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Preface

In the last century, first due to the unveiling of the origin of Brownian motion
and later with the advent of electronic devices, the study of noise effects on
dynamical systems attracted large interest. Noise represents the reduction
of that part of the degrees of freedom in a dynamical system that can not be
modeled in a simple way. The typical image of its effect is that of perturbing
in an unpredictable way the evolution of the system. Partly because of this,
it was initially of interest how to reduce its effect, as considering it a nuisance
that should be avoided.

In the last two decades, however, it was discovered that noise can have
a constructive role in non-linear dynamical systems. Significant examples
are stochastic resonance and noise-induced phase transitions. An optimal
amount of noise induces, in the former, a large amplification of a weak
signal acting on a dynamical system and, in the latter, a drastic change in
its macroscopic properties.

Among dynamical systems, one class of broad interest are those named
as excitable. These systems remain in an equilibrium state until a strong
enough external perturbation drives the system away from it. After this
temporal change in its configuration, it returns back to the original resting
state. This excursion is called firing or pulse. A typical source of pertur-
bation is noise acting on the system. Perhaps the most prominent example
of excitable systems are the models describing the time-evolution of the ac-
tion potentials in neurons and other types of cells. The first mathematical
models for these systems date back to the 1940 decade. Excitable systems
are, nevertheless, quite general, and can be found in optical, and other mod-
els of physical systems, in models of disease spreading, forrest fires, etc. A
counter-intuitive role of noise acting on excitable systems was found in the
last decade, and is signalled by an improvement in the regularity of the
firings when the perturbation is noise of a given intensity, a phenomenon
called coherence resonance or stochastic coherence.

A natural framework to analyse the above mentioned results is the study
of interacting dynamical systems in the presence of noise. How dynamical
systems interact, and which effects arise from this interaction is a very inter-
esting question. In particular, synchronised collective behaviour being one
of the most notorious possible aspect of this, as well as a very good example
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of the minimalistic physical approach in modelling. A striking phenomenon
not understood until the second half of the last century was that of the
flashing fireflies, in South-eastern Asia. It was known that a large amount
of these insects would start flashing in synchrony at dusk after some tran-
sient period. The full biological mechanism is not still well understood, but
very simplistic models proved that the weak interaction provided by the
visual signals originate the emergence of this collective phenomenon. This
example clearly shows that the interacting units are not necessarily identi-
cal, but diverse. The effect of diversity resembles to what is conceived as the
typical effect of noise: If the units are interacting, but very different to each
other they would evolve in very different ways. This is a very important
subject, as diversity is a common ingredient in many natural systems.

The aim of this thesis is to delve into the constructive role that disor-
dering elements can play on dynamical systems. For systems composed by
many units, by disordering elements, we mean ingredients that cause each
unit to evolve in a different way. For example, uncorrelated noise sources
acting independently on the system constituents. Also, we consider diver-
sity: in many systems of interest not all the interacting units are equal.
Strikingly, it is the loss of degree order what causes the systems to exhibit
a more coherent behaviour. We further consider the effect of different kinds
of interaction, and we also show that they can generate a rich variety of
phenomena: from leading towards a more coherent behaviour to causing
interesting effects in chains of diverse elements.

We will now describe the different parts of this thesis, together with the
main results in more detail:

Part I: Introduction

The first part is devoted to introduce the main concepts used throughout
the remaining chapters, as we intend this thesis to be as much self-contained
as possible.

In the first chapter of this part, we focus on general definitions regarding
dynamical systems. We then go into a basic introduction to bifurcation
theory, defining those that later appear in the chapters with the results. We
finally define the concept of dynamical systems in a circle.

The second chapter describes the effect that noise has on dynamical
systems. After an (conceptual and historical) introductory section, we de-
fine the mathematical tools used to study these kind of systems. We then
describe the constructive effect that noise can have on dynamical systems,
introducing the stochastic resonance phenomenon; we explain it and describe
the theory involved in its understanding.

Excitable systems are widespread in many branches of science. Along
the third chapter, we define them, and describe according to their dynam-
ical properties. Two prototypical models of excitability are the FitzHugh–
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Nagumo and active-rotator models: we define them and explain some of
their properties in this section. Excitable dynamical systems exhibit the
phenomenon of coherence resonance, briefly described in this chapter.

The last chapter of this part is devoted to present the synchronisation
phenomenon. We show a paradigm of synchronisation: the Kuramoto model
and the similar (disordering) roles that noise and diversity play in this sys-
tem.

Part II: Results

Diversity, which has typically been thought as an empovering factor, can
also play a constructive role in many dynamical systems. Namely, we show
in this part that diversity can be, counterintuitively, a source of a more
regular behaviour. We find that these results are very general, and as such,
we expect this part to be of broad applicability and many extensions can be
foreseen.

In chapter 5 of the thesis we study a set of active-rotator excitable sys-
tems. The main finding of this chapter is a simple, yet insightful, theory
that unveils the mechanism behind the emergence of collective firing of the
excitable units. We find that this behaviour occurs whenever the positions
position of the units are disordered enough. This mechanism is very general,
and happens regardless the exact source of disorder. This is further studied
in chapter 6, where we study a set of coupled FitzHugh–Nagumo units. We
find that the same phenomenon holds, and conclude that it is independent
of the type of excitability exhibited by the system. Once again, we compare
the results of noise and diversity, finding qualitatively the same results.

In the following chapter 7, we focus in another source of disorder: the
effect of repulsive links acting on a set of identical active-rotator units. We
find that, under the proper conditions, the presence of some repulsive in-
teractions can also trigger a coherent, global firing of excitable media. We
analyse also the properties of the topology of repulsive connections for this
global phenomenon to occur. We find that some degree of heterogeneity in
the network of repulsive links is needed in order to observe this coherent
behaviour: repulsion must be stronger in some units that in others in order
for this collective phenomenon to happen.

In the next chapter 8, we report an analogous phenomenon to that of
stochastic resonance but induced by diversity instead of noise: the diversity-
induced resonance. Specifically, we show that a system composed by many
interacting diverse units, can respond better to a weak external signal if
the units are not all identical, but some intermediate degree of diversity is
present. The degree of the global response degrades if diversity is too large
or too small. We develop a mean-field theory that convincingly explains the
origin of the phenomenon and quantitatively agrees with extensive numer-
ical simulations. We show that the same phenomenon appears in excitable
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systems. This opens a new scenario for a collective large response to exter-
nal signals in excitable systems composed by diverse units as, for example,
in ensembles of neurons.

In chapter 9, we study a model for opinion formation which incorporates
three basic ingredients for the evolution of the opinion held by an individ-
ual: imitation, influence of fashion and randomness. We show that in the
absence of fashion, the model behaves as a bistable system with random
jumps between the two stable states with a distribution of times following
Kramers’ law. We also demonstrate the existence of system size stochastic
resonance, by which there is an optimal value for the number of individuals
N for which the average opinion follows better the fashion. And finally, we
also study the role played by diversity in this system, finding that it can
have the same constructive role than randomness. We propose an extension
for this model that allows to study this phenomenon.

We later study chains of excitable units. In chapter 10, we show the effect
that coupling through the inhibitory variable in small chains of excitable and
oscillatory units. Inhibitory coupling is present in many neuronal systems,
and we pay attention to its effect in a system subjected to noise and a
periodic forcing acting on one ends of the chain. We show that there is a
regime in which the units located at the end of the chain can respond to the
external stimuli, while the intermediate units remain silent. This occurs even
if the intermediate units are oscillatory when uncoupled from the others.
The mechanism is a resonant interplay of noise and the transmission signal
provided by certain value of inhibitory coupling.

We then focus our attention on spatially extended systems. Here we
present a study of stochastic resonance in an extended FitzHugh–Nagumo
system with a field dependent activator diffusion. The fields are coupled
through both activator and inhibitor variables. We show that the system
response is enhanced due to the particular form of the non-homogeneous
coupling. We show that this can be understood using the non-equilibrium
potentials, that allow a potential description of far from equilibrium systems.

Finally, in the closing chapter we present the main conclusions that can
be extracted from the results of this thesis. We also present some possible
extensions of our work.

We believe that the results presented here are of broad interest, and
will also trigger new research that can take profit of them. In this section,
besides making a throughout description of the main results of this thesis,
we also describe the open prospectives, and possible future research lines
open by this thesis.



Prefacio

En el último siglo, debido inicialmente al descubrimiento del origen del
movimiento Browniano y luego, con la proliferación de los aparatos elec-
trónicos, el estudio de los efectos del ruido en sistemas dinámicos atrajo
gran interés. El ruido representa la reducción de aquellos grados de libertad
de un sistema dinámico que no pueden ser modelados de una manera simple.
La imagen t́ıpica de su efecto es la de una perturbación en la evolución del
sistema de una forma errática y de carácter impredecible. En parte debido
a esto, la investigación se centró inicialmente en maneras de reducir sus
efectos, al ser considerado como una molestia que deb́ıa ser evitada.

En las últimas décadas, no obstante, se ha descubierto que el ruido puede
desempeñar un papel constructivo en sistemas dinámicos no lineales. Entre
los ejemplos más significativos, están la resonancia estocástica y las transi-
ciones de fase inducidas por ruido. En el primero, una intensidad de ruido
óptima produce una gran amplificación de una señal débil que actúa sobre el
sistema en cuestión. En el segundo fenómeno, se observa un drástico cambio
en las propiedades macroscópicas del sistema.

Entre los sistemas dinámicos, un ejemplo que ha suscitado gran interés
es el de los sistemas excitables. Estos permanecen en un estado de equi-
librio hasta que una perturbación externa suficientemente fuerte los aparta
del mismo. Luego de este cambio temporal en su configuración, el sistema
regresa a su estado de equilibrio original. Esta excursión es llamada pulso
o disparo. Una fuente de perturbación que se halla de manera corriente es
precisamente el ruido. Tal vez el ejemplo más prominente de los sistemas ex-
citables se encuentra en los modelos matemáticos que describen la evolución
temporal de los potenciales de acción en neuronas y otros tipos de células.
Los primeros modelos de este tipo datan de la década de 1940. Los sistemas
excitables son, no obstante, muy generales, y pueden ser encontrados en sis-
temas f́ısicos y ópticos, modelos de propagación de enfermedades, incendios
de bosques, etc.

Una extensión natural para analizar los resultados mencionados previa-
mente, es el estudio de sistemas dinámicos interactuantes en presencia de
ruido. Cómo interactúan los sistemas dinámicos, y qué efectos emergen
de esta interacción es un campo muy interesante, encontrando entre sus
más notables ejemplos el del comportamiento colectivo sincronizado, siendo
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también un muy buen ejemplo del enfoque minimalista, t́ıpico en la f́ısica a la
hora de modelar. Un sorprendente fenómeno, que no fue comprendido hasta
la segunda mitad del siglo pasado, es el de los destellos de las luciérnagas, en
el sudeste asiático. Se conoćıa que al atardecer, grandes cantidades de estos
coleópteros centellean al uńısono luego de un peŕıodo transitorio inicial. El
mecanismo biológico completo no está aún totalmente comprendido, pero
modelos muy simplificados demostraron que la débil interacción dada por
las señales visuales originan este fenómeno colectivo. Este ejemplo muestra
claramente que las unidades interactuantes no deben ser necesariamente
idénticas, pero pueden ser asimismo diversas. El efecto de la diversidad se
asemeja en este contexto a lo que se concibe habitualmente como el t́ıpico
efecto del ruido: si las unidades interactúan, pero son muy diferentes entre śı,
evolucionarán de manera muy distinta. Este problema es muy importante,
ya que la diversidad es un ingrediente habitual en muchos sistemas naturales.

El propósito de esta tesis es profundizar en el papel constructivo que
elementos que generan desorden pueden desempeñar en sistemas dinámicos.
Para sistemas constituidos por muchos componentes, con esto hacemos ref-
erencia a ingredientes que causan que cada unidad evolucione de manera
distinta. Por ejemplo, se puede citar fuentes de ruido descorrelacionadas
actuando sobre los componentes del sistema. También, consideramos di-
versidad: en muchos casos las unidades que componen los sistemas no son
idénticas. Sorprendentemente, hallamos que es precisamente la pérdida de
orden lo que causa que los sistemas exhiban un comportamiento más co-
herente. También consideramos el efecto de diferentes clases de interacción,
y mostramos que a través de las mismas se puede generar una amplia var-
iedad de fenómenos: desde llevar a un comportamiento más coherente a todo
el sistema, a causar fenómenos dinámicos muy interesantes en cadenas de
elementos diversos.

Vamos ahora a describir todas las partes de esta tesis en más detalle,
junto con los principales resultados.

Parte I: Introducción

La primera parte de esta tesis está dedicada a introducir los conceptos más
importantes empleados durante los caṕıtulos siguientes, ya que se pretende
que esta tesis sea tan más auto-contenida como sea posible.

El primer caṕıtulo de esta parte se concentra en las definiciones gen-
erales que atañen a los sistemas dinámicos. Después se realiza una breve
introducción a la teoŕıa de bifurcaciones, definiendo aquellas que aparecen
luego en los caṕıtulos de resultados. Finalmente, definimos un caso particu-
lar de sistemas dinámicos: aquellos que están definidos en un ćırculo.

En el segundo caṕıtulo, se describe el efecto que el ruido tiene cuando
actúa sobre sistemas dinámicos. Luego de una sección de introducción (tanto
conceptual como histórica), definimos las herramientas matemáticas que se
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emplean al estudiar esta clase de sistemas. Luego se describe el efecto con-
structivo que el ruido puede tener sobre sistemas dinámicos, mencionando
el fenómeno de resonancia estocástica; después de explicar cualitativamente
el fenómeno, se detalla el marco teórico que ayuda en su comprensión.

Existe una amplia variedad de ejemplos de sistemas excitables en la natu-
raleza. A lo largo del tercer caṕıtulo, los mismos son definidos y se presenta
una clasificación de acuerdo a sus propiedades dinámicas. Dos ejemplos
protot́ıpicos de excitabilidad son los modelos de FitzHugh–Nagumo y el de
rotores activos. A ellos se dedican sendas secciones, donde se mencionan
brevemente algunas de sus propiedades. El ruido actuando sobre sistemas
excitables produce el fenómeno de resonancia de coherencia, que es breve-
mente descrita en la sección final de este caṕıtulo.

El último caṕıtulo de esta parte de la tesis está dedicado a reseñar el
fenómeno de sincronización. En particular, se muestra en ejemplo paradig-
mático de este fenómenos: el modelo de Kuramoto y se hace hincapié en el
papel similar que ruido y diversidad generan sobre este sistema.

Parte II: Resultados

La diversidad, que ha sido t́ıpicamente considerada como un factor de de-
gradamiento en las caracteŕısticas globales de sistemas acoplados, puede de-
sempeñar un papel constructivo en muchos sistemas dinámicos. En partic-
ular, mostramos en esta parte que la diversidad puede ser, de forma contra-
intuitiva, una fuente de un comportamiento más regular. Encontramos que
estos resultados son muy generales, y como tales esperamos que los mis-
mos sean aplicables en una amplia variedad de fenómenos, ya que pueden
preveerse muchas extensiones posibles.

En el caṕıtulo 5 de esta tesis, se estudia un conjunto de sistemas ex-
citables extendido de rotores activos. El principal hallazgo de este caṕıtulo
es una teoŕıa simple, pero que permite tener un entendimiento completo de
cuál es el mecanismo que subyace a la aparición de pulsos colectivos por
parte de las unidades que componen el sistema. Se ha encontrado que este
comportamiento ocurre cuando las posiciones de las unidades están lo sufi-
cientemente desordenadas. Este mecanismo es muy general, y es independi-
ente de la fuente exacta de desorden. Esto es estudiado en detalle, asimismo,
en el caṕıtulo 6, donde se considera un conjunto de unidades de FitzHugh–
Nagumo acopladas. Se encuentra que el mismo fenómeno aparece. A partir
de estos resultados se concluye que este fenómeno es independiente del tipo
de excitabilidad que el sistema exhiba. Asimismo se comparan los resulta-
dos que se obtienen con ruido y diversidad, encontrando cualitativamente el
mismo comportamiento.

El siguiente caṕıtulo 7, se focaliza en otra fuente de desorden: el efecto de
enlaces repulsivos actuando sobre un conjunto de rotores activos idénticos.
El resultado que se encuentra es que, bajo determinadas condiciones, la
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presencia de algunos enlaces repulsivos puede asimismo provocar un estado
en el que todas las unidades pulsan al uńısono. Se analizan, asimismo, las
propiedades que ha de tener la red subyacente de conexiones repulsivas para
que este fenómeno global ocurra. Se encuentra que cierto grado de hetero-
geneidad en la red de enlaces repulsivos es necesaria para que se observe
este comportamiento coherente: la intensidad de repulsión debe ser más
importante en unas unidades que en otras para que esto ocurra.

En el siguiente caṕıtulo, el número 8, se presenta un fenómeno análogo
al de resonancia estocástica, pero inducido por diversidad en lugar de ruido:
la resonancia inducida por diversidad. Especificamente, se muestra que un
sistema compuesto por muchas unidades interactuantes diversas, puede res-
ponder mejor a una señal externa débil si las unidades no son todas idénticas,
pero hay un grado intermedio de diversidad. La calidad de la respuesta
global se degrada si la diversidad es demasiado grande o demasiado pequeña.
Asimismo, se desarrolla una teoŕıa de campo medio que explica de forma
convincente el origen del fenómeno y ajusta cuantitativamente con simula-
ciones numéricas intensivas. Mostramos que, además, el fenómeno aparece
en sistemas excitables. Estos resultados abren un nuevo escenario para la
aparición de una respuesta elevada a señales externas, en sistemas com-
puestos por muchas unidades diversas, tal y como sucede en conjuntos de
neuronas.

En el caṕıtulo 9, se estudia un modelo para formación de opinión que
incorpora tres ingredientes básicos para la evolución en la opinión man-
tenida por un individuo: imitación, influencia de la moda y aleatoreidad. Se
muestra que, en ausencia de moda, el modelo se comporta como un sistema
biestable, con saltos aleatorios entre los dos estados estables con una dis-
tribución de tiempos de acuerdo a la ley de Kramers. También se demuestra
la existencia de resonancia estocástica dependiente del tamaño, por la cual
existe un número óptimo de individuos tal que la opinión promedio sigue
mejor los cambios de la moda. Finalmente, se propone una extensión del
modelo que permite estudiar el efecto de diversidad, encontrándose que este
ingrediente puede tener el mismo rol constructivo que la aleatoreidad.

Los resultados siguientes se adentran en el estudio de cadenas de unidades
excitables. En el caṕıtulo 10, se muestra el efecto que el acoplamiento a
través de la variable inhibitoria tiene en pequeñas cadenas de elementos
excitables y oscilatorios. El acoplamiento inhibitorio está presente en mu-
chos sistemas neuronales, y en este caṕıtulo se presta particular atención
a sus efectos en un sistema sujeto a ruido y a un forzamiento periódico
que actúa sobre uno de los finales de la cadena. Se muestra que existe
un régimen dinámico en el cual las unidades ubicadas a ambos finales de
la cadena pueden responder al est́ımulo externo, mientras que las interi-
ores permanecen realizando oscilaciones sub-umbrales. Esto ocurre aun si
las unidades intermedias, en ausencia de acoplamiento, son oscilatorias. El
mecanismo de este fenómeno es dado por una interrelación entre ruido y la
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transmisión de la señal, para ciertos valores del acoplamiento inhibitorio.
El último caṕıtulo de los resultados muestra un estudio del fenómeno

de resonancia estocástica en sistemas espacialmente extendidos. En parti-
cular, se estudia una versión simplificada del modelo de FitzHugh–Nagumo,
donde la difusión de la variable activadora depende del valor del campo. Los
campos se encuentran acoplados a través de ambas variables: la inhibidora
y la activadora. Se muestra que la respuesta global del sistema es mejorada
debido a esta forma particular de difusión, y que esto puede ser entendido
a través de los potenciales de no-equilibrio, que permiten una descripción
potencial de sistemas lejos del equilibrio

Finalmente, en el último caṕıtulo se presentan las conclusiones princi-
pales que pueden ser extráıdas de est tesis. Asimismo, se discuten algunas
de las extensiones posibles a las que este trabajo puede dar lugar. Los resul-
tados presentados aqúı tratan con temas de un amplio interés, y se espera
que inicien nuevas investigaciones en las ĺıneas que se desprenden de ellos.
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Prefaci

En el darrer segle, degut inicialment al descobriment de l’origen del movi-
ment Brownià, i després amb la proliferació dels aparells electrònics, l’estudi
dels efectes del soroll en sistemes dinàmics va atreure molt interès. El soroll
simbolitza la reducció d’aquells graus de llibertat d’un sistema dinàmic que
no poden ser modelats d’una manera senzilla. La imatge t́ıpica del seu efecte,
és el d’una pertorbació en l’evolució del sistema d’una forma erràtica i de
caràcter impredictible. Degut a això, la recerca es va centrar inicialment
en trobar formes de reduir els seus efectes, tot i que es consideraven una
molèstia que calia ser evitada.

Durant les dues darreres dècades, no obstant, es va descobrir que el
soroll pot tenir un rol constructiu en sistemes dinàmics no lineals. Entre
els exemples més significatius, cal mencionar la ressonància estocàstica i les
transicions de fase indüıdes per soroll. En la primera, una intensitat de
soroll òptima produeix una gran amplificació d’un senyal feble que actua
sobre el sistema considerat. En el segon fenomen, s’observa un dràstic canvi
de les propietats macroscòpiques del sistema.

D’entre els sistemes dinàmics, uns que han despertat molt interès han es-
tat els sistemes excitables. Aquests sistemes romanen en un estat d’equilibri
fins que una pertorbació externa prou fort els duu fora d’aquell. Després
d’un canvi temporal en la seva configuració, el sistema torna al seu estat
d’equilibri original. Aquesta excursió s’anomena pols o tret. Tal vegada,
l’exemple més esmentat d’aquest tipus de sistema son els models matemàtics
per descriure l’evolució temporal dels potencials d’acció en neurones i altres
cèl·lules. Els primers models daten de la dècada del 1940. Els sistemes ex-
citables són, aix́ı i tot, molt generals i es poden trobar en sistemes f́ısics,
òptics, en models de propagació de malalties, incendis de boscos, etc.

Un tipus de pertorbació pels sistemes excitables que es troba molt sovint
és, precisament, el soroll. Un fenomen que posa de manifest un efecte contra-
intüıtiu del soroll actuant en sistemes dinàmics va ser trobat en l’última
dècada: l’augment en la regularitat dels polsos quan la intensitat del soroll
té una determinada intensitat (intermèdia). Aquest fenomen rep el nom de
ressonància de coherència o coherència estocàstica.

Una extensió natural per analitzar els esmentats resultats, és l’estudi de
sistemes dinàmics acoblats en presència de soroll. Com interaccionen aquests
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sistemes i quins efectes emergeixen d’aquesta interacció han obert ĺınies
d’investigació molt interessants, trobant entre els exemples més notables el
de la sincronització i és un molt bon exemple de l’enfocament minimalista,
t́ıpic de la f́ısica a l’hora de modelitzar. Un fenomen sorprenent, que no va
ser comprès fins la segona meitat del segle vint, és el del pampalluguejar
de les cuques de llum al sud-est asiàtic. S’havia observat que al capvespre
grans quantitats de aquests coleòpters pampalluguegen a l’uńıson després
d’un peŕıode transitori inicial. El mecanisme biològic no és completament
entès encara avui, però models molt simplificats van demostrar que la feble
interacció donada pels senyals visuals originen aquest fenomen col·lectiu.
Aquest exemple mostra clarament que les unitats interactuants no han de ser
necessariament idèntiques, però poden ser, tanmateix, diverses. L’efecte de
la diversitat s’assembla en aquest context al que habitualment es concebeix
com el t́ıpic efecte del soroll: si les unitats interactuen però són molt diferents
entre śı, evolucionaran de manera molt distinta. Aquest problema és molt
important, tot i que la diversitat és un ingredient habitual en molts sistemes
naturals.

El propòsit d’aquesta tesi es aprofundir en el rol constructiu que els
elements que produeixen desordre poden tenir en sistemes dinàmics. Quan
es parla d’elements que produeixen desordre, es fa referència a elements que
provoquin que cada unitat evolucioni d’una manera distinta. Per exemple,
es poden citar fonts de soroll sense correlació actuant sobre els components
del sistema. A més, es pot considerar la diversitat: en molts casos les unitats
que constitueixen els sistemes no són idèntiques. Sorprenentment, es troba
que és precisament la pèrdua d’ordre la que causa que els sistemes exhibeixin
un comportament més coherent. També es consideren l’efecte de diferents
tipus d’interacció, i es mostra que a través de les mateixes es pot generar una
àmplia varietat de fenòmens: des de dur a un comportament més coherent
a tot el sistema, a causar fenòmens dinàmics molt interessants en cadenes
d’elements diversos.

Descriurem a continuació totes les parts d’aquesta tesi en més detall,
juntament amb els principals resultats.

Part I: Introducció

La primera part d’aquesta tesi està dedicada a introduir els conceptes més
importants utilitzats durant els caṕıtols següents, ja que es pretèn que aque-
sta tesi sigui tant auto-continguda com sigui possible.

El primer caṕıtol d’aquesta part, es concentra en les definicions gen-
erals que pertoquen als sistemes dinàmics. Després es realitza una breu
introducció a la teoria de bifurcacions, definint aquelles que apareixen en
els caṕıtols posteriors. Finalment, es defineix un cas particular de sistemes
dinàmics: aquells que estan definits en un cercle.

En el segon caṕıtol, es descriu l’efecte que el soroll té sobre els sis-
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temes dinàmics. Després d’una secció d’introducció (tant conceptual com
històrica), es defineixen les eines matemàtiques que s’utilitzen a l’estudiar
aquest tipus de sistemes. Després es descriu l’efecte constructiu que el soroll
pot tenir sobre sistemes dinàmics, esmentant el fenomen de ressonància es-
tocástica: després d’explicar qualitativament el fenomen, es detalla el marc
teòric que facilita en la seva comprensió.

Existeix una àmplia varietat d’exemples de sistemes excitables a la natura.
Al llarg del tercer caṕıtol, aquests sistemes són definits i es presenta una
classificació d’acord amb les seves propietats dinàmiques. Dos exemples
protot́ıpics d’excitabilidad són els models de FitzHugh–Nagumo i els rotors
actius. Es comenten breument algunes de les seves propietats en ambdós
seccions. El soroll actuant sobre sistemes excitables produeix el fenomen de
ressonància de coherència, que és breument descrit en la secció final d’aquest
caṕıtol.

L’últim caṕıtol d’aquesta part de la tesi està dedicat a ressenyar el
fenomen de sincronització. En particular, es detalla un exemple paradig-
màtic d’aquest fenomen: el model de Kuramoto, i s’enfatitza el paper similar
que soroll i diversitat generen sobre aquest sistema.

Part II: Resultats

La diversitat, que ha estat t́ıpicament considerada com un factor de degra-
dació en les caracteŕıstiques globals de sistemes acoblats, pot tenir un paper
constructiu en molts sistemes dinàmics. En particular, en aquesta part de
la tesi es mostra que la diversitat pot ser, de forma contra-intüıtiva, font
d’un comportament més regular. Es troba que aquests resultats són molt
generals, i s’espera que els mateixos siguin aplicables a una àmplia varietat
de fenòmens, ja que es poden preveure moltes extensions possibles.

Al caṕıtol 5 d’aquesta tesi, s’estudia un conjunt de sistemes excitables
acoblats de rotors actius. La principal descoberta de aquest caṕıtol és una
teoria senzilla, però que permet una comprensió completa del mecanisme que
provoca l’aparició de polsos col·lectius per part de les unitats que composen
el sistema. Es troba que aquest comportament ocorre quan les posicions de
les unitats estan prou desordenades. Aquest mecanisme és molt general i
és independent de la font exacta de desordre. Això és estudiat en detall,
al caṕıtol 6, on es considera un conjunt d’unitats de FitzHugh–Nagumo
acoblades. El mateix fenomen apareix en aquest tipus de sistema.

D’aquests resultats es conclou que aquest fenomen és independent del
tipus d’excitabilitat que el sistema exhibeixi. Aix́ı mateix es comparen els
resultats que s’obtenen amb soroll i diversitat, trobant qualitativament el
mateix comportament.

El següent caṕıtol 7, es focalitza en una altra font de desordre: l’efecte
d’enllaços repulsius actuant en un conjunt d’unitats de rotors actius idèntics.
El resultat que es troba és que, sota determinades condicions, la presència
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d’alguns enllaços repulsius pot provocar també un estat en el què totes
les unitats polsen al uńıson. S’analitzen, també, les propietats que ha de
tenir la xarxa subjacent de connexions repulsives perquè aquest fenomen
global ocorri. Es troba que cert grau d’heterogenëıtat en la xarxa d’enllaços
repulsius és necessària perquè s’observi aquest comportament coherent: la
intensitat de repulsió ha de ser més important en unes unitats que en altres
perquè això sigui possible.

Al següent caṕıtol, el 8, es presenta un fenomen anàleg al de ressonància
estocàstica, però indüıt per diversitat en lloc de soroll: la ressonància
indüıda per diversitat. En particular, es mostra que un sistema compost per
molts unitats interactuants diverses, pot respondre millor a un senyal extern
feble si les unitats no són totes idèntiques, però hi ha un grau intermedi
de diversitat. La qualitat de la resposta global es degrada si la diversitat
és massa gran o massa petita. Aix́ı mateix, es desenvolupa una teoria de
camp mitjà que explica de forma convincent l’oŕıgen del fenomen i ajusta
quantitativament amb els resultats de les simulacions numèriques. Es mostra
que, a més, el fenomen apareix en sistemes excitables. Aquests resultats
obren un nou escenari per a l’aparició d’una resposta gran a senyals externs
en sistemes composts per moltes unitats diverses, tal i com succeeix en
conjunts de neurones.

Al caṕıtol 9, s’estudia un model de formació d’opinió que incorpora tres
ingredients bàsics per a l’evolució de l’opinió mantinguda per un individu:
imitació, influència de la moda i aleatorietat. Es mostra que, en absència de
moda, el model es comporta com un sistema biestable, amb salts aleatoris
entre els dos estats estables, que segueixen una distribució de temps d’acord
a la llei de Kramers. També es demostra l’existència de ressonància es-
tocàstica dependent de la grandària, per la qual existeix un número òptim
d’individus tal que el valor mitjà de l’opinió segueix millor els canvis de la
moda. Per altra banda, es proposa una extensió del model que permet estu-
diar l’efecte de diversitat, trobant que pot tenir el mateix paper constructiu
que la aleatorietat.

Els resultats següents s’endinsen en l’estudi de cadenes d’elements ex-
citables. Al caṕıtol 10, es mostra l’efecte que l’acoblament mitjançant la
variable inhibitòria té en petites cadenes d’elements diversos excitables o
oscil·latoris. L’acoblament inhibitori està present en molts sistemes neu-
ronals. En aquest caṕıtol es dona particular atenció als seus efectes en
sistemes subjectes a soroll i a un forçament periòdic que actua sobre un dels
fins de la cadena. Es mostra que hi ha un règim dinàmic en el qual les
unitats situades a ambdós extrems de la cadena poden respondre a l’est́ımol
extern, mentre que les interiors romanen realitzant oscil·lacions sub-llindars.
Això ocorre també si les unitats intermèdies, en absència d’acoblament, són
oscil·latòries. El mecanisme d’aquest fenomen és una interrelació entre soroll
i la transmissió del senyal, per a certs valors de l’acoblament inhibitori.

