling is needed. We have considered the first order finite size correction to the leading

behavior[3, 4], τ ∼ Lz(1 + bL−2), by plotting in Fig.1(b) the local slope z = ln(τ(L+1)/τ(L))
ln((L+1)/L)

as a function of L−2. The extrapolation to the infinite system size limit yields zGl
M = 1.99,

zMet
M = 2.01 and zM = 2.165. The results for zGl

M and zMet
M seem to be compatible with

zGl
M = zMet

M = 2, while the result for zM is consistent with the best estimate of reference [4],

zM = 2.1660(10), thus excluding the Domany conjecture z = 2 with a logarithmic correc-

tion τ ∼ L2(1 + b lnL)[29], although further analysis[30] of the same data was not able to

categorically exclude the validity of the Domany conjecture.

In Fig.1(a) we also plot the energy relaxation time τGl
E for the Glauber dynamics, obtained

from the sub-dominant eigenvalue of matrix T (E; E ′). Note that we use now a linear scale

in the vertical axis and hence the observed behavior is τGl
E ∼ ln L. This behavior leads to a

critical exponent zGl
E = 0(log), in accordance with previously reported results[19].

In Fig. 2(a) we plot the magnetization relaxation times obtained from T (M ; M ′) for

the Metropolis et al. dynamics in the flat energy-magnetization ensemble, τE−M
M , the flat
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TABLE I: Sub-dominant eigenvalues of transition matrices for different system sides, L, and

Glauber dynamics. The second column lists values for the matrix W (~σ, ~σ′) taken from Ref. [3, 4].

The third and fourth columns are our results for the matrices T (M ;M ′) and T (E,M ;E′M ′) re-

spectively.

L λW Ref [3, 4] λT (M ;M ′) λT (E,M ;E′,M ′)

3 0.997409385126011a 0.9973901755 0.99740630184576a

0.9974063007

4 0.999245567376453a 0.9992429803 0.99924409354918a

0.9992441209

5 0.999708953624452a 0.9997066202 0.99970673172786a

0.9997067351

6 0.9998657194 0.9998635780 0.9998637800

7 0.9999299708 0.9999281870 0.9999284453

8 0.9999600854 0.9999586566 0.9999589090

9 0.9999756630 0.9999744986

10 0.9999843577 0.9999834244

11 0.9999895056 0.9999887396

12 0.9999927107 0.9999921039

13 0.9999947840 0.9999942741

14 0.9999961736 0.9999957520

15 0.9999971315 0.9999967823

16 0.9999978080 0.9999975119

17 0.9999982987 0.9999980505

18 0.9999986606 0.9999984474

19 0.9999989315 0.9999987550

20 0.9999991370 0.9999989750

21 0.9999992955 0.9999991723

30 0.9999998016

aExact: λW from diagonalization of the full state matrix W and λT (E,M ;E′,M ′) obtained from diagonaliza-

tion of the exact projection matrix T (E, M ; E′, M ′) obtained from the enumeration of all the states.
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FIG. 1: (a) Magnetization relaxation times τM for Glauber dynamics obtained from Ref. [4] (⋄)

and from the sub-dominant eigenvalue of the matrix T (M ;M ′) (+). In the latter case, we also

plot the corresponding values for the Metropolis et al. dynamics (�). The fitted straight lines to

the log-log plot were obtained neglecting data for L < 15 and have slopes zM = 2.18, zGl
M = 2.02

and zMet
M = 2.00. The graph also displays the energy relaxation time τGl

E for Glauber dynamics

obtained from the matrix T (E;E′) (◦). In this case, the observed behavior is τGl
E ∼ ln L.

(b) Estimations of the dynamic critical exponent from the local slopes of the graph in (a) as

a function of L−2. The symbols are as in (a). The extrapolated exponents are zGl
M = 1.99,

zMet
M = 2.01 and zM = 2.165.

energy ensemble, τE
M , and the flat magnetization ensemble, τM

M . The fitted straight lines

(excluding again data for L < 15) in the log-log plot have slopes zE
M = 2.69, zM

M = 1.99

and zE−M
M = 2.11. As before, better estimates of these exponents including correction to

scaling terms are obtained from the extrapolation to infinite size limit of the local slopes.

The analysis, performed in Fig. 3(a), yields zE
M = 2.68, zM

M = 2.00 and zE−M
M = 2.08.

The value for zE
M is compatible with the available[31] result z = 2.80(13) obtained by a
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Monte Carlo estimate of the convergence time of the time-dependent energy histogram to

the stationary flat distribution of the energy. The data for zE−M
M show an even-odd effect

and it is important to do separate estimates for even and odd system sides.

