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Excitable media in open and closed chaotic flows
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We investigate the response of an excitable medium to a localized perturbation in the presence of a two-
dimensional smooth chaotic flow. Two distinct types of flows are numerically considgyedandclosed For
both of them three distinct regimes are found, depending on the relative strengths of the stirring and the rate of
the excitable reaction. In order to clarify and understand the role of the many competing mechanisms present,
simplified models of the process are introduced. They are one-dimensional baker-map models for the flow and
a one-dimensional approximation for the transverse profile of the filaments observed in the concentration
patterns.
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I. INTRODUCTION whole extended system will behave homogeneously. Another
effect, in this case present for slow stirring, is that the fronts
Excitable medig1-3] are extended systems exhibiting a would be deformed by the flow and eventually be broken
variety of pattern formation phenomena. They are often of10]. A study covering the full range of stirring intensities
chemical or biological nature, although they can also beVas performed in Re{.11], in the framework of flows lead-
found i othercontextf., Each spatal poin i an exc. 196 <haole avecton1) Avang o et e
ablg medium. is.d.escribe_d by a dynam_ical system in WhiChwhich the whole system excites coherentl)? ’
activator andinhibitor variables can be identified. Tleeti-

X : : . In this paper we further analyze the situation addressed in
vator displays some kind of autocatalytic growth behavior, Ref.[11], that is, excitable media under the effect of chaotic
but the presence of thiahibitor controls it so that the dy- ’ ;

. : _ ) advection, and extend it by considering also stirring by open
namical system has a stable fixed point as unique globgloys As a striking result, we find situations in which exci-

attractor. The essence of the excitqbility phenom_enon is theytion persists indefinitely in the system when stirred by an
presence of a threshold, such that if the system is perturbeghen flow, whereas the excitation process is a transient both
above it, the system variables reach the stable fixed poininder closed flows and in the absence of stirring. Addition-
only after a large excursion in phase space. This behaviof|ly, a number of simplified one-dimensional models are in-
usually appears when the activator has a temporal respong@duced and used to gain insight and analytical predictions
much faster _than the inhibitor, whlch_then takes some timegy, the dynamical processes involved. We mention that stud-
before stopping the growth of the activator. o ies in the same spirit than ours but for the different case of
When different parts of a system are coupled diffusively, achemical reactions of autocatalytic or bistable type can be
local perturbation excites neighboring points, and as a resuliond in Ref.[13].
the excitation propagates through the system as a wave The paper is organized as follows: In Sec. Il we present
(called autowaveor front). This is a global phenomenon in the pasic framework and the chemical and two-dimensional
the sense that all the points in the system will be reached by models(closed and opento be used. Section IIl de-
the wave and thus experience the excitation-deexcitatiogerines numerical results for them. Section IV introduces
cycle, but is noncoherent, since only a small part of the syspne-dimensional simplified models that help to understand

tem (the frond is excited at each time. _the above numerical results, and our conclusions are pre-
In many situations the excitable dynamics takes place in @gnted in Sec. V.

fluid environment. One such example is the Belousov-

Zhabotinsky reactiofi6,7], intensively investigated in labo- Il. REACTION-ADVECTION-DIFFUSION DYNAMICS
ratory experiments. Another example is the population com-
petition occurring in oceans or lakes between different
plankton species: Truscott and Brindlg§] identified phy- Let us consideN interacting species with concentrations
toplankton as the fast activator and zooplankton as the slow,(r,t), i=1,2, ... N, transported by a flow(r,t) that we
inhibitor in models of biological aquatic population dynam- assume incompressible. The governing reaction-advection-
ics. In such situations, different parts of the system interactliffusion equations can be written as

not only via diffusion, but advective transport is present, and c

it can play also an important ro[®]. One of the most obvi- i _ .

ous efl?eci/s of stirringpby the flow is that the concentrations WH"VQ_}-‘(CL +- Cuiky, o k) +DiVEC,

would become more mixed and, for fast enough stirring, the (D)

A. General framework
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where theF(C, ... ,CniKy, ... Ky) describe the interac- for models of plankton dynamids4]. The FN model con-
tion dynamics of excitable type among the components, andists in a dynamics of the tygd) for two interacting species,
the parameterg; are the reaction rates. Although in some of concentration€; andC,, and reaction terms,
realizations of excitable reactions the diffusion coefficients

can vary widely from one species to the other, as for ex- G1=1(Cy)—C;y, f(Cy=Cy(a—Cy)(C;—1), (6
ample, when it takes place in a gel medium, in liquid media
diffusion coefficients are rather similar and, for simplicity, G,=€(C;—79C5), (7)

we take in the followingD;=D, V i. It is convenient to

adimensionalize Eq(1) to have a clearer view of the pro- \heree (=) is the ratio between the two time scales. The
cesses involved. To this end, let us identify typical sdale FN model shows excitable behavior wher 1 so that there

and speedJ of the flow. A typical time scale is thus/U, s a separation between the fast evolution of the active com-
and we perform the change of variables, ponentC, and the slow evolution of,, the passive one or
; U v inhibitor.
rHr'EE, t— 'ET, VHV’EU_ 2) In a homogeneous system, Ed) becomesCi=Dagi.