L’últim caṕıtol de la part de resultats, mostra un estudi del fenomen
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de ressonància estocàstica en sistemes espacialment extesos. En particular,
s’estudia una versió simplificada del model de FitzHugh–Nagumo, on la di-
fusió en la variable activadora depèn del valor del camp mateix. Els camps es
troben acoblats a través de totes dues variables: la inhibidora i l’activadora.
Es mostra que la resposta col·lectiva del sistema millora deguda a aquesta
forma particular de la difusió.

A l’últim caṕıtol es presenten les conclusions principals obtingudes en
aquesta tesi. Aix́ı mateix, es discuteixen algunes extensions possibles a les
que aquest treball pot donar lloc. Els resultats presentats aqúı tracten temes
d’un ampli interès, y s’espera que siguin el punt de partida per noves ĺınies
que el prenguin com a punt de partida.
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Chapter 1

Dynamical systems

Along this chapter we will enumerate the most relevant features of the dy-
namical systems considered in the next chapters. It is not our intention in
this brief introductory chapter to go into a detailed review of all the knowl-
edge about these systems. But we hope that the bibliography mentioned in
the text will be a good starting point for the interested reader to deepen
into these topics.

In the following section 1.1, we will briefly define some basic concepts and
definitions on dynamical systems that will be used all along this presentation.

To gain more insight on the terminology used in this chapter and sub-
sequent ones, in section 1.2 we will present the kinds of bifurcations that
can be observed in one-dimensional systems. We will continue with those
bifurcations in two dimensions that are relevant to our results.

Later, in the last section of this chapter, 1.3, we introduce the concept
of dynamical systems in a circle. These are a particularly interesting reduc-
tion of dynamical systems that appear when the relevant dynamics can be
reduced to a limit cycle. Among them, we will introduce the active-rotator
model, a system that we will encounter often along this thesis.

1.1 Definitions

A dynamical system is one that evolves in time. The time variable can
change either continuously or in a discrete way. Dynamical systems have
been studied in Physics since four centuries ago. Thus, it is of no surprise
that most of the vocabulary employed is rooted in these original mechanical
applications, although since the last part of the XIXth century, the study
of dynamical systems has become relevant for other different scientific dis-
ciplines, ranging from Biology (where the field of applicability is by itself
very broad) and Climatology to Economics, the relevance of these systems
is widespread in science.



6 Dynamical systems

1.1.1 Continuous dynamic systems

From a mathematical point of view [1], a continuous dynamical system is
defined by a set of ordinary differential equations

ẋ1(t) = F1 [x1(t), x2(t), . . . , xn(t)]

ẋ2(t) = F2 [x1(t), x2(t), . . . , xn(t)]

. . .

ẋn(t) = Fn [x1(t), x2(t), . . . , xn(t)] . (1.1)

The state is determined by the vector x(t) = (x1(t), x2(t), . . . , xn(t)). The
dot denotes the time derivative: ẋi(t) ≡ dxi(t)/dt. The solution of this set of
equations allows to determine the time-evolution of the variable x(t), given
any initial state x(0).

The n−dimensional space in which the system evolves is known as phase
space. The trajectory the system performs in the phase space is known as
orbit.

This definition is more general than the Hamiltonian or Newtonian dy-
namics in Physics [2], including them as particular cases. This broader
definition also includes as dynamical systems those from other disciplines
[3]. A function V (x1, x2, . . . , xn), such that

−∂V (x1, x2, . . . , xn)/∂x1 = F1 [x1(t), x2(t), . . . , xn(t)]

−∂V (x1, x2, . . . , xn)/∂x2 = F2 [x1(t), x2(t), . . . , xn(t)]

. . .

−∂V (x1, x2, . . . , xn)/∂xn = Fn [x1(t), x2(t), . . . , xn(t)] ,

is called potential of the dynamics. This is an extension of a well-known
physical concept.

1.1.2 Fixed points

A fixed point is a state x∗ such that Fi(x
∗) = 0 for i = 1, . . . , n. These

equilibria points can be either stable, unstable or saddle-points [4].
An asymptotically stable fixed point is one such that the system will

tend towards it, whenever the system evolves starting from an initial con-
dition sufficiently close to it. From a mathematical point of view, this can
be formalised by linearising the system around the fixed point. This corre-
sponds to making a Taylor expansion around the fixed point, and keeping
only the first order terms. Let x = x∗ + δx. This procedure leads to the
expression

δẋ = Jx
∗ × δx, (1.2)

with Jx
∗ is the Jacobian matrix evaluated at the fixed point. For an stable

fixed point, the Jacobian matrix has only eigenvalues whose real part is
non-positive.



1.2 Bifurcations 7

On the other hand, an unstable fixed point is one that independently on
how close an initial condition is to it, the system will depart from it. Lin-
earising the system around such a fixed point, it is found that the Jacobian
matrix has at least one eigenvalue whose real part is positive.

A particulat kind of unstable states are the saddle points. Their stability
depends on the initial condition from which the system is left evolve: For
some of them, the saddle-point will behave as a stable one, while for some
others, will behave like an unstable. In one dimension, this nomenclature
is a little bit abusive, and these points can be named as half-stable. The
Jacobian matrix, in this case, has some eigenvalues with positive real part
and some negative.

For systems defined in spaces with dimension greater than one, the eigen-
values can be complex. If this happens, the behaviour around the fixed point
can be oscillatory.

1.1.3 Discrete dynamic systems

The discrete dynamical systems are those in which time changes discretely.
In general the time evolution is given by the set of maps

x1(t + 1) = F1 [x1(t), x2(t), . . . , xn(t)]

x2(t + 1) = F2 [x1(t), x2(t), . . . , xn(t)]

. . .

xn(t + 1) = Fn [x1(t), x2(t), . . . , xn(t)] . (1.3)

They are important as many properties of dynamical systems can be more
easily understood in this simplified formulation, and easily extended to con-
tinuous processes.

1.2 Bifurcations

The bifurcation theory delves on abrupt changes in the dynamical properties
of a system when a parameter changes. Although being more descriptive
than predictive, it is important when trying to understand general mecha-
nisms that can arise in particular circumstances.

In the following section we will introduce some common vocabulary on
this field. Next we will enumerate the types of bifurcations in one dimension,
and later on, two special cases of bifurcations in two dimensions: the Hopf
bifurcation and the Saddle-node in an Invariant Circle.

A dynamical system exhibits a bifurcation when the properties qualita-
tively change when a control parameter is varied. The parameter value at
which this change takes place is called bifurcation point [5].

A common convention when depicting dynamical systems in its phase
space, is to plot the stable fixed points as black circles, the unstable ones
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as white circles; and the saddle points as an circle half-white, half black, we
will stick to this convention from now on.

In order to exemplify simple dynamical systems that show the different
kinds of bifurcations, it is useful to consider the normal forms (as we will
do below): on them, the functions Fi are polynomials such that their degree
is the lowest one allowing the given bifurcation. Their interest lies on the
fact that around the bifurcation point, any set of functions {F1, · · ·FN} will
expand into the normal form of the bifurcation.

1.2.1 One dimensional bifurcations

Figure 1.1: In this figure we plot four bifurcation types: (a) Saddle-node
bifurcation, (b) and (c) supercritical and subcritical Pitch-fork bifurcations,
respectively, and (d) Transcritical. The first three columns show the phase
portrait at both sides of the bifurcation and at the bifurcation point itself.
The relative stability of the fixed points is depicted using the standard con-
vention: black circles represent the stable ones, white circles the unstable
ones, and two semicircles black and white represent a saddle point. The
last column represents the bifurcation diagram of the system as the control
parameter is varied.
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Saddle-node bifurcation

This type of bifurcation (see figure 1.1(a)) is one by which a fixed point is
created or destroyed when the control parameter is varied. The normal form
associated to it is

ẋ = x2 + r, (1.4)

being r the control parameter. For positive values of r, there are no fixed
points in the system. The bifurcation point is found for r = 0: at that value,
there is one unstable fixed point found at x = 0. Finally, for r < 0, there
are two fixed points: a stable and an unstable one located respectively, at
x∗

s = −
√

|r| and x∗
u =

√

|r|. These changes can be seen in the first three
columns of figure 1.1(a). Finally, the stability of the fixed point and its
variation with the control parameter is depicted in the bifurcation diagram
shown in the last column of the same figure.

It is important to mention that after the fixed points dissappear, the
resulting dynamics near its location, remains very slow. This phenomenon
is known as ghost fixed point, and constitutes a bottleneck of the dynamics.

We just briefly mention this bifurcation in this section, and there will
be a throughout discussion when we present the active rotator systems, in
section 1.3.

Supercritical pitchfork bifurcation

There are two types of pitchfork bifurcations, that we will detail in separated
subsections, as they have interest in different kinds of physical systems. In
both of them, we will assume that the systems have an invariance according
to the transformation x → −x.

The supercritical pitchfork bifurcation has an associated normal form

ẋ = r x − x3. (1.5)

The effect of the cubic term is stabilising: it is a restoring force that pulls
the system to the origin. When r < 0 the point x∗ = 0, is the only fixed
point, which is a stable one. For r > 0, this point is unstable, while there
are two stable ones, located at x∗ = ±√

r. At the bifurcation point, x∗ = 0
is the only (stable) fixed point. These different regimes are depicted in the
three first columns of figure 1.1(b).

At the bifurcation point: r = 0, the system is ẋ = −x3, whose solution
for a system located at x0 for t = 0, reads

x(t) =
x0√

2
√

2x2
0 t + 1

, (1.6)

which is an algebraic function of time. Then, there is a critical slowing down
of the dynamics near this point.
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This bifurcation is of special relevance in Physics: several models, even
the prototypical A-model, present a second order phase transition which is
signalled by this bifurcation. The critical slowing down mentioned above, is
a typical consequence of these phase transitions.

Subcritical pitchfork bifurcation

For this bifurcation, the associated normal form is

ẋ = r x + x3 − x5. (1.7)

Note that the cubic term is now positive at difference with the supercritical
pitchfork bifurcation. Then, its effect is destabilising: The system is pulled
to the stable branches of the 5th-order term (see figure 1.1)(c). The fact
that the prefactors of the 3rd- and 5th-order terms is 1, implies no loss of
generality.

As can be seen in the first and last columns of figure 1.1(c), there is a
region for the parameter r, r ∈ [r1, 0] such that there are three stable fixed
points, and two unstable ones. If r < r1, the system exhibits only one stable
fixed point at the origin. For positive values of r, there are two stable fixed
points and an unstable one at x∗

u = 0. The non-zero branches of stable
solutions, are often referred to as large amplitude branches.

Of particular interest is the region [r1, 0]. Here, the point x∗ = 0 is
locally stable, as large enough perturbations drive the system away to the
large amplitude solutions. This also implies that the system would evolve in
a hysteretic fashion if the parameter r is varied: let us suppose the system
starts at the stable fixed point x∗ = 0 for a negative value of r. If the control
parameter is increased up to r > 0, any infinitesimal perturbation will drive
it to the large amplitude branches, the only stable positions the system has
for those values of r. If now the control parameter is decreased, the system
will stay near the large amplitude solutions; but whenever r < r1, these
solutions disappear, and the system will go back to the x∗ = 0 stable point.

It is interesting to note that the bifurcation at r = 0 is a saddle-node
bifurcation, as for increasing r, two fixed points are born, one stable and
the other one, unstable.

Transcritical bifurcation

The associated normal form is

ẋ = r x − x2. (1.8)

In this bifurcation there are two fixed points, one located at x = 0 and
the other at x = r, that exchange their stability at the bifurcation point
r = 0. A representation of this bifurcation can be seen in the last column
of figure 1.1(d).
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For r < 0, the stable fixed point is x∗ = 0, whilst x∗
u = r is an unstable

one (see figure 1.1(d), first column). On the other hand, if r > 0, the stable
fixed point becomes x∗

s = r, being unstable x∗
u = 0 (as depicted in the third

column of figure 1.1(d)). The two fixed points, collide at r = 0, and at that
point the fixed point is a saddle (second column, figure 1.1(d)).

1.2.2 Two dimensional bifurcations

The generalisation of the one-dimensional bifurcations

Many bifurcations appear in two-dimensional dynamical systems. However,
we will focus on the Hopf and Saddle-Node in an Invariant Circle bifurca-
tions, the two that will be considered in the forthcoming chapters. Also, and
in order to complete the previous discussion, we will briefly comment on the
two-dimensional generalisations of the already mentioned bifurcations.

Let us consider a generic two-dimensional dynamical system

ẋ = f(x, y)

ẏ = g(x, y),

where the functions (f, g) depend on a bifurcation parameter r. The sys-
tem has a fixed point at (x0, y0), i.e. f(x0, y0) = g(x0, y0) = 0. At first
approximation, and near the fixed point, it is possible to obtain a reduced
description of it. Effectively, by writing δx = x − x0, δy = y − y0, the time
evolution can be written in a linearised form as

(

˙δx

δ̇y

)

= Jx0,y0
×
(

δx
δy

)

.

Once again, Jx0,y0
is the Jacobian matrix of the functions (f, g) evaluated

at the fixed point. The stability of that point, is given by the value of the
eigenvalues λ1, λ2 of the Jacobian matrix. If R(λ1) < 0, R(λ2) < 0, the
fixed point will be stable.

As Jx0,y0
is a 2 × 2 real-valued matrix, its eigenvalues come from a

quadratic equation, so there are only two possible scenarios for λ1, λ2: either
they are both real, or complex conjugate.

The bifurcations described in the previous subsections for one-dimensional
systems are also present in two-dimensional ones. Their generalisation in two
dimensions are straightforwardly derived, and the corresponding dynamics
are given by the set of equations

ẋ = F (x)

ẏ = −y.

Where F (x) is the normal form of the corresponding one-dimensional bi-
furcation. If the one-dimensional system undergoes a given one-dimensional
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bifurcation, the complete system will undergo the same bifurcation, as the
time evolution for the y variable, simply is a restoring term, that causes the
system to drift towards the locus y = 0. In this case, the eigenvalues of the
Jacobian are real, and the same stability analysis is valid in this case.

Figure 1.2: Schematic representation of two-dimensional bifurcations. In
the (a) panel we show the two-dimensional Saddle-node on Invariant Circle
(SNIC) bifurcation: as the bifurcation parameter is varied, a pair of stable-
unstable nodes collide and dissappear, leaving a stable limit cycle. In (b), it
is shown a schematic representation of the a supercritical Hopf bifurcation:
When the control parameter is varied, a stable fixed point, loses its stability
and a stable limit cycle appears. In the last column of both panels, we
plot the change in the eigenvalues of the Jacobian matrix for the linearised
version of a two-dimensional system, near a fixed point as the bifurcation
parameter varies: in (a) the eigenvalues vary through real values; while in
(b), the eigenvalues are a pair of complex conjugate values.

Saddle-node on Invariant Circle bifurcation

The Saddle-node on Invariant Circle (SNIC) bifurcation is a particular case
of the two-dimensional Saddle-node one: It appears when the stable and
unstable fixed points that collide at the bifurcation point are located on a
limit cycle (see panel (a) in figure 1.2). After the bifurcation, it is this limit
cycle the one that is converted in the only attractor of the dynamics.

Topological arguments [6], show that there is a slowing in the dynamics
between the unstable and stable points, when the bifurcation parameter
approaches to the bifurcation point. Due to this fact, the frequency of the
oscillations vanishes at the bifurcation. In fact close to the bifurcation, the
frequency of oscillations is proportional to O(

√
r), being r the distance to the

bifurcation point. The amplitude of the oscillations, however, start from a
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non-zero value as the limit cycle is already present in the phase space before
the oscillatory regime emerge.

For the particular case of the active-rotator system, we will compute
these quantities in section 3.2.

Hopf bifurcation

Also, of particular interest for the results that will be shown in the upcoming
chapters is the Hopf bifurcation. The last column of figure 1.2(b), shows a
simplified picture of what happens. The eigenvalues of the Jacobian matrix
remain complex while varying the bifurcation parameter. So, an oscillatory
behaviour is found when the system is perturbed around the fixed point.

There are two possible routes to bifurcation in this scenario: In the
particular case we will be more interested in, a stable fixed point changes
stability at the bifurcation point, becoming unstable whilst a stable limit
cycle appears (see figure 1.2(b)). This bifurcation is known as supercritical
Hopf bifurcation. Interestingly enough, due to the vanishing of the real
part of the eigenvalues of the Jacobian matrix, at the bifurcation point, a
degenerate state with limit cycles of different radius appears.

Considering that the bifurcation occurs at r = 0, it is worthwhile noting
that the characteristic size of the limit cycle grows proportional to O(

√
r)

near the bifurcation. Also, the period of the oscillations near the bifurcation
point is given by T = 2π/Im(λ) + O(r).

Other possibility for this kind of bifurcation, is that the fixed point
changes its stability, whilst a limit cycle remains stable. In this case, the
bifurcation is called subcritical Hopf bifurcation.

1.3 Dynamical systems in a circle

So far, we have explained some properties of dynamical systems in one-
and two-dimensional systems. Under some circumstances, however, a cyclic
motion in two dimensions can be approximated by considering that the
system is constrained to move in the limit cycle. These simplified models,
then, usually allow for a better understanding on the underlying dynamical
properties of the system. Further, in many cases analytical calculations can
be done in these models, allowing the understanding of mechanisms present
in more complex ones. A typical example is the Kuramoto model [7], which
became a paradigm in synchronisation phenomena, and to which chapter 3
is devoted to.

In the next subsection, we will introduce in general the dynamical sys-
tems defined in a circle, and in the next one, we will extensively describe
the active-rotator system.
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1.3.1 Definition

Figure 1.3: The stable and unstable points of the active-rotator model is
shown for various values of the natural frequency ω in the left column. The
right column depicts the different associated potentials for the correspond-
ing parameters. It is observed that the fixed points disappear for ω = 1
(signalled also the fact that there are no equilibrium points in the potential
for ω > 1). The bifurcation in this case is a SNIC one.

Let φ(t) be a dynamical variable describing a motion of a particle on a
circle. Let us assume that the variable φ(t) obeys the differential equation

φ̇(t) = f(φ, t). (1.9)

Although being one-dimensional, and subjected to an over-damped dy-
namics, these systems exhibit the interesting behaviour that, although flow-
ing in one direction, the particle eventually returns back to the initial point.
Due to this fact, flows in a circle have been used to model simple oscillatory
systems. The dynamic variable φ(t) is referred to as phase or angle. For
these motions, it is of no relevance the amplitude of the oscillations.

It is important to remark that the function f(φ, t) must be a 2π−periodic
function, such that each time the system reaches the same point in the circle,
the dynamics is univocally determined.

The simplest example of these systems is the rotator model. It repre-
sents a motion on a circle with fixed velocity. Its dynamics is given by the
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expression

φ̇(t) = ω. (1.10)

The constant parameter ω is the angular velocity (also named as “fre-
quency”) of the oscillations. The time it takes to the system to complete a
turn is T = 2π/ω (period of the oscillations). The position of the unit at
time t is simply given by φ(t) = φ0 + ω t, with φ0 the position at t = 0.

In chapter 4, this system will be studied in more detail, when we present
the synchronisation phenomenon in the Kuramoto model.

1.3.2 Active rotator model

A very simple modification of the previous model leads to a very interesting
behaviour. Let us consider a system whose dynamics is given by the first
order differential equation

φ̇(t) = ω + b sin (φ) . (1.11)

This model was first introduced in other contexts by R. Adler [8], and then
is usually named after him. The parameter ω is also called natural frequency
of the active-rotator, although the relationship with the effective frequency
is not trivial, as we will show below. The value of b determines the strength
of the force that depends on the position of the particle. For b > 0, it
is useful to consider the rescaling: b → 1, ω/b → ω, b t → t. Then, the
resulting system is independent of the parameter b. With this in mind, we
will fix b = 1 from now on.

For this system, it is possible to write an associated potential of the form

V (φ) = −ωφ + cos (φ) . (1.12)

It is worth remarking that in this prescription, the system (after completing
a cycle) does not return to the original point, but to one with a different
potential, V (φ) 6= V (φ + 2π). Let us remark that in section 1.3 it was said
that from a dynamical point of view the points φ and φ + 2π are equivalent.
Thus, keeping in mind this, we will talk about the potential function of this
system in order to clarify some of its properties and later for performing
computations on it.

This dynamical system displays a Saddle-nod in a Invariant Circle bi-
furcation as a function of the natural frequency ω. First, for ω < 1, there
are two fixed points for the system: a stable one located at φ∗ = arcsin(ω)
and another unstable situated at φ∗

u = − arcsin(ω). It can be seen in figure
1.3(a), second column, the associated potential has a local minimum and a
local maximum at those points.

Both fixed points collide at ω = 0, and a saddle-point appears at φ∗ =
π/2 (see figure 1.3(b)). As the second column of this figure shows, the
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−dV (φ)/dφ (which is the force the particle is experimenting) near the fixed
point is much lower than in the rest of the interval.

For values ω > 1, there are no stable points in the dynamics, and the
system completes cycles with a well-defined frequency around the circle: The
velocity has the same sign for all the circle. The period of oscillations T can
be determined, by means of

T =

∫ 2π

0

dφ

φ̇
=

∫ 2π

0

1

ω + sin (φ)
dφ. (1.13)

this leads to the result

T =
2π√

ω2 − 1
. (1.14)

Conversely, the frequency of the oscillations is f =
√

ω2 − 1. Near the
bifurcation point, ω & 1, the frequency of oscillations can be approximated
by

f =
√

ω2 − 1 =
√

(ω − 1)(ω + 1) ≈
√

2
√

ω − 1. (1.15)

The frequency grows as the square root of the distance to the bifurcation
point. This is also in accordance to what was said in section 1.2.2 about the
slowing down of the dynamics near the bifurcation point.



Chapter 2

Noise in dynamical systems

The effect of stochastic terms acting on dynamical systems gives raise to
very interesting phenomena. Before going into the description of those, it
will be useful to very briefly introduce some concepts that are common to
this kind of systems.

This chapter is divided in two sections. First, in the next section, we
will briefly review some concepts involved in stochastic dynamical systems.
There are many text books dedicated to this very broad research field [9,
10, 11] and also very interesting reviews [12]. So our intention here, is not to
give a thorough introduction of the subject, but rather mention some basic
vocabulary that will be used along this Thesis.

As it has been said before, of particular interest is the constructive role
that noise may play on non-linear systems. The last section of this chapter,
is devoted to a particularly interesting phenomenon present in noisy non-
linear systems, which is called stochastic resonance. This phenomenon has
attracted a lot of interest after being discovered, at the beginning of the
1980 decade. It appears in systems subject to both: a weak forcing signal,
and some random term. Its basic footprint, is the (at first glance) counter-
intuitive effect that noise enhances the power of the weak signal. But this
only happens for an intermediate range of noise intensities: either when the
noise is too large (then governing the dynamics) or too weak (making its
effects negligible), the phenomenon disappears.

A related phenomenon to that of stochastic resonance arises in excitable
systems (see chapter 3) subjected to the effect of noise and its is called
coherence resonance or stochastic coherence. In this phenomenon, and also
for intermediate noise intensities, it is found a mode regular behaviour of
system’s dynamics. We will briefly review it in section 3.3.4.
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2.1 Dynamical systems affected by noise

2.1.1 Historical notes

The study of stochastic terms on dynamical systems, started in the begin-
ning of the XXth century. Although the first comprehensive study of an
unpredictable, fluctuating, behaviour was performed in 1827 by the Scotish
botanist Robert Brown [10]: he observed the irregular motion of small parti-
cles when looking through the microscope at small pollen grains suspended
in water. He went on showing that the same phenomenon occurs indepen-
dently of the suspended substance –even also glass, minerals–, discarding,
then, an organic explanation for the observations.

An explanation of the origin of the Brownian motion, as it is known
nowadays this phenomenon, was not found until 1905, by Albert Einstein
[13] and independently by Marian Smoluchowskii [14]. The two main points
raised in Einstein’s work are the following: (i) The motion of the pollen
grains is caused by the impact of incessantly moving molecules of liquid in
which they are suspended. (ii) The motion of water molecules is so compli-
cated, that its effect on pollen particles can be only described probabilisti-
cally.

Langevin, gave in 1908 an alternative explanation of the phenomenon
[15]. He introduced by the first time a stochastic differential equation, i.e.
an ordinary differential equation with stochastic terms. Although coincident
with previous formulations, his method was more direct and allowed for
generalisation to other scenarios. He basically considered that there are
two forces acting on the particle: (i) a viscous dragging force, as in any
macroscopic object moving in a fluid; (ii) a fluctuating force, of random
nature, that models the incessant impacts of the liquid molecules on the
Brownian particle. All that is known about this last term is that it should
be equal to zero on average.

During the first two decades of the last century, there was a broad inter-
est (both, theoretical and experimental) on the Brownian motion problem.
With the advent of electronic circuits and radio transmission, it was evident
that there are sources of irregular electrical signals in the atmosphere, the
receiver and even the transmitter itself. These fluctuating signals, received
the collective name of noise. It was usual to find what is called shot noise
[16]. This discrete process was found in vacuum tubes, used as amplifier and
rectifier devices, where it is generated by the individual electrons arriving
to the catode.

Other type of noise, which will concern us during this thesis, is a contin-
uous one: the thermal noise. It is present in systems in thermal equilibrium.
A good example is that of a resistor at temperature T . It can be shown that
if one measures the output power with frequency f , S(f), it is flat, i.e. it
is independent of the frequency, up to very large frequencies (f ∼ 1013Hz).
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Due to this fact, this noise is usually called white noise, all the frequencies
are present, like in white light.

The white noise has a zero correlation time. This is the assumption made
by Langevin about the stochastic force acting on the Brownian particle. It
is worthwhile remarking that the white noise as such is not feasible experi-
mentally, but it is a good approximation in those stochastic processes whose
temporal autocorrelation decreases much faster than the time between mea-
sures of the state of the system.

As the effect of noise was first studied when acting on top of a signal,
it has always seen as a empovering factor on the dynamics of a system.
The fact that stochastic terms can have a constructive role on non-linear
dynamic systems has attracted much attention in the last two decades. In
particular, it was found that noise can drive systems into a more ordered
behaviour, as we explain in a forthcoming section. In particular we will
focus on a phenomenon called stochastic resonance [17], which appears on
systems driven by a weak external signal and subject to noise: when the
right amount of noise is applied to the system, it responds more coherently
with the external forcing. However, such coherence is lost whenever the
noise is too large, or too weak.

2.1.2 Random Walk

This is a classical problem in Statistical Physics. It can be stated as follows:
A particle moves along a line and time increases discretely by an amount ∆.
At each time step, the particle, moves a distance l either to the left or right
at random. Given this discretisation in space, the only allowed positions are
x = i l, where i ∈ Z. It is easy to show that the probability of finding the
particle at position i after τ steps, follows the binomial distribution

P (x(τ∆) = i l) =

(

τ
τ+i
2

)

2−τ .

From this expression, it follows that 〈x(τ∆)〉 = 0 and 〈x(τ∆)2〉 = n l2. For
large times, the discrete distribution can be approximated by a Gaussian
one [12], yielding

P (x(τ) ≤ i l) =
1

2
+ erf

(

i√
τ

)

. (2.1)

This problem, constitutes an example of a Markovian process: the state of
the system on the next time step only depends on the actual position, and
not of its previous history.

2.1.3 White noise

Noise, being a fast varying, irregular function, is not trivial to define. In
order to do so, we will first introduce the concept of a Wiener process. Let us
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consider a random walk process, such that the space and time discretisations
(∆ and l, respectively), tend to zero whilst l2/∆ = 1. Also, let us write
x = i l, t = ∆ τ . In the limit of large τ , when the continuous limit of
equation (2.1) can be taken, the cumulative probability distribution reads

P (W ≤ x; t) =
1

2
+ erf

(

x√
t

)

. (2.2)

In this limit, the process W (t) is called a Wiener process. It has a Gaussian
distribution with zero mean and variance t. The process generated in this
way is continuous; it also has a Haussdorf dimension equal to 2 [18]. The
associated probability distribution function to it, is given by,

f(W ; t) =
1√
2πt

e−
W2

2t . (2.3)

Since this is a Gaussian distributed process, it is fully determined by its
mean and two-time correlation functions

〈W (t)〉 = 0 〈W (t)W (t′)〉 = min(t, t′). (2.4)

A white noise is defined as the derivative of the Wiener process defined
previously. It has been said that the Haussdorf dimension in greater than the
space in which the process is defined, so the process is infinitely rough and
the derivative must be defined in a special way. To proceed, the derivative
must be taken before the continuous limit is performed. If x(t) is the random
walk process, let ξǫ(t) be the process defined as

ξǫ(t) =
x(t + ǫ) − x(t)

ǫ
; (2.5)

which is a discretised version of the time derivative. ξǫ is a Gaussian process
(because it is a linear combination of Gaussian processes), and then it is
completely defined by

〈ξǫ(t)〉 = 0

〈ξǫ(t) ξǫ(t
′)〉 =

{

0 if |t1 − t2| ≥ ǫ
l2(1 − |t1 − t2|/ǫ)/(∆ ǫ) if |t1 − t2| < ǫ

The white noise is the process obtained in the limit ξ(t) ≡ limǫ→0 ξǫ(t).
Physically, this limit corresponds to the vanishing of the correlation time.
It is Gaussian distributed with

〈ξ(t)〉 = 0

〈ξ(t) ξ(t′)〉 = δ(t − t′),

with δ(x) is the Dirac’s delta function.
All the experimentally generated (or found) noise sources, however, are

not delta-correlated in time. These noises are called coloured in oposition
to the white ones. Those sources are not studied in this thesis, and the
interested reader can consult the comprehensive review [19].
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2.1.4 Langevin formulation

In the example in the dynamics of a Brownian particle, its rapidly changing
trajectory appears due to the incessant kicks of water molecules. Thus, to
understand the complete dynamics of the particle in a microscopic prescrip-
tion one should solve a very large system that involves the dynamics of all
the water molecules that compose also the system (the order of magnitude
being ∼ 1023). In a similar way, for radio signals, also one should know
all the electromagnetic sources that are being detected in addition to the
main signals. These ingredients would make it infeasible the solution of
such systems. Langevin proposed a simplified formulation of these dynam-
ical systems: in it, all variables whose dynamics are not the relevant ones,
are neglected; and its influence is put into a stochastic term.

The Langevin representation of dynamical systems evolving under the
effect of the random forcing is based on writing a stochastic differential
equation. In this formulation, the stochastic term enters linearly. For a
one-dimensional system, the equation reads

ẋ(t) = F [x(t)] + G [x(t)] ξ(t). (2.6)

Here, ξ(t) is the noise term. The exact time-evolution of the dynamical
variable depends not only on the initial condition, but also on the particular
realization of the stochastic process. To solve this equation means to find
at least the probability distribution function p(x, t) of finding the particle
at the position x for every time t in the evolution of the system.

In the particular case of G ≡
√

D, with D a positive constant (i.e.
D ∈ R+), the noise is called additive

ẋ(t) = F [x(t)] +
√

Dξ(t). (2.7)

This will be the only case considered along this thesis. If G [x(t)] is any
non-constant function, the noise is called multiplicative.

From a numerical perspective, it is often prohibitive to solve a stochas-
tic differential equation in its formal sense. Instead, one usually implements
methods such as Heun’s [20] that allow to obtain a trajectory for a given re-
alization of the stochastic process ξ(t). Averaging over different trajectories
constructed in this way, one obtains the aforementioned p(x, t).