Note that the full state transition rate matrix W , in the flat magnetization ensemble is

lumpable with respect to the classification of the states according to their magnetization

and, consequently, the result zM
M = 2.00 does not suffer from the approximation inherent to

the projection procedure. A sufficient and necessary condition for lumpability[18], is that

the total probability to go from a state belonging to a given magnetization class to another

class with different magnetization is the same for every state in the starting class. For each

state in the starting class with magnetization M there are n± states in the final class M ± 2

where n± is the number of up/down spins in the initial configuration. The probability to

move to each of these final states in the final class has a constant value that depends only

on the initial M and on the final M ± 2. All the states in the starting class have the same

number of up spins and down spins so the probability to move to M ± 2 is the same for

every state in the starting class. The matrix T (M ; M ′) is a tridiagonal symmetric matrix

with matrix elements given by, T (M + 2; M) = T (M ; M + 2) = 1+n+

N
for M < 0, and

T (M + 2; M) = T (M ; M + 2) = n−

N
for M ≥ 0.

Finally, in Fig. 2(b) we plot the energy relaxation times obtained from T (E; E ′) for the

Metropolis et al. dynamics in the same ensembles than in the case of the magnetization.

The slopes of the fitted straight lines (again excluding L < 15) are zE−M
E = 2.14, zE

E = 2.13

and zM
E = 1.99. The more detailed analysis taking into account correction to scaling terms,

shown in Fig. 3(b), yields zE
M = 2.00. In the case of zE−M

E , odd and even side extrapolations

are very close to each other and give zE−M
E = 2.07. The extrapolations for zE

E for odd and

even system sides give zE
E = 2.07 and zE

E = 1.99, respectively. The difference between these

two estimates may be a sign of the presence of corrections to scaling not properly accounted

for by our analysis.

V. MAGNETIZATION TUNNELING TIMES

As a measure of performance for multicanonical methods the average tunneling times

were introduced[21]. These tunneling times measure the time required to sample the whole

phase space and scale with system size differently than the relaxation time. It was shown
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FIG. 2: Relaxation times obtained for the Metropolis et al. dynamics in the flat energy-

magnetization ensemble (◦), flat magnetization ensemble (∗) and flat energy ensemble (×). In

(a) we plot the magnetization relaxation times τM obtained from T (M ;M ′) and the fitted straight

lines have slopes zE−M
M = 2.11, zE

M = 2.69 and zM
M = 1.99. In (b) we plot the energy relaxation

times τE obtained from T (E;E′) and the fitted straight lines have slopes zE−M
E = 2.14, zE

E = 2.13

and zM
E = 1.99. Both in (a) and (b) data for L < 15 were neglected in the fits.

that it is important to distinguish between tunneling from ground-sate to maximum energy,

the up direction, and from the high energy to the ground-state, the down direction[22].

All the tunneling times reported by us are calculated for the projected dynamics associ-

ated with T (M ; M ′). We calculate the average time, τt for the system to go from magne-

tization M = −N to M = N . We also consider two other average times: The time τu for

the system to go from M = −N to zero magnetization, and the time τd for the system to

go either to M = +N or M = −N when it starts from M = 0. The definitions of τu and τd

apply only to systems with even L (and N) such that M = 0 is an accessible value of the

magnetization.
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FIG. 3: (a) Dynamic exponent estimates zE−M
M (◦), zE

M (×), zM
M (∗) from local slopes of the plots

shown in Fig. 2 (a) as a function of L−2. For the estimates for the energy-magnetization flat

multicanonical ensemble we made separate estimations for even and odd L system sides. The

infinite system size extrapolations give zE−M
M = 2.08, zE

M = 2.68 and zM
M = 2.00.

(b) Dynamic exponent estimates zE−M
E (◦), zE

E (×), zM
E (∗) from local slopes of the plots shown

in Fig. 2(b) as a function of L−2. For the magnetization flat multicanonical ensemble, the result

is zM
E = 2.00. For the energy-magnetization flat multicanonical ensemble separate even and odd L

system sides estimates coincide and give zE−M
E = 2.07. For the flat energy ensemble extrapolations

from odd and even size yield zE
E = 2.07 and 1.99, respectively.

The tunneling times above defined obey the relation τu + τd = τt/2 that follows from the

following simple argument: For the system to go from M = −N to M = N it has to reach

M = 0 at some point. It will do so for the first time using an average time τu. Then with

probability 1/2 it will reach for the first time M = N and the tunneling time would be τu+τd

or it will return to M = −N and it will reach later M = N taking a time τt. Consequently

the tunneling times obey the relation 1
2
(τu + τd) + 1

2
τt = τt. This argument uses the fact
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that the matrix T (M ; M ′) has the symmetry property T (M ±2; M) = T (−M ∓2;−M) and

so the walk along positive values of the magnetization has the same statistical properties of

the walk along negative values of the magnetization.