When C,=0, this dynamical system with E§6) describes

We assume that the concentrations are already ex ressedd namics of a bistable reaction, so that initial conditions for
. . . . y exp . C, below a threshold valua decay towards thanexcitedor
some convenient dimensionless units, so that the reaction

rates have units of inverse time, and use one of the reactiorr(?St state_Cl=0, whe_rea_s |n|t_|aI conditions aboweevolve
- . . ) . to theexcitedstateC, =1 in a time of the order of Da'. But
rates, sayk;=k, to define dimensionless reaction terms, s
Eq. (7) implies that, as soon &, grows above zero, the
K, K inhibitor C, grows also(on a time scale a factar slowen
Fi—G|Cq, ... Cns Uk and as a result the excited st&le~1 is only a transient: in
a time of the order of
Ek_l‘ﬁ(cli ---!CN;knkZi ---1kM)' (3)
7e~Cy (eDa) %, ®)
With these changes, E{l) reads
JC. 1 C, reachescg", which is the local maximum value of the
a—t'+v-VCi= DagGi(Cy, ... Cyi€a, ... ,EM)+P—V2Ci , functionf(C,), and then deexcitation occurs. After a time of
€ @ the order of € Day) "%, during which the system cannot be
excited (the refractory state¢ C; and C, return back to the

where the primes have been omitted for notational simplicity/iXed point or equilibrium Valui‘“;l:CZ:o' In the follow-
Il use the values=10°, y=3.0, anda=0.25 for

We have scaled the reaction rates in terms of the first oné'9 W€ Wi

e=ki/k,i=23,...M, and the parame’\}ers in the local FitzHugh-Nagumo dynamics. In
this caseC; ~0.1.

kL LU The flow is assumed to be imposed externally so that the

DaEU and Pe - (5 chemical dynamics has no influence on the velocity field,

v(r,t). We consider two different kinds of chaotic flows

are the DamKoler and the Pelet number, respectively. The Which, in other contexts, are known to behave rather differ-
Damkdhler number measures the reaction speed in terms @ntly: closed and open flows. In the first situation, fluid par-
the advection, whereas Pe is the ratio of advection to diffufic/es remain in a bounded region of space, and the flow
sion at scald_. The product Pe Da measures the importancdr0duces mixing in the whole fluid. In the case of open
of reaction with respect to diffusion. We will be interested in flows, fluid particles enter the system and typically, after

the regime of large Pe, so that diffusion is negligible excepomMe time, they ngve it. Interesting siFuatior!s arise When_, as
at scales much smaller than system size, and explore a ran effect of the stirring, there are special orbits never leaving

of values of Da. We consider several two-dimensional modi€ System. For hyperbolic chaotic flows, such orbits form a

els of flow, and also one-dimensional simplifications of them.fractal set of zero measure, tr#haotic saddle[15] with

Sensible comparisons of the behavior under different flowStaPle and unstable manifolds. When a set of particles is
would be facilitated by the introduction of the above adimen-'€!€ased on that flow, most of them leave the system rapidly.

sional framework, although perfect correspondence canndput those on_trajectories coming close to the sFabIe manifol'd
be expected when they are not dynamically similar. of the chaotic saddle become attracted by it and remain

longer in the system. They finally escape the saddle, at a
characteristic escape rate, tracing closely its unstable
manifold.

As a concrete example of reaction scheme of the excitable As a simple two-dimensional and incompressible velocity
type, we focus on the FitzHugh-NaguniBN) model[1,2].  field, we consider an archetype of closed chaotic flows, the
We note however that we expect all our qualitative results tanotion generated by two alternating sinusoidal shear flows
apply to the general class of excitable systems. In fact, someriented along the andy direction for the first and second
early results for closed flowd 1] have been already checked half of a flow periodT, respectively[16],

B. Reaction and flow models
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vy(Xy,t)= TG)(E_t modT) sm(T + o
€)

27X

L

T
tmodT— —)sin( +¢i+1),

A
Uy(levt):?® 2

where © is the Heaviside step function. Note that all the

geometric details of the stirring by the flow depend on the

parameter, while T sets the speed of stirring without alter-

ing the trajectories of the fluid elements. In order to avoid

Kolmogorov-Arnold-Moser(KAM) tori acting as transport
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open flow. The motion is not chaotic #£ is a unique static
point. Theblinking vortex-sinkflow consists in considering
the active sink position to be at=(0,d) during half a pe-
riod T/2, and atzg=(0,—d) during another half a period.
This corresponds physically to opening and closing alterna-
tively two sinks separated by a distance. ZTypical space,
time, and velocity scales ard, T, and d/T, respectively.
From them, D& kT, and Pe=d?(DT) %, and we can use
Eq. (4) in the units in whichd=T=1. The flow is fully
characterized by the adimensional sink strengthQT/d?
and the ratio of vortex to sink strengti+ K/Q. We takey

barriers, typically present in time-periodic flows, the velocity =1 @nd&=10. For these parameter values, the Lyapunov

field is made aperiodic by introducing a random phdse
which takes on independent values in each half period, and
uniformly distributed in the rangg0,27]. The fluid is con-
fined in a square of lateral siZe with periodic boundary
conditions, so that the flow is closed.and T fix space and
time scales for the flow, and/T is a typical velocity. Thus
we can adimensionalize El) in terms of these quantities,
so that Da=kT and Pe=L?(DT) . This leads to Eq(4),
written in units for whichL=T=1. We set the remaining
adimensional paramete&/L=0.7, for which the flow is

exponent on the saddle and the escape rate from itlde
j=2.19T and x=0.54TT, respectively.

IIl. NUMERICAL RESULTS

The numerical integration of the reaction-advection-
diffusion problem has been carried out on a square grid of
1000x 1000 points, with grid size\x, by using a simple
semi-Lagrangian scheme for the transport processes com-
bined with a fourth-order Runge-Kutta method for the time
integration of the local chemical dynamics. The semi-

nearly ergodic. The numerically computed Lyapunov expo-agrangian advection step at tinheconsists in calculating,

nent isu~1.661T.
As a simple example of open flow, we take a blinking
vortex-sink system[17,18 consisting of two alternately

from any gridpoint, a time-backwards Lagrangian trajectory
for a time At. Then the concentrations at this fluid element
are calculated by bilinear interpolation from the concentra-

opened point sinks in an unbounded two-dimensional dotions on the grid at timé— At, and these concentration val-
main. Around each sink, the velocity field is a combinationues are then assigned to the starting gridpoint at tinfdne
of a point vortex and a point sink given by the complexinterpolation step introduces an effective diffusidd

potential

w(z)=—(Q+iK)In|z—zg. (10

Zs gives the position of the sink in the complex plajgz
eC}, so thatz—z,=re'? defines polar coordinates )
around the sink. The imaginary part of(z), ¥=—KlInr
—Q¢ is the stream function, from which the fluid particle
equations of motion are