2.1.5 Fokker–Planck equation

The Fokker–Planck equation [21, 22] describes the evolution of an ensem-
ble of stochastic dynamical systems. It is a differential equation for the
probability p(x, t) of finding the particle at a position x at time t. Then,
any average of macroscopic variables is done by direct integration of this
distribution.
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Deriving the Fokker–Planck equation from the Langevin prescription
is not univocally determined in the case of multiplicative noise [11]. The
problem arises, basically, depending on how the integral (that appears in
the derivation)

∫ t+h

t
dt′ G

[

x(t′)
]

ξ(t′),

is defined. This gives raise to different Fokker–Planck equations for a given
Langevin one. The two most prominent formulations were developed by
Stratonovič and Itô [10, 11, 12]). Thus, a problem involving multiplicative
noise is not fully determined if it is not said in which prescription it is
defined. In the case of additive noise, both formulations coincide.

To derive the Fokker–Planck equation in the simple case of additive noise,
we can proceed as follows: given an ensemble over systems, let ρ(x, t = 0)
be the initial density distribution of particles located at position x. Then,
ρ(x, t) describes the time evolution of such density.

Let us consider a noise realization ξw of the white noise term. The
density ρ obeys the Liouville’s continuity equation

∂ρ

∂t
+

∂

∂x
(ẋ ρ) = 0.

By inserting equation (2.7) in it, we get

∂ρ

∂t
= − ∂

∂x
(F [x(t)] ρ) −

√
D

∂

∂x
(ξw(t)ρ)

− ∂

∂x
(F [x(t)] ρ) −

√
Dξw(t)

∂ρ

∂x
. (2.8)

The one-time distribution function p(x, t) is an ensemble average over
different noise realizations. In this average, we get

p(x, t) = 〈ρ(x, t)〉ξw ,

And then, applying this average to equation (2.8), we get

∂p

∂t
= − ∂

∂x
(F [x(t)] p) − ∂

∂x
〈ξ(t) ρ(x, ξ(t))〉.

Where ρ(x, ξ(t)) is a functional of the particular realization of the noise. By
means of differential functional calculus, it can be shown that

〈ξ(t) ρ(x, ξ(t))〉 = −1

2

∂

∂x
p(x, t).

Finally, the Fokker–Planck equation for the probability distribution func-
tion, reads

∂p(x, t)

∂t
= − ∂

∂x
(F [x(t)] p(x, t)) +

√
D

2

∂2p(x, t)

∂x2
(2.9)
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For problems related with transport phenomena, it is very useful to write
down the Fokker–Planck as a continuity equation,

∂p(x, t)

∂t
= −∂J(x, t)

∂x
, (2.10)

where the probability current J(x, t) is defined as

J(x, t) = F [x(t)] p(x, t) −
√

D

2

∂p(x, t)

∂x
. (2.11)

For stationary solutions, the current is a constant,

∂p(x, t)/∂t = −∂J(x, t)/∂x = 0. (2.12)

But there are two qualitatively very different solutions: J = 0 (where no
transport is present in the system), and J 6= 0 (there is a uniform motion of
particles in the system).

2.2 Stochastic Resonance

2.2.1 Historical background

The origin of the periodicity between ages where the global Earth climate
was warm and glacial is a withstanding question. It is interesting that
such periodicity (about ∼ 105 years) coincides with the ratio of variation of
eccentricity of the Earth’s orbit. Nevertheless, the changes in the Earth’s
orbit do not suffice to explain such large variations in the global temperature
(the variation in the solar influx onto Earth surface is of the order of 10−1).
In 1980, Benzi et al. [23, 24], and independently, Nicolis [25, 26] developed
a very simple model that is able to explain such a phenomenon, although
there is not general consensus on whether the explanations developed in
those works are valid or not.

The simple model proposed by these authors is as follows: they first
consider that the problem can be recasted into a time-evolution of the global
temperature, T (t) (i.e. the mean temperature on the planet). Further, it is
considered that the evolution of T (t) follows, mainly, a bistable potential.
Each minima corresponds to a stable climate situation (i.e. the warm and
glacial states). Over this potential a small (periodic) perturbation that cor-
responds to the changes in eccentricity of Earth’s orbit, periodically drives
one or other minima to being more stable. Nevertheless, it is important to
remark that this forcing is not enough to cause jumps between the minima.
Finally, the fast fluctuations due to internal dynamics of the weather and
variations of solar radiation, are considered to be a noise source that also
drives the system. The counterintuitive result is that exists an intermediate
range of noise intensities such that T (t) jumps between minima following
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(statistically) the same periodicity than the signal. This phenomenon, how-
ever, disappears for noise intensities too large or too weak.

Two years later, there was an experimental [27] verification of the phe-
nomenon on the Schmitt trigger electronic circuit. This circuit is an his-
teretical binary switch whose output is constant V0(−V0) until its input
crosses the threshold value Vt (−Vt, respectively). Then, any periodic signal
whose amplitude is |Va| < Vt, will produce no change in the output of the
circuit. However, if such a subthreshold signal is injected in conjunction with
noise, the stochastic resonance phenomenon is observed. Later on, in 1988
[28] there was also an experimental finding of the phenomenon in non-linear
optical devices as the laser ring.

However, it was not until 1989, that the phenomenon was quantitatively
analysed from a theoretical point of view. In reference [29], the authors
performed a two-state approximation for the dynamics (due to the fact that
most of the time the system is near one or other minima). They proved that
the resonance is due to the matching between the Kramers’ time (i.e. the
mean time for a randomly driven particle to hop over a potential barrier due
to the fluctuations), and the time-periodicity of the external signal.

In reference [30], it was proven that stochastic resonance also exists
in neural (excitable) systems. As it was found experimentally in mecano-
receptor neuron in the tail of a crayfish. The experiment consisted in mea-
suring the firing activity of the receptor when put in saline water stirred
with a combination of a subthreshold signal and noise. In that work, it was
stressed the existence of an internal noise within the neuron, that could not
be avoided. Later, it was found that stochastic resonance is present in a
wide range on neural activities. For example, in reference [31], a combina-
tion of a periodic electric signal and noise was directly injected in the brain
of a mammalian, and it was observed a neural activity with the periodicity
of the signal. Also it was found that vision near penumbra [32] is enhanced
by noise causing dark images to be detected, nevertheless. Finally, it is
worth mentioning here the very interesting result that if a signal is injected
through an eye and a noisy image on the other, there is a response to the
signal at brain level [33].

In all the examples given so far, the dynamical variables are continuous.
However, the stochastic resonance phenomenon was also found for time-
discrete models such that the Ising model in a two-dimensional lattice [34].

2.2.2 Description of the phenomenon

The most typical example of a system displaying stochastic resonance is that
of a Browian particle moving in a one-dimensional, double-well potential.
Further, it is assumed that the particle moves in the over-damped limit. Let
us denote its position by x(t). The particle is also subject to a periodic
signal with amplitude A and frequency Ω = 2π/Ts. Finally, there is a noise
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source ξ(t) that enters additively into the equation. With this ingredients,
the Langevin equation for this system is

d

dt
x(t) = −x(t)3 + b x(t) + A sin

(

2π

Ts
t

)

+ ξ(t) = −∂V

∂x
+

√
Dξ(t) (2.13)

The deterministic potential reads

V (x) =
x4

4
− b

x2

2
− Ax sin

(

2π

Ts
t

)

.

In absence of signal (A = 0), the potential has two stable minima, located
at x∗ = ±

√
b, and an unstable one (at x∗

u = 0). The height of the potential

barrier is ∆V = b2

4 .

It will be considered that any motion of the particle within one of the
well produces no detectable output. In this sense, any signal such that fulfils
A < b/

√
3 will be subthreshold, due to the fact that for all t no minima will

disappear. Nevertheless, in general the signal amplitude can be set much
lower than this limit (A ∼ 10−2 b), and the phenomenon will remain.

Regarding the noise source, most of the work done on stochastic res-
onance considers it to be a Gaussian distributed, zero mean noise. It is
defined by its two first moments 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′), where δ(t)
represents the Dirac delta function, and D is the noise intensity. Further, it
is a common assumption that the noise enters in an additive way. Although
in this introductory section we will stick with this basic setup, there are
works where the authors study the influence of time-correlation in noise, as
well as multiplicative noise in conjunction with an additive one. In the case
of coloured (time-correlated) noise, it was found [35, 36] that such correla-
tion degrades the phenomenon, getting a lower response and a shifting in
the value of optimal D to higher values than in the case of white noise. In
the case of multiplicative noise (uncorrelated with the additive one) [37] the
phenomenon exists as a function of multiplicative noise strength. Although
the results that arise in other cases are interesting, from now on, we will
consider in this introduction the noise to be additive, Gaussian and white.

The main effect of noise is to cause random jumps between both minima.
Between consecutive jumps, the particle fluctuates near the potential min-
ima. The mean first passage time (τK) for a stochastic system to overcome
the potential barrier was first computed by Kramers [38]

τK =
2π

√

V ′′(x∗
u) |V ′′(x∗)|

e2∆V/D = W−1
K , (2.14)

i.e. the second derivative of the potential has to be computed in the potential
minimum (in the symmetric case, it is indistinctly, x∗ = ±

√
b), and in the

local maximum (in the case considered here, x∗
u = 0). In the considered case,
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V ′′(x∗
u) = −b, V ′′(x∗) = 2b. The transition rate Wk, is simply the inverse of

τK . For the double well potential, it reads

τK =

√
2π

b
e2b2/D, (2.15)

Figure 2.1: It is schematically depicted a bistable potential modulated by
a periodic forcing of the form A sin(2πt/Ts). Successively, representations
of the potential at times Ωt ≡ 0 mod(2π) and Ωt ≡ π mod(2π) in the first
plot, Ωt ≡ π/2 mod(2π) in the second, and Ωt ≡ 3π/2 mod(2π) in the
third, are shown. The arrows within the plots display the probability of
hopping between the minima (see text for details). When a well in deeper
than the other, the probability of transition to that is greater that the other
represented by thicker lines. There is a characteristic time τK ∝ exp(∆V/D)
associated with these jumps (∆V , the height of the potential barrier, D the
noise intensity). The optimal value of D is found for the condition 2τK = Ts,
i.e. the time periodicity of the signal.

When a modulation is applied, as pictured in figure 2.1, the transition
rate from one minimum to another will differ from the reverse. Due to the
exponential dependence of the transition rate on the potential barrier height,
even the small amplitude of the signal causes large changes in the transition
probabilities.

In order to characterise the phenomenon of stochastic resonance, several
kinds of measures have been proposed [17]. In this section we will briefly in-
troduce two of them, the signal to noise ratio (at the signal frequency), and
the spectral amplification factor. In the early stages of research, the mea-
sure used to characterise stochastic resonance was interspike time interval,
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although we will not concentrate on it.

2.2.3 Power spectrum density and signal to noise ratio

The power spectrum density S(ω), is computed as the Fourier transform of
the self-correlation function

K(τ) ≡ 〈x(t)x(t + τ)〉 . (2.16)

Here, 〈·〉 represents time average. S(ω) gives the spectral decomposition of
the evolution in time of a given quantity. Given a time-evolving variable
x(t), its power spectrum density is, then

S(ω) = 〈F [x(t)x(t + τ)]〉 . (2.17)

Regarding the phenomenon of stochastic resonance, in a system like the
one described by equation (2.13), what is observed is the following: for the
optimal noise intensity a main peak in S(ω) will appear at the driving fre-
quency over a noisy background (see the third panel of figure 2.2). For
higher noise intensities than the optimal, the height of such peak will de-
crease (last panel in figure 2.2). Concerning lower noises than the optimal
one, there are two regimes: in an intermediate region such peak decreases
once again (i.e. the synchronisation with the modulation worsens, second
panel in figure 2.2), but in the limit D → 0 both, the height of the peak
and the noisy background tend to zero. It is important to remark that in
this limit such a peak is only due to the intrawell motion of the particle, as
seen in the first panel of figure 2.2. Finally, it is worth to mention that also
higher odd harmonics of the driving frequency may be seen in the power
spectrum.

The computation of the signal to noise ratio (SNR), at the driving fre-
quency is

SNR = 10 log10

(

Ss

Sn

)

, (2.18)

where Ss represents the power spectrum evaluated at Ω (i.e. the power
of this component). While Sn, is the power of the noisy background also
evaluated at the same frequency. The result is given in dB (decibels).

In figure 2.3, it is shown a typical result of the SNR versus noise intensity
for the double well system. With the full line, the results for the whole
dynamics of the system are shown. What is observed is that for a value of
D ∼= 14 a local maximum is obtained for the SNR. However, in the limit
D → 0, SNR diverges. The reason for this can be easily understood looking
at the first plot in figure 2.2: for vanishing noise intensities, the value of
Sn (the background), vanishes, while Ss remains finite, thus causing the
divergence in the SNR.
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Figure 2.2: The power spectrum density of the double well system defined in
equation (2.13). Here, b = 4

√
2, A = 3

√
2, Ts = 5 (Ω = 2π/Ts = 1.256 . . .).

From top to bottom the noise intensities are, respectively, D = 0.1, 8, 14, 40
(please, note the different vertical scales in the first plot with respect to the
others). The full lines show the PSD for the dynamics of the system, while
the dashed ones, correspond to digitised time-series (see text for details). It
is apparent that there is an intermediate value of D such that the height
of the peak with respect to the background is maximum. In the second
plot, also a schematic view of Ss (signal power) and Sn (power of the noisy
background) is shown.

As has been said previously, the contribution in Ss is only due to intrawell
motion. For some applications, this motion is not relevant. A way to extract
it, is to perform a digitalisation of x(t); the simplest way to do so it to
construct a binary signal s(t)

s(t) =

{

1 if x(t) < x∗
u

−1 if x(t) ≥ x∗
u

,

where x∗
u is the position of the unstable minimum, separating both wells.

When processing this signal, the divergence at D = 0 disappears, as seen in
the dashed line of figure 2.3.

2.2.4 Linear response and spectral amplification factor

Another useful measure for the stochastic resonance phenomenon is the spec-
tral amplification factor [39]. As will be seen, this measure is related with the
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Figure 2.3: The signal to noise ratio, SNR, versus noise intensity for the
bistabel system. The results, show a noise intensity such that the signal
is better transmitted. The white circlesrepresent the numerical results for
x(t), while the gray circles show the SNR for the digitised output. The line
represents the theoretical prediction of the two-state model (see section 2.2.5
for details). Same parameters as in figure 2.2.

statistical synchronisation of the system dynamics with the external signal.
Averaging over different realizations of noise, the system defined by equa-

tion (2.13) (and a broad variety of dynamic systems), asymptotically (and in-
dependently of the distribution of initial conditions) tends to an asymptotic
value which happens to be time-periodic xas(t), with the time-periodicity of
the signal, and its higher order harmonics. So, this asymptotic function can
be decomposed in a Fourier expansion

xas(t) = lim
t0→−∞

〈x(t)|x0, t0〉 =

∞
∑

n=−∞

Mn sin(n Ω t), (2.19)

where the average runs over different initial conditions.
For the self-correlation function, alternatively, the same result holds

K̂as(τ) = lim
t0→−∞

〈x(t)x(t + τ)|x0, t0〉

=
∞
∑

n=−∞

M2
neı nΩ τ . (2.20)

A result following from the orthogonality of the base functions.
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It is important to remark that M1 is exactly the same as the PSD eval-
uated at the driving frequency. The power of the n−th harmonic of the
frequency Ω is given by Pn = 4π|Mn|2. While integrating the input power
over a period, one gets that the total power of the signal contained in the
input is Pi = π A2, being A the signal intensity.

The spectral amplification factor, η, is then

η =
P1

Pi
= 4

( |M1|
A

)2

(2.21)

This method has two interesting properties, first, it does not have the
problem of divergence in the limit D → 0, it only decreases monotonically
with vanishing noise. When not digitised, reaches a small non-zero value
(once again, due to the intrawell motion). When the output is digitised, η
does goes to zero when no extra-well motion exists. The second property,
is that it can be computed more accurately than the SNR because there is
only one magnitude to be calculated. At difference, for the signal to noise
ratio, all the power spectrum density must be computed. In figure 2.4 the
results for the archetypical double-well system are shown.
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η

Figure 2.4: The numerical results for the spectral amplification factor, η,
are plotted as a function of noise intensity, showing a maximum for an
intermediate amount of noise. The white circles represent the results for
x(t), while the gray circles show the resulting η for the digitised output.
Same parameters as in figure 2.2.
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2.2.5 Two-state model

In this subsection we will introduce the two-state model [29], which is the
simplest approach that successfully explains (with qualitative and quanti-
tative agreement) the phenomenon of stochastic resonance for a bistable
system, whose transition rate as a function of noise and system parameters
is known.

It is based on the fact that for signals with large time-periodicity the
system reaches stationary behaviour in each well (i.e. an adiabatic approx-
imation), before hopping back. Further, it is assumed that, at time t, the
particle coordinate can have one of two different values: x∗

± (corresponding
to the potential minima), with a probability n±(t) = Prob(x = x∗

±|t). If in
the original bistable system the coordinate x ∈ R, these quantities are given
by

n−(t) = 1 − n+(t) =

∫ x∗

u

−∞
P (x, t) dx.

where x∗
u is the position of the local maximum in the potential. Let W±(t)

be the transition rate from the state x∗
±. This is a periodic function of time,

due to the periodicity of the signal and the adiabatic approximation. Thus,
the master equation for the populations n± yields

d

dt
n−(t) = − d

dt
n+(t) = W+(t)n+(t) − W−(t)n−(t) (2.22)

The functions W±(t), in general, can not be found exactly. However, for
small modulation amplitudes, it is possible to expand them into a Taylor
series

W±(t) = W0 ∓ a0 sin(Ωt) + O(A2) · · · , (2.23)

where W0 is the transition frequency evaluated in absence of signal and

a0 = − d

dA
Wk

∣

∣

∣

∣

A=0

A (2.24)

The reduction from a continuous bistable system (whose probability
evolves according a Fokker–Planck equation) to a discrete two-state sys-
tem (governed by a master equation) has been solved formally [10, 40].
Given initial conditions (x0, t0), the solution for n+(t) at first order in the
modulation

n+(t|x0, t0) = e−Wk|t−t0|





a0 A cos(Ω t0 − φ)
√

W 2
k + Ω2

+ 2δ+ − 1



 . (2.25)

Where φ = tan−1(Ω/Wk). The function δ+ is equal to 1 if x(t0) = x+ and
0 otherwise. From the former equation the self-correlation function can be
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computed and then the power spectrum, which gives

S(ω) =

(

2Wk

W 2
k + ω2

)

(

1 − (a0 A)2

2(W 2
k + Ω2)

)

+

π (a0 A)2

2(W 2
k + Ω2)

[δ(ω − Ω) + δ(ω + Ω)]. (2.26)

Equation (2.26) gives a very interesting result: the power spectrum of a
bistable system will be composed of a part term with Lorentzian shape and
two peaks at (plus/minus) the driving frequency. The first term corresponds
mainly to the noisy dynamics, i.e. the random hoppings. Further this
expression allows us to determine the SNR in this approximation. The
result obtained, is

SNR = 10 log10





(πa0 A)2

Wk

(

1 − (a0 A)2

2(W 2
k + Ω2)

)−1


 , (2.27)

being A the intensity of the small modulation, the leading term to the com-
putation of the SNR is, for the double-well potential (by replacing in equa-
tion (2.15)),

SNR = 10 log10

(

1 +

√
2b2 A2

D2
exp

(−2b2

D

)

+ O(A4)

)

.

In figure 2.3 the theoretical line shows the good agreement of this simple
formalism with the numeric results. The intrawell motion is neglected (due
to the two-state approximation), thus the predicted value goes to zero for
vanishing noise.



Chapter 3

Excitable Systems

Excitable behaviour appears in a large variety of physical, chemical and
biological systems [3, 41]. Typically this behaviour occurs for parameter
values close to an oscillation bifurcation, and is characterised by a nonlinear
response to perturbations of a stationary state: while small perturbations
induce a smooth return to the fixed point, perturbations exceeding a given
threshold induce a return through a large phase space excursion (firing),
largely independent of the magnitude of the perturbation. Furthermore,
after one firing the system cannot be excited again within a refractory period
of time. In many situations of interest, the firings are induced by random
perturbations or noise [42].

Excitable systems are widespread in nature, the most paradigmatic being
those coming from Biology: The most typical example is that of neurons
[43, 44], but also in cardiac tissues, pancreatic β−cells. The Hodgkin–Huxley
model, the first mathematical model for excitable dynamics, was proposed
in 1952 [43]. This four-dimensional dynamical system was introduced to
explain the voltage dynamics of the giant axon of a squid.

These systems also are present in multi-species chemical reactions, such
as the Belousov–Zhabotinskii [45], in what constitutes an extended medium.
Also, it was found that the cycle of some contagious diseases also follows this
kind of dynamics, as shown by the SIRS (standing for susceptible-infected-
recovered-susceptible) model [46]. Interestingly enough, this model is also
excitable in its discrete three-state version.

A typical ingredient in these systems is the existence of a refractory
time: a minimum time interval such that the system can not spike more
than once during it. This is related to the fact that, during the excursion,
the trajectory in the phase space of the system is basically deterministic.
Then, the refractory time is approximately equal to the time it takes to the
system to move through this excursion.

As has been said, the excitable systems must be perturbed by some means
in order to spike. Typical stimuli are external (periodic or aperiodic) sig-
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nals. These deterministic perturbations are rather well understood [47, 3].
In the last two decades, however, the ordering effect that noise has on dif-
ferent systems [23, 26], was unveiled, and then, many works were related to
establish the constructive effect of noise in this kind of systems (for a recent
and comprehensive review, see [42]).

This chapter is organised as follows. In the next section we introduce
a classification of excitable systems according to the bifurcation they un-
dergo. Later, we introduce the active-rotator system as a paradigm of type I
excitability and the FitzHugh–Nagumo model, prototypical example of type
II excitability. In the final section, we review the coherence resonance phe-
nomenon, by which an excitable system exhibits a more coherent behaviour
under the proper value of the noise.

3.1 Classification

In general, an excitable behaviour appears when the systems considered are
close to a bifurcation point: the stable configuration being signalled by a
fixed point, while the other regime might be, for example, an oscillatory one.
The perturbations aforementioned, drive the system from one behaviour to
the other.

In general, this bifurcation can be of different kinds, and this fact allows
for a simple classification of the excitability of the systems according to this
transition [48, 6]. It was first proposed by Hodgkin [49], when studying
the response of neuron cells to an external stimulus. He noticed that the
change from a resting state to oscillations, could occur in two different ways:
(i) through oscillations of arbitrarily low frequencies, that would grow if the
perturbation strength would we increased; (ii) The oscillations are generated
in a given interval of frequencies. This classification was later formalised by
Rinzel and Ermentrout [50], by using bifurcation theory.

Type I

Excitable systems of type I are characterised by the fact that the oscillatory
regime just above the bifurcation exhibits frequencies with arbitrarily low
values. Figure 3.1(a) depicts a representation of the typical situation.

It is important to stress that, altough in much of the bibliography on
excitable systems it is common to find that class I excitability appears near a
Saddle-node bifurcation, this is not the case [6]. For this excitability to exist,
the kind of bifurcation must be a saddle-node on an invariant circle one. The
reason for this is that the fixed points must be in the limit cycle. Otherwise,
even in the excitable regime, a well-defined frequency would exist: that of
the limit cycle. the saddle node on an invariant circle bifurcation ensures a
slowing-down of the frequency near the bifurcation point (see section 1.2.2
for full details).
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Figure 3.1: It is shown a schematic representation the frequency of oscil-
lations for the bifurcation of different excitable systems. Panel (a) depicts
the transition for an excitable system of type I. For these systems, near the
bifurcation point, oscillations of frequencies arbitrarily slows can be found.
Panel (b) represents such transition for a type II excitable system. At the
bifurcation point, oscillations with non-zero frequency are born.

Among the dynamical systems displaying this kind of excitability we
highlight: (i) active-rotator (or Adler) model, used to study Josephson junc-
tions, neuron dynamics, surface growth. (ii) the Hodgkin–Huxley neuronal
model [49, 43], for some parameter values.

An interesting example exhibiting this kind of excitability, is the cortical
excitatory pyramidal neurons. Interestingly enough, the strength of the
input stimulus is encoded in the firing frequency of these neurons, as the
frequency range these neurons can fire is broad [6].

Type II

This type of excitability arises in systems showing Hopf (either subcritical
or supercritical), or Saddle-node bifurcations. It is characterised by the fact
that at the bifurcation point the system shows oscillations of a non-zero
frequency. In fact, the interval of frequencies at which these systems oscil-
late is in general narrow. A representation of the dependence of oscillation
frequency on the bifurcation parameter, can be seen in figure 3.1(b).

Among the mathematical models that show this excitability, we may
mention (i) FitzHugh–Nagumo model [51, 44]; this is a paradigmatic exam-
ple of excitable dynamics, and is used to model from chemical reactions to
neuron dynamics. A section will be devoted to this system in this Chapter.
(ii) The Hodgkin–Huxley neuronal model in some parameter range. In fact,
the FitzHugh–Nagumo model was first introduced as a simplification –for
some parameter region– of this model. (iii) the Morris–Lecar model, for
nervous cells [52].

There are also neurons that exhibit this kind of excitability: for example
the cortical inhibitory interneuron. These neurons are fast-spiking, and fire
in a relatively narrow frequency. In another field of sciences, the Belousov–
Zhabotinskii chemical reaction is an example of this excitability [53, 54].
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Figure 3.2: We plot trajectories obtained numerically of the active-rotator
model for different noise intensities and a fixed value of ω = 0.98, in the
excitable regime and close to the bifurcation point. The value of noise
intensity is D = 5 × 10−3, 10−2, 0.1, in panels (a), (b) and (c), respectively.

3.2 Active-rotator as an excitable system

In section 1.3 we introduced the active-rotator model. However, we re-
stricted ourselves to briefly discuss the properties of this system when the
dynamics are purely deterministic. We also shown that the oscillation time
diverges near the saddle-node in and invariant circle bifurcation this model
undergoes.

The active rotator model, under the effect of noise, was first studied by
Kuramoto and Shinomoto in the context of coupled oscillators [55, 56]. Since
then, a lot of work has been devoted to the study of this generic model. For
example, this model has been employed when modelling neurons [57, 58],
flashing fireflies [59, 60], human circadian pacemaker cells [61], Josephson
junctions and charge-density waves [62], etc.. Thus, the active-rotator model
is used as a paradigm of class I excitable systems.
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The dynamics is simply given by

φ̇ = ω + sin(φ) +
√

Dξ(t). (3.1)

Although we only consider the white noise one, it is worth mentioning that
coloured noise can give raise to interesting phenomena, such as ratchet be-
haviour [63].

Some typical dynamic trajectories of this system are shown in figure 3.2.
It is seen the large variation in the time-scale between pulses due to changes
in the noise intensity. This is related to the slowing down of the systems
undergoing a saddle-node bifurcation close to the bifurcation point. Then,
there is not a “typical” time-scale for this system. It only depends on the
distance to the bifurcation point.

The time it takes the system to escape from the basin of attraction near
the fixed point has been computed in [64]:

T =

∫ 2π
0 dφ I(φ)

1 − e−2πω/D
, (3.2)

where the function I(φ) is defined as

I(φ) =
1

D
e−V (φ)/D

∫ φ

φ−2π
dϕ e−V (ϕ)/D. (3.3)

3.3 FitzHugh–Nagumo model

3.3.1 The Bonhoeffer–van der Pol model

In [65], B. van der Pol, introduced a model to qualitatively describe the
relaxation oscillators. It was later used by Bonhoeffer [66] to study the
behaviour of passivated iron wires. It was later used –for analogy– as a
model for nerve excitation [67]. The model considered is as follows

ẍ + ǫ−1(x2 − 1)ẋ + x = 0. (3.4)

It is interesting that this model, under the variable change

y =
ẋ

c
+

x3

3
− x, (3.5)

can be rewritten in the following way:

ǫẋ = x − x3

3
− y

ẏ = −x. (3.6)

The parameter ǫ controls the difference of the time-scales between both
variables. The only fixed point of this system is located at x∗

u = 0, y∗u = 0,
which is an unstable one.
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3.3.2 The Hodgkin–Huxley model

The FitzHugh–Nagumo model was first introduced in 1955 [51], as a sim-
plified version of the Hodgkin–Huxley nerve model [43]. The latter was
introduced to model the firing dynamics observed in the gigantic axon of
squids. This firing is common to many neuron and nerve cells [68]. The
axon is a long cylinder which extends from the neuron centre, and electric
signals propagate along its outer membrane. The electrical pulses appear
because this membrane is permeable to different ions [3] . The permeability
depends on the actual membrane potential V (t), on the ion concentration
and also on the current –originated, for example, in local depolarisation rel-
ative to the rest state– present. The most important ions are potassium
and sodium, (K+ and Na+). The difference in the concentration of K+ ions
between the inner and outer axon membrane, causes a potential difference
of about v0 ≈ 70mV. The dynamical variable measured in the experiments
is the deviation of the membrane potential with respect to this rest state.

Due to the spatial extension of the axon, the potential varies along its
extension. We will now, however, concentrate on the homogeneous case,
where the membrane potential V is constant along the axon.

Let Ia be the applied current across the membrane. It has two contri-
butions: Ii, originated in the ions that pass the membrane; there will be
another source of current, which is the time-variation in the transmembrane
potential,

Ia = Ii + C
dV

dt
, (3.7)

where C is the capacitance of the membrane. Hodgkin and Huxley [43]
wrote

Ii = IK + INa + IL

= gKn4 (V − VK) + gNam
3 h (V − VNa) + gL(V − VL)

The currents IK, INa and IL are, respectively, the potassium, sodium and
“leakage” current: the sum of all other ions currents. VK, VNa and VL are
the equilibrium potentials; gi are constant values such that gKn4, gNam

3 h
and gL are the associated conductances. The values of m, n and h depend
on time, verifying

ṅ = αn(V )(1 − n) − βn(V )n,

ṁ = αm(V )(1 − m) − βm(V )m,

ḣ = αh(V )(1 − h) − βh(V )h. (3.8)

The functions αi(V ) and βi(V ) were determined experimentally; αn, αm and
αh, are sigmoidal-like: for V → ∞ they saturate in 1 (the first two), and in
0 (the latter). The variables n, m and h are restricted to the interval [0, 1].
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The full expression for the membrane potential dynamics, is then

C
dV

dt
= −gKn4 (V − VK) − gNam

3 h (V − VNa) − gL(V − VL) + Ia. (3.9)

The set of equations (3.8) and (3.9) consitute the model that Hodgkin and
Huxley solved numerically and found in good agreemens with the experi-
ments.

In this model, by varying the parameter Ia –which is the easiest to control
experimentally–, it is found that for Ia = 0, the system is excitable; but for
currents above a given threshold I∗a , the system becomes oscillatory, and the
neuron steadily fires.

Depending on the parameter values, this model displays many dynamical
behaviours, in addition to excitable and oscillatory dynamics, it also exhibits
bursting: a high-frequency, continuous, firing.