The time to go from M = −N to M = N can be easily computed taking advantage of

the fact that T (M ; M ′) is non zero only when M = M ′±2 and M ′ = M . If we do not allow

transitions from M = N to M = N − 2 the M = N becomes an absorbing site for every

walk along the magnetization axis meaning that it will end there upon a first visit. Defining

h(M) as the average time spent at magnetization value M [14], we can write:

h(M − 2)T (M ; M − 2) − h(M)T (M − 2; M) = 1 (23)

which means that the difference between the average number of jumps in the positive direc-

tion (M −2 → M) and the average number of jumps in the negative direction (M → M −2)

should be equal to one since the system will eventually reach M = N by moving one time

in excess in the positive direction through the bond connecting the sites M − 2 and M . At

M = N there are no jumps in the negative direction and so h(N − 2)T (N ; N − 2) = 1. It

is then simple to calculate h(M) and the average tunneling time for the system to go from

M = −N to M = N is given by τt =
∑M=N−2

M=−N h(M).

The time τu to reach for the first time M = 0 starting from M = −N is obtained using

the recursion (23) together with the equation h(−2)T (0;−2) = 1 to get τu =
∑M=−2

M=−N h(M).

Finally, the average time required to start from M = 0 and reach for the first time either

M = −N or M = N , τd is obtained from the recursion

h(M)T (M − 2; M) − h(M − 2)T (M ; M − 2) = 1 (24)

with a modified rate T (−2; 0) equal to T (−2; 0)+T (2; 0) and h(−N +2)T (−N ;−N +2) = 1.

The average time τd is then given by τd =
∑M=0

M=−N+2 h(M). The average tunneling times

obtained by this method could also have been obtained from the calculation of the probability

of first visit to the absorbing site that can be computed from the eigenstates and eigenvectors

of the associated absorbing Markov chain matrix (see [22]).

The tunneling times are characterized by dynamic exponents[21], τt ∼ Ld+zt , τu ∼ Ld+zu ,

τd ∼ Ld+zd. The relation between these tunneling times imply that zt is equal to the biggest

of the two exponents, zu and zd, zt = max(zd, zu). Note that the tunneling times reported

by us are measured in units of lattice sweeps and not in units of site updates.
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In Fig. 4(a) we show the size dependence of the tunneling times, τt, τu and τd for the

Metropolis et al. dynamics in a flat magnetization-energy histogram ensemble obtained from

the matrix T (M ; M ′). We see that τt ∼ τd ≫ τu. A direct fit to the log-log plot gives scaling

exponents zu = 0.15, zt = zd = 2.12. Note that for a random walk in the magnetization

axis a value for these exponents equal to 0 is expected. The correction to scaling terms

are analyzed in Fig. 4(b) where we show the local slopes for the plots in Fig. 4(a) as a

function of L−2. The estimates for zt and zd seem to follow a straight line predicting an

infinite system value 2.11 and 2.08, respectively. The infinite size extrapolation for zu is 0.14,

which predicts a scaling τu ∼ L2.14 close to the exponent of the relaxation time zE−M
M = 2.08

reported in the previous section. This behavior is similar to the one found in [22] where τu

(in the energy space) was found to scale like the relaxation time of the system.

In Fig. 5(a) we show the size dependence of the tunneling times, τt, τu and τd for

the Metropolis et al. dynamics in a flat energy histogram ensemble obtained from the

matrix T (M ; M ′). The slopes of the fitted straight lines give zt = 0.69, zu = 0.64 and

zd = 0.63. The result for zt can be compared with the value 0.78 reported in Ref. [32] and

the value 0.743(7) reported in Ref. [21] by measuring average times for energy excursions. An

exponent zu = 0.6, also obtained from Monte-Carlo estimates of energy tunneling times was

previously reported[33] in very good agreement with our result. In Fig. 5(b) we make infinite

size extrapolations giving, zt = 0.70 and 0.65 for odd and even system sides, respectively,

zu = 0.63 and zd = 0.66.

Finally, we consider the Metropolis et al. dynamics for the flat magnetization histogram

ensemble. For this case it is possible to compute analytically the tunneling times from the

recursion relations given above, Eqs. (23,24) and the knowledge of the matrix T (M ; M ′).