_1lov Q
v T
(11)
. ¥ K
= T
The fluid trajectories can be explicitly integrated,
r(t)=+ro—2Qt,
(12
B0 do ol
=¢p— =In—.
© Qg

The fluid particles come from infinity following logarithmic
spirals of circulation given by 2K. The flow is incompress-
ible everywhere, except at the sink cate where an area of
fluid 27Q disappears per unit of timghe trajectories in a
circular region of this area arours have their trajectories
undefined after one time unit because of EtR) and they

should be understood to leave the systewe have thus an

~ (Ax)?/At, which limits the maximum Pe number we can
attain. Since the numerical diffusion is not uniform in space,
we also include an explicit diffusion step corresponding to
the same Pe number.

Initially the system is in the homogeneous steady state,
C,=C,=0.0, and then it is perturbed by a localized Gauss-
ian pulse in the concentration of tlaetivator component

C1(x,y,t=0)=Cq exd — (x>+y?)/2t3], (13

whereC, is chosen to be larger than the excitation threshold
a=0.25, and the size of the perturbatidg, is much smaller
than the system sizé,=1. The dependence of the results on
the particular values o€, andl, will be discussed later. The
inhibitor componeniC, is not perturbed initially. We study
the response of the system for different values of the adimen-
sional reaction rate Da, keeping the rest of the parameters
fixed. In the absence of flow (Bax) the initial condition
(13) produces a circular ring of excitatiqa targetwave; in

fact the structure of the target wave is such that the excitation
ring is followed by a refractory ringthat expands in radius
until reaching the system boundaries. We will see that this
behavior is strongly modified at finite Da.

A. Closed flow

The model (9) is integrated numerically on the unit
square,L =1, with periodic boundary conditions, from the
initial condition described above. The resolution is thus
=10"3. We useAt=10"2 (in units of the flow periogand
thus Pe=1000.
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) ) ) . o FIG. 2. Same as Fig. 1, but at B&5. The interval between
FIG. 1. Activator concentration at different times under stirring snapshots is of 1.2 time units. A process of coherent global excita-
by the closed flow, for D& 300 and Pe-1000. The initial condition tion is seen. At longer time@ot shown the system returns homo-
hadCy=0.5 andl;=0.01. The sequence runs from top to bottom, geneously to the unexcited state.

and then from left to right. The total time lapse is three periods of

the flow. Dark and clear gray level indicates, respectively, low and

high activator values. A nhoncoherent process of global excitation |§)f m'x'n,g of th? excited patch W'Fh the Su”fou_nd'ng b
seen. cited fluid, leading to the decreasing and elimination of ex-

citation in the patch. This mixing is originated by the diffu-

Snapshots of the spatial structure for 6800 and Da sive flux from inside the patcthigh value of the activatoto
=25 are shown in Figs. 1 and 2, respectively. In the firstoutside(low activator valug The value of Dadepends only
case, the localized perturbation gives rise to an excited patcslightly on the details of the initial conditiofas long aC
(with its interior in the refractory statethat is the stirred remains suprathreshold atyilmuch smaller than system size
version of the circular wave front that would be produced inand above some diffusion-controlled minimum size, of the
the absence of flow. The patch is elongated into a convolutedrder of Eq.(22), discussed beloyv For example, ifCy=1
filamental structure by the chaotic flow and eventually visitsandl;=0.1, 0.05, and 0.02, one finds 3al12.0, 14.2, and
all the points of the system. The filaments have a charactet6.3, respectively.
istic double-linestructure with refractory area in the center.  Figures 3 and 4 summarize the different situations. Figure
The excitation is global, in the sense that all the points of the8 shows the time dependence(&,), the space average of
system have become excited at some moment, but is néthe concentration ofc;, and Fig. 4, the maximum value
coherent, since only a part of the system is excited at a giveattained by(C,). For increasing Da the coherence of the
moment, being the rest in the refractory or in the equilibrium
state. 1

In a range of smaller Da numbers, a qualitatively different
phenomenon occurs: The initial patch is again stretched into
a growing filament, but now the filaments are thinner that 08
prevents the formation of refractory region within them. This

0.8 |

A
results in a coherent global excitation when the filaments fill 9 o4
up the whole system. Figure 2 is a representative example of 02
this situation. Once fully excited, the system remains homo- ]
geneous and its subsequent decay to the unexcited state oc- 02
curs everywhere at the same time. In this second part of the o
dynamics, mixing becomes irrelevant since there is nothing
to mix in a homogeneous configuration. FIG. 3. Time evolution of the mean concentration at various

At still smaller Da(faster stirring or slower chemistrya  values of Da.Cy=0.5 andl,=0.01. Time is in units ofT. By
sharp transition to a new dynamic regime occurs: below 3urther decreasing Da, this time evolution changes suddenly, at
critical Da number- Dg, the excitation dies without propa- Da,, to a fast decay of the initial condition that is indistinguishable,
gating significantly; dilution is fast and dominates over theat the scale of this plot, from the horizontal axis at zero mean
growth rate of the activator. Bgilution we mean the process concentration.
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FIG. 4. The maximum value attained K¢,) as a function of
Da. In all cases the initial condition had,=1, andl, was as
indicated.

global excitation is gradually lost so that the maximum value
of the average concentration is below the one corresponding
to the fully excited state.