3.3.3 FitzHugh derivation

The Hodgkin–Huxley model is very complicated and several models ap-
peared as simplifications of it, trying to capture the basic ingredients of
the phenomenology that arises from it. A particularly successful model is
the one proposed by R. FitzHugh [44], and later confirmed experimentally
by J. Nagumo et al. [69]. FitzHugh noticed that the variables V and m,
represent rapidly changing variables, representing excitability. The other
two variables, n and h, are recovery variables, slow compared to the former
two variables. He demonstrated that many of the dynamical properties of
the Hodgkin–Huxley model remain if the system is simplified. He tried to
idealise the shape of the nullclines, in order to simplify the mathematical
formulation. Interestingly, he found that a slight modification to the van der
Pol model, allowed for a cartoon of the Hodgkin–Huxley one. He proposed,
then, the following dynamical system

ǫẋ = x − x3

3
+ y + I

ẏ = −x + a + b y. (3.10)

He named this system BVP (for Bonhoeffer–van der Pol). It must be verified
that 1 − 2b/3 < a < 1, 0 < b < 1 and b < c2. The parameters a, b, ǫ are
fixed constants, I represents an injected current. It was left in the x variable
only for analogy to the Hodgkin–Huxley model. In general, the results are
independent on which variable the signal is applied to [70]. The (small) value
of ǫ fixes the separation of the time-scales between the fast (excitatory) x
variable and the y slow recovery (inhibitory) one. Typical values of this
separation are around ǫ ∈ [10−4, 10−2]. The sign of the variables x and y
can be inverted (given the fact that all the terms correspond to odd powers)
and the dynamical properties will remain unchanged.
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Qualitatively, the dynamics of the FitzHugh–Nagumo model is similar
to the phenomenology captured by the Hodgkin–Huxley model. It exhibits
oscillatory and excitable regimes, not exhibiting bursting, though. The func-
tional form of the forces acting on the x and y variables, was selected only
for simplicity, and to allow for some theoretical treatment –which would be
much harder to perform in the Hodgkin–Huxley model–. In fact, there are
further simplifications to this model. For example, taking linear piece-wise
interpolations of the cubic term in the equation for x. The main dynamic
properties of the system remain unchanged.

Without loss of generality, and very useful for some applications, one
can take b = 0. It is common to assume that the noise term enters in the
injected current, so in absence of another sources, the model reads

ǫẋ = x − x3

3
+ y +

√
Dξ(t)

ẏ = −x + a, (3.11)

where D is the noise intensity of the noise source ξ(t).

3.3.4 Dynamical properties

Linear Analysis

The system (3.11) has only one fixed point: x∗ = a, y∗ = a − a3/3. The
linear analysis indicates that the Jacobian matrix is given by

J(x, y) =

(

1
ǫ (1 − x2) 1

ǫ
−1 0

)

.

At the fixed point the eigenvalues are

λ1,2 =
1 − a2 ±

√

(a2 − 1)2 − 4ǫ

2ǫ
. (3.12)

As ǫ is a positive real constant, it can be seen that there is an interval

a2 < 2
√

ǫ + 1, (3.13)

such that the eigenvalues are complex conjugates. This implies an oscillatory
dynamics around the fixed point. Furthermore, if a2 < 1, the real part of
the eigenvalues is positive, and then the fixed point is unstable (see 3.3,
first column). For a2 > 1, the fixed point is stable, there is a region |a| > 1
(whose size depends on the value of ǫ), such that the behaviour is oscillatory.
Thus, there is a bifurcation at |a| = 1 between an oscillatory behaviour (for
|a| < 1) and an excitable one (|a| ≥ 1). Note, however, that equation (3.13)
implies that the region where there are complex eigenvalues in the excitable
regime, vanishes in the limit ǫ → 0, which is the region of relevance in the
context in which this model is used.
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Figure 3.3: It is shown a schematic representation of the phase space for the
FitzHugh–Nagumo model. The first column of both panels, depict the oscil-
latory regime, where the control parameter is a = 0.5, in which a unstable
fixed point appears. The second column represents the phase space in the
excitable regime (a = 1.3), in which there is a stable fixed point. The panel
(a), shows ǫ = 1, in order to make visible velocity field in both directions.
For smaller values of ǫ –see panel (b), where ǫ = 10−2–, the magnitude of
the force in x direction is much larger, carrying very fast the system to the
nullcline x.

A final note is that the branches of the x-nullcline are attractors of the
dynamics, and the system evolves approaching them: they behave as a limit
cycle –see figure 3.3(b)–, such behaviour is more apparent for vanishing
values of ǫ .

We will now show an approximation of the time to perform a cycle, valid
for small values of ǫ.

Analytic derivation of the oscillation time

For small enough values of the time-scale parameter ǫ, the dynamics in the
x variable occurs very fast, and the system relaxes quasi-instantly to the
branches of the cubic x-nullcline: The relaxation time is much faster than
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Figure 3.4: We plot the frequency of the oscillations for the FitzHugh–
Nagumo model as a function of the control parameter a. The symbols
correspond to the numerical results for three different values of the param-
eter ǫ, which controls the time-scale separation of the variables, namely:
ǫ = 10−2 (white circles), ǫ = 10−3 (gray squares) and ǫ = 10−4 (black di-
amonds). The solid line corresponds to the analytical approximation given
by equation (3.19).

any other time-scale of the system, for example the oscillation time. Along
this section, we will restrict to the case ǫ very small.

As the system, starting from any initial condition, rapidly reaches the
nullclines of the x variable –see figure 3.3(b) for the associated velocity field–,
we can consider that all the dynamics of the system during the cycle occurs
in these nullclines. Furthermore, we can neglect the jump time from one
branch to the other. Formally stated, we can put

ǫ ẋ = x − x3 + y = 0. (3.14)

This can be associated to the fact that ǫ = 0. Then, we have

y = x − x3, (3.15)

and taking the time-derivative, we get,

ẏ = ẋ(1 − x2). (3.16)

From the definition of the model, we also know that the recovery variable
dynamics follows (see equation (3.10))

ẏ = x − a. (3.17)
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So, if we equate the expressions (3.16) and (3.17), and solving for the
time derivative ẋ, we get

ẋ =
1 − x2

x − a
, (3.18)

In order to compute the oscillation period, we must integrate the above
equation along the trajectory performed on the limit cycle (see figure 3.3),
i.e.: for the right branch the integration limits are, x ∈ [1, 2], whilst for the
left branch x ∈ [−2,−1]:

T =

∫ −2

−1
dx

1 − x2

x − a
+

∫ 2

1
dx

1 − x2

x − a

= 3 + (a2 − 1) ln

(

4 − a2

1 − a2

)

. (3.19)

From it, the frequency of the oscillations is readily given as f = T−1. The
agreement of this approximation with the actual values of frequency is shown
in figure 3.4. It is observed that the approximation is better, for vanishing
ǫ, as the approximation implies. For |a| > 1 the frequency is zero, and the
system is excitable.

It is useful to compare these results in figure 3.4 with those observed in
figure 3.1, panel (b). It can seen that the frequency of oscillations follow the
same overall behaviour and, thus, this system behaves as a type II excitable
system.

The effect of noise

In the excitable regime, qualitatively, the dynamics does not depend on to
which variable the noise is applied [70]. From now on, and without loss of
generality, we will consider the noise acting on the slow variable. Also, when
an external signal is applied, in general it is considered that it is applied on
the recovery variable.

The excitable behaviour of the FitzHugh–Nagumo model changes de-
pending on the separation of time scales of the variables. This can be seen
in figure 3.5. This figure shows the dynamics of the FitzHugh–Nagumo
model for low separation in the time-scales of both variables (signalled by
a large value of ǫ). For very small values of the noise intensity, the dynam-
ics is basically oscillatory around the stable fixed point –remember that in
this case the eigenvalues of the Jacobian matrix are complex–. For larger
noise intensities, it is observed that there are firings whose amplitude varies
considerably. Furthermore, as it is apparent in the time-evolution of the
x variable –second row of panel (a)–, for some noise intensities, there are
subthreshold oscillations before a large excursion: this fact is related to the
existence of canard orbits [71].

A very different kind of dynamics appears when the value of ǫ is much
smaller (see figure 3.6). In this case, the dynamics occurs mostly on the
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Figure 3.5: We depict the dynamics of the FitzHugh–Nagumo model for
a = 1.1, and ǫ = 10−1. In the first row, we plot trajectories of the in the
phase space; while in the second row, the corresponding time evolution of
the x variable is represented. The intensity of noise varies in the panels (a)
D = 10−2, (b) D = 4 × 10−2 and (c) D = 0.5 .

x−nullcline. Even for larger noise intensities, the motion remains confined
to coordinates close to that locus. This implies that a phase oscillator, or
a phase representation of this system is a very good approximation in that
limit. Since the limit cycle is centred around the origin, one can simply
consider the phase representation φ = arctan(y/x). In can be demonstrated
[72, 42], that a system whose dynamics is governed by

φ̇ = −dV (φ)

dφ
+ ω +

√
Dξ(t), (3.20)

where

V (φ) =
∆

λ
eλ(cos(φ)−1), (3.21)

can exhibit dynamics akin to that of a FitzHugh–Nagumo model.
In [73], it was shown that this system displays the phenomenon of stochas-

tic resonance. However, the mechanism underlying the phenomenon is dif-
ferent to that of the bistable system shown in 2.2.2. In bistable systems,
there is a matching between the Kramers’ time and the signal period. In
the FitzHugh–Nagumo case, the signal lowers the excitability threshold, and
intermediate noise intensities are able to perturb the system just beyond the
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Figure 3.6: We depict the dynamics of the FitzHugh–Nagumo model for
a = 1.1, and for ǫ = 10−4. In the first row, we plot trajectories of the in
the phase space; while in the second row corresponds to the time evolution
of the x variable. From left to right, the strength of the noise is: D =
10−2, 2 × 10−2, 0.5. It can be seen that for smaller values of the time-scale
separation ǫ, the dynamics approach very fast the nullclines of the x variable.

linear response, and then a firing is produced. Furthermore, the system will
be able to respond to a periodic modulation if its period is larger than the
excitable system’s refractory time. Thus, for these systems, the dependence
of the response with frequency is highly non-trivial. For large noise inten-
sities, the dynamics is ruled by the stochastic terms, and the phenomenon
disappears. On the other hand, a very small noise intensity makes the sys-
tem respond linearly to it, and the system remains near the fixed point. It is
of no surprise that signals with periodicities lower than the refractory time
are not amplified –at least not in a trivial way–.

3.4 Coherence Resonance

In 1997, in reference [74], it was unveiled for the first time the phenomenon
of coherence resonance. It is related to that of stochastic resonance in the
sense that noise plays also a constructive role in the dynamics of the system.
Its typical footprint is that the regularity of the firings in an excitable system
is maximum for intermediate noise intensities. If the noise is too large or
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Figure 3.7: We show the basic footprints of the coherence resonance phe-
nomenon in the FitzHugh–Nagumo model. The large panel (a) shows the
Jitter as a function of noise intensity. Each curve corresponds to different
values of the bifurcation parameter a: The circles correspond to a = 1, ex-
actly in the bifurcation point and the squares to a = 1.02. A clear minimum
for intermediate noise intensities, signalling a more regular spiking can be
observed. The same can be seen in panels (b), (c) and (d), that show the
time-evolution of the x variable for different noise intensities: D = 10−3,
5 × 10−2 and D = 1, respectively. In all the panels, we fixed ǫ = 10−2.

too small, this regularity is lost.

A typical measure for this phenomenon is that of the jitter, R. Let
t1, t2, . . . , tN be the times between consecutive firings. The jitter is computed
as

R =

√

〈(ti − 〈ti〉)2〉
〈ti〉

, (3.22)

where 〈ti〉 is the mean time between spikes and 〈(ti − 〈ti〉)2〉 is the second
moment of the interspike distribution. In case of a perfectly periodic state,
the jitter vanishes, increasing as the spiking become more irregular events.

We consider a single FitzHugh–Nagumo unit under the effect of noise,
described by equation (3.11). If one plots the jitter as a function of noise
intensity D (see panel (a) in figure 3.7), it is observed that a minimum of
this measure appears for intermediate noise intensities. This indicates that
the regularity of the pulses has an maximum value for some optimum value
of noise strength. This is also shown in panels (b)-(d) of figure 3.7, where
for the optimum noise intensity the spikes are almost periodic.
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3.4.1 Mechanism of the phenomenon.

The mechanism behind coherence resonance can be understood via a simple
qualitative argument.

The interspike time interval has two main contributions, t(a) (the acti-
vation time) and t(e) (the excursion time). The former is the time needed
for the system to escape from the fixed point. The latter, corresponds to
the interval the system spends in the excursion.

The distribution of these times is rather different: on one hand the acti-
vation time follows basically a Poissonian distribution that strongly depends
on the noise intensity. On the other hand, the excursion time displays a
much weaker dependence on the noise intensity as the dynamics during the
excursion is almost independent on the perturbations.

Assuming that both times are independent, we can split the computation
of the jitter in the two contributions [75], and then

R2 =
〈(ti − 〈ti〉)2〉

〈ti〉2
≈ 〈(t(a)

i − 〈t(a)
i 〉)2〉〈t(a)

i 〉2

〈t(a)
i 〉2〈ti〉2

+
〈(t(e)i − 〈t(e)i 〉)2〉〈t(e)i 〉2

〈t(e)i 〉2〈ti〉2
.

(3.23)
By defining the corresponding jitters Ra and Re of the activation and ex-
cursion times respectively, we can rewrite equation (3.23) as

R2 = R2
a

(

〈t(a)
i 〉
〈ti〉

)2

+ R2
e

(

〈t(e)i 〉
〈ti〉

)2

(3.24)

If we assume a Poissonian process for the times t(a), R2
a = 1 and the constri-

bution of the first term will be the given by the ratio of the activation time
to the interspike interval. For increasing noise intensity this term rapidly
decreases from one to zero. The second term, on the other hand, increases

with noise mainly due to the increase of 〈t(e)i 〉/〈ti〉. Then, the squared value
of the jitter has a minimum as a function of noise intensity.

This prediction can be confirmed by inspection of figure 3.7, where a
clear minimum in the jitter is observed for intermediate noise strengths.
The dynamical trajectories, also, exhibit a more periodic behaviour (see
panel (c) in the same figure).

Another measure used for the coherence resonance phenomenon is the
self-correlation function of the dynamical variables, that maximises for the
most regular (i.e. periodic) dynamics.
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Chapter 4

Synchronisation of dynamical

systems

In this chapter, we will briefly introduce the concept of synchronisation of
interacting dynamical systems. This subject has become a major field of
research in the last years, and then we do not intend to give a detailed
explanation of the many interesting phenomena related to it. We will sum-
marise the results that are relevant for our results, in the following sections.
The interested reader is invited to read one of the introductory books on
the subject [76, 77].

Laxly defined, synchronisation refers to the adjustment of rhythms in
coupled oscillators. However, synchronisation phenomena appears not only
when the coupling strength is the only relevant term in the dynamics of the
system. Synchronised units might exhibit a rich coherent behaviour.

We, in the following section, will make a brief historical introduction to
the synchronisation phenomenon. Next, in section 4.2, we will define some
concepts involved in the description of the synchronisation phenomenon. In
the last section, we describe the Kuramoto framework for synchronisation,
that will be useful if the forthcoming chapters. We will present the theoret-
ical treatment of this model under the effect of noise and diversity, and we
will briefly discuss the similarities between them.

4.1 Historical notes

The first description and understanding of a synchronisation phenomenon,
was presented in the XVIIth century, by Christiaan Huygens. He observed
that two pendulum clocks, after some period of time, would oscillate with the
same pace. Furthermore, they did it in an anti-phase fashion: whenever one
pendulum reached the leftmost position, the other one was in the rightmost
position. Interestingly, this phenomenon would happen regardless the clocks
being non-identical: separately, they would delay or advance the time in
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different ways. He discovered that such a behaviour would only happen if
the pendula were hung from hooks hanging from in the same wooden beam.
Huygens, for the first time, discovered that the subtle interaction through
the wooden beam would give raise to a collective, synchronised behaviour.

One of the most interesting examples of synchronisation is that of the
flashing fireflies in Malaysia: Large amount of male fireflies –placed for hun-
dreds of meters– flash synchronously at dusk. This fact was known since the
beginning of the XXth century, although no satisfactory explanation of the
phenomenon was given until the 1960’s. When isolated, each firefly flashes
at a pace that is different between individuals. But only when they are in
visual contact, they pulse synchronously.

The understanding on how a synchronised behaviour can emerge in
coupled dynamical systems was not obtained until the pioneer works by
A.T. Winfree [78, 79] and Y. Kuramoto [55, 7] and the conditions under
which coupled systems finally synchronise was identified by R. Mirollo and
S.H. Strogatz [59]. Furthermore, it was found that even chaotic systems can
synchronise [80]. In many cases, studying synchronisation in continuous-
time dynamical systems is intractable from an analytical point of view; thus,
as simplified models, the understanding of synchronisation in maps [81, 82]
is of particular relevance.

The first person to propose a tractable mechanism showing synchronisa-
tion was A.T. Winfree [78], who recognised that in some cases the dynamics
of the system would relax fast to a limit cycle, and then it could be reduced
to a simple description. He also noticed that the interplay between cou-
pling and diversity among the units could cause a collective synchronised
behaviour.

In the last decades, the interest on this phenomenon increased contin-
uously. Its pervasiveness in a broad range of dynamical systems makes it
relevant for different disciplines. In Biology, for example, neurons -which
strongly interact with many others- fire synchronously under certain condi-
tions, for example during an epileptic seizure. Also the cardiac tissue shows
a synchronised firing of thousands of nerve cells during a beat. In Astron-
omy, it is common the synchronisation of translation and rotation periods
(this phenomenon is persistent in many planets). In Electronics, chaotic
synchronisation is used for securing transmitions, and a long etcetera.

4.2 Definitions

An oscillatory dynamical system is one whose trajectory in the phase space
approaches a limit cycle. It means that, basically independently of the initial
condition, the time evolution of the system in the phase space tends to some
definite closed trajectories. Also, if the system is perturbed by some means,
it relaxes very fast to this limit cycle. In these situations, the dynamics of
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the system can be assimilated by the motion in the limit cycle. Thus, the
motion can be considered isomorph to a motion in a circle.

Oscillatory systems must be autonomous: the oscillations do not fade
out (due, for example, to friction forces). Instead, there is some source that
keeps the oscillatory behaviour. This kind of dynamical systems, thus, have
an intrinsic rhythm: the recurrence time for the unit to return back to the
original point.

The generalised concept of phase is that of a coordinate defined to repre-
sent in which position of the system in limit cycle. Then, two units will have
the same phase if located in the same position of the limit cycle, regardless
the amount of complete cycles they have performed.

Synchronisation is a phenomenon that occurs in interacting dynamical
systems. It happens when the units adjust their rhythms, even if they are
different when uncoupled. This does not necessarily imply that as result
of the interaction the rhythms should become equal (which is a particular
case of synchronisation), but only that some trivial relation appears among
them. It is important to remark that if the coupling strength does not not
allow the interacting units to be considered as independent (for example the
units are rigidly binded), this should not be considered as synchronisation.

In this thesis, we will use the term entrained to describe a situation in
which the interacting units are located at the same point, but their dynamics
is trivial. For example, a situation in which interacting units stay confined
in a fixed point of the dynamics, is an entrained state.

Abusing a little bit of language, it is possible to talk about synchronisa-
tion by an external force, if a system behaves in a synchronous way with the
external force. Then, one can describe the stochastic resonance phenomenon
as a region in which the system is synchronised with the external stimulus.
The synchronisation in this case is, however, not perfect.

4.3 Kuramoto Model

4.3.1 Description

As stated in section 1.3, the simplest model that can describe an oscillatory
behaviour is a dynamical system defined in a circle. The model originally
proposed by Kuramoto [55, 83, 84] to study coupled oscillators was one such
that a single unit would oscillate with a constant angular velocity ωi. The
units are coupled through a function Γ(φ) which is a 2π−periodic function
on the phase difference, i.e.

φ̇i = ωi +
N
∑

j=1

Γ(φj − φi) +
√

Dξi(t). (4.1)
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It is usual to take simply Γ(φ) ∝ sin(φ). In this case, and for small phase
difference, it behaves like a linear interaction.

If an oscillator has a set Υi of Ni neighbors, it is common to normalise the
coupling, in order to ensure well defined behaviour in the thermodynamic
limit. The dynamics is given by

φ̇i = ωi +
C

Ni

∑

j∈Υi

sin(φj − φi) +
√

Dξi(t). (4.2)

In this expression the values of the frequencies ωi are distributed according
to a probability distribution function g(ω), whose first two moments are
〈ω〉 = Ω and 〈(ω − Ω)2〉 = σ2. The ξi(t) is a Gaussian white noise, of zero
mean and 〈ξ(t)ξ′(t)〉 = δ(t − t′).

The parameter C determines the coupling strength. In the particular
case of mean-field coupling, in which every unit is coupled with all the
others, we get

φ̇i = ωi +
C

N

N
∑

j=1

sin(φj − φi) +
√

Dξi(t), (4.3)

We can think of the system as particles moving around a circle of radius
one in the complex plane. Then, to study its collective behaviour, it is useful
to compute the complex time-dependent Kuramoto order parameter,

ρ(t) eıΨ(t) =
1

N

N
∑

i=1

eıφi . (4.4)

This parameter is the position of the centre of mass of all the units. Its
modulus, ρ(t), is the distance between the origin of the complex plane and
the position of the baricenter. If all the units have the same phase, then
ρ = 1 and this is –in the Kuramoto framework– considered to be a fully
synchronised state. On the other hand, if the units are uniformly distributed
around the circle, ρ = 0 which indicates an incoherent state. Between
these two extreme cases, some degree of synchronisation is present in the
system. It is usual to define ρ ≡ 〈ρ(t)〉 as the Kuramoto order parameter, as
it determines a phase transition between synchronised and desynchronised
states.

The argument of the complex Kuramoto order parameter, Ψ(t), the an-
gular position of the centre of mass, is usually called global phase.

We can rewrite the definition (4.4), as the set of equations

ρ(t) cos(Ψ(t)) =
1

N

N
∑

i=1

cos(φi) ρ(t) sin(Ψ(t)) =
1

N

N
∑

i=1

sin(φi). (4.5)
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The interaction term in equation (4.3) can be rewritten as

1

N

N
∑

i=1

sin(φi − φj) =
1

N

N
∑

i=1

[sin(φi) cos(φj) − cos(φi) sin(φj)] (4.6)

= ρ(t) cos(Ψ(t)) sin(φj) − ρ(t) sin(Ψ(t)) sin(φj).

It is then possible to express conveniently the dynamics of the individual
units (in equation (4.3)) in terms of the global order parameter (or con-
versely, it can be understood as interaction with the mean-field),

φ̇i = ωi + C ρ sin(Ψ − φi) +
√

Dξi(t). (4.7)

This formulation allows to perform analytical calculations, and write efficient
computer codes to perform numerical simulations of models with this kind
of coupling.

It is worth noting that for the Kuramoto model, and without loss of
generality, it is possible to change the coordinate system to a rotating frame
moving with velocity Ω: i.e., φ − Ω t → φ, 〈ω〉 = 0. This does not alter the
results, and simplifies the calculations. In this coordinate system, the value
of the global phase is irrelevant, and we can set it to Ψ = 0.

4.3.2 Synchronisation transition of diverse units

In the deterministic case, in which the noise intensity is D = 0, the expres-
sion (4.7) admits to be written in potential form, φ̇i = −∂Vi/∂φi with

Vi(φ) = −ωiφ + C ρ cos(Ψ − φ). (4.8)

Depending on the frequency ωi, there will be two possible behaviours for the
oscillators. On one hand, if ωi ≤ |C ρ|, there is a stable fixed point, located
at

φ∗
i = arcsin

(

ωi

C ρ

)

, (4.9)

such that the unit will get locked. On the other hand, if ωi > |C ρ|, there
will be no fixed points for the unit, and it will drift apart.

Kuramoto assumption was that the drifting oscillators do not contribute
to the final value of ρ as they are supposed to be equally distributed in the
circle. The locked oscillators are assumed to have a stationary distribution
p(φ). In such situation, it must be given by

p(φ) =
N
φ̇

=
N

|ωi − C ρ sin(φi)|
. (4.10)

Here, N is a normalising constant, such that
∫ π
−π dφ p(φ) = 1, which yields

N =
1

2π

√

ω2 − (C ρ)2. (4.11)
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Figure 4.1: In this plot we show the original result by Kuramoto (see equa-
tion (4.15)) for the degree of synchronisation of a globally coupled set of
oscillators. The distribution of natural frequencies, g(ω) is a Gaussian dis-
tribution, of 〈ωi〉, 〈ω2

i 〉 = σ2. The different symbols represent different
system sizes: N = 50, 100, 500, 5 × 103, 5 × 104, from top to bottom in the
right end of the panel. The solid line represents the theoretical prediction
(see text for details).

The order parameter can be computed by

ρeıΨ = 〈cos(φ)〉 + ı〈sin(φ)〉. (4.12)

If the distribution g(ω) is an even function, in the thermodynamic limit,
the distribution p(φ) is symmetric around zero, and then, the term 〈sin(φ)〉,
vanishes. The expression for the contribution of the locked oscillators to the
global variable is

ρeıΨ =

∫ Cρ

−Cρ
dω cos(φ(ω))g(ω). (4.13)

Where φ(ω) = arcsin(ω/Cρ). By performing a change of variables -and
recalling that the global phase was set to zero-, we can rewrite the former
expression as

ρ = Cρ

∫ π/2

−π/2
dφ cos2 (φ) g(Cρ cos2 φ). (4.14)

This self-consistent relation allows us to identify that the incoherent solution
(all the oscillators uniformly distributed in the circle) is always a trivial
solution of this equation. So, the state ρ = 0 is always present.



4.3 Kuramoto Model 55

The other solution is simply given by the integral relation

1 = C

∫ π/2

−π/2
dφ cos2 (φ) g(Cρ sin(φ)). (4.15)

The limit ρ → 0+, shows that this equation bifurcates continuously for
g(0) < g∗(0), at a point

g∗(0) =
2

πC
. (4.16)

This is the result that Kuramoto proved in his first paper on this subject.
It can be shown [83] that the bifurcation is supercritical (subcritical) if
g′′(0) < 0 (respectively, g′′(0) > 0).

For example, if g(φ) is a Gaussian distribution with standard deviation σ,
g∗(0) = 1/σ∗

√
2π. In figure 4.1, we show the transition to desynchronisation

of a globally coupled Kuramoto model. It can be clearly seen a second order
phase transition for the order parameter ρ.

This result implies that diversity σ is a factor that worsens the collective
behaviour of the system: above a given critical value, the degree of synchro-
nisation is O(N−1/2). A very good agreement between theory and numerical
simulations is seen in this figure.

4.3.3 Kuramoto model under the effect of noise

We now consider a set of globally coupled phase rotators, under the effect
of noise, i.e. their dynamical evolution is given by

φ̇i = ω +
C

N

N
∑

j=1

sin(φj − φi) +
√

Dξ(t). (4.17)

Qualitatively, the effect of noise has some resemblances with that of
diversity, i.e. above a critical value the degree of synchronisation vanishes.
However, in this case, the route to synchronisation is quite different.

As we are not considering diversity in the natural frequencies, the Ku-
ramoto order parameter can be computed as

ρeıΨ =

∫ 2π

0
dφP (φ, t) eıφ, (4.18)

where P (Ψ, t) is the probability distribution function obtained by solving
the associated Fokker–Planck equation

∂P (φ, t)

∂t
= Cρ

∂

∂φ
[sin(Ψ − φ)P (φ, t)] +

D

2

∂2

∂φ2
P (φ, t). (4.19)

Solving the self-consistency relation given by equations (4.18) and (4.19) is
not trivial in general. It is possible, however, to solve them in some limiting
cases.
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Figure 4.2: We show the results of the Kuramoto order parameter as a
function of noise intensity D in a system without diversity. The different
symbols represent different system sizes: N = 50, 100, 103 , 5 104, from top
to bottom in the right end of the panel. The dotted line correspond to the
theoretic computation of ρ, equation (4.24). The coupling strength is set to
C = 1.

To proceed, we expand P (φ, t) into a Fourier series

P (φ, t) =
1

2π

∑

l∈Z

Pl(t)e
ılφ. (4.20)

From the definition of the Kuramoto order parameter, P1 = ρ eıΨ and P0 = 1
(due to the normalisation of the probability distribution).

By subsituting equation (4.20) into the expression (4.19), the Fokker–
Planck equation reduces to an infinite set of coupled ordinary differential
equations,

dPl

dt
= −D

2
l2Pl +

lC

2
(Pl−1Pl − Pl+1P

∗
l ) . (4.21)

The first three terms read:

Ṗ1 =
C

2
(P1 − P2P

∗
1 ) − D

2
P1

Ṗ2 = C
(

P 2
1 − P3P

∗
1

)

− 2DP2

Ṗ3 =
3C

2
(P2P1 − P4P

∗
1 ) − 9D

2
P3. (4.22)
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The homogeneous solution (one in which all the rotators are uniformly dis-
tributed around the circle), is always a solution of the system. A simple
linearisation around this solution, shows that the only mode that can change
stability is P1: In all the others, all the terms are of second order with re-
spect to the displacements from ρ = 0. The first order term, P1, is unstable
if C > D, and stable otherwise.

By setting P3 ≈ 0 and Ṗ2 ≈ 0, we can express the time evolution of the
Kuramoto order parameter in the form

d

dt
ρeıΨ = ρeıΨ

(

C − D

2
− C2

4D
ρ2

)

. (4.23)

This equation in known as the Landau–Stuart, and describes the appearance
of a mean field in a population of interacting noisy elements. Its stationary
solution can be easily obtained, by equating the term in parenthesis to zero.
This treatment, yields for the Kuramoto order parameter the value

ρ =
√

C − D

√
2D

C
. (4.24)

This result is valid near the transition to the desynchronised state. The
transition point is located at C = D. In figure 4.2, it is shown the good
agreement near the transition point. Near the transition point, the order
parameter grows as the square root of the distance to the bifurcation point,
which illustrates the analogy with the mean-field theory of phase transitions.

The results from this section and the previous one show a somehow pre-
dictable behaviour of disordering agents: as their influence grows, there is a
point above which the synchronised behaviour is lost. It is remarkable, how-
ever, that this does not happen continuously, but rather through a genuine
phase transition.
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Part II

Results: The role of disorder





Chapter 5

Collective firing in excitable

media

5.1 Introduction

In coupled excitable systems, macroscopic firing (a significatively large frac-
tion of the units fires simultaneously) excited by noise has been observed in
chemical excitable media [85, 86], neuron dynamics [87] and electronic sys-
tems [88], and it has been described through several theoretical approaches
[89, 90, 91]. This synchronised firing can be considered as a constructive
effect induced by the noise. Other examples in which noise actually helps
to obtain a more ordered behaviour are stochastic resonance [17], stochastic
coherence (or coherence resonance) [74], and noise-induced phase transitions
[92].

Diversity, the fact that not all units are identical, is an important in-
gredient in realistic modelling of coupled systems. Ensembles of coupled
oscillators with diversity have been paradigmised [7] and largely studied
[83, 5], with the result that synchronised behaviour can appear once the
disorder induced by the diversity is overcome by the entraining effect of the
coupling. In particular, refs. [93, 84] show an analytical study of the active
rotator model in the regime of large frequencies. The results are valid only
in the strongly oscillatory regime and they also characterise the transition
from full synchronisation to desynchronisation. It has been shown that in a
purely deterministic excitable system diversity may induce collective firing
[94] if a fraction of the elements are above the oscillatory bifurcation. So,
diversity and noise might be expected to play a similar role.

In this work, we develop an analytical understanding for the emergence
of collective firing in coupled excitable systems in presence of disorder, ei-
ther noise or diversity. We show that three different dynamical regimes are
possible: sub-threshold motion, where all elements remain confined near the
fixed point; coherent pulsations, where a macroscopic fraction fire simulta-
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neously; and incoherent pulsations, where units fire in a disordered fashion.
Remarkably, the coherent behaviour appears through a genuine phase tran-
sition when the noise intensity, the coupling or the diversity cross a critical
value. A second phase transition to the disordered (incoherent) phase is
recovered for large enough noise intensity or diversity, or small enough cou-
pling. The mechanism for collective firing is the degradation of entrainment
which can be originated either by noise or diversity. This is generic and
opens a new scenario for experimental observations.