The analytical results are τu = N/2, τt = (N + 1)H(N/2) and τd = 1
2

(

(N + 1)H(N/2)−N
)

where, H(n) =
∑n

k=1 1/k is the Harmonic number. Using the known asymptotic result,

for large n, H(n) ∼ ln n + γ where γ = 0.5772156649... is the Euler constant we have

asymptotic expressions for the tunneling times that predict, τt/N ∼ τd/N ∼ lnN and the

tunneling exponents are, zt = zd = zu = 0. In Fig. 6(a) we compare the numerical results

for the tunneling times, τt, τu and τd with the analytical results. Note that, because of the

logarithmic dependence of τt and τu the estimates for the exponents zt and zd that we could

obtain for the slopes of the data shown in Fig. 6(a) give effective values around 0.35 that

would slowly approach zero only if larger systems were considered.
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FIG. 4: (a) Tunneling times, τt (◦), τu(+) and τd (*) as a function of system size L for the

Metropolis et al. dynamics in a flat magnetization-energy histogram ensemble obtained from the

matrix T (M ;M ′). The fitted straight lines were obtained neglecting data for L < 15 and have

slopes, zt = 2.12, zu = 0.15 and zd = 2.12, respectively. In (b) we plot the corresponding local

slopes as a function of L−2. Even and odd system sides were treated separately. The infinite

system extrapolation gives, zt = 2.11, zu = 0.14 and zd = 2.08.

From the three multicanonical ensembles studied we see that the flat magnetization en-

semble is the one with smaller tunneling exponents and relaxation time exponent. Recently,

it was shown that it is possible to optimize the ensemble in multicanonical simulations such

that the tunneling exponent zt is also reduced to zero[32, 34].

VI. CONCLUDING REMARKS

We have shown that projected dynamics in the magnetization space is a reasonably good

approximation to the full state space single-spin-flip dynamics studied in this work: canon-
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FIG. 5: (a) Tunneling times, τt (◦), τu(+) and τd (*) as a function of system size L for the Metropolis

et al. dynamics in a flat energy histogram ensemble obtained from the matrix T (M ;M ′). The

fitted straight lines were obtained neglecting data for L < 15 and have slopes, zt = 0.69, zu = 0.64

and zd = 0.63, respectively. In (b) we plot the corresponding local slopes as a function of L−2. For

the zt estimates even and odd system sides were treated separately. The infinite size extrapolations

are, zt = 0.70 and 0.65 for odd and even system sides, respectively, zu = 0.63 and zd = 0.66.

ical ensemble Glauber and Metropolis et al. dynamics and three multicanonical ensemble

dynamics with flat energy-magnetization, flat energy and flat magnetization histograms. In

Table II we have summarized our infinite size extrapolations of the exponents for the re-

laxation time and for the magnetization tunneling times. The energy projected dynamics

is generally a worse approximation being not able to preserve the power-law size increase

of the relaxation time for the critical canonical ensemble dynamics. From all the studied

dynamics only the flat energy histogram dynamics show a z exponent clearly larger than 2

and near 2.7. For the case of the flat magnetization histogram the projection in the magne-

tization space is exact and it is possible to obtain analytical results for the tunneling times
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FIG. 6: (a) Tunneling times, τt (◦), τu(+) and τd (*) as a function of system size L for the

Metropolis et al. dynamics in a flat magnetization histogram ensemble obtained from the matrix

T (M ;M ′). The lines are the analytical asymptotic results given in the text.

TABLE II: Summary of the values obtained, for each dynamics, of the relaxation time dynam-

ical exponent, from magnetization projection, zM , and energy projection, zE and magnetization

tunneling exponents, zu, zd and zt obtained from magnetization projection (see text for details).

Dynamics Relaxation Time Exponents Magnetization Tunneling Exponents

zM zE zu zd zt

Critical Glauber 1.99 0(log) — — —

Critical Metropolis 2.01 0(log) — — —

flat E-M 2.08 2.07 0.14 2.08 2.11

flat E 2.68 1.99-2.07 0.63 0.66 0.65-0.70

flat M 2.00 2.00 0 0 0
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predicting a zero value for the exponents, zt, zd and zu. The tunneling exponents, zt (and

zd) for the energy and magnetization flat histogram ensemble are much bigger, zt = zd ∼ 2

and larger than the exponent zu = 0. For the flat energy histogram dynamics these three

exponents are not very different and the estimates fall between the values, zu ∼ 0.63 and

zt ∼ 0.70 for odd system sides. These results were obtained from the tunneling properties of

the projected dynamics in the magnetization space that were found to be in rough agreement

with ones obtained by independent methods for excursions in the energy space for the flat

energy multicanonical ensemble.

Finally, the results show that the evaluation of the relative performance of single-spin-

flip dynamics in Ising like models can be done very efficiently by studying the projected

dynamics in the magnetization space: the approximation gives reasonably accurate dy-

namic exponents; any, arbitrary, single-spin-flip dynamics can be studied from Monte-Carlo

estimations of T∞(E, M ; E ′, M ′) for several system sizes in the energy-magnetization space

and the large dimensional reduction achieved by the projection in the magnetization space

allows the application of matrix diagonalization techniques for bigger system sizes. Further-

more, the application of projection methods to cluster dynamics in Ising models and also to

other models projected along their slowest mode may be of considerable interest.
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