B. Open flow FIG. 5. Time evolution of the activator concentration under the

Since an infinite domain cannot be simulated easily in theopen flow. The snapshots are shown every 0.7 time units, from top
computer, a square domain of sizéd=6 is considered in- to bottom and then from left to right, starting 0.7 time units after the
stead. With a lateral discretization of 1000 points, this leaddnitial perturbation, Da=50 and Pe-56. After the last time shown,
t0o Ax=6X10"3. We useAt=2x103 (in units of the flow excitation is maintained indefinitely in the system, and the long-
period and thus Pe56. Concentrations at the boundaries ime pattern, which follows the shape of the unstable manifold of
are kept at the fixed-point valu€s = C,=0. The interior of the chaotic saddle, repeats periodically in synchrony with the flow.
the domain is initialized also in this state except for the per-

turbation inC,, Eq.(13), located in the middle position be- Stable manifold of the chaotic saddle.
tween the two sinks. The whole behavior is summarized in Figs. 7 and 8,

For small Da' as in the closed flow case, the perturbatioNVhere the time evolution of the mean value of the aCtivatOI‘,

is diluted by the flow before significant wave propagationand its asymptotic long-time valu@ot the maximum value
occurs, and the excited material soon leaves the syste@s in Fig. 4, is plotted versus Da. There is a range of Da in
through one of the sinks. By increasing Da, a sharp transitio#’hich a finite amount of excited fluid remains permanently
to a new regime occurs: In response to the persistent arrivall the system, despite the openness of the flow.

of unexcited reactants from the boundaries, and despite the The existence of critical values of Da or equivalently of
continuous loss of fluid through the sink, a steady pattern offitical stirring rates can be seen to be a consequence of the
excitation is permanently sustained by the autocatalytic becompetition between a number of processes. In the closed
havior of the activator. An example of the time evolution is flow case, advection and diffusion tend to homogenize and
shown in Fig. 5, and a snapshot in Fig. 6. The excited patterflilute the excited patch, while the excitable dynamics in-
closely traces a fattened version of the unstable manifold
associated to the chaotic saddle of this open flb8y, and as

this manifold, it fluctuates periodically in time. The value
Da.~14.5 at which this transition occurs is in the range of
the values obtained for the closed flow, thus suggesting that
the mechanism for it is rather local and independent of the
details of the flow.

The filaments in the excited pattern fatten up with increas-
ing Da. Suddenly, a new regime is reached above a second
critical Da~90.5: the excitation initially accumulates at the
unstable manifold of the chaotic saddle, as before, but this is
just a transient that is followed by an irregular recovery of
the equilibrium C,=C,=0) state everywhere. This new re-
gime has some analogies with the large Da behavior under
the closed flow, for which a noncoherent excitation occurred
(and the transition value of Da is of the same oydeut here
it appears suddenly as a function of Da, and the excitation FIG. 6. Snapshot of the activator concentration maintained in
does not visit the full system but remains close to the unthe system at long times, for B&20.
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0.14 — trary initial conditions the concentrations are rapidly homog-
0.12} o] enized along the direction by the repeated stretching, and
011l VAN - after a short time the one-dimensional description becomes
0.08 | | relevant. This may be regarded as a general feature of trans-
A A §é§ — port problems in the presence of stirring, since one can as-
Q g'gj TP Dac130 - A sociate local stretching directions to any point of the flow

T and the problem can be reduced to the description of the
. filamental structure in the transverse direction. In the one-
dimensional formulation the baker transformatidracts by
o replacing the concentration field by two copies compressed
0 2 4 6 t/qr 10 12 14 16 by a factor of 2 placed next to each other. To better represent
the process of filament folding, the left half is not a copy but
FIG. 7. Time evolution of the average concentrati@) for ~ the mirror image of the right half.
three values of DaCy,=0.5, 1,=0.05.

0.02|;
NE
-0.02

T x—TX=XI2(2—X)/2,

creases the local concentration of the active component (14)

wherever the excitation threshold is exceeded. In the open Ci(X)—=TCi(x)=Ci{(T x).

flow, there is an additional factor: the escape rate of fluid

particles from the system. In order to gain further insight weNumerical simulations on the unit interval with periodic

attempt to separate the essential ingredients that contribute bmundary conditions of the one-dimensional FitzHugh-

the observed behavior, and consider reduced models of théagumo system with the baker transformation applied at dis-

problem. crete times (=nT,n=1,2,...), and diusion and chemis-

try acting between them, show qualitatively similar regimes

IV. REDUCED MODELS to the two-dimensional closed flow presented above, includ-

ing the transition to global excitation that occurs in an inter-

mediate range of DakT.

The main effect of chaotic advection is to stretch and fold Time evolutions of the activator spatial structure are
fluid elements producing the filamentary patterns visible inshown in Fig. 9, for three different values of Da, and two of
the figures of the preceding section. Perhaps the simpleste=L%/DT. The excited regions can be interpreted as trans-
model of this is the so callebaker transformationBaker-  verse cuts through filaments. The number of filaments is
map models have been used recently by Torocekal.[19]  doubled by each action of the baker map, while the decreas-
to study autocatalytic reactions in open chaotic flows. Aing of their width may be, or may be not, compensated by
single action of the baker transformation on the unit squarghe effect of excitable growth. When growth is slgupper
can be described as a stretching alongytleis by a factor left panel in Fig. 9, the filaments become narrower until a
of 2, followed by compression by a factor of 2 along the point in which diffusive mixing with the surrounding unex-
axis. Then the resulting rectangle is cut into two pieces otited fluid destroys them and excitation disappears. By in-
unit length along the direction and placed back on the unit creasing Dgupper righy, the filament width reaches a mini-
square. This model of chaotic advection neglects spatial normum nonvanishing value with its centr@l; concentration
uniformities of the stretching and curvature of the filamentsyalue well above the threshotd The effect of the baker map
present in a general flow. Nevertheless, since it is a discretés here to join together a number of filaments until diffusion
time map, it is strongly nonuniform in time. homogenizes the distribution. Since the homogenized value

If the initial perturbation is taken to be homogeneous inof C, is above the threshold, a coherent excitation follows.
they direction this is preserved by the baker transformationAfter some time the excitation disappears homogeneously
and the problem becomes one dimensional. Even for arbiand the system returns to the nonexcited state.