This chapter is organised as follows: in the next section 5.2, we present
the model and the relevant order parameters. Then, in section 5.3, we intro-
duce a general theoretical treatment to understand the mechanism behind
the emergence of collective firings in this system. In section 5.4 we compare
the results of numerical simulations with the theory previously introduced.
Then, in section 5.5, we show specialise the theoretical treatment in the case
of diverse units. In the final section, the conclusions are drawn.

5.2 Model and order parameters

We consider as a prototypical model an ensemble of globally coupled active-
rotators φj(t), j = 1, . . . ,N , whose dynamics is given by [55]

φ̇j = ωj − sin φj +
C

N

N
∑

k=1

sin (φk − φj) +
√

Dξj. (5.1)

The natural frequencies ωj are distributed according to a probability density
function g(ωj), with mean value ω and variance σ2. Notice that ωj < 1
(resp. ωj > 1) corresponds to an excitable (resp. oscillatory) behaviour of
the solitary rotator j. In the oscillatory case, it is worthwhile remember to
remember that, in this case, the actual frequency is

√
ω2 − 1. Throughout

the chapter we consider the case ω < 1. D is the intensity of the Gaussian
noises ξj of zero mean and correlations 〈ξj(t)ξk(t)〉 = δ(t − t′)δjk, and C is
the coupling intensity.

To characterise collective behaviour we use the time-dependent global
amplitude, ρ(t), and phase, Ψ(t) [7, 56].

ρ(t)eiΨ(t) =
1

N

N
∑

k=1

eiφk(t). (5.2)

The Kuramoto order parameter ρ ≡ 〈ρ(t)〉, where 〈·〉 denotes the time av-
erage, is known to be a good measure of collective synchronisation in cou-
pled oscillators systems, i.e. ρ = 1 when oscillators synchronise φj(t) =
φk(t), ∀j, k, and ρ → 0 for desynchronised behaviour. Notice, however, that
the Kuramoto parameter adopts a non-zero value even when all the vari-
ables φj , being equal to each other, are at rest. In the excitable regime
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there are two different dynamical regimes that could give raise to a value
ρ = 1, a dynamical one in which the units fire pulses synchronously (this
situation would correspond to full synchronisation). And a static one, in
which all the units rest in the stable fixed point. To discriminate between
this static entrainment from the dynamic entrainment of excitable systems
when all units fire synchronously, we use the order parameter introduced by
Shinomoto and Kuramoto [56]

ζ =
〈∣

∣

∣ρ(t)eiΨ(t) −
〈

ρ(t) eiΨ(t)
〉∣

∣

∣

〉

, (5.3)

which differs from zero only in the case of synchronous firing. Finally, a
measure for the activity of the units, widely used in problems of stochastic
transport in non-symmetric potentials is the current

J =
1

N

N
∑

k=1

〈

φ̇k(t)
〉

. (5.4)

A non-zero current J describes a situation in which the systems are firing
(not necessarily synchronised).

5.3 Theoretical approach

We now provide an analytical theory to understand the behaviour of ρ, ζ
and J as a function of the control parameters, C, D and σ. The theory
proceeds in three steps. First, under the assumption of entrainment, we
derive a dynamical equation for the global phase Ψ, depending on the value
of the Kuramoto parameter ρ. Second, using the solution of that equation,
we obtain expressions for ζ and J which depend on ρ. Finally, we calculate
self-consistently the value of ρ.

5.3.1 Global phase dynamics

Averaging equation (5.1) over the whole ensemble and using the definition
of global amplitude and phase of equation (5.2) we have

1

N

N
∑

k=1

φ̇j = ω − ρ(t) sin Ψ(t) +

√

D

N
ξ(t). (5.5)

where ξ(t) is a Gaussian noise of zero mean and correlations 〈ξ(t)ξ(t′)〉 =
δ(t − t′). In order to perform an approximation for equation (5.5), we take
the time-derivative of equation (5.2), obtaining

d

dt

(

ρ eiΨ
)

= ρ̇(t) eıΨ(t) + ıΨ̇ ρ(t)eıΨ(t) =
ı

N

N
∑

k=1

φ̇ke
ıφk . (5.6)
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Figure 5.1: Dynamical trajectories for 10 typical units in a system of
N = 400 with ω = 0.98 and C = 4. Each row depicts different noise inten-
sities (and no diversity): D = 0.1 (panel a, regime I, no firing), D = 0.65
(panel b, regime II, synchronised firing) and D = 4.0 (panel c, regime III,
desynchronised firing).

If we now rewrite the previous equation in terms of the phase difference with
respect to the global phase, i.e. φj(t) = Ψ(t)+ δj(t), we can rewrite the last
equation as

ρ̇(t) + ı ρ(t)Ψ̇(t) =
ı

N

N
∑

k=1

φ̇ke
ıδk(t). (5.7)

We consider now that the rotators are entrained in the sense that δj(t) ≪ 1.
Under this assumption, we substitute the expansion eiδk = 1 + iδk + O(δ2

k)
in the previous expression. Equating real and imaginary parts, we obtain

ρ(t)Ψ̇(t) =
1

N

N
∑

k=1

φ̇k + O(δ2
k). (5.8)

The definition of δi leads to ρ(t) = N−1
∑

k eiδk . Hence ρ̇(t) = O(δ2
k) and,

consistently with the order of the approximation, we can replace in equation
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Figure 5.2: Dynamical trajectories for 10 typical units in a system of N =
400 with ω = 0.95 and C = 4, without noise D = 0, and different diversities:
σ = 0.63 (top, regime I, no firing), σ = 1.73 (middle, regime II, collective
firing) and σ = 3.0 (bottom, regime III, desynchronised firing).

(5.8) the time dependent ρ(t) by the constant value ρ. Therefore, equation
(5.5) can be approximated by

ρΨ̇(t) = ω − ρ sin Ψ(t) +

√

D

N
ξ(t), (5.9)

which in the limit N → ∞, reduces to

Ψ̇(t) =
ω

ρ
− sin Ψ(t). (5.10)

It is remarkable that the global phase obeys the same dynamics than the
individual units but with a natural frequency scaled with ρ, the Kuramoto
parameter measuring the entrainment degree. Therefore, a decrease in the
entrainment lowers the collective threshold from ω = 1 to ω = ρ and the
system can start firing synchronously. The effect can be understood as a
broadening of the distribution of the phases φ, so that a fraction of the
rotators crosses over the threshold and, if the coupling is large enough,
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they pull a macroscopic fraction of the oscillators. Thus degradation of the
entrainment has the paradoxical effect of increasing the coherent firing. It is
essential to realize that equation (5.10) depends only on the value of ρ and
not in the specific way the degradation of ρ is achieved, so that similar effects
can be achieved either increasing the noise, either decreasing the coupling, or
increasing the diversity in the natural frequencies; a significantly insightful
result not previously understood nor discussed.

5.3.2 Computation of the order parameters

We now turn our attention to the computation of the probability distribution
P (Ψ, ρ). As shown previously, ρ is approximately constant for small δi, and
then the probability density associated to the macroscopic equation (5.9), is

P (Ψ; ρ, ω) = Z−1e−2N U(Ψ;ρ,ω)/D

∫ 2π

0
dΨ′ e2 NU(Ψ′+Ψ;ρ,ω)/D, (5.11)

with Z is a normalising constant. The associated potential is given by

U(Ψ; ρ, ω) = −ω

ρ
Ψ − cos(Ψ), (5.12)

In the thermodynamic limit, the expression in equation (5.9) reduces to
eq. (5.10), the distribution function gets simplified, and then it is given by

P (Ψ; ρ) =

{

1
2π

√

ω2 − ρ2/(ω − ρ sin Ψ) for ρ < ω
δ(Ψ − arcsin(ω/ρ)) for ρ ≥ ω

.

Another interesting result of our approach, is that it allows us to express
ζ and J as a function of the Kuramoto order parameter ρ. Without loss
of generality, we can arbitrarily take as initial condition Ψ(t = 0) = −π/2,
irrelevant when taking the time average. In the case ρ < ω, the solution of
equation (5.10) is given by

ω − ρ sin Ψ(t) =
ω2 − ρ2

ω − ρ cos Ωt
, (5.13)

where Ω =
√

(ω/ρ)2 − 1 is the frequency of the global phase oscillations.
The current is obtained from eq. (5.5), J = ω − 〈ρ sin(Ψ)〉. Time averages
are computed over a period T = 2π/Ω using eq. (5.13),

J =
ω2 − ρ2

T

∫ T

0

dt

ω − ρ cos Ωt
=
√

ω2 − ρ2. (5.14)

For ρ > ω, J = 0.
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Figure 5.3: Symbols represent ρ, ζ and J as obtained numerically from
eqs. (5.1). Solid lines are the theoretical results. Panel (a) shows the varia-
tion with respect to the noise intensity D in absence of diversity, σ = 0, for
a natural frequency ω = 0.95, coupling strength C = 4, and different system
sizes: N = 50 (◦), N = 102 (×), N = 103 (△), N = 104 (⋄). Panel (b)
displays the same results as a function of C for D = 1.0. Panel (c) shows
the variation with respect to diversity σ for D = 0.3, C = 4 and g(ωj) being
a uniform distribution. In all cases there are three regimes: (I) no firing,
(II) synchronised firing and (III) desynchronised firing.

Approximating again ρ(t) by a constant value, the Shinomoto–Kuramoto
parameter ζ ∼= ρ

〈∣

∣eiΨ(t) −
〈

eiΨ(t)
〉∣

∣

〉

can be computed for ρ < ω performing
the time averages over a period T using eq. (5.13):

ζ =
2

π

√

2(ω −
√

ω2 − ρ2)(ω + ρ)K

(

2ρ

ρ − ω

)

, (5.15)

where K(m) is the complete elliptic integral of the first kind [95]. If ρ > ω
we get ζ = 0.

As a final step, we derive a equation for ρ using a self-consistent, Weiss-
like, mean field approximation, which assumes constant values for the global
magnitudes and then averages over their probability distribution [92, 7]. For
our particular case, we start by rewriting equation (5.1) as

φ̇i(t) = −dV (φi; Ψ, ρ, ωi)

dφi
+

√
D ξi(t), (5.16)

where we have defined the potential

V (φ; Ψ, ρ, ω) = −ωφ − cos(φ) − Cρ cos(Ψ − φ). (5.17)
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Note that the coupling appears only through the global parameters ρ and
Ψ. For fixed ρ and Ψ, the stationary probability distribution function reads
[10]

Pst(φ; Ψ, ρ, ω) = Z−1e−2V (φ)/D

∫ 2π

0
dφ′ e2V (φ′+φ)/D, (5.18)

where Z is a normalising constant. From its definition, we have

ρ =
1

N

N
∑

k=1

〈cos(φk − Ψ)〉 , (5.19)

and we obtain

ρ =

∫

dωg(ω)

∫ 2π

0
dΨP (Ψ; ρ)

∫ 2π

0
dφPst(φ; Ψ, ρ, ω) cos(φ − Ψ) (5.20)

where we have performed a triple average: with respect to the distribution
function (5.18), with respect to the distribution g(ω) of natural frequencies
and with respect to the distribution P (Ψ; ρ) of the global phase which is in-
versely proportional to the instantaneous velocity given by eq. (5.11). The
self-consistent equation (5.20) for ρ needs to be solved numerically. In sec-
tion 5.5, we will show a simplified expression in the case when only diversity
is considered.

5.4 Numerical results and discussion

In the following, we discuss the theoretical results and compare them with
the numerical results obtained from a numerical integration of equations
(5.1). Typical trajectories showing the three dynamical regimes are dis-
played in figures 5.1 and 5.2 while the corresponding order parameters are
plotted in figure 5.3. Figure 5.3(a) shows ρ, ζ and J as function of the noise
intensity D in absence of diversity. The solid lines correspond to the theo-
retical results while symbols show the numerical results for different system
sizes. In this figure, we can observe the three aforementioned behaviours:
For small noise intensity (regime I) each rotator fluctuates around its fixed
point. Although for un-coupled rotators noise would eventually excite some
spontaneous random firings, the coupling of a large number of units sup-
presses these individual firings. The Kuramoto parameter ρ is close to 1
and the deviations from unity are due to the small dispersion induced by
noise. Region I is, in fact, characterised by ρ > ω for which our theory pre-
dicts that the Shinomoto–Kuramoto parameter ζ and the current J vanish
which physically reflects the nonexistence of collective movement. In this
region, the numerical results for ρ, ζ and J are in excellent agreement with
the theoretical predictions.

Our theory predicts that a transition to a dynamical state characterised
by synchronised firing behaviour (regime II) takes place when ρ = ω, in
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very good agreement with the numerical results. This transition is clearly
signalled by non-vanishing values of ζ and J . The prediction of ρ is good for
a large part of region II (up to values of ρ = 0.7). Later it underestimates
its value.

For very large noise intensity, the rotators desynchronise while keeping
a non-zero current value (regime III). Hence, the synchronised activity, as
measured by ζ goes though a maximum as noise amplitude increases. Our
theory predicts that the transition between regions II and III occurs for
ρ = 0 where ζ = 0 and the current takes the maximum possible value J = ω.
This limit for the very large disorder, can be understood by inspection of
eq. (5.5), for vanishing ρ and taking into account that a time average of
the noise, makes this term to vanish. The existence of this transition is
somewhat expected: as in this transition an increasing disorder (either noise
or diversity or a decreasing coupling strength) causes a loss of entrainment
in the units, characterised by the fact that ζ = 0.

Surprisingly, since the small values of ρ in this transition are beyond
the assumptions of the theory, the location of the second transition is also
well predicted. Moreover, the whole shape of the Shinomoto–Kuramoto
parameter ζ is well reproduced over the whole range. The maximum of
eq. (5.15) occurs for ρ ≈ 0.821ω, which is well confirmed by the numerical
results. The theoretically predicted current J fits the numerical values in
the same range than ρ. Note, however, the numerical simulations show a
local maximum for the current J which indicates a local increasing in the
total transport due to the coherent dynamics in the regime II. This local
maximum is not present in the theoretical approximation.

Some of these states were already described by Kuramoto and Shi-
nomoto [56]. By looking at the probability distribution of φi, these authors
identify two regions in parameter space: the time-periodic regime (P) and
the stationary regime (S). Region P corresponds to our regime II where the
order parameter ζ is different from zero and there is collective motion of the
oscillators. Our findings allow us to split region S of these authors in our
distinct regions I and III: while region I is a fluctuating regime around the
steady state, region III has a high activity as characterised by a non-zero
current J . In refs. [89, 90], a semi-analytical approach was used to anal-
yse the existence of these three phases. However, a physical description on
why these regimes appear, and the finding of general mechanisms that could
trigger the collective behaviour in these systems, was lacking.

These results indicate that noise acts in two antagonistic ways: while a
given noise intensity can excite the sub-threshold units, forcing a synchro-
nised firing, large amplitude noise deteriorates the synchronisation proper-
ties of the ensemble. This scenario resembles the so called noise induced
phase transitions [92] in which a transition to an ordered ferromagnetic-like
state is induced by increasing the noise intensity; the order is destroyed
again for large enough noise. Here, the transition is towards an organised
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collective motion of the active rotators.
The reverse scenario can be observed varying the coupling strength C, see

figure 5.3(b). The Kuramoto parameter ρ increases with C (notice, however,
the existence of a small bump in the numerical results), indicating that the
degree of synchronisation increases with coupling, as expected. A large
coupling suppresses noise-induced firings, and the system is macroscopically
at rest, regime I, as indicated by the vanishing of ζ and J . For weak coupling
the noise induces desynchronised individual firings (regime III) characterised
by a macroscopic current J and again a zero value for ζ. For intermediate
values of the coupling (regime II) the interplay of noise and coupling leads
to the largest degree of synchronised firing with a large value for ζ.

Finally figure 5.3c shows ρ, ζ and J as a function of the diversity σ.
It is clear in the figure the existence of the same three regimes that were
obtained by varying the noise intensity or the coupling. Altogether figure
5.3 clearly illustrates the fact that similar effects can be achieved increasing
the noise, decreasing the coupling or increasing the diversity in the natural
frequencies as theoretically predicted.

The full dependence of the order parameters with respect to noise inten-
sity and coupling strength is presented in figure 5.4. In these plots, we show
a compariso between the theory presented and the numerical simulations. It
is seen a very good agreement between both for the region of large coupling
strengths (i.e. C > 1).

5.5 Order parameters for diverse units

In the particular case of noiseless units, i.e. where diversity is the only
disordering factor, equation (5.1) can be expressed as

φ̇i = ω + ηi − sinφi +
C

N

N
∑

j=1

sin (φj − φi) . (5.21)

The parameter ωi = ω + ηi is the natural frequency of the j−th unit. The
values of the natural frequencies are drawn from a probability distribution
function g(ηi), of mean 〈ηi〉 = 0 and correlations 〈ηiηj〉 = σ2δij . We will
stick to the case ω < 1, such that when σ = 0, all the systems are in the
excitable regime and, in the absence of perturbations, they will all stay in
perfect order at the stable equilibrium point. This order is degradated by
the presence of diversity that makes each unit act differently from the others.
We first study how the order decreases with diversity.

We now show how to compute ρ in this particular case. A straightforward
algebra leads to dynamical equations for the angles φi in which the coupling
between units appears only through the global variables, ρ, Ψ, as:

φ̇i = ωi − R sin(φi − α). (5.22)
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Figure 5.4: Relevant order parameters as a function of noise intensity and
coupling strength. The left column shows the results of the simple theory
presented in section 5.3.2. The right column, shows the results for direct
numerical simulations. A good agreement between both can be observed
for intermediate to large couplings. We have fixed the natural frequency to
ω = 0.98 and the system size to N = 103.
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Figure 5.5: Common firing in the active-rotator model in presence of diver-
sity. In panel (a) we show the Kuramoto order parameter ρ as a function of
the diversity σ for the active-rotator model with quenched disorder defined in
eq. (5.1). The parameters are ω = 0.99, C = 4, N = 100, 400, 103 . The val-
ues of ηi are taken from a Uniform distribution of zero mean and variance σ2.
The line is the mean-field prediction obtained by solving the self-consistent
equation (5.25) and the dots are the results of numerical simulations of the
dynamical equations (5.1). Second row, plots the Shinomoto–Kuramoto or-
derparameter ζ as a function of diversity. A transition to a state in which
the units pulse synchronously can be observed by the non-zero value of ζ
starting around σ ≈ 0.56. The line is the theoretical prediction and the
symbols depict the numerical simulations.

where

R = (1 + 2Cρ cos Ψ + c2ρ2)1/2 and, tan α =
cρ sin Ψ

1 + cρ cos Ψ
.

We now make the approximation of constant values for ρ and Ψ. According
to this equation, the rotators split in two categories: (i) those for who the
natural frequency satisfies |ωi| < R are in the excitable regime and the
probability density function of the angle distribution is a delta function
centred around the stable angle f(φi) = δ(φi −φi∗) with φ∗

i = arcsin(ωi)/R;
(ii) those for which |ωi| > R are in the oscillatory regime and the probability
distribution is inversely proportional to the angular velocity f(φi) ∝ |φ̇i|−1.
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Figure 5.6: Surfaces of the order parameters as a function of diversity, σ, and
coupling strength. The plots located in the left column, show the results
for the theoretical treatment introduced in section 5.5; the right column,
the results for the numerical simulations. The mean natural frequency is
ω = 0.99, and for the simulations the system size is N = 103.
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Computing the normalisation constant we have:

f(φi) =















δ(φ − φ∗
i ) |ωi| < R√

ω2

i −R2

2π
1

ωi−R sin(φi−α) ωi > R√
ω2

i −R2

2π
1

−ωi+R sin(φi−α) ωi < −R

(5.23)

This, in turn, allows to find the average value that appears in the definition
of the Kuramoto order parameter as 〈eiφi〉 = F (ηi, ρ,Ψ), with

F (ηi, ρ,Ψ) = eıα ×



























√

1 − ω2

i
R2 + ıωi

R |ωi| < R

ı

(

ωi
R −

√

ω2

i
R2 − 1

)

ωi > R

ı

(

ωi
R +

√

ω2

i
R2 − 1

)

ωi < −R

(5.24)

Finally, the order parameter is found by solving the consistency equation
(the subindex i is now dropped from the notation):

ρeıΨ =
〈

eıφ
〉

=

∫

dη g(η)F (η, ρ,Ψ) (5.25)

This equation has to be solved numerically. In figure 5.5(a) we plot ρ versus
the diversity σ in the case of a Gaussian distribution for g(η) and the values
ω = 0.95, C = 1 together with the results of numerical simulations of the
dynamical equations (5.1). It can be seen that the order parameter decreases
monotonically as the diversity increases, although there is no sharp phase
transition to a state of ρ = 0. This second regime, however, is analogous to
the one it plays in models such as in Kuramoto studies. Finally, in figure
5.6, we compare the numerical simulations with the theoretical treatment
introduced in this section in the (C − σ)−plane. A good agreement is also
observed.

5.6 Conclusions

In summary, we have developed a theory for the emergence of collective
firing in a paradigmatic ensemble of sub-threshold excitable units, contain-
ing coupling and a source of disorder as generic ingredients. The collective
behaviour emerges as a phase transition whose underground mechanism is
the degradation of entrainment originated by the competing effects of dis-
order and coupling. Paradoxically, this degradation results in establishing
a lower effective threshold for collective firing, and thus inducing a some-
how ordered state. Our theory clearly establishes that it does not matter
the specific source of disorder, either noise or diversity will lead to similar
results. This mechanism is not restricted to the model we considered, it will
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exist in any physical, chemical or biological excitable system with the afore-
mentioned basic generic ingredients. Our results are likely to be relevant
also for non-globally coupled systems, such as extended systems with local
couplings and complex networks.

In extended systems the macroscopic fraction of units firing collectively
are typically localised in a region of the space, leading to the propagation of
an excited wave. Waves induced by parametric noise in chemical excitable
systems has been reported [85, 86]. It has been argued in [89] that the
transition between I and II would be triggered by changes in the excitability
of the neurons, if one assumes that noise intensity is a constant. In this
chapter we have presented a more plausible scenario by which biological
systems can trigger such transition by adjusting the level of diversity among
the neurons. We expect that our results will stimulate further experiments
on systems with different sources of disorder.
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Chapter 6

Synchronisation of coupled

FitzHugh–Nagumo systems

6.1 Model studied

In the last years, the phenomenon of synchronisation in coupled limit cy-
cle oscillators has been extensively investigated [7, 76]. However, not such
a thorough study has been carried out for excitable systems, despite the
fact that many features of the dynamics of biologically relevant systems, for
example, neurons, can be described by simple excitable models. For exam-
ple, it is found that epileptic crises are characterised by a particularly large
amount of neurons firing simultaneously [96].

It is the goal of this chapter to delve into some aspects of the synchro-
nisation properties of coupled excitable systems under the presence of noise
or diversity. Although we do not have any specific applications in mind,
we believe that our results are quite general, since we use a prototypical
model of excitable dynamics. It is known that in those systems noise can
induce phenomena such as stochastic resonance [30] (under the presence of
an external forcing) or coherence resonance [74, 97, 98]. The latter is a
mechanism by which an unforced excitable system shows a maximum de-
gree of regularity in the period between emitted pulses in the presence of
the right amount of noise. We focus here on the stationary synchronisation
properties of the common firings [99], and a more detailed study including
the coherence resonance aspects is left for future work. We find that there
is a non-equilibrium phase transition between synchronised and desynchro-
nised states. We discuss the proper order parameter to characterise this
transition and obtain numerically the phase diagram.

In this chapter, we extend the previous results shown in chapter 5, where
we considered the active-rotator model. However, that model provides an
example of type I excitability. We now consider the FitzHugh–Nagumo
model which provides a prototypical model for studying type II excitability
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(see chapter 3 for more details). This model has been also widely used
as a model for spiking neurons as well as for cardiac cells [100, 101]. The
mathematical model is defined in terms of activation x and inhibition y
variables, as follows:

ǫẋ = x − 1

3
x3 − y (6.1)

ẏ = x + a +
√

Dξ(t) (6.2)

where, following reference [74], a Gaussian white noise ξ(t) of zero mean and
correlations 〈ξ(t)ξ(t′)〉 = δ(t − t′) has been added to the slow variable y. D
will be called the noise intensity. The difference in the time scales of x and
y is measured by ǫ, a small number. We work exclusively in the so-called
excitable regime, characterised by |a| > 1.

There is a single stable fixed point (x0, y0) which, in the absence of any
external perturbation, D = 0, is reached independently of the initial con-
dition. When random perturbations are present, the trajectories eventually
exit the basin of attraction of the stable fixed point and return to it after
making an excursion in phase space, i.e. a pulse.

The next step is to consider an ensemble of N globally coupled systems:

ǫẋi = xi −
1

3
x3

i − yi +
C

N

N
∑

j=1

(xj − xi) (6.3)

ẏi = xi + ai +
√

Dξi(t), i = 1, . . . ,N (6.4)

with independent noises, 〈ξi(t)ξj(t
′)〉 = δijδ(t−t′). The systems are globally

coupled by a gap-junctional form, as indicated by the last term of equation
(6.3), where C is the coupling strength. The values of ai are drawn from a
probability distribution g(a), with mean 〈ai〉 = a, and standard deviation
σ. The results that will be shown in this chapter are robust against changes
in ǫ; we will fix its value to ǫ = 10−2.

Numerical simulations of this coupled system of equations1 show that,
for some range of parameter values, the different units fire pulses at the
same times. Notice that, although some amount of noise is needed in order
to induce firings and hence observe synchronised behaviour, too a large noise
finally degrades the quality of the synchronised state. A general framework
to study such synchronisation phenomena is given by the work by Kuramoto
[7]. He considers coupled phase variables φi(t) following a stochastic dy-
namics and discusses the existence of a synchronised regime in terms of the
coupling strength and the noise intensity. It turns out that the Kuramoto
model displays a genuine phase-transition in which synchronisation disap-
pears if the noise surpasses a given critical value. We will show that the
same behaviour can be observed in our model.

1The numerical integration of eqs. (6.3-6.4) use a stochastic Runge-Kutta method
(known as the Heun’s method [12]) with a time step h = 10−4.
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The first step consists in defining phase-like variables φi for our model.
They should satisfy the condition that their variation between 0 and 2π rep-
resents the pulse movement starting from the fixed point, travelling through
all the cycle, and ending again at the fixed point. Several different ap-
proaches have been taken in order to evaluate the phases φi. The most
naive, definition is based upon the fact that the limit cycles in which the
variables (xi, yi) evolve are approximately centred around the origin. Then,
the easiest choice is

φi = arctan

(

yi

xi

)

. (6.5)

However, this choice is only valid for particular cases of the parameters of
the FitzHugh–Nagumo model. For large noise intensities, for example, the
pulses are not so clearly entered around the origin. A definition of more
general validity uses the so-called Hilbert transform [76]. Let us consider
the variable xi(t). From it we can construct the so-called “analytic signal”,
si(t) = xi(t) + ı x̂i(t), where x̂i(t) denotes the Hilbert transform of the
function xi(t). For a general function, g(t), such a transform is defined as

ĝ(t) = − 1

π
PV

∫ ∞

−∞

g(τ)

t − τ
dτ (6.6)

where PV denotes the principal value of the integral. The phase is defined
as the argument of si(t), i.e.

φi(t) = arctan

(

x̂i

xi

)

. (6.7)

From a computational point of view, it is very costly to perform the
convolution involved in the Hilbert transform. We will show now that the
same phase can be obtained by a much more efficient procedure. This is
based upon the equality

g(t) + ıĝ(t) = 2F−1 [F [g(t)] · Θ(ω)] (6.8)

involving the Fourier transform operator F . Here Θ(ω) is the Heaviside
function: Θ(ω) = 0 for θ < 0, Θ(ω) = 1 for θ ≥ 0 defined in the Fourier
space ω.

This relation can be proved by replacing

g(t) =

∫ ∞

−∞
g(t0)δ(t − t0)dt0, (6.9)

in the right hand side of equation (6.8):

2 F−1

[

F
[∫ ∞

−∞
g(t0)δ(t − t0)dt0

]

· Θ(ω)

]

(6.10)
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= 2

∫ ∞

−∞
F−1 [F [g(t0)δ(t − t0)] · Θ(ω)] dt0

= 2

∫ ∞

−∞
F−1

[

g(t0)δ(t − t0)
eıt0ω

√
2π

· Θ(ω)

]

dt0

= 2

∫ ∞

−∞

(

1

2
g(t0)δ(t − t0) +

ı

2π

g(t0)

t0 − t

)

dt0

= g(t) + ıĝ(t)

Thus one can achieve the calculation of the Hilbert transform by using
two Fourier transforms. This leads to a very efficient numerical algorithm
since the use of the fast Fourier transform involves a computer time of order
O(T log T ) instead of O(T 2) which would be the case if one evaluates directly
the convolution that defines the Hilbert transform (T is the length of the
time series considered).

6.2 Synchronisation properties

We define an order parameter that allows us to measure the degree of syn-
chronisation in the coupled system. In order to follow the Kuramoto scheme,
we use the phases φi introduced before in terms of the Hilbert transform,
eq. (6.7). Time-dependent collective amplitude, ρ(t), and phase, Ψ(t), are
defined as in section 5.3. Once again, we will compute the order parameter
ρ introduced by Kuramoto is defined as the time average ρ ≡ 〈ρ(t)〉t.

6.2.1 Effect of noise

First of all, we study the transition to collective pulses in absence of diver-
sity. In figure 6.1(a) we plot ρ as a function of the noise intensity D for
different number of coupled systems. It turns out that the order parameter
continuously decreases with increasing D, thus showing that the quality of
the synchronisation worsens for large noise intensity. The dependence of the
order parameter ρ for relatively small system size (N > 100) disappears,
showing that finite size effects are very small for these systems sizes. Figure
6.1, panel (a), also shows that the Kuramoto order parameter for this cou-
pled FitzHugh–Nagumo model does not decay to zero with increasing noise
intensity. This is due to the fact that for an excitable system, most of the
time all the units oscillate near the fixed point. Hence, the order parameter
ρ is different from zero, even in the case in which all the units are uncoupled
and fire unsynchronously. Since we are interested in measuring the devia-
tions from this desynchronised state, we use the Shinomoto–Kuramoto order
parameter, ζ, first introduced in reference [56], which only gives non-zero
values in the case in which a macroscopic fraction of units fires synchronously
(see chapter 5 for a complete discussion).
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Figure 6.1: In this figure we show the order parameters ρ, ζ and the jitter R,
for various system sizes, from N = 100, 400, 103 . The other parameters for
the simulations were a = 1.01 and k = 2. The inset in the first panel shows
the increase of the disorder with increasing noise (in the plot, signalled by
a decrease in the Kuramoto order parameter).

In figure 6.1, panel (b), we plot the order parameter ζ, for the same
values of the parameters as in the previous figure. In this case, we no-
tice the vanishing of the order parameter, indicating clearly the existence
of a phase transition at a critical noise value D separating the regime of
synchronisation/desynchronisation. Note that the location of this transi-
tion could not be easily derived from the data in figure 6.1. In the case of
complete desynchronisation, ζ is almost constant except for finite system-
size fluctuations (see the panel (a) in figure 6.1). Thus, it is possible also
in this system to identify the region of collective pulses by recourse of the
Shinomoto–Kuramoto order parameter, by defining the phase through the
Hilbert transform.

In panel (a) of figure 6.1, we show a decrease of the value of ρ for in-
creasing noise intensities. In view of our results with the active rotators, it
is possible to understand this phenomenon also in terms of the disordering
of the positions.
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Figure 6.2: In this figure we show the order parameters ρ and ζ for a
FitzHugh–Nagumo system composed by diverse units. The distribution g(a)
is a uniform of mean 〈a〉 = 1.01, 1.02, 1.05 and standard deviation σ, the cou-
pling strength is C = 2 and the system size is N = 400. It is noticeable
a maximum in the value of the Shinomoto–Kuramoto order parameter, for
intermediate values of σ, displaying the system a more regular behaviour.