In the case of large Ddower panel§, the reaction is fast
o4 enough to approach the refractory state in the middle of the

0121l i filaments before significant compression. The filaments thus
041l | acquire the double-hump structure that was also seen in the
: full two-dimensional simulation(Fig. 1). This fact works

3—0‘08 i against the possibility of a coherent excitation, and there are
v 0.06 T two mechanisms by which the noncoherent excitation dies.
0.04 ! - At large enough Pélower left panel of Fig. § the excited
0.02 parts of the filaments are narrow, and the periodic contraction
ok v v produced by the baker map eventually brings them below a
10 30 5 70 90 width such that the diffusion can eliminate them, in a way
Da similar to what happens with the full filament at small Da
FIG. 8. Long-time asymptotic value of the average Concentra.(but here there is around abundant refractory material that
tion (C,) as a function of Da. It is nonzero in a range of interme- helps the proce$sWhen Pe is decreased, the excited parts of
diate values. the filaments travel faster, and collisions leading to filament

A. One-dimensional baker model for the closed flow
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i

FIG. 10. Concentration o€, under the open baker map for
Ty Da=30 (left) and Da=50 (right). Space is in the horizontal direc-
tion, and time in the vertical, running from bottom to top. Darker

A A A A A A gray levels correspond to lower values®f. Pe=10".

gests, in general, that the evolution of the system can be
captured by focusing on the transverse profile of a single
filament subject to a typical stretching, and taking into ac-
count the decreasing separation between the filaments by ap-
propriate boundary conditions. In fact, the main mechanism
controlling the final homogenized value is the competition

between the compression by the flow, and the tendency to

FIG. 9. Spatiotemporal evolution o€, for Da=1 and Pe expansion due to reaction diffusion. This mechanism is better
=1000 (upper lefi, Da=10 and Pe-1000 2upper right, Da=40 analyzed by considering an isolated single filament, as will
and Pe=1000 (lower left), and Da=50, Pe=400 (lower righy un- P& done in Sec. IV C.
der the baker model. Space is in the horizontal direction, and time
runs in the vertical from bottom to top. Darker gray represents

smaller values o€,. The discontinuities appear at each application ) )
of the baker map, i.e., at timég 2T, 3T, etc. As in the closed flow case, we can implement the essen-

tials of chaotic advection in open flows: stretching, folding,

annihilation(because of the refractory material arriving after and escape, by a one-dimensional version of the open baker
the excited filamentare the main mechanism killing the ex- map. At timesnT, n=1,2, ..., theunit interval L=1) is
citation (lower right panel of Fig. 2 compressed a factor of 3; two copies of the resulting com-

The phenomenology found here is fully consistent withpressed configuration are placed back into the initial square
the numerical simulations of Sec. Ill. But now, in addition to (one of them with orientation reversednd the remaining
having a much simpler numerics, the mechanisms are easi#tird is filled with unexcited material G;=C,=0). This
to identify. Thus, stretching and folding, the characteristicsrepresents the loss of one third of the fluid per map step, and
implemented in the baker map, are enough to understand thes substitution by fresh reactants. Standard diffusion with
effects of chaotic advection on excitable advection-reactioperiodic boundary conditions, and FitzHugh-Nagumo dy-
system. We stress, however, that the Da values at which thgamics act between successive applications of the map.
different transitions occur are of the same order, but not iden- The phenomenology observed is again qualitatively con-
tical, to the ones found in the two-dimensional models. Thissistent with the two-dimensional simulations. For small Da
was expected since there is no complete dynamical similarityhe initial excitation is diluted before significant propagation.
between the present baker model and the flow models of Seét larger Da(Fig. 10, left panel the excitation approaches
[l the chaotic saddle of this map, which is a standard Cantor

In the baker-map model the spatial structure is, by conset, and covers it with a finite width. A dynamic equilibrium
struction, periodic with periodl/n,n=[t/T]. Thus the evo- is reached between filament merging and filament replica-
lution of the system can be fully described by solving thetion, so that the excitation is maintained indefinitely in the
same problem on an interval compressed by a factor of 2 aystem. Increasing further Da leads to a second transition to
times t=nT with periodic boundary conditions. This sug- a situation in which the excitation finally disappears, in much

B. One-dimensional baker model for the open flow
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the same way as in the closed flow. Again this happens when The pure strain flow has a time scale; !, that can be
the filaments begin to develop the refractory state in its inteused to adimensionalize times, but there is no typical length
rior, and it may occur by two mechanisms: the one shown irscale. However, we can measure lengths in units of the dif-
the right panel of Fig. 10 which involves complex filament fusion lengthyD/\ and then Eq(15) becomes

interaction, or simply the repeated contraction of the narrow
2

excited parts at both sides of the refractory center. This last 9 _ 9 _
mechanism dominates at very large Pe. 0—t—Ci—X§—;Ci= DagGi(Cy, ... lCN)+§Ci , (17

Both in the open and in the closed flow case, the mecha-
nisms leading to transitions and qualitative changes in the — — _1p
excitation behavior seem to be linked to properties of indi-With Da=k/x, L=A andx=x(D/Xx) "™ Thus, we can al-
vidual filaments, namely, the existence of a minimum widthWays set PeL“\/D=1 by choosing the units of or, in
below which the filament disappears, and the development dther words, the only effect of variations of diffusion
a double-hump shape by increasing Da. Both phenomena cafrength in this model is a change in spatial scale. Qualitative

be understood to great detail by focusing on the behavior othanges can only occur by varying Dthat is, by changing

an isolated filament. or \. This is clearly a limitation of the model and tells us that
it can only be trusted in regions where there are well sepa-
C. A one-dimensional filament model rated filaments of size much smaller than characteristic spa-

. ) tial scales of the velocity fieldwhich are neglected when
We can address the analysis of the one-filament problemssming a pure strainwe expect this to be a reasonable
by replacing the flow by a time-continuous stretching in ag|ha| approximation at sufficiently large Pe. Other phenom-

pure strain flow,v,=—Ax, vy=Ay. This has in common  gn5 peglected by this one-dimensional model are strain inho-
with chaotic advection and with the baker map the |°Ca|mogeneities and departure from one dimensionality.

contraction and expansion along special directions, although |, this section we mainly present our results in terms of

it misses completely the folding behavior that leads to fila- —
ment interaction at long times. According to the discussio the parameter Daf Eq. (17), but eventually we would need

above the relevant dynamics is along the convergent dirert‘:l[p return to the units of Eq15), where the individual pro-

tion (x) of the flow. Thus, we propose that the evolution of cesses and scales are more easily identified. In the search of

. . . ; . clarity, quantities representing lengths will be marked with
conqentratlonscl(x,t) in a chaotically advected excitable an overbar when measured in the units of &), that is, in
medium can be described locally by

units of the diffusion length. We also note that changing the

P P strain\ in Eq. (15) changes Dak/\ and also the units of

Ci_)\xaci:]:i(cll ....Cy)+D—C;, (15  space and time in Eq17).
x Numerical solution of Eq(17) for Da not too small re-

_ _ veals that its long-time attractors are steady pulses of excita-
where\ is the strain due to the flod20,11,13. In general,  tion concentrated near the origin. They can be interpreted as
the strength and direction of the stretching fluctuate in spacgansverse cuts of the filaments observed in the two-
and time. Thus a suitable prescription for fixing a unique dimensional models. Examples are shown in Figga)land
should be established. This issue will be discussed later. A1(b), where we plot theC; and C, concentration fields,

way to take into acc_ount_ multifilamgnt_situations in therespectively, for different values of Déhe insets will be
framework of Eq.(15), is to impose periodic boundary con- giseissed below The steady finite width of the filaments
ditions on an exponentially shrinking interval of length  gises from compensation between the contracting tendency
:ex'p(—)\t), taking into account the decreasing |nterf|l.amen-of the strain and the expanding tendency of the combined
tal distance. But we will consider here the case of an isolatedsect of diffusion and reaction. A simple quantitative argu-
filament in a largdideally |nf_|n|te) o_ne-d|men3|onal domain. ment[11] formalizing this consists in identifying the equilib-
We note that the one-dimensional mod&b) does not  i,m palf.width of the filament solutions of EGL5), we, as
conserve the amount of fluid on the line. This is more clearlyo distance to the center at which the strain speed ex-
seen by rewriting it as actly compensates the speed the front would have in the ab-
sence of strainy ;. Since this velocity may be calculated for

d
ot

d d d B small € [2]: vi=(1—-2a)yDk/2, wg is obtained from\wg
EC“L % _)‘XCi_D&Ci =Fi(Crr- . Cu)=AG =v¢. In the adimensional space units and parameters of Eq.
(16) (17 it reads
1/2
Whereas the left hand side is clearly written in a flux- — 4 %
. _ \ _ we=(1-2a) . (18)
conservative form, the term-\C; in the right hand side 2

represents fluid escape from the line at a raterhe reason

for that is that Eq(15) comes from a strain flow in which The existence, for Dabove(or A below) a given value,
there is motion along thg axis, and the term.C; is simply  of these steady filaments with finite width provides an expla-
the flux in that direction for concentrations homogeneousation for most of the phenomenology discussed in the pre-
alongy: AC;(x)=d,[AyCi(X)]. vious sections. In two-dimensional situations, the filament
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FIG. 11. (a) C, profiles for stable one-humped solutions of Eq.  FIG. 12. Half-widths measured at the level of the excitation
(17). In the inset the corresponding unstable solutions. Solid line ighreshold C;=0.25) for theC, stable and unstable filament solu-
for Da=12.99, close to the disappearance of the filament solutiontions of Eq.(17) in terms of Da(log-log scalg. Circles show the
dotted line for Da 16.77 and dashed line for B&25. (b) The same  humerical values and the lines the analytical curves: solid line from
as(a) but for theC, concentration field. All the curves are symmet- Ed. (22) and dashed-line from E¢18). The inset shows the same

fic with respect tax=0, so that only positive values are plotted. umerical widths but in the dimensional units of E#5) (we use
k=1 andD=10"°) as a function oh, to stress the insensitivity of

the width of the lower(unstablé branch to the straiir.
will maintain its transverse shape while it expands in the
longitudinal direction. After repeated folding, it will cover Pphysically, increasing strain reduces the width of the stable
the whole system in the closed flow case, or cover the unflament, so that it approaches the unstable one, which is the

stable manifold of the chaotic saddle in the open flow caseimit below which excitation decays. The saddle-node bifur-
What will happen later will depend on the interactions be-cation will occur when both widths are equal.

tween d|fferen_t pf?rts of.the excited filament, or on its re- Since the width of the unstable pulse arouxd 0 is
sponse to strain fluctuations. i . . rather small, we expect strain effects to be of minor impor-
We observe that the steady-filament stable solution disap- . L —
—_— . : . tance in determining its shape, at least wheni®aot too
pears for DacDa,~12.5. This provides an explanation for | 6 Da. This i firmed by the inset in Fia. 12. and
the absence of excitation in the two-dimensional simulation$'0S€ 10 P@. ThiS IS contirmed by the inset in F1g. 12, an
below a critical Da: as far as the results of the one-also in the inset of Fig. 180 be discussed latetHence, we

dimensional model can be extrapolated there, a growing filaSan analytically estimate the shape of the unstable pulse and

ment state cannot be reached at small Da because a stedd§ in the following way: Since the amount of inhibitor is
(nondecayingsolution of the filament profile does not exist. Small everywhere for this solutiofsee the inset in Fig.
To better understand the disappearance of the filament sold1(b)], and since we are interested in the situaten0, we
tion, we note that, in addition to the direct numerical simu-can approximate Eq15) (for A~0) by

lation, an alternative way of finding the steady filaments is to

solve by a shooting methd@1] the steady state version of 92

Eq. (17) which is obtained by setting;C;=0. With this kCy(a—=Cy)(C;—1)+D—C;=0. (19
method one can obtain all the steady solutions, not only X

those that are dynamically stable. It turns out that, in addition

to the excited filamerfiand to the trivial homogeneous solu- The unstable puls€;(x) is the solution homoclinic t&,
tion Cy(x)=C,(x)=0], there is another pulse solution _O- After multiplication of Eq.(19) by 4,C4(x), integra-
which is dynamically unstable. This unstable solution istions With respect ta, and application of the proper bound-