In panel (c) we plot the jitter, (see 3 for further details), defined as

R =

√

〈(ti − 〈ti〉)2〉
〈ti〉

, (6.11)

where 〈ti〉 is the mean time between spikes and 〈(ti − 〈ti〉)2〉 is the second
moment of the interspike distribution. In case of a perfectly periodic state,
the jitter vanishes, increasing as the spiking become more irregular. It is
seen that for this model, the phenomenon of Coherence Resonance appears,
as expected, in the phase of collective firings: a clear minimum in R is
noticeable. These results are equivalent to those found in the active rotator
model.

6.2.2 Effect of diversity

We now turn our attention to the case of diverse units. In figure 6.2, panels
(a) and (b), we show that the region of collective firings appear also in
presence of diversity: the fact that some units become oscillatory (i.e. a1 <
1), suffices to drive all the units into an oscillatory behaviour. This region of
collective firings as a function of the diversity σ, is narrower for larger values
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of the mean parameter a. Also, the region of coherent behaviour appears
also for larger values of σ.
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Figure 6.3: We show the jitter for different values of the average value a, in
a system composed by diverse units in absence of noise. The values of ai

are drawn from a Gaussian distribution. The coupling strength is C = 1,
the system size is N = 400. It is noticeable a maximum in the value of
the Shinomoto–Kuramoto order parameter, for intermediate values of the
diversity σ, a more regular behaviour is found.

Finally, we investigate how does the jitter depend on the value of di-
versity. The results are shown in figure 6.3. Interestingly, a phenomenon
associated to that of coherence resonance appears also in a system composed
by diverse units. This result is unexpected, as the disorder is static. The
reason for this phenomenon to occur is involved, and will be discussed in
more detail in the next chapter. Basically stated, diversity causes a change
in the shape of the nullclines, driving away the global dynamics from the
excitable regime, to the oscillatory region. However, the mechanism that
causes the pulses to be more regular is not quite well understood yet.

6.3 Conclusions

In summary, we have shown that an ensemble of globally coupled FitzHugh–
Nagumo excitable systems subjected to independent noises (or conversely, a
system composed by many diverse units) experience a loss of synchronisation
for increasing noise intensity. Paradoxically, it is noise what initially induces
the firings and sets the possibility of observing synchronised pulses.

The synchronisation/desynchronisation transition requires a proper def-
inition of the order parameter for its characterisation, since the usual mea-
sures used in coupled oscillators do not properly identify the transition point.
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We have found that a modified definition of the usual Kuramoto order pa-
rameter clearly displays such a transition. This order parameter is obtained
from phase-like variables defined through the use of the Hilbert transform
and we have given details of a numerically efficient method to compute the
phase variables. Further work will aim to characterise this non-equilibrium
transition and its universality class. Preliminary results show that the tran-
sition is present in locally coupled systems in d = 2 dimensions, but not in
d = 1.

The same phenomenon holds in presence of diversity, and we even found
a phenomenon related to that of coherence resonance, but in presence of
diversity instead of noise.

As stated before, we do not have any specific applications in mind, but
since the FitzHugh–Nagumo equations have been widely used to model some
biological systems, we believe that our results can be relevant when analysing
the collective response of such systems in a noisy environment.



Chapter 7

Global firing induced by

network disorder

7.1 Introduction

In chapter 5 we have shown that in a system composed by coupled excitable
units, any source of disorder can trigger a coherent collective firing of the
system. It is of interest, then, to investigate possible sources of disorder that
can induce the same collective phenomenon.

So far, we have only considered a very simple case of interaction: an all-
to-all, global coupling. In many cases, this allows for analytical calculations,
as shown in chapter 5. But in some cases, such as neurons in brain [68], the
interaction between units is not only composed by attractive (activator) cou-
plings, as we previously considered. Neurons, have also inhibitory synapsis.
In the case of very simple dynamic phase models, this can be modelled as
pair-wise interactions whose strength is negative [102].

The simultaneous presence of attractive and repulsive links in dynam-
ical systems was first addressed by Daido [103, 104, 105]. He focused, in
the case where the number of attractive and repulsive links, and their rel-
ative strength, is the same on average. In ref. [106], Zanette studied the
effect of the presence of repulsive links on the dynamical properties of a set
of Kuramoto phase oscillators. He analysed how the stability of the fully
synchronised solution, depends on the fraction of repulsive links present in
the system. Furthermore, and at difference to what happens in presence of
disorder, we found that in finite-size systems, where the network of repulsive
interactions is fully random [107], the transition from a fully-synchronised
state to desynchronised one has a finite width that vanishes for infinite sys-
tems.

In this chapter we study a set of active rotators coupled through a net-
work that contains both attractive and repulsive links. We will isolate these
interactions as the only source of disorder for the units, and investigate its
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role on the emergence of a collective behaviour. This chapter is organised
as follows: in the next section we present the model and the relevant order
parameters; also we show that the same framework presented in chapter 5 is
also valid in a very generic set of systems where the effects considered in this
chapter are of relevance. Later, section 7.3 shows that a coherent firing can
be induced if some repulsive random links are added to the studied model.
In section 7.4 we show the influence of network topology on these systems.
The final section draws some conclusions.

7.2 Model studied and order parameters

7.2.1 Model

We consider an ensemble of coupled active rotators [56] φj(t), j = 1, . . . ,N ,
whose dynamics is given by

φ̇j = ω − sin φj +
C

N

N
∑

k=1

Wkj sin (φk − φj) (7.1)

The natural frequencies ω are equal for all the oscillators. Notice that ω < 1,
(resp. ω > 1) corresponds to an excitable (resp. oscillatory) behaviour of a
solitary rotator. Also, in the oscillatory case, note that actual frequency (for
a single unit) is given by

√
ω2 − 1. Throughout this chapter we will consider

only the case ω < 1. The coupling strength is given by the parameter C. The
terms Wij are symmetric weighting terms of the coupling, i.e. Wkj = Wjk.
In order to isolate the effects of network links, in the studied system there
is not noise in the system, nor diversity in the natural frequencies.

First, we will study a particular construction for the network of re-
pulsive links, name a fully-random network, also known as Erdős-Rényi
[108, 107, 109]. It is simply constructed in the following way: for each
pair of nodes (i, j), the link between them becomes repulsive with proba-
bility pd. The network in this way created has, on average, pd N(N − 1)/2
repulsive links. Later, we will study the phenomenon in presence of other
network topologies, that we will describe in the corresponding section. For
this particular network, the values for the matrix Wij are chosen at random
as

Wij =

{

1 with probability 1 − pd

−κ with probability pd,

i.e., with probability pd, a link is repulsive. The relative strength of the
repulsive links is given by the parameter κ.

It is useful to rewrite equation (7.1) as

φ̇j = ω − sin φj + Cρ sin(Ψ − φj) −
C(1 + κ)

N

∑

k∈Nj

sin (φk − φj) , (7.2)
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which allows for a more efficient development of a numerical scheme to
simulate the system. Below we detail how this is helpful, in order to reduce
this system in a similar way to what was done in chapter 5.

7.2.2 Order parameters

For this system, we will refer to the completely synchronised state, as the
one where all the elements are located in the same position of the circle,
i.e. φi = φ∗ = arcsin(ω), ∀i. This corresponds to a resting state, where
all the units remain located in the (common) fixed point of the dynamics.
Furthermore, this is the only state compatible with ρ = 1, as all the units
are excitable.

The fully synchronised state always exists. However, depending on the
network of repulsive links, N this state can become unstable. This is very
clear, for example, in the limiting case where pd = 1, i.e. all the links are
repulsive.

From now on, it is essential to remind that not all possible network
realizations break the stability of the fully synchronised state. For a fixed
set of parameters, there will be a set of network realizations compatible
with them, and the stability of the synchronised state may change from one
network realization to another. In order to investigate this changes, we will
first compute the fraction of network realizations such that the complete
synchronised state becomes unstable, fd.

The relevant order parameters to describe the dynamical properties of
this system, are the same used in the previous chapters 5 and 6, that we will
repeat succinctly here: We first compute the time-averaged Kuramoto order
parameter ρ, which is known to be a good measure of collective synchro-
nisation in coupled oscillators systems. However, for these systems, being
excitable, the Kuramoto order parameter adopts a non-zero value even when
all the units are at rest. To discriminate between this static entrainment
from the dynamic entrainment, we make use of the Shinomoto–Kuramoto
order parameter ζ. Finally, as a measure of the activity of the units, we
compute the current J .

7.3 Fully random networks

7.3.1 Stability of the fully synchronised state

From a qualitative point of view, it is interesting to know why the fully
synchronised state becomes unstable: starting from the fully synchronised
state (ρ = 1), let us consider the unit j∗, that the largest number of repulsive
links (i.e. Nj∗ ≥ Ni,∀i). There will exist a critical value p∗d, such that if we
keep adding repulsive links (i.e. increasing pd) up to a point where pd > p∗d,
then for the j∗−th unit the fully synchronised state is unstable, and the
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same holds then for the whole system. Any small perturbation, will drive
the system apart from the fully synchronised state.

This explains qualitatively that there is a set of units that separate from
the central cluster when enough negative links are added. For fully random
networks, by construction, the amount of repulsive links each unit has is
distributed uniformly along the nodes (see ref. [106]) and its degree distri-
bution is given by a binomial distribution. Thus, all the oscillators become
frustrated for the same pd, and thus, the fully-synchronised phase disappears
as a first-order phase transition in the thermodynamic limit.

For small systems, the degree distribution is broad: relatively, the vari-
ations in the node degree make some units to become frustrated before the
others, and thus there is a smooth transition from the fully synchronised
state to a fully frustrated one. This simple argumentation implies that
there should be some heterogeneity in the degree distribution in order to
observe a smooth transition between these two states.
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Figure 7.1: We plot the fraction of network realizations such that the
fully synchronised state is unstable as a function of the density of repul-
sive links, pd. The different symbols correspond to different system sizes:
N = 10, 50, 100, 200 for increasing sharpness. The system parameters are
ω = 0.98, C = 4, κ = 3 (left panel) and κ = 10 (right column). The value of
fd is averaged over 1000 realizations. The corresponding values for p∗d in the
infinite size limit are, respectively: p∗d = 0.2624373429638 . . . (left column)
and p∗d = 0.095431761077 . . . (right column), represented with vertical lines.

The computation of the stability of the fully synchronised state can be
simply done by linearising the equation (7.2) around the fixed point φ∗ =
arcsin(ω). Let ~δ = {δ1, δ2, · · · , δN} be a vector whose components are the
displacements with respect to the fixed point of the units φj = φ∗ + δj .
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Then, the linearisation process yields:

δ̇j = −
√

1 − ω2 δj − Cρδj +
C(κ + 1)

N

∑

k∈Nj

(δk − δj). (7.3)

Near the transition to the fully synchronised state, ρ = 1−O(δ2), so (keeping
the terms up to first order in δ) it can be approximated to 1. This expression
can be further reduced by writing it down in a matrix form

d
~δ

dt
= J × ~δ = −

[

(
√

1 − ω2 + C)I − C(κ + 1)

N
(M − N)

]

~δ. (7.4)

Here, the matrix M, is the adjacency matrix of the network of repulsive
links; N is a diagonal matrix where Nii is the number of repulsive links for
the node i. Finally, I is the identity matrix.

Then, one proceeds in the following way: For a parameter set, and given
a network realization of repulsive links, one determines the real part of the
maximum eigenvalue ℜ(λ0) of the matrix J. This procedure is repeated for
several network realizations, and then fd is computed as the amount of times
ℜ(λ0) is positive. In figure 7.1 we plot the fraction of network realizations
such that the fully synchronised state is unstable as a function of pd. It is
seen that the value of pd such that the stability is lost, increases for larger
N .

There is a critical value for the density of repulsive links p∗d, such that
the fully synchronised state becomes unstable. If the system is large enough,
and the only considered displacements are those in unit i, this approximation
yields

C(κ + 1)

N

∑

k∈Nj

(δk − δj) ∼= Cpd(κ + 1). (7.5)

By putting this expression into equation (7.3), one gets an expression for
the limiting value of pd such that the synchronised state is stable,

p∗d =
1 +

√
1 − ω2/C

1 + κ
. (7.6)

For the parameters in figure 7.1, the corresponding values were computed,
verifying that this approximation is in good agreement with the results. One
can define p∗d(N), the value of wiring probability such that one half of the
network realizations have an unstable fully synchronised state. It is observed
that p∗d(N) approaches logarithmically to p∗d.

7.3.2 Theory

In the previous section, we have shown that the fully synchronised state
becomes unstable for increasing values of pd. It is then foreseeable that
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Figure 7.2: In each panel, we plot the dynamical results for different values of
pd, the probability of establishing a link. The left panels show the dynamics
of the global phase (blue thick line), and 10 representative units (black, thin
lines). In the right plots of each panel, we show the time-dependence of
the Kuramoto order parameter ρ for the corresponding values of pd. It is
observed that for the system being oscillatory, a worsening in ρ is needed
such that it becomes ρ < ω (the oscillatory threshold is shown in black
dotted lines). The values for pd are: (a) pd = 0.1, (b) pd = 0.15, (c)
pd = 0.42. The other parameter values are set to: C = 4, κ = 3, ω = 0.98,
and N = 50.

this would imply a decrease in the value of ρ. In this section, we follow
the general guidelines given in chapter 5 in order to derive an approximate
theory to predict the global behaviour of a coupled set of active rotators
with repulsive links. Let us now give some details of this computation.

By direct averaging equation (7.2) over the whole system and using the
definition of global amplitude and phase of eq. (5.2) we have

1

N

N
∑

k=1

φ̇j = ω − ρ(t) sin Ψ(t). (7.7)

This expression is exact, as all the coupling terms are symmetric, the two
contributions from the coupling in equation (7.2) wash out. Taking the
time-derivative in eq. (5.2) and introducing δj(t) = φj(t)−Ψ(t), we obtain:

ρ̇(t) + i ρ(t)Ψ̇(t) =
i

N

N
∑

k=1

φ̇ke
iδk(t). (7.8)
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We consider now that the dispersion of the rotators in the circle is small,
i.e. δj(t) ≪ 1. and substitute the expansion eiδk = 1 + iδk + O(δ2

k) in the
previous expression. Once again, equating real and imaginary parts, we
obtain

ρ(t)Ψ̇(t) =
1

N

N
∑

k=1

φ̇k + O(δ2
k). (7.9)

The definition of δi leads to ρ(t) = N−1
∑

k eiδk . Hence ρ̇(t) = O(δ2
k) and,

consistently with the order of the approximation, we can replace in the
previous equation ρ(t) by the constant value ρ. Therefore, eq. (5.5) can be
approximated by ρΨ̇(t) = ω − ρ sin Ψ(t), which can be rewritten as

Ψ̇(t) =
ω

ρ
− sin Ψ(t). (7.10)

As in chapter 5, we find the same dynamical expression for the time evolution
of the global phase. This expression shows that, whenever the relation
ρ < ω holds, the system might globally exhibit coherent global pulsations.
This mean-field theoretical prediction is well confirmed by the numerical
simulations (see figure 7.2).

7.3.3 Numerical results

In figure 7.3 we show the dependence of the relevant order parameters as
a function of the density of repulsive links pd. The results in such figures
confirm the theoretical arguments of previous section: a decrease in the
value of the Kuramoto order parameter ρ below the natural frequency ω
causes the units to fire at the same time. At difference with the results
in previous chapters, however, there is a strong dependence of the size of
coherent pulsationson system size: for large enough systems, this region is
narrower. It is also worthwile mentioning that for small systems, there is a
second regime of collective firings for very large values of pd (the rightmost
part of panels (a) and (b) in figure 7.3).

In is remarkable that the size of the region of collective firings depends
on the system size in a different way from what was found in presence of
noise nor disorder.

Let us define the quantity

Rj(φj , {φi}) = Cρ sin(Ψ − φj) −
κ(1 + C)

N

∑

k∈Nj

sin (φk − φj) . (7.11)

Rj will be positive if the unit j is coupled attractively to the mean-field,
and negative if repelled. The reason for this is found if we compare figure
7.1: for increasing system size, fd undergoes a sharper transition to an
state in which a fully unsynchronised state. For larger systems, the degree
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distribution of the repulsive network approaches a delta function located at
k∗ = pd N . This means that, simultaneously, many oscillators pass from
an attractive global interaction to a repulsive one, Rj < 0. So, these units
are repelled from the position of the mean-field. For small systems, this
transition occurs gradually, as few oscillators fulfil this relation just above
the transition. Also, it is interesting to mention that for ω closer to the
bifurcation point, ω = 1 the region of coherent pulsations is present for
systems as large as N = 104.
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Figure 7.3: In this figure we show the numerical results of the order pa-
rameters for 103 different network realizations. The left (right) column
corresponds to simulations with N = 10, 50, 100, 200. The other system
parameters are: ω = 0.98, C = 4, κ = 3 (κ = 10 for the right column). The
system parameters are coparable to those presented in figure 7.1.

7.4 Heterogeneous networks

In the previous section, we stated that the reason for the narrowing of the
region of collective pulses in the fully-random network is the fact that also
the degree distribution gets narrower for larger systems. Then, it implies
that a network of repulsive links with a broad degree distribution, could
exhibit the phenomenon of collective firings even in the infinite-size limit.
We will refer to this network as a heterogeneous one: the corresponding
degree distribution is broad. For fully-random networks, they approach a
homogeneous state for larger sizes.
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For heterogeneous networks, there will be a fraction of sites for whom
Rj < 0, and other such that Rj > 0. If the distribution of links does not
change with system size, these fractions will not depend on size either, and
then it is expected that the fraction of units departing from a central cluster
will remain fixed, and ρ will be basically independent on system size. Then,
increasing the proportion of repulsive links, will not affect the position of
the transition, ρ < ω, to coherent firing. A similar argument for the second
transition, shows that the position of the transition from coherent pulses
to desynchronised firing will remain unchanged too, and then it is expected
that heterogeneous networks will have a non vanishing region of synchronous
firings.

Figure 7.4: An schema of the replicated-random network (right) and the
fully randomised version of the network. The parameters are pd = 0.3,
N0 = 10 and N = 100. Please note that each cluster represent a set of
homologous nodes (see inline text for details).

We will first consider a hierarchical network constructed as follows: We
first build a fully random network, whose size is N0 and wiring probability
pd. The average number of links will be O(N0), while its dispersion will
be O(

√
N0). Let us write i ∈ N 0

j the neighbors i of the site j. We then
build a N = M N0 size network in the following way: for each node l1,
let l′1 ≡ l1 mod (N0) be an integer number between 1 and N0, i.e. a node
in the seed network; l2 and l′2 are constructed in the same way. Then, l1
and l2 are neighbors if l′1 ∈ N 0

l′
2

. It means that if l1 ≡ l2 mod (N0), for any

l1 and l2, they are homologous nodes: all their neighbors are the same. A
representation of the network constructed in this way is shown in figure 7.4.

The number of links per site is, for the complete network,

k̄ = pd N0 M = pdN = M k̄0,

where k̄0 is the average degree of the initial network. However, the standard
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Figure 7.5: In this figure we show the numerical results of the order param-
eters for a replicated-random network. The plots are as a function of the
proportion of randomised links pf . The system parameters are: ω = 0.98,
C = 4, N0 = 20 ,κ = 1, 2 (left, right columns), pd = 0.40, 0.20, for the
left and right columns, respectively. The different symbols correspond to
different system sizes N = 100, 200, 400, 800, 1600. The shown results were
obtained averaging over 103 network realizations.

deviation of the degree distribution is given by

√

〈k2
i − k̄〉 = M

√

〈k0
i
2〉 − k̄0

2
= M σ0,

where σ0 is the standard deviation of the seed network whose size is N0. So,
by keeping constant the size of the initial network at N0, and increasing N
by adding homologous nodes, the broadness of the degree distribution will
grow linearly with system size.

Let l0 be a node of the initial network. Then all its homologous nodes l′

in the final network will preserve the sign, i.e. sign(Rl0) = sign(Rl′), due to
the fact that the second term in the definition of R is remains constant (it
is divided and multiplied by M).

This network is not a purely random one (in fact it has a very large
clustering coefficient [109], and is self-similar). This fact, however is of no
influence to the considerations we will perform in the forthcoming discussion:
The only relevant feature for the emergence of a collective behaviour is
the stationary density of sites whose overall coupling to the other units is
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Figure 7.6: Numerical results of the relevant order parameters for the
replicated-random network. The surfaces are shown as a function of the
proportion of randomised links pf and the probability of establishing links
in the base network, pd. The system parameters are: ω = 0.98, C = 4,
N0 = 20 ,κ = 2, the system size was fixed in 400The results shown, were
obtained with 100 network realizations.

negative, as we discussed above. In fact, one could rewire a given fraction
of the sites in order to obtain a random network [110]. We will call pf

the probability of modifying the end node of a link and picking another
site at random. For pf = 1, the fully random network is recovered. It
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is worth mentioning that this randomisation does not preserve the degree
distribution.

It is interesting to determine how the eigenvalues of the adjacency matrix
M look like for pf = 0. Let λ0

i be the eigenvalue of the initial network. The
complete network has N0 eigenvalues given by λ0

i M . Note that, for fixed
N0, the eigenvalues scale as M , instead of

√
M , which is the “semi-circle

law” [111, 112] for random matrices. The other (M − 1)N0 eigenvalues, are
equal to zero.

In figure 7.5 we show the results of the relevant order parameters as a
function of pf , the ratio of randomly rewired edges. For some values of pd

(those selected in the figures), a coherent global behaviour is found -signalled
by the non zero value of ζ-. The role of increasing pf , is that of turning more
entrained the solutions of the system: ρ grows up to unity, and the collective
firing disappears. Also, the current J , decreases, vanishing for very large
pf , i.e. for more random networks.

It is also very interesting that the results are basically independent on
system size: for a fixed value of N0, if the system size is increased by adding
replicas, all the relevant order parameters remain unchanged. Then, the
region of collective firings remain present even for infinite-size systems.

Finally, figure 7.6 shows the full dependence of the relevant order param-
eters with respect to the probabilities pd (of establishing a link in the base
random network) and pf (the fraction of randomised links). It is noticeable
that for increasing pf , the value of ρ decreases, independently of the value of
pd. The reason is that this procedure homogenises the degree distribution of
the network. On the other hand, there is an intermediate range of values of
pd such that the network behaves more coherently (signalled by an increase
of the order parameter ζ).

7.5 Conclusions

We have shown that a set of purely excitable coupled units can exhibit a
global firing if some repulsive links are present in the system. These repelling
interactions have the role of decreasing the entrainment of the units. Thus
(in a similar fashion to what was shown in chapter 5), this decreasing of
the entrainment causes the whole system to undergo a bifurcation to an
oscillatory behaviour.

We also demonstrated the important role that the heterogeneity of the
network (understood as broadness of the degree distribution) has on the
dynamical properties of this system. We found that when all the units have
the same amount of repulsive links, there is no region of collective firings.
Broad degree distributions, on the other hand, ensure that some of the units
will drift apart from the central cluster, decreasing entrainment. It is this
mechanism, combined with the fact than most of the units remain close to
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the mean-field, what causes the same theoretical prediction of the previous
chapter to be valid.

These results are not only valid in this theoretical model, but instead we
think they are of broad applicability, as we only considered the influence of
very generic ingredients. As will be discussed in chapter 10, for example ner-
vous and neural systems interact not only through attractive (in the context
of the model studied in this chapter, they are called activator) interactions,
but also through repulsive (inhibitor) couplings. Thus, these connections
would be enough to trigger a coherent firing when the neurons are slightly
perturbed.
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Chapter 8

Diversity-induced resonance

8.1 Introduction

Noise induced, or stochastic, resonance emerged in the early eighties as a
proposal to explain the periodicity observed in the Earth ice ages [23, 25].
The mechanism is such that an external forcing acting upon a nonlinear sys-
tem can be conveniently amplified under the presence of the right amount
of noise. This innovative proposal led many researchers to look for a similar
constructive role of noise in physical, chemical, biological, and many other
kinds of systems [113, 17, 42, 114]. While initially the studies focused on
simple, low–dimension, dynamical systems, more recent work [115, 92] has
considered the constructive role of noise in extended systems composed of
many coupled identical units. The assumption of identical units, while being
mathematically convenient, is not very realistic for many of the applications
since it is clear that in some natural systems, specially in biology, the units
composing the ensemble present a disparity in the values of some character-
istic parameters. Among other consequences, this natural diversity makes
each isolated system respond differently to an external forcing; it is an open
question to investigate the effect that diversity has on the global response
of the collective system.

This problem has received some recent attention. For instance, Hong
[116] analyses the locking behaviour of an ensemble of coupled oscillators
with different internal frequencies subject to a periodic external forcing. He
finds that the quenched disorder helps a small fraction of the oscillators to
lock to the external frequency. However, he does not observe a collective
behaviour in which the whole ensemble benefits form the diversity in the
internal frequencies. In this chapter we give evidence that the right amount
of diversity, in the form of quenched noise, might help an extended system
to respond globally in a more coherent way to an external stimulus.

As in the case of stochastic resonance, we believe that the results re-
ported here are very general. For the sake of concreteness, however, we have
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considered two prototypical nonlinear systems: one bistable and another ex-
citable. In both cases, we show that there is a resonance effect in the global
response as a function of the diversity.

8.2 Model studied

We consider first an ensemble of N coupled bistable systems. They corre-
spond to the φ4 model (also called Ginzburg–Landau or “model A”). This
is one of the basic models in equilibrium statistical mechanics and has been
used to model many physical situations, although the simplest application
is to describe the paramagnetic-ferromagnetic transition that occurs as a
function of the temperature. In this model, a set of real variables xi(t),
i = 1, . . . , N are located in the sites of a regular d-dimensional lattice.

dxi

dt
= axi − x3

i +
C

Ni

∑

j∈Ni

(xj − xi) + ηi (8.1)

here Ni denotes the set of neighboring sites with which site i interacts, and
Ni is the number of such neighboring sites. C is the coupling constant. An
usual version of this model includes in Ni only the 2d nearest neighbors of
i. In this paper, we will be considering the mean-field or all-to-all coupling
version in which all sites interact with the same strength. Hence Ni contains
all the lattice sites and Ni = N . The disorder ηi is usually considered to
be a white noise of intensity proportional to the temperature. The model
then displays a phase transition from an ordered (ferromagnetic) phase to a
disordered (paramagnetic) phase at a critical temperature Tc[117]. This is
the generic behaviour when a > 0 and C > 0, the only cases considered in
this paper.

As we stated in the introduction, we are interested in analysing the role
of diversity in the units xi. To this end, we neglect the thermal noise.
Instead, the diversity appears as quenched noise, i.e. the values ηi (with
i = 1, . . . , N) do not depend on time, and are independently drawn from a
probability distribution g(η). At this moment we only assume a symmetric
distribution g(η) = g(−η). The mean value of the distribution is 〈ηi〉 = 0
and the correlations are 〈ηiηj〉 = σ2δij. The root-mean-square σ is a measure
of the diversity.

Furthermore, we will consider that the system is also subjected to an
external periodic forcing, of intensity A and frequency Ω = 2π/T . Thus,
equation 8.1 becomes

dxi

dt
= axi − x3

i +
C

N

N
∑

j=1

(xj − xi) + ηi + A sin(Ωt). (8.2)
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Figure 8.1: Disordering effect of diversity in the φ4 model. We show the
magnetisation m as a function of the diversity σ for the φ4 model with
quenched disorder defined in eq. 8.1. The parameters are a = 1, C = 1 and
the values of ηi are taken from a Gaussian distribution g(η) of zero mean
and variance σ2. The line is the prediction of the mean-field theory and the
symbols are the results of numerical simulations of the dynamical equations
(8.1) for system sizes N = 50, 102, 103, 104 (the transition sharpens as N
increases).

8.2.1 The disordering role of diversity

In this section we review the disordering effect that diversity has on the
φ4 model defined above in absence of an external signal (see eq. 8.1). We
use the all-to-all coupling where a full analytical understanding is possible.
The all-to-all coupling assumption simplifies the problem and allows one to
reduce it to a one variable. This is basically the Weiss mean-field treatment
which is exact in the case of global coupling. Let us introduce the global
variable m(t) as:

m(t) =
1

N

N
∑

i=1

xi(t) (8.3)

The “magnetisation” is defined as the time average of this global variable:

m = 〈m(t)〉. (8.4)

The coupling between the xi variables appears only through this collective
variable:

dxi

dt
= (a − C)xi − x3

i + Cm + ηi (8.5)

This can be interpreted as a relaxational dynamics dxi
dt = −∂V (xi)

∂xi
with a

potential:

V (xi) =
C − a

2
x2

i +
1

4
x4

i − (Cm + ηi)xi (8.6)
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In the limit t → ∞ the variable xi will tend to one of the minima of V (xi).
We restrict ourselves from now on to the case C ≥ a for which the potential
V (xi) has a single minimum, hence avoiding the possible metastable states
that could occur otherwise. For fixed values of m and ηi the variable xi will
tend to the unique solution of the cubic equation:

x3
i + (C − a)xi = Cm + ηi (8.7)

The explicit solution is xi(ηi,m) = − γ
ui

+ ui with the notation

ui =
3

√

αi +
√

γ3 + α2
i

and γ = (C − a)/3, αi = (Cm + ηi)/2. To determine the value of the mean-
field variable m we use the self-consistency relation (the subindex i is now
dropped from the notation):

m = 〈x〉 =

∫

dη g(η)x(η,m) (8.8)

where, assuming self-averaging, we have replaced the sum over variables
by an average over the realizations of the diversity variables η. Using the
symmetry property of the distribution g(η) the self-consistency relation can
be expanded for small m:

m = F1m + F3m
3 (8.9)

where F1, F3 > 0 are coefficients that depend of a, C and σ. As in the
standard Weiss theory, this equation can have one or three solutions de-
pending on the value of F1. If F1 > 1 then the only solution corresponds
to the disordered phase m = 0. For F1 < 1 there are two additional solu-
tions m = ±m0, which correspond to the ordered phase. A detailed analysis
shows that for fixed a and C the ordered solution m 6= 0 appears for a
diversity σ smaller than a critical value σc, while a diversity σ > σc only
admits the disordered solution m = 0. In this sense, diversity has a similar
role to noise since a large diversity destroys the ordered state. The phase
diagram is plotted in figure 8.1, in the case of a Gaussian distribution for
g(η) and a = 1, C = 1. In this case, the critical point can be computed as

σc =
[

Γ(1/6)

21/33π1/2

]3/2
= 0.7573428 . . ..

8.3 Disorder-induced resonance in the φ4 model

8.3.1 Qualitative description

We now focus in the system subjected to an external periodic signal. The
global response is quantified by the average position of the units m(t) =
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1
N

∑

i xi(t) for which we now derive an evolution equation. By averaging
the previous equation over the whole population, we obtain in the limit of
large N :

dm

dt
= am − 1

N

∑

i

x3
i + A sin(Ωt). (8.10)

Following reference [118], let us introduce δi, such that xi = m + δi. We
additionally introduce 1

N

∑

i δ
2
i = ∆. Notice that ∆(t) is a function of time

as it depends on the distribution of δi(t), furthermore ∆ ≥ 0. Under the
assumption of δi being distributed according to an even distribution1 we get,

dm

dt
= m(a − 3∆) − m3 + A sin(Ωt). (8.11)

with ∆ = 1
N

∑

i δ2
i . Hence, in the absence of forcing, m(t) follows a relax-

ational dynamics if an effective potential:

V (m) =
3∆ − a

2
m2 +

1

4
m4 (8.12)

Here and henceforth averages with respect to the variables ηi are replaced
with averages with respect to the distribution g(a).