— . . iti fi 2
shown, for several values of Dan the insets of Fig. 11. It ary conditions, one findg22]

contains a marginal amount of excitation, in the sense that
initial conditions with slightly less excited material evolve u _ C,-C_
towards the stable homogeneous state, and initial conditions 1
slightly more excited lead to the stable excited filament. It 1- C—ta”ﬁ
represents the unstable point in function space at which the "
activator growth exactly compensates the diffusive flux to- .
wards the exterior. In Fig. 12 we plot the width of the stabIeW'th
and unstable steady-filament solutions of Eky). Here it is

clear that the disappearance of the stable filament arises from
collision with the unstable pulse in a saddle-node bifurcation.

(20

1/2

N

C.==(1l+a)+

3 (21)

4
5(1+a)2—2a
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1

served weak dependence of lmn characteristics of the ini-
tial perturbation(Fig. 4), one needs to identify theffective

0.8 T strain A in Eq. (15). If one identifies\~T "%, which is a
] reasonable measure of the strain in the models of Sec. lll,
0.6 17 then one has DaDa and finds good quantitative agreement
- b between the critical values of the Danfiter number for the
© 04 . filament model and the full two-dimensional simulations
0.04 | both in the open and in the closed flow case. But it should be
02 i said that, since the filaments are being advected by the flow,

a more consistent choice for would be the Lagrangian

mean strain, given by the Lyapunov expongnbf the ad-

vection dynamics. In the open flow case, the Lyapunov ex-

ponent on the chaotic saddle would be the analogous choice.

These elections have been shown to be quantitatively suc-
FIG. 13. Two-humped filament solutions for tig field. Solid- cessful in other sitliatiorf4.3]. V,Y'__,m the values of. stated in

line is fof Da=45.45, when the two humps begin to develop. Dot- S€C- |1 B, this leads to Da1.66 Da for the closed flow and

ted line Da=50, dashed line Da83.33, dashed-dotted line Da Da=2.19 Da in the open case. Now the agreement has dete-
—100 and dashed-double-dotted line Tor<DE25. In the inset we fiorated. The effect of strain inhomogeneities may be rather
show the unstable solutions, for Bd5.45, 50, 52.63, and 55.55. important when the filaments are wide and have some diffu-
In the scale of the plot, all of them collapse into the same solid-lineSiveé motion, since then they can feel effective strains differ-
curve, when plotted in terms of the physical space units of(E8), ent from the Lagrangian one corresponding to a fluid particle
as done heréwe usek=1 andD=10°). The dashed line corre- at its center. Other effects related to the reduced dimension-
sponds to the analytical solution given by EB0). ality are also at play, since quantitative departures from the
two-dimensional simulations appear already for the bakerlike
C_ is the maximum concentration at the center of the pulsemodels of Secs. IV A and IV B. Thus, one concludes that the
and its half-width is given byv,=2+D/(ak), or in the adi- one-dimensional filament model needs to be improved to

(=4
—
[+
Wl
EN
w
=}

mensional units of Eq(17), provide systematic quantitative predictions on the behavior
of reacting systems, but it does a very good job in identifying
_ 2 the basic mechanisms and qualitatively modeling them.
Wy="— (22 Still remaining to be discussed within the framework of
aDa this section are the qualitative changes of behavior occurring

. . . in the two-dimensional simulations at large Da: the progres-
:En th(ez g)‘s\/ﬁtﬁf tlr?gln1u3mv<\§ic?;|nj/g?l:gsth(\a/viniggctﬂaiutrr:/: frgrrgsive loss of coherence in the closed flow case, and the sudden
9 ) y disappearance of the persistent pattern in the open flow case.
rhese phenomena were more or less coincident with the ap-
pearance of a double-hump structure in the filaments. Figure

| rform lculations with smaller val n . ) )
aiso ps Of es cd fu at‘gf_'; :] fs ale h aiues Eo? d 13 shows that indeed the stable filament solutions of the
seen that for the values of D the figure, the approximate o _qimensional mode(17) begin to develop a double-

analytical solution(20) and the numerical one become virtu- ~
ally identical whene<10"°. humped structure for Da45. A well developed double-
In any case, since the widths of analytical and numericahumped shape establishes suddenly ata.09. One can
unstable pulses are very similar, we can estimatge Ba understand this by noticing that the front solutions of Eq.
equating the above expressida$) and(22) found for them: (15 for A~0 have a finite width limited by the time during
w.=w,, with the result which excitation persists in the fluid particl¢8), i.e., 7.
=CM(eDa) "%, in units of A~%. The width of the front is
— 22 given in first approximation bw;~v;7.. Interaction with
Da°:(1—2a)\/£' @3 the back of the front change8)' to a smaller valueC;,
which is the solution of an algebraic equatif®. For a
For a=0.25 this gives Da=11.31, that compares well with =0.25, C3~0.067. It is reasonable to expect that when the
the numerically obtained value Pal2.5(see Fig. 12 total width of the filament, &, exceeds twice the width of

The saddle-node disappearance of the filament solutiorf§€ front, av¢, the filament will become unexcited in the
in this one-dimensional filament model clearly gives an ex-Middle. This argument would need corrections by the strain
planation for the sudden disappearance of excitation propddfluence onw; and by the fact that the strain velocity in the
gation at small Da in the two-dimensional models discussedhiddle of the filament is smaller than in the frditis would
in Sec. I, and in bakerlike models. To make the connectionimply a shorter time of excitation, or small@rz’). But in any
more quantitative, within the uncertainty given by the ob-case, this simple argument gives for the transition to two-

the discrepancy is the finite value ef(e=10"3). We have
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Lo ' T stand also the process ending excitation in the closed flow at
0.8 1 not too large Pe in terms of the annihilation of halves of
two-humped filaments.

What seems to escape from the picture is the process end-
ing the persistent pattern in the open flows at large Da: be-
cause of the openness of the flow, there are always filaments
that do not collide with others, but that receive the fresh
reactants entering the system. In this case, as in the situations
of very large Pe, it seems that strain fluctuations are essential
to understand the process of deexcitation. We have run
model (15 with A randomly changing in time and found
that, for large enough fluctuations, nonvanishing correlation

FIG. 14. Solid line is an asymmetric steady solution of Bg)  time, and values of Da in the two-hump regime: the induced
for‘Béz 200. The h|gher curve |§l and the lower onez’ multi- W|dth ﬂuctuations eVentUa”y end W|th the decay Of the ﬁla'
plied by a factor of 5 to be visible in this scale. The dashed lines arénent, in very much the same way as seen in the baker mod-
symmetric solutions similar to the ones in Fig. 13, for-ego0  €ls simulations. We speculate that the larger width fluctua-
(upper curveg,, lower curve C, multiplied by 5. Numerically we ~ tions originated by filament collisions in situations such as
find that both solutions are simultaneously stable, each with its owhose in Fig. 10(right pane] would amplify still more the
basin of attraction. effect of unsteady strain and help to eliminate excitation.
Strain fluctuations in the baker modgleriodic application
of contraction followed by periods without straiare an ar-
tifact of the discrete nature of the model. But in the two-
- dimensional simulations of Sec. Ill, and in real flows, strain
value Da=75.09. fluctuations occur naturally and may be thus responsible for

We mention that the transition from the unimodal Steadythe excitation decay in the open flow at |arge Da. ltis quite
solution to the two-humped steady solution in the range 5Gatural that this decay process only appears after the fila-
<Da=<70 is associated with a complex bifurcation scenarioments develop the two-hump structure, since this implies the

in which different stable solutions coexist. For @0, ad- Presence of refractory material. Nevertheless, a quantitative
ditional asymmetric steady stable solutions to Exj) ap-  description of this process is still missing.
pear. These are similar to the pulse solutions obtained with-
out strain, but stopped py the flow. Th_ey have an e_xcited V. CONCLUSIONS
head and a refractory tail. An example is shown in Fig. 14.
The symmetric two-humped filaments found before, which We have analyzed the behavior of an excitable medium in
remain linearly stable, can be thought as bound states of tHtie presence of open or closed chaotic flows. In both cases,
two asymmetric ones. three different regimes have been elucidated. The one at
The simple model studied in this section has allowed us temaller Da, that is, the dilution of the excitation at fast stir-
qualitatively understand the individual filaments seen in theing, is analogous to what is found in the case of bistable
full two-dimensional simulations, and in the baker model, tochemical dynamic§13].
a great detail. What is completely missed here is the interac- The most interesting regimes are found at intermediate
tion between different filaments, or parts of the same fila-Da: in the closed flow case, a coherent excitation of the
ment. We have studied filament collisions in the context ofwhole system arises from the localized perturbation, whereas
Eq. (17) by initializing it with different combinations of dis- in the open flow the excitation remains indefinitely in the
placed filament solutions. The analogy with the collisions insystem. This last phenomenon was also found under bistable
the models of the previous sections is far from completeand in autocatalytic dynamid4.3], as well as the excitation
since here all the filaments evolve in the same simple velocgphase under the closed flow, that is, the growth of an excited
ity field —\x, whereas in real multiflament situations, eachfilament that becomes space filling. What is distinct of the
filament has been created around its own local strain. Nevexcitable dynamics is that excitation under the closed flow is
ertheless, we have observed that collision between symme# transient, so that the system finally recovers the rest state,
ric one-humped filaments leaves at long times a single cerat variance with the bistable and autocatalytic behavior. It is
tered one-humped filament, and collisions between twostriking that this recovery does not occur under the open flow
humped filaments annihilate half of the humps, leading agaiin this intermediate Da range.
to a single two-humped filament as the final state. The asym- Also a consequence of the recovery behavior that charac-
metric frontlike filaments annihilate when colliding front to terizes the excitable dynamics, and that distinguishes it from
front, and bind in a two-humped filament when colliding tail the otherwise rather similar bistable dynamics, is the loss of
to tail. coherence occurring at large Da. It manifests gradually under
These observations help to understand the dynamic prdhe closed flow, but as a sudden disappearance of permanent
cess of filament merging that leads to the persistent patterrexcitation in the open case.
in the open flows at intermediate Da. With the consideration A great part of our work has been devoted to the devel-
of periodic boundary conditions, it is not difficult to under- opment of simplified models that help to understand the
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humped filaments the conditiow,~w;, that is, Da
~Cye '~67, to be compared with the actual numerical
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above regimes and the transitions among them. Despite thehich filament interactions seem relevant, would need of
strong approximations performed, these simple models remore detailed modeling.

produce, at least qualitatively, the full two-dimensional nu- Some geophysical observations have been already inter-
merical results. The first simplified model is based in the uséreted within the present framewof4]. It would be of

of a baker map for the advection dynamics. It highlights thegreat interest to perform experiments of chemical dynamics
processes of stretching and folding as the basic flow mechatnder well-controlled stirring to observe the different sce-
nisms leading to the aforementioned chemical regimes. ThBarios predicted here.

baker model dynamics also suggest that transitions are linked
to the properties of individual filaments. Thus, an even sim- ACKNOWLEDGMENTS
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