The unforced system is bistable with equilibrium points at

m± = ±
√

1 − 3∆.

For σ = 0, ∆ vanishes after an initial transient to wash out the effect of
the possibly different initial conditions for the xi’s. A weak, subthreshold,
forcing (namely A . 0.3 for the range of frequencies used in this work),
will not suffice to have the global variable m(t) jump from one stable point
to the other as it will simply make small oscillations around one of the
equilibrium points. As the diversity increases, ∆ increases with a twofold
effect: first, the stable points approach each other and, second, the height
of the barrier separating them decreases. It might be possible that the
weak external forcing is now able to overcome the reduced barrier and the
global variable m exhibits wide oscillations between the two fixed points
following the external forcing. If the diversity increases even further, leading
to ∆ > 1/3, the barrier disappears, the two fixed points merge at m0 = 0
and the global variable makes small oscillations around this new fixed point.
We then predict a resonance effect for intermediate values of the diversity
for which the amplitude of the oscillations of m will be maximum.

1Alternatively, one could simply neglect the third moment of the distribution of δi, an
assumption valid for small δi.
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Figure 8.2: For the bistable model we show some representative trajectories
xi(t) (thin, blue lines) and the average trajectory m(t) (thick, black line) in
the case of σ = 0.20 (panel a), σ = 0.54 (panel b) and σ = 2.0 (panel c);
The system parameters are a = 1, C = 1, T = 500, A = 0.2 and N = 400.
Note the wide variations of m(t) in panel (b), corresponding to the optimal
response to the external forcing.

8.3.2 Theoretical approximation

It should be clear now what the mechanism is leading to the resonance.
In the homogeneous case, when all systems have ai = 0, the subthreshold
forcing can not overcome the potential barrier for any of them. As the
diversity increases, there will be a number of units for which the value of ai

is such that the forcing is now suprathreshold for them and the barrier can
be overcome in one direction. These units are able, through the coupling
term, to pull the other units and hence produce a collective, macroscopic,
movement following the variation of the external forcing. For too large
diversity, however, some of the units to be pulled offer too much resistance
to follow the external force and this effect can not be overcome by the
favourable units.

Before we present the numerical results sustaining this diversity-induced
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Figure 8.3: Spectral amplification factor, η, of the globally-coupled bistable
model, eqs. (8.2). The values of the ai’s are drawn from a Gaussian distribu-
tion of zero mean and variance σ2. Some system parameters, are: N = 103,
C = 1, a = 1 A = 0.20. In the panel (a) we observe that the amplification
factor exhibits a maximum as a function of the diversity both in the case of
a period T = 50 (black circles) and T = 103 (open circles) of the external
forcing. The panel (b) the spectral amplification factor as a function of the
period of the forcing (the diversity is fixed at σ = 0.55). In both plots, sym-
bols correspond to numerical simulations and the lines are the corresponding
theoretical predictions of a simplified theory (see the text for details).

resonance, let us present a simplified treatment that allows us to reproduce
the aforementioned effect. The main problem to solve numerically eq. 8.11
to determine the time evolution of the global variable m(t) is to find the
variation in time of the second moment ∆(t). The classical treatment of
reference [118] consists in writing down a hierarchy of equations which is
truncated under some Gaussian approximations for the moments. We follow
here an alternative approach. Using an ensemble average, we can write

∆(t) =

∫

dag(a) [x(t; a) − m(t)]2 , (8.13)

where a is distributed according to the distribution g(a) and x(t, a) is the
position at time t of a particle whose diversity parameter takes the value a.
This integral is performed numerically using a Gaussian quadrature scheme
for which we need to compute the necessary values of the function x(t, a).
This calculation is done in a regime of “slow forcing”, where the period of
the forcing signal is large enough such that, given a value of m(t), x(t, a) can
be considered as the rest point given by the minimum of the local potential,
V (x; t, a,m) or the root of dV/dx = 0. This cubic equation can have either
one or three real roots: in the latter case, we selected the root with the lowest
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potential value2. Once ∆(t) has been computed in this way, the right hand
side of eq. 8.3 is fully determined and we can proceed with its numerical
integration to find the time evolution of m(t). We quantify the resonance

effect by the spectral amplification factor [119], η = 4A−2
∣

∣〈ei Ωtm(t)〉
∣

∣

2
, and

〈. . .〉 denotes a time average (see section 2.2.4 for a detailed definition).
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Figure 8.4: (a) Spectral amplification factor, η, of the globally coupled
bistable model, eqs. (8.2) as a function of diversity for different values of
the amplitude A of the forcing. (b) Dependence of η on the forcing ampli-
tude for fixed values of diversity. Both figures use a period T = 200 and
other parameters as in fig. 8.3. Symbols represent the results coming from
a numerical simulation of the system’s equations and the blue lines are the
corresponding theoretical predictions.

2As a consistency check, we have verified that the ensemble average
R

dag(a)x(t;a) is
equal to m(t) with sufficient numerical precision.
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8.4 Results

In the right panel of figure 8.2 we plot some representative trajectories for
the individual units as well as the mean trajectory m(t). In the case of small
diversity, it can be seen that the units execute small oscillations around the
same minimum following the external forcing (panel a). As the diversity
increases over a critical value, the amplitude suddenly increases (panel b).
Finally, for too large diversity, each unit now executes small oscillations, but
each one oscillates around a different location and, hence, the amplitude of
the oscillations of the global variable m(t) decreases (panel c), in agreement
with the previous discussion.

In fig. 8.3(a), we plot the amplification factor η versus the diversity σ,
for different values of the period T of the external forcing for an amplitude
A below the threshold value. As predicted, there is an optimum value of
the diversity for maximum amplification, the main result of this chapter.
Notice that our approximate treatment agrees rather well with the results
coming from a direct numerical integration of the original set of equations
(8.2), when the signal is slow.

We now analyse how the system responds to different modulation periods
of the external forcing while the amplitude is kept fixed. In the panel (b)
of fig. 8.3 we plot the amplification factor as a function of the period of
the external forcing for fixed diversity. It can be seen that for large T the
amplification factor reaches a constant value, while η vanishes for small T .
Both regimes are well described by the theoretical approximation. For large
T the agreement is due to the validity of our approximate picture of the
dynamics in that limit. For small T , the individual units are not able to
follow the fast external forcing and consequently ẋi ≈ 0 which leads to the
same condition to determine xi as a function of ai and m as in the large
T limit. It is worth mentioning that the shape of the curve in the inset of
fig. 8.3 differs from what appears in stochastic resonance where a maximum
at intermediate values of T is observed[17]. This difference is due to the
absence in the diversity-induced resonance case of a matching between two
time scales which in stochastic resonance are the Kramers’ time and the
forcing period.

In fig. 8.4(a), we study the effect of the amplitude of the forcing on
the system response. As in stochastic resonance [17], a maximum in the
response appears only for subthreshold forcing and the height of this max-
imum increases with decreasing amplitude. However, for suprathreshold
forcing (the case A = 0.7) the linear regime is recovered and the amplifi-
cation factor steadily decreases with increasing diversity. Fig. 8.4(b) shows
that the spectral amplification factor has a maximum for a well defined value
of the amplitude of the external forcing. It is also observed that the the-
oretical prediction agrees rather well both qualitatively and quantitatively
with the numerical results. However, for faster signals the qualitative agree-
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ment disappears. In panel (a) of fig. 8.5 it can be seen that the theoretical
approximation is valid for very large or vanishing diversities. For interme-
diate diversities, however, a higher response is predicted for small signal
amplitudes, while a lower value is found in numerical simulations.
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Figure 8.5: (a) Spectral amplification factor, η, of the globally coupled
bistable model, eqs. (8.2) as a function of diversity for different values of
the amplitude A of the forcing. (b) Dependence of η on the forcing am-
plitude for fixed values of diversity. Both figures use a period T = 50 and
other parameters as in fig. 8.3. Symbols represent the results coming from
a numerical simulation of the system’s equations and the blue lines are the
corresponding theoretical predictions.

8.5 Diverse excitable systems

We now turn our attention to excitable systems. As a paradigmatic model
of interest in many biological applications, we consider a globally coupled
ensemble of excitable units described by the FitzHugh–Nagumo equations:

ǫẋi = xi −
1

3
x3

i − yi +
C

N

N
∑

j=1

(xj − xi),

ẏi = xi + ai + A sin (Ω t) . (8.14)
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The coupling between units is taken into account through the activator
variable x with a coupling strength C. Each unit has a parameter ai, rep-
resenting the diversity, drawn from a probability distribution g(a) of mean
〈ai〉 = a and correlations 〈(ai − a)(aj − a)〉 = δijσ

2. When |ai| < 1 system
i is in the oscillatory regime, while for |ai| ≥ 1 it is in the excitable one.
As in the double well case, the system is subjected to a periodic forcing of
intensity A and frequency Ω and we do not consider explicit noise terms.
The combined effect of diversity and noise was considered in reference [120]
in the context of coherence resonance. Specifically, the authors of this ref-
erence found that in the unforced case, A = 0, and in the presence of noise,
there was a systematic increase of the coherence factor for increasing inho-
mogeneity. We focus in this chapter on the forced case, A 6= 0 where we will
show a resonance effect with respect to the diversity.

The theoretical analysis follows the lines of the double-well system. With
the definitions m = 1

N

∑

i xi, Y = 1
N

∑

i yi and ∆ = 1
N

∑

i(xi−m)2 we arrive
at

ǫṁ = m(1 − ∆) − m3

3
− Y,

Ẏ = m + a + A sin (Ω t) . (8.15)

We conclude that in this model an increase in the diversity, hence an increase
in ∆, induces a change in the shape of the nullclines of the dynamics of the
global variables. As in the double well system, in the homogeneous case,
ai = a, and |a| > 1 all units are in the excitable regime and we consider
the case where the weak external forcing is not enough to overcome their
excitability threshold. As the diversity increases, some units will have their
excitability threshold lowered (they could even become oscillatory) and the
forcing is now suprathreshold for them. Those units pull the others, so
producing the observed collective behaviour. The actual description of the
collective behaviour is somewhat more involved, since ∆ exhibits a periodic
variation with time and it has a maximum value when the collective variables
m and Y are near the fixed point. In the limit of large ∆ the nullclines are
modified such that the limit cycle disappears altogether.

In fig. 8.6(a) we plot the amplification factor η of the global m variable
as a function of the diversity σ for different values of the external time
period T and a fixed value of the amplitude A close to threshold, where we
can observe the resonance effect. This plot shows some differences with the
double well system studied before, namely the presence of several resonances
at different values of the diversity. We speculate that this behaviour has its
origin in the existence of a well defined refractory time in the dynamics
of an isolated unit. Several resonance maxima can also be observed when
plotting the amplification factor as a function of the period of the forcing
for fixed diversity, see fig. 8.6(b). A similar effect has been also reported for
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Figure 8.6: Spectral amplification factor, η, of the globally-coupled
FitzHugh–Nagumo model, eqs. (8.14), where the ai’s have been drawn from
a Gaussian distribution of mean a and variance σ2. Some system parame-
ters, are: N = 103, ǫ = 10−2, a = 1.12, C = 1, A = 0.05. (a) Plot of η as a
function of the diversity σ for different periods of the external forcing. (b)
Plot of η as a function of the period T for different values of the diversity
σ. In both cases the symbols represent the results coming from a numerical
simulation of the system’s equations (the solid line is a guide to the eye).

a single FitzHugh–Nagumo system in the presence of noise and it is known
as frequency-dependent stochastic resonance [121].

8.6 Conclusions

In conclusion, we have given evidence that diversity, in the form of quenched
noise, can enhance and lead to a resonant effect for the response of an
extended system to an external periodic forcing. The evidence has been
given for two prototype systems, paradigmatic of bistable and excitable
behaviour and, hence, we believe that the same resonance will appear in
other more complicated systems. The mechanism of the phenomenon is
particularly simple: at a given time a fraction of the units are able to respond
to the external forcing; those units, through the coupling terms, are able
to pull the others into the direction of the force. For too large diversity,
the favourable units can not overcome the effect of the adverse ones. This
resonance mechanism is very general and it could appear in many fields.

A final remark is relevant here. Note that in equation (8.11) for the
global variable m the effect of the diversity appears only through the vari-
able ∆ measuring the dispersion in the behaviour of the dynamics of the
individual units xi. Therefore, the existence of a resonance effect for the
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optimal amplification of weak signals does not depend on the source of the

disorder. The same effect could also be obtained in the presence of disor-
der induced by noise (stochastic resonance), by a non-regular network of
connectivities, inhibitory couplings, etc.

The idea that different sources of diversity can produce a resonant effect
leads us to speculate that the amount of diversity present in some biological
systems has an important function. Diversity could have been evolutionary
tuned in order to enhance the detection of weak signals. Whether natural
systems have taken advantage or not from this diversity related effect is a
question that, as in the particular case of stochastic resonance, has not yet
a clear answer.
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Chapter 9

System size and diversity in

an opinion formation model

9.1 Introduction

It is nowadays well established that the stochastic terms (noise) in the equa-
tions of motion of a dynamical system can have a constructive effect leading
to some sort of order. An example is the appearance of ordered phases in
a scalar field theory when the noise intensity is increased [92, 122, 123].
The classical prototype is that of stochastic resonance [113, 17, 23, 25] by
which an adequate value of the noise intensity helps to synchronise the out-
put of a nonlinear dynamical system with an external forcing. Amongst
other examples, that of coherence resonance shows again that the proper
amount of noise helps to improve the regularity of the output of an ex-
citable [74] or chaotic [124] system. Similar results have been referred to as
stochastic coherence in [125] or stochastic resonance without external peri-

odic force [126, 127]. In these examples, the subtle interaction between the
nonlinear terms, the coupling (either internal or with an external source)
and the noise produce the desired effect. Most of these previous works have
considered the appearance of order as a result of tuning the noise intensity
to its proper value, whereas the role of system size has been either neglected,
or analysed in terms of standard finite-size theory for phase transitions [128].

A recent line of work, however, considers that the output of a nonlinear
stochastic system can have a nontrivial dependence on its size (or number
of constituents). Some recent work on biological models [129, 130, 131, 132]
consider Hodgkin–Huxley type models to show that the ion concentration
along biological cell membranes displays (intrinsic) stochastic resonance as
well as coherence resonance as the number of ion channels is varied. These
references also discuss the possible biological implications. A similar re-
sult [97] shows that in the absence of external forcing, the regularity of the
collective output of a set of coupled excitable FitzHugh–Nagumo systems is
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optimal for a given value of the number of elements. This is a system size

stochastic coherence effect.

In social sciences, a usual ingredient that is often neglected is that of
diversity: not all the individuals are alike. In view of the results obtained
in chapter 8, it is interesting to investigate if an analogous phenomenon to
diversity-induced resonance appears also in this system.

In this chapter we present an example of system size stochastic resonance
in the field of the dynamics of social systems. Our objective is twofold. First,
we want to show that the mechanism for system size stochastic resonance is
generic and can appear in systems which are very far away from the original
ones. We emphasise that system size in social systems plays an important
role . For instance, there are examples which show that these systems may
display phase transitions that disappear in the thermodynamic limit, instead
of the other way around which is the usual effect [133]. Second, we study
if diversity can play also a constructive role in this system, replacing the
intrinsic randomness of this model.

The rest of the chapter is organised as follows: in the next section 9.2
we explain in some detail the model for opinion formation that we have
considered in this work in the presence of randomness. The study of the
effective noise intensity and a comparison with bistable systems is done in
9.2.2. Then, in subsection 9.2.3, we study the non-trivial system-size effects
in this model. In section 9.3 we introduce a modification of the model in
order to study the effects of diversity in this model. In the last section of
this chapter presents the main conclusions.

9.2 System size stochastic resonance

In physical systems, system size resonance [134] has been found in the Ising
model, as well as in a set of globally (or local) coupled generic (φ4-type)
bistable systems (x1, . . . , xN ) under the influence of an external periodic
forcing and uncorrelated Gaussian white-noises ξi(t):

ẋi = xi − x3
i +

C

N

N
∑

j=1

(xj − xi) +
√

Dξi(t) + A cos(Ωt) (9.1)

for i = 1 . . . N . It is possible to understand in this case the origin of the
resonance with the system size N , by deriving a closed equation for the

collective (macroscopic) variable m(t) =
1

N

N
∑

i=1

xi as:

ṁ = F (m) +

√

D

N
ξ(t) + A cos(Ωt), (9.2)
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where ξ(t) is a zero mean Gaussian white noise with correlation function
〈ξ(t)ξ(t′)〉 = δ(t − t′). The rescaling by N−1/2 of the noise intensity has
a simple origin in the central limit theorem. The function F (m) can be
computed by using some approximations based on the strong coupling limit,
and it can be shown that it still exhibits bistable behaviour [134, 97].

Equation (9.2) shows that the effective noise intensity, D/N , can be
controlled both by varying the noise intensity D or the system size N . Hence,
the optimal value of the effective noise intensity needed to observe stochastic
resonance in the collective response m(t) can be achieved by changing the
system size N . It is then conceivable the following situation: let us start
with a single system (N = 1) subject to an external perturbation and noise,
such that the noise intensity is too large in order to observe any synchrony
with the weak external forcing, and the jumps between the two stable states
occur randomly. If we now couple together an increasing number N of
these units, the effective noise for the global system will decrease as N−1/2

and the global response to the external signal will be initially improved.
Eventually, for too large N , the effective noise intensity will be very small
and the system will be unable to follow globally the forcing. The possibility
of having stochastic resonance for an optimal system size opens a wide range
of applications in those cases in which it is not possible to tune the intensity
of the noise at will, but it might be possible to change the number of coupled
elements or the effective connections between them in order to obtain the
best response.

9.2.1 Model studied

We have considered the model of opinion formation developed by Kuperman
and Zanette [135] based on similar models by Weidlich [136]. In this model,
the opinion is considered to be a binary variable, and we consider a set of
i = 1, . . . , N individuals, each one having an opinion µi(t) = ±1 at time t.

The opinion of an individual is not fixed and it can change due to three
effects: (i) the interaction with the rest of the individuals, modeled by a
simple majority rule; (ii) the influence of fashion, modeled as the effect
of some external time varying agent (such as advertising) and (iii) random
changes. The model first establishes the connections between the individuals
by enumerating the set n(i) of neighbors of individual i.

In order to better mimic the social relations between the individuals, we
assume that they are located in the sites of two particular types of network:
First, a small-world network[110], constructed as follows: the i = 1, . . . ,N
individuals are regularly spaced in a linear chain such that site i is initially
linked to the 2k nearest sites (we assume periodic boundary conditions).
Each individual is then visited sequentially and with probability psw one
of the links to its set of ksw right near neighbors is randomly replaced by
a link with a randomly chosen site. Double and multiple connections are
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Figure 9.1: Here we plot the complementary of the cumulative probability
distribution of residence times. 1 − P (τ), of the opinion formation model.
Since it is an exponential, also the residence time distribution p(τ) is also
an exponential. The parameters are ksw = 2, N = 100 and γ = 0.25; the
different symbols correspond to various rewiring probabilities psw, ranging
from a regular network (circles) to a fully random (triangles).

forbidden, and realizations where the network becomes disconnected are
discarded. In this way, the new set of neighbors n(i) of site i, while still
keeping an average size of 2ksw, includes links to very far away sites. The
re-wiring parameter psw and the connectivity parameter ksw characterise
the small-world network.

Beyond the small-world behaviour, another important ingredient of in-
teraction networks is that they often display a scale-free degree distribution.
We then also study the results of this model when the topology of inter-
actions is not a regular one, but a scale-free one. As the model for the
generation of the network, we use the Barabási–Albert algorithm [137], gen-
erated as follows: starting from a fully connected network of size m, at time
t a node is added, and attached to m existing nodes, where the probabil-
ity to be attached to a node is proportional to its degree. This algorithm
generates networks with power-law degree distributions with an exponent
γ = 3.

The three effects mentioned above in the evolution of the opinion are
precisely implemented as follows: assign at time t = 0 random values µi =
±1 to each individual; then at a given time t the next three steps are applied
consecutively:

(i) Select randomly one individual i and let it adopt the majority opinion

favoured by the set n(i) of its neighbors, i.e. µi(t) = sign
[

∑

j∈n(i) µj(t)
]

;
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if
∑

j∈n(i) µj(t) = 0 then µi(t) remains unchanged.

(ii) With probability A| sin(Ωt)|, set µi(t) = sign [sin(Ωt)].

(iii) With probability γ, let µi adopt randomly a new value ±1, indepen-
dently of its present value.

After these three steps have been performed, time increases by a fixed
amount t → t + 1/N . This is chosen such that after one unit of time every
individual has been updated once on the average.

The parameter A (0 ≤ A ≤ 1) measures the strength of the fashion and
Ω its frequency. The last step (iii) introduces noise in the evolution. In
order to define a noise intensity D related to the flip rate γ, we consider the
model without the effect of fashion (step ii). This is equivalent to setting
A = 0.

As a measure of the system response to the external stimulus, we com-
pute the spectral amplification factor (for more details, see section 2.2.3),

defined as η = 4A−2
∣

∣〈ei 2πt/T m(t)〉
∣

∣

2
, where m(t) is the time-evolution of

the average opinion

m(t) =
1

N

∑

i

µi(t) (9.3)

and 〈. . .〉 denotes a time average. This is known to be a good measure of
the response of the system to the forcing signal [119].

9.2.2 Effective noise intensity

In figure 9.5 (panel a) we plot the time dependence of the average opinion
m(t). This figure clearly shows that the system behaves as bistable, jump-
ing randomly around the two bistable states which are close to m = ±1.
These random jumps are induced by the noise introduced in step (iii) of the
evolution and occur more frequently for large flip rate γ. This picture of a
bistable system whose jumps between the stable states are induced by noise
is consistent with the fact that, as shown in figure 9.1, the residence time
probability in each of the stable states follows the exponential Kramer’s law:

p(τ) = τ0e
−τ/τ0 (9.4)

being τ0 the mean residence time [38]. The dependence of τ0 in the flip rate
γ and the system size N can be seen in figure 9.2.

The next step is to define a noise intensity D by using Kramer’s formula,
valid for small noise intensity,

τ0 = τ ′e∆V/D (9.5)

being ∆V the height of the barrier between the two stable states. As shown
in figure 9.2(b), this barrier height increases with the number of individuals
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∆V = N∆v with ∆v = O(N0), as expected. Thus, a simple fitting proce-
dure allows us to obtain the rescaled noise intensity D∗ = D/∆v. This is
plotted in figure 9.3 as a function of the flip rate γ.
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Figure 9.2: (a) Mean residence time τ0 as a function of the flip rate γ for
a system with size N = 100 and different values of rewiring probability
psw. (b) Mean residence time τ0 as a function of system size N for γ = 0.2
and different values of the rewiring parameter psw. In both cases, other
parameters are A = 0, ksw = 3.
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Figure 9.3: The rescaled noise D∗ = D/∆v (see inline text for details) as
a function of flip rate γ for different values of the re-wiring parameter psw

and ksw = 3. The functional dependence is found to be faster than an
exponential.
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Figure 9.4: We plot the system response (measures through the spectral
amplification factor η) for different network topologies in the Kuperman–
Zanette model for opinion spreading as a function of the strength of the
random term γ. The curves with white symbols correspond to small world
networks with ksw = 3, and psw = 0 (circles), psw = 0.20 (squares) and
psw = 1 (which corresponds to a fully random network, with diamonds).
The black triangles correspond to a Barabási–Albert scale free network, with
kBA = 3. The lines are only a guide for the eyes. The system parameters
are N = 2 × 102, Ts = 128, ǫ = 0.02.

9.2.3 System size effects

In the previous section we have shown that the opinion formation model
considered is consistent with the picture of a bistable system with jumps
between the two opinion states induced by the noise. In this section we turn
our attention to the effect that the fashion, modeled as a periodic external
signal, A > 0, has on the system. In particular, we ask ourselves the question
of on which conditions the average opinion follows the fashion. Since the
necessary ingredients are present in this model, it should not come to a
surprise that this model displays stochastic resonance, as first shown in [135].
A similar result was also found in [138] for the original Weidlich model. The
evidence is given in figures 9.4 which show that, for fixed values of N , the
correlation between the majority opinion and the fashion is maximum for
the proper value of the flip rate γ. In these figures we plot the signal to noise
ratio as a function of the flip rate γ. In order to get a cleaner result, and as
in other applications of stochastic resonance [17], we have first filtered the
original signal into a binary valued time series s(t) = sign [m(t)]. We then
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look at the power spectrum S(ω) of the time series of s(t) and compute the
signal to noise ratio in the standard form as the area above the background
of S(ω) at the external frequency value ω = Ω.

According to the general discussion in the introduction, we expect that
the system will display as well stochastic resonance as a function of the
number N of individuals. This expectation is evidently fulfilled if one looks
at the series of figures 9.5. For small value of N (upper figure), the average
opinion m(t) behaves rather erratically and independent of the periodic vari-
ation of the fashion. For a very large value of N (lower figure), the average
time between jumps is very large and, again, basically independent of the
periodic variation of the fashion. It is only for an intermediate value of N
(middle figure) that the jumps between the two opinion states are correlated
with the fashion. This result is also observed in the set of figures 9.5 which
plot the power spectrum S(ω) coming from the corresponding time series.
It is apparent in these figures that the signal to noise ratio first increases
and then decreases when the number N grows.

This main result is more clearly shown in figure 9.6 where we plot the
signal to noise ratio as a function of the system size N for different values
of the flip rate. In each of the cases, it can be seen that there is an optimal
value N∗ for which the signal to noise ratio takes it maximum value, indi-
cating a maximum correlation between the average opinion and the fashion.
Qualitatively, these results are independent of the exact network topology,
as can be seen in the same figure, where all the curves show a clear maximum
for intermediate system-sizes. Of course, the exact value of the optimal size
does depend on the network structure.

For the particular case of the small-world network, the value of N∗ is
plotted in figure 9.7 as a function of the flip rate γ. It is possible to see the
strong dependence of this value with the value of the noise strength η.

9.3 The effects of diversity

9.3.1 Model considered

We now turn our attention into the effects of diversity on this model. From
the three rules defining the dynamics of the system, the third rule is assimil-
able to a noise term: it corresponds to the random changes in the opinion of
the individual. In order to isolate the effects of diversity, we will not apply
this rule along this section, but only a modified version of the first two.

We will consider that each individual has a tendency to favour one opin-
ion over the other. This is some kind of preference to adopt an opinion
different to the one is biased to. This tendency, however, is stronger in some
individuals with respect to others. Let θi, be a constant parameter drawn
from a probability distribution g(θ), verifying 〈θi〉 = 0, 〈θiθj〉 = δij σ2. We
now define that the dynamics of the model are given by the following rules
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Figure 9.5: We plot the time-evolution of the average opinion as a function
of time (left column), and the power spectral density S (right column). The
first row (a) shows the dynamics in absence of an external influence ǫ = 0 in
the case N = 100. The last three rows, shows the results for different system
sizes: N = 10, 100, 1000 (b, c, and d, respectively). The external signal (the
sinusoidal thin line in the evolution plots) has a period T = 128. Note that
this signal is better followed by a system with an intermediate size (panel
c). This is also signalled by the largest peak of the spectral density at the
driving frequency: Ω = 2π/128.
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Figure 9.6: Spectral amplification factor as a function of system size, N for
different network topologies: gray symbols show the results for a small-world
network (psw = 0.2, ksw = 3, γ = 0.26, 0.28), black symbols for a random
network (a small world with psw = 1 and ksw = 3, γ = 0.40, 0.41) and
white symbols display the results for a Barabási–Albert network (kBA = 3,
γ = 0.56, 0.57). In all the plots it is apparent an optimum response for
an intermediate system size. The system parameters are as in the previous
figures.
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Figure 9.7: The optimum value N∗ as a function of the flip rate γ. Same
parameters as is figure 9.5. It is observed that the optimum value for system
size depends exponentially with the parameter γ.
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Figure 9.8: (a) Spectral amplification factor as a function of the diversity σ2

for different values of the parameter α, that measure the relative weight of
the preference with respect to the signal. The network topology is kept fixed:
all the curves correspond to a small-world network (psw = 0.2, ksw = 2).
The different symbols represent: α = 0 (gray circles), 0.2 (white squares),
1.0 (dark gray diamonds) and 2.0 (black triangles). All the curves show
an optimum response for an intermediate value of diversity. (b) System
response as a function of time periodicity of the signal, for different network
topologies and α = 1. In both panels, the signal has an intensity A = 0.02,
frequency Ω = 2π/512; the system size is N = 103.

(i) Select randomly one individual i, and let it adopt the majority opinion
favoured by the set n(i) of its neighbors, if it exceeds his preference θi

i.e.

µi(t) = sign





∑

j∈n(i)

µj(t) + θi



 .

In case of θi > 0 (θi < 0), the individual will be more akin to adopt the
+1 (respectively, −1) opinion. No normalisation is considered when
comparing the neighbour’s opinion and the individual’s tendency.

(ii) With probability A| sin(Ωt) + αθi|, the opinion of the individual is
set to µi(t) = sign [sin(Ωt) + α θi]. Note that the preference of the
individual acts also in this rule, i.e.: the fashion is taken with more
probability if it is the same as its favoured opinion. The parameter α
is a scaling factor.

For a given network of connectivities, these two rules define probabilistic dy-
namics. Once again, the neighbours are drawn from a small-world network,
as in the previous sections, although the same results are found for different
topologies.



124 System size and diversity in an opinion formation model

9.3.2 Results

When considering this modified version of the model, there is not an equiv-
alent of the mean first passage time. In absence of the external signal, this
model rapidly reaches a steady state, in which the global opinion does not
evolve anymore.

Figure 9.8(a) shows the results for the spectral amplification factor η as
a function of diversity σ2, for different values of α, which determines the
relative importance that preference has with respect to the external signal.
The main result observed in this plot is a clear maximum in the system
response for intermediate values of diversity. The reason can be found in
the analogy with a system composed by interacting diverse bistable units
(studied in chapter 8). In this opinion formation model, each unit is bistable,
and the preference θi breaks the symmetry with respect to the possibility
of choosing one or other opinion. In the same figure, it is apparent that for
larger α, the system response becomes larger, but it is also more sensitive to
the values of σ2, shown by the fact that the peak of large system response
is sharper.

The system response increases with increasing period of the signal. In
this discrete model, this is due to the fact that slower signals allow units
with a given bias more akin to adopt its favoured opinion.

With respect to the network topology, the dependence is similar to what
was observed in presence of random flippings: For more disordered networks
(i.e. for larger values of psw, closer to a fully random network), the width of
the peak in the η versus σ2 decreases. This is because for smaller values of
psw, it is easier for the system to grow domains of a given opinion in a linear
way. Highly random systems respond like in a mean field approach and,
for small values of diversity, are not able to make the system jump betweek
minima following the external signal.

9.4 Conclusions

In conclusion, we have considered a model for opinion formation. The model
incorporates three basic ingredients for the evolution of the opinion held by
an individual: imitation, fashion and randomness. We have shown that in
the absence of fashion, the model behaves as a bistable system with random
jumps between the two stable states with a distribution of times following
Kramers’ law. We have used this image to compute the noise intensity as a
function of the flip rate. Finally we have shown the existence of system size
stochastic resonance, by which there is an optimal value for the number of
individuals N for which the average opinion follows better the fashion. This
result indicates that the response of a social system to an external forcing
agent depends in a non trivial manner of the number of constituents, a
feature already observed in other different models for social behaviour.
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Figure 9.9: System response as a function of diversity, σ2, and the rewiring
probability psw for two different values of the parameter α: α = 0 (upper
panel), and α = 1 (lower panel). It is apparent that, regardless the exact
network topology, the effect of diversity-induced resonance appears in the
system, showing the existence of an optimum synchronisation between the
external signal and the global dynamics of the system. The signal applied
has an intensity A = 0.02, its frequency is Ω = 2π/512 and the system size
is N = 103.

We have also shown that a better synchronisation with respect to the
external signal can be achieved if diversity (understood as a tendency of each
individual to favour one opinion over the other) is considered in the model
instead of random changes. The result is another example of the diversity-
induced resonance, introduced in chapter 8: in this model, each agent having
a bias is equivalent to the asymmetric potentials for the individual units in
the φ4-model.
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Chapter 10

Noise-induced inhibitory

suppression

10.1 Introduction

Excitable systems are widespread in nature. In many cases, excitability
originates from the existence of a bifurcation to an oscillatory state when
a control parameter is changed. Prominent examples are some varieties of
cells (such as neurons, pancreatic β-cells, nerve cells from sensitive regions of
the body), cardiac tissue, chemical reactions (Belousov–Zhabotinskii), etc.
(for a comprehensive review on this subject, see ref. [42]). Most excitable
systems require two types of dynamical variables (called generically activa-
tor and inhibitor) with different time-scales and different influence on the
overall behaviour of the system. Stochastic effects, in the form of white
noise or diversity, are also an important ingredient of the dynamics. The
dynamics of oscillatory and excitable systems near the bifurcation attracts
large interest because in this region their sensitivity is greatest and they are
suitable for a reliable signal response or information exchange. The study
of coherence resonance [139, 74] (also named as stochastic coherence [125])
and stochastic resonance in nonlinear excitable units [140, 30, 141, 42] arose
a strong interest on this field.

Of particular interest is the study of coupled excitable systems. Usu-
ally, only coupling through the activator variables is considered, leading to
a full synchronised dynamics [76]. In this work, we focus our attention on
an array of noisy excitable units coupled through the inhibitory variables.
Such a kind of coupling can be realized for instance by a negative coupling
constant in an activator variable or by a positive one in an inhibitory vari-
able. Previous work has shown that coupling through the inhibitor variable
between identical oscillators may induce many limit cycles of different pe-
riods and phase relations [142, 143] which are stable in large regions of the
control parameter space, a behaviour usually referred to as “de-phasing”
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[144, 145] or “phase-repulsive” [146] interaction and which was shown to
be a source of multi-rhythmicity in different systems [147, 148, 149, 150].
With noisy elements, a de-phasing interaction of stochastic limit cycles (in-
stead of deterministic ones) may result in the coexistence of spatiotemporal
regimes selectively sensitive to external signal periods. In such systems,
noise plays at least two roles: first, it stimulates firing of stable elements
and, thereby, their interaction during return excursions; second, it stim-
ulates transitions between coupling-dependent attractors if the associated
lifetime is sufficiently long.

In this chapter, we extend our research on the influence of inhibitory
coupling. In contrast to our previous investigation of frequency selective
stochastic resonance in linear chains of identical excitable FitzHugh–Nagumo
models [121, 151], we consider chains of nonidentical units and focus on the
influence that the internal oscillatory units have on the dynamics of the
whole chain. Under the presence of an external signal, we find the counter-
intuitive result that inhibitory coupling can lead to a multi-rhythmic state
in which the intermediate oscillatory units are in the rest state, while the
excitable ones oscillate in synchrony with the signal. This implies that the
intermediate units, while “silent”, are still able to transmit the information
along the chain. As discussed at the end of the chapter, inhibitory coupling
is of relevance for some chemical [152, 153, 154] and biological [155] sys-
tems and our results point to a generic mechanism of oscillation supression
and information transmission. For the sake of simplicity, however, we have
only considered a prototype excitable model (the FitzHugh–Nagumo set of
equations, also called the Bonhoeffer–van der Pol model [44]). In the next
section we present the main result in the simplest case of three FitzHugh-
Nagumo units coupled through the inhibitory variable. To extend the study
onto another architecture, in section 10.3, we analyse an array where two
coupled oscillating units are connected from both sides with excitable ele-
ments. Our study ends in section 10.4 with some general conclusions and
some speculations about possible applications in biological systems.

10.2 Three non-identical inhibitory coupled units

We consider a rather simplistic model with a minimal scheme of connections
that can retain the basic structure of the system we want to study: an
open, linear chain where both ends have an excitable unit. The middle
unit represents an oscillatory unit (fig. 10.1). We want to study whether a
periodic, subthreshold signal, acting on the left element can reach the right
one, in such a way that no oscillations appear in the middle unit.

The scheme in fig. 10.1 corresponds to three FitzHugh–Nagumo oscilla-
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Figure 10.1: Scheme of the setup for the case N = 3. At both ends there
are excitable units, coupled through inhibitor coupling to the middle (oscil-
latory) element.

tors coupled through the inhibitory variables:

ǫẋ1 = y1 −
x3

1

3
+ x1 (10.1)

ẏ1 = a1 − x1 +
√

Dξ1(t) + As sin (Ωt) + Cy(y2 − y1)

ǫẋ2 = y2 −
x3

2

3
+ x2 (10.2)

ẏ2 = a2 − x2 +
√

Dξ2(t) + Cy(y1 − y2) + Cy(y3 − y2)

ǫẋ3 = y3 −
x3

3

3
+ x3 (10.3)

ẏ3 = a3 − x3 +
√

Dξ3(t) + Cy(y2 − y3).

Where Ω = 2π/Ts, is the frequency of the input signal with period Ts. The
Gaussian (white) noise sources ξi(t) satisfy 〈ξi(t)ξj(t

′)〉 = δ(t − t′)δi,j .

In a neural context, xi(t) represents the membrane potential of the neu-
ron and yi(t) is related to the time-dependent conductance of the potassium
channels in the membrane [68]. The dynamics of the activator variable xi

is much faster than that of the inhibitor yi, as indicated by the small time-
scale ratio parameter ǫ. It is well known that for |ai| > 1 a single unit has
a stable fixed point and presents excitable behaviour: small perturbations
are followed by a smooth return to the fixed point, while a perturbation
larger than a threshold value induces a return through a large excursion
in phase space (a spike). For |ai| < 1, the fixed point becomes unstable
and a stable limit cycle appears. In this regime, the dynamics consists in
a periodic series of spikes. Along this section, we will consider the fixed
parameters: ǫ = 10−4, a1 = a3 = 1.01 and a2 = 0.99, such that the two end
units are excitable and the middle one, oscillatory. We have checked that
(in the absence of external forcing and noise) the three units retain their
excitable or oscillatory character despite the coupling amongst them, such
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that the middle unit spikes periodically and the two end units display small
subthreshold oscillations around the fixed point.

The issue now is the behaviour of these same units when noise and
external forcing are present. We will show that it is possible to have a noise-
induced regime in which the oscillations of the middle unit are suppressed.
Most of our results come from a numerical integration of the previous equa-
tions using a stochastic Runge–Kutta-type method known as the Heun algo-
rithm [123]. To characterise this phenomenon of oscillation suppression, we

have computed N
(i)
s , the number of spikes per time unit at the i−th neuron,

defined as the number of times the variable yi(t) surpasses a fixed threshold

per time unit. N
(i)
s represents the reciprocal of the averaged inter-spike time

interval.

An important point is whether in this oscillation suppression regime,
noise can help to transmit the information of the subthreshold external
signal by a stochastic resonance mechanism. In order to address this issue,
we compute the linear response, η(i), of the i−th neuron in the chain at the
input frequency Ω [17, 156] (see also section 2.2.4 for a throughout definition
of this measure):

η(i) =
∣

∣〈2yi(t) eı Ωt〉
∣

∣ /A2
s, (10.4)

where 〈. . .〉 denotes a time average.

10.2.1 Oscillation suppression via a noise-induced dynamical

trap

In a previous work [157] it has been shown that in a system of three FitzHugh–
Nagumo units in the oscillatory regime (and in the absence of external forc-
ing) the inhibitory coupling leads to two coexisting dynamical attractors,
with different natural frequencies. These attractors correspond to an anti-
phase oscillator movement and to the so-called dynamical trap regime where
the middle oscillator is at rest and the two oscillators at the ends oscillate in
anti-phase. If one now applies a weak external periodic signal to one of the
end units and uncorrelated noise to every unit, one can still achieve the sup-
pression of the self-excited oscillations of the middle unit and, at the same
time, achieve a reliable transmission of the signal, provided the following
two conditions hold: (i) the frequency of the external signal coincides with
the natural frequency of the dynamical trap attractor, and (ii) the noise in
the system is near the optimal one for the desired signal amplification (i.e.
stochastic resonance phenomenon on this attractor).

A similar result appears in our system of three coupled units. For very
small noise, the situation is as described at the beginning of the section with
the middle unit oscillating and the end units at rest. As noise increases, one
observes random switches between this state and a dynamical trap regime
in which the middle unit is at rest and the two end units spike in anti-phase.
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Figure 10.2: Optimal noise suppresses oscillations while letting the signal
(within a certain range) to be transmitted. This effect occurs due to dy-
namical trap, supported by inhibitory coupling. (a) non-resonant, Ts = 2.8;
(b) dynamic trap, Ts = 3.1; (c) anti-phase resonance, Ts = 4.5; (d) no res-
onance, Ts = 6.0. Other parameters: ǫ = 10−4, a1,3 = 1.01, a2 = 0.99,
As = 0.01, Cy = 0.15. The left and right columns correspond to the η and
Ns measures.

This effect can be quantified by measuring the number of spikes N
(i)
s and the

responses η(i) as a function of the noise intensity. As shown in figs. 10.2, one
can distinguish several behaviours depending on the period of the external
forcing.

(a) This is the case where the period of the input signal equals the natural
period of an isolated FitzHugh–Nagumo oscillator (Ts = 2.8 for a = 0.99).
The noise-induced oscillation suppression described before is apparent in
the right panel of this figure, where it is shown that the number of spikes
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at the middle unit, N
(2)
s , first decreases as the noise intensity increases.

This oscillation suppression is maximum at a value of the noise intensity,
D ≈ 3 · 10−6. At noises larger that this value, the number of spikes in the
three units are very close to each other.

In the left panel we plot the response η(i) of each unit. Note that there is
a range of values for the noise intensity for which the middle unit responds
to the injected signal most effectively than the end units, as signalled by
a higher value of the response η(2). For increasing noise intensity, beyond
the value where the oscillation suppression was maximum, all units have a
similar response.

(b) For an intermediate range of periods Ts ∈ [3, 3.4], we observe that there
exists a range of noise intensities (D ∈ [10−6, 10−5]) such that the number of
spikes is strongly reduced in the middle oscillatory unit, while the response
to the driving frequency is better than in the oscillatory unit, i.e. this is the
manifestation of the dynamic trap regime. One can clearly see the effective
oscillation suppression of the oscillatory middle element (see fig. 10.2(b),
right panel) and –despite of this suppression in the middle of the chain– the
reliable information transport from the first to the last unit by a large linear
response η in these elements (fig. 10.2(b), left). The dynamic trap regime
includes an anti-phase motion of the first and the last units which results in
combination with the inhibitory coupling in a suppression of the oscillations
of the middle element.

(c) Increasing even further the period, Ts = 4.5, the external signal is now
in resonance with, and hence amplifies, the anti-phase motion in which the
first and the last units oscillate in-phase and in anti-phase with the middle
one. In this case, another interesting regime appears in the noise range
D ∈ [10−5, 10−4] as observed in the right panel of fig. 10.2(c), where the spike
numbers of all three elements coincide nearly, as well as in the linear response
plot (left panel), where all oscillators display a very similar linear response
η. This anti-phase regime demonstrates a totally different behaviour than
the dynamic trap regime, case (b) discussed previously. Note that the anti-
phase regime appears for a much larger noise intensity than the dynamic
trap regime, hence showing a double selectivity by the input frequency and
the noise intensity.

(d) Finally, for much larger period, Ts = 6.0, there is no resonance, figs. 10.2(d).
This can be observed especially at the linear response η (left panel) which
is much smaller than in the resonant cases. Noteworthy, the last element in
the chain exhibits a poor signal response.
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Figure 10.3: Linear response η (left), and normalised spike number Ns

(right), versus inhibitory coupling strength. The other parameters are:
ǫ = 10−4, a1,3 = 1.01, a2 = 0.99, As = 0.01, Ts = 3.1 and D = 3 · 10−6.
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Figure 10.4: The influence of the type of coupling on the linear response
η (left) and the normalised spike number Ns (right) for three coupled
FitzHugh–Nagumo’s. The sliding parameter α shifts the weight of the dif-
fusion constant Cy from a pure inhibitory coupling (α = 0.0) to a pure
activator coupling (α = 1). The other parameters are ǫ = 10−4, a1,3 = 1.01,
a2 = 0.99, D = 4 · 10−6, As = 0.01, Ts = 3.1 and Cy = 0.15.

10.2.2 Control of suppression by the coupling strength

Noise-induced dynamical trap suppression is made possible by the existence
of a new attractor originated in the inhibitory nature of the coupling. Hence,
the coupling intensity, Cy, controls the effectivity of the suppression, as well
as the frequency of the attractor. The existence of an optimal value for
Cy is shown in fig. 10.3, in which we plot the linear response η and the
spike numbers Ns as a function of the coupling intensity. Setting the noise
intensity D to the value of maximum of the linear response η (fig. 10.2(b),
left panel), and varying the strength Cy of the inhibitory coupling, it is clear
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the existence of an optimal Cy such that the middle unit is silent (fig. 10.3
right panel), while the first and last units effectively respond to the driving
frequency (fig. 10.3 left panel).

Since both types of coupling, inhibitory and activator, can be immanent
in neural networks, we have investigated how the suppression can be reg-
ulated if we tune the coupling from an activator to an inhibitory one. To
do this, we have added activator coupling in the model by interchanging Cy

by (1 − α)Cy in the equations for the inhibitory variable yi and inserting
the terms αCy (x2 − x1) in equation (10.1), α Cy (x1 − x2) + αCy(x3 − x2)
in eq. (10.2) and αCy(x2 − x3) in eq. (10.3). These extensions of the model
are used only in this section for the calculation of fig. 10.4. With help of
the new sliding parameter α we change the weight of the type coupling from
α = 1 (pure activator coupling) to α = 0 (pure inhibitory coupling). The
results are illustrated in fig. 10.4. We clearly see that increasing the weight
of the inhibitory coupling (from right to left) leads to an abrupt suppression
of the middle oscillator (fig. 10.4 right) and to a significant joint increase of
the linear response η of the first and third oscillators, but not of the mid-
dle one (fig. 10.4 left). Note the logarithmic scaling of the parameter α at
the abscissa. We clearly observe, that already a small fraction of activator
coupling (in the order of 1%) destroys the dynamic trap regime in the given
parameter set.

10.3 Four non-identical inhibitory coupled units

Figure 10.5: Scheme of the setup for the case N = 4. While at both ends
there are excitable units, in the centre there are oscillatory ones. The cou-
pling between units of different nature is inhibitory, and the coupling be-
tween the oscillatory units is through the activator variable.

Next we consider the question of whether larger chains with more coupled
oscillatory units also show the same phenomenon discussed in the previous
section. Although it would seem a rather trivial proposal just to enlarge it
to a case in which the system size is N = 4, the dynamical regimes that
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arise in such situation are far from being simple modifications of the results
shown above.

We will not consider an enlargement of the excitable ends of the chain,
because it is a well known fact that coupling them through the activator
variable with a strong enough bind, will result in an entrainment of such
subchain and the dynamical evolution of such units will be effectively that
of one oscillator. Then, the most interesting question arises from the en-
largement of the middle part, that is composed by oscillatory units. So, we
add to the scheme of three elements (fig. 10.1) an oscillatory element in the
middle position and couple it by an activator coupling with the other (iden-
tical) oscillatory element and with an inhibitory coupling to the adjacent
excitable element (fig. 10.5).

The mathematical description of the scheme in figure 10.5 is given in
eqs. (10.5) 10.8. The two oscillatory units are placed at the middle posi-
tion and are both coupled to their adjacent excitable one by an inhibitory
coupling as in the chain of three elements, whereas an activator coupling is
set between them. As in the previous section, independent additive white
noises act on the units and an external, subthreshold, periodic signal drives
only the first element:

ǫ ẋ1 = y1 −
x3

1

3
+ x1 (10.5)

ẏ1 = a1 − x1 + ξ1(t) + As sin (Ωt) + Cy(y2 − y1)

ǫ ẋ2 = y2 −
x3

2

3
+ x2 + Cx(x3 − x2) (10.6)

ẏ2 = a2 − x2 + ξ2(t) + Cy(y1 − y2)

ǫ ẋ3 = y3 −
x3

3

3
+ x3 + Cx(x2 − x3) (10.7)

ẏ3 = a3 − x3 + ξ3(t) + Cy(y4 − y3)

ǫ ẋ4 = y4 −
x3

4

3
+ x4 (10.8)

ẏ4 = a4 − x4 + ξ4(t) + Cy(y3 − y4)

We will fix along the following simulations the parameters: a2,3 = 0.99
(oscillatory regime), a1,4 = 1.01 (excitable regime) and the signal intensity
As = 0.01 (subthreshold).

We are interested in the signal penetration along the chain from the first
to the last element as a function of the signal period and the noise intensity.
In order to investigate whether the same phenomenon appears in this chain,
two different cases are considered: first, we take the optimal parameters
from the case N = 3 and make the coupling between the oscillatory units
strong enough such that they become entrained. In the second case, we use
a weaker activator coupling.
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10.3.1 Strong inter-oscillatory coupling

Let us focus first on a regime of strong coupling among the oscillatory units.
We use the following set of parameters ǫ = 10−4, a1,4 = 1.01, a2,3 = 0.99,
Cx = 0.80 and Cy = 0.22. In this case, and without an external periodic
signal (As = 0.0) injected nor noise (D = 0.0), the analysis of the power
spectrum exhibits that the natural period of the system is Tnat ≈ 2.67. The
oscillatory units exhibit their periodic oscillations at their natural frequency.
The excitable units, at their time, show only subthreshold oscillations at the
natural frequency of the oscillatory units.

In the presence of an external signal fig. 10.6 illustrates the normalised
spike number and the linear response η as a function of the noise intensity
D for different driving periods Ts. Figure 10.6, panel (a) depicts the results
when the system is subjected both to noise and external signal and the signal
period Ts = 2.61 is slightly below the natural period. It is observed (as in
the N = 3 case) that now the oscillatory units respond but not the excitable
one at the end of the chain.

Increasing Ts well over the natural frequency, e.g. Ts = 2.8 or 2.9
(figs. 10.6(b) or 10.6(c)), the dynamic trap regime appears. It is impor-
tant to emphasise that the quality of the signal transmission to the last
unit is enhanced with respect to the N = 3 case (compare figs. 10.2 and
figs. 10.6).

An interesting phenomenon occurs for Ts = 2.9 (fig. 10.6, panel (c))
where there are two well-differenced situations of dynamics trap like regimes.
First, for very low noise intensities (D ≈ 10−7) there is an almost perfect
suppression of the oscillations and at the same time a perfect signal trans-
mission which is the result of the desired dynamic trap regime. There is
then a secondary oscillation suppression regime at D ≈ 2.5 · 10−6, at which
the signal is not transmitted with the same fidelity as compared to the case
at about D ≈ 10−7. In the second regime the last unit is oscillating, neither
at the driving frequency, nor at the natural one of the middle oscillators, but
at another one. Figure 10.7 shows the power spectrum for such secondary
regime in the interesting frequency range around driving and resonance fre-
quency. Let us consider the particular case of the fourth oscillator. It is
subject to two different signals, one of them with the natural frequency of
the third unit, and one with the external driving frequency. It is not trivial
how this two signals interact in order to produce this unit’s response, but
it has been demonstrated that in non-linear systems [158] subjected to two
signals, the response may appear at neither of the driving ones. Neverthe-
less these facts, the important footprint of this secondary regime is the low
response of the last unit to the driving frequency.

One can clearly see in fig. 10.7 three peaks in the frequency range Ω ∈
[1.8, 2.8] in the system output. The first and highest peak at Ω ≈ 2.16
is well pronounced only for the first and driven oscillator and corresponds
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Figure 10.6: Linear response η (left column) and Ns (normalised spike num-
ber), in the right column, versus noise intensity for a chain of four oscillators.
(a) Ts = 2.61; (b) Ts = 2.8; (c) Ts = 2.9; (d) Ts = 3.1; Other parameters:
ǫ = 10−4, a1,4 = 1.01, a2,3 = 0.99, As = 0.01. The couplings are, Cx = 0.80
and Cy = 0.22 (strong inter-oscillatory coupling regime).

to a period T ≈ 2.9, equal to the driving period Ts, i.e. only the driven
oscillator exhibits a good response to the signal. The second peak, very
close to the first one, at Ω ≈ 2.245 (T ≈ 2.8) is displayed mainly by the
last unit. The third peak at Ω ≈ 2.49 (T ≈ 2.52) can be found in all
elements with nearly equal hight. The third peak has a very small influence
on the total responses of the system (note the logarithmic scale) and it is
produced by small sub-threshold oscillations. The corresponding time series
is as follows: the first (driven) oscillator shows a reliable spiking behaviour
with a period equal to the driving period, while the two middle oscillators
are mostly silent and the last oscillator spikes with a slightly reduced period
of Ts = 2.8 (so leading to the difference in the linear response at the signal
frequency η between the first and last FitzHugh–Nagumo in this regime).
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Figure 10.7: Power spectrum of a four oscillator system for the parameters:
ǫ = 10−4, a1,4 = 1.01, a2,3 = 0.99, As = 0.01, Ts = 2.9, Cx = 0.80,
Cy = 0.22, and D = 2.56 · 10−6.

Due to the small difference in the periodicity, there is no phase locking in this
regime and a continuous phase slip between the first and last unit appears.
If the phase difference is large enough, the chain switches to an anti-phase
regime, i.e. the otherwise silent middle oscillators spike in anti-phase to their
excitable neighbors. This transition to the anti-phase attractor induces a
delay of the last unit compared to the first one. This anti-phase regime is
unstable at the considered parameter set and the chain switches back to
the previous attractor with the silent middle elements and the phase slip
between the first and last one. The interruption of this long-life attractor
by the unstable anti-phase attractor results in a nearly equal spike number
of the first and last unit. Therefore, the interesting behaviour in figs. 10.6,
panel (c) at a noise intensity D ≈ 2.5 · 10−6 is caused by a regime which
is only similar to the dynamic trap regime, but is not exactly the desired
dynamic trap and hence does not provide a reliable information transport.

As a summary of this section, it could be said that the dynamic trap
regime still occurs, but in a narrower region of the driving period (Ts ∈
[2.8, 3.0], fig. 10.8) than in the case of N = 3 (Ts ∈ [3.0, 3.4]).

Finally, fig. 10.9 shows that there is also a range of inhibitory coupling Cy

such that dynamic trap regime occurs. This resonance like behaviour with
respect to the inhibitory coupling strength is caused by the influence of this
parameter on the resonance frequency of the dynamic trap regime. This
figure shows the existence of a maximum (located at a coupling Cy ≈ 0.25)
in the response as a function of this parameter.
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Figure 10.8: Linear response η and normalised spike number Ns versus
time periodicity Ts. The system is composed by four units in the strong
inter-oscillatory coupling regime and the rest of parameters, are: ǫ = 10−4,
a1,4 = 1.01, a2,3 = 0.99, As = 0.01, Cx = 0.80, Cy = 0.22, and D = 2 · 10−7.
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Figure 10.9: Linear response η and normalised spike number Ns as a function
of the inhibitory coupling strength Cy. The system is composed by four units
in the strong inter- oscillatory coupling regime and the rest of parameters,
are: ǫ = 10−4, a1,4 = 1.01, a2,3 = 0.99, As = 0.01, Cx = 0.80, D = 2 · 10−7

and Ts = 2.9.

10.3.2 Intermediate inter-oscillatory coupling

We also found another kind of dynamic regime in this model with a smaller
activator coupling. The analysis of the power spectrum in the absence of
noise and external signal shows that the oscillatory units exhibit their peri-
odic oscillations at their natural period Tnat ≈ 2.54. The excitable units, at
their time, generate only subthreshold oscillations at the natural frequency
of the oscillatory units. Note that the natural frequency is shifted from the
previous case of a strong inter-oscillatory coupling (Tnat ≈ 2.67). In this
case, however, the dependence with Ts of the linear response η curves and
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the oscillation suppression is quite different from the previous case. Even
for slightly detuned input signals Ts = 2.55 a strong dynamic trap arises in
the system (fig. 10.10(a)). This oscillation suppression mechanism is very
robust over a wide range of driving periods Ts (figs. 10.10(a)-(c)), whereas a
reliable signal transmission along the chain can be observed only in a much
narrower range of the driving period, Ts ∈ [2.6, 2.65] (fig. 10.10(b)).

The oscillation suppression here is really robust, showing that the middle
units do not spike for very large periods of time. The result is also robust
to changes of almost four decades in the noise intensity.

Note that the curves for the number of spikes show an exact coincidence
between the first and the last units (i.e. the excitable ones), although such a
perfect matching does not occur for the linear response η. The first and the
last units fire at the same rate (same normalised spike number Ns), but they
are not phase locked, i.e. there is a random phase slip. When the difference
in phase between these two excitable units is large enough, this dynamic
regime destabilises and a regime in which there is an in-phase motion of
excitable units, and (in anti-phase) spikes of the oscillatory units appears.
But this last dynamic regime is unstable and rapidly falls to the previous
one. It is interesting that the matching in the number of spikes occurs in the
dynamic trap regime, i.e. that the sub-threshold dynamics of the oscillatory
units is sufficient to carry information from one end of the chain to the other
one.

Figures 10.11 and 10.12 demonstrate that there are optimal values of
couplings for the suppression to occur. While the dependence on the activa-
tor coupling Cx is such that the suppression holds for couplings larger than a
given value, we observe a much narrower range, a resonance-like behaviour,
as a function of the inhibitor coupling Cy. Even further, for Cy large enough,
the oscillation suppression phenomenon disappears, and most of the spikes
occur at frequencies different to the driving one (i.e. η vanishes).

Figure 10.13 shows the dependence on the signal periodicity Ts. It is clear
that the oscillation suppression and signal transmission are optimal at the
same parameter values. Furthermore, in the same figure it can be seen that
there is a very narrow peak around the natural period (Ts = Tnat = 2.54)
of the oscillatory units at which they respond optimally. Note that the
oscillation suppression holds for a wide range of values of the driving period
Ts. But the main result shown in this figure is the fact that the suppression of
oscillations in the oscillatory units is much more robust than in the previous
cases, i.e. N = 3 and N = 4 with strong inter-oscillatory coupling. This
result is somewhat unexpected given the fact that these couplings are not
as strong as in the previous parameter sets, and then the units are allowed
to move more freely.

To show the different influence of activator and inhibitory couplings, we
have added an extra activator coupling in the model by interchanging Cy by
(1 − α)Cy in the equations for the inhibitory variable yi and inserting the
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Figure 10.10: Linear response η and normalised spike number Ns (left and
right columns, respectively) versus noise intensity. The time periodicities,
are (a) Ts = 2.55; (b) Ts = 2.61; (c) Ts = 5.2. The other parameters are:
ǫ = 10−4, a1,4 = 1.01, a2,3 = 0.99, As = 0.01, Cx = 0.20, and Cy = 0.50
(intermediate inter-oscillatory coupling).

terms αCy(x2 −x1) in equation (10.5), αCy(x1−x2) in eq. (10.6), αCy(x4 −
x3) in eq. (10.7) and αCy(x3 − x4) in equation (10.8). These extensions of
the model are used only in this section for the calculation of figure 10.14.
We shift the balance between the activator and inhibitory coupling between
these elements continuously with the parameter α. In figure 10.14, two
clearly different regimes can be observed: for α < 3 ·10−3 there is a situation
of dynamic trap regime with reliable information transport; while for α >
3 · 10−3, there are oscillations in the middle units position and no response
to the driving frequency.

As shown in figure 10.14, a very sharp transition to a situation of oscilla-
tion suppression and no response to the driving frequency in the middle units
is observed when the activator coupling is strong enough, α > 3 · 10−3. Fig-
ure 10.14 (as fig. 10.4 for the N = 3 case) shows the essential imperative of
the inhibitory coupling between the excitable and oscillatory units to reach
the dynamic trap regime with the desired feature of oscillation suppression
and information transmission.
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Figure 10.11: Linear response η and normalised spike number Ns versus
activator coupling Cx. The system is composed by four units, and the other
parameters are: ǫ = 10−4, a1,4 = 1.01, a2,3 = 0.99, As = 0.01, Cy = 0.50,
Ts = 2.61 and D = 2 · 10−7.
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Figure 10.12: Linear response η and normalised spike number Ns versus
inhibitory coupling Cy. The parameters are: ǫ = 10−4, a1,4 = 1.01, a2,3 =
0.99, As = 0.01, Cx = 0.20, Ts = 2.61 and D = 2 · 10−7.

10.4 Conclusions

In the present work we have studied chains of three or four coupled FitzHugh–
Nagumo’s units subject to noise and to an external signal. The number of
units has been chosen in order to keep the number of parameters small, but
our model could be exemplary also for larger systems if one regards one os-
cillator in the model as a representation of a cluster of many oscillators in a
close area with similar properties. Conversely, due to the high signal quality
at the end of the chain, if we consider replicas of this basic setup coupled
linearly to others, the same phenomenon should hold along this chain.

We have found new mechanisms which, with the help of a constructive
role of the noise, help to suppress self-sustained oscillations in chains of ex-
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Figure 10.13: Linear response η and normalised spike number Ns versus
driving period Ts. For this four units system, the parameters are: ǫ = 10−4,
a1,4 = 1.01, a2,3 = 0.99, As = 0.01, Cx = 0.20, Cy = 0.50 and D = 2 · 10−7.
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Figure 10.14: The influence of the type of coupling on the the linear re-
sponse η and the normalised spike number Ns in a system composed by four
coupled FitzHugh–Nagumo’s. The sliding parameter α shifts the weight of
the diffusion constant Cy from a pure inhibitory coupling (α = 0.0) to a pure
activator coupling (α = 1). The other parameters are ǫ = 10−4, a1,4 = 1.01,
a2,3 = 0.99, D = 2 · 10−6, As = 0.01, Ts = 2.61, Cx = 0.20 and Cy = 0.50.

citable systems while yet allowing for the propagation of external stimuli. In
our scheme, an inhibitory coupling between oscillatory and excitable units is
essential to reach the dynamic trap regime which is responsible for the oscil-
lation suppression and the information transport. This dynamic trap regime
is characterised by an anti-phase spiking behaviour (with the same frequency
of the external signal) of the excitable units at both ends of the chain and a
silent (oscillation suppressed) behaviour of the originally oscillatory units in
between. The desired dynamic trap regime is sensitive with respect to the
driving frequency, the noise intensity and the coupling strength. We have
found other attractors which also offer a reliable oscillation suppression but,
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however, do not provide a good information transport along the chain. It
is interesting to note that the oscillation suppression can also be achieved
(in the absence of noise) in the presence of a strong enough driving force.
Further study would be needed in order to determine the main features of
this suppression of oscillations by the injection of a nonperiodic external
signal.

We have considered only paradigmatic models in a very general frame-
work, but we expect that our results are also relevant to other models with
inhibitory coupling, used, for example, to describe various physical [159],
electronic [149], chemical [152, 153, 154, 45, 160], biological systems [155],
including spatial non-uniformities [161], animal coat pattern formation [162],
or artificial gene networks synchronisation with slow auto-inducer diffusion
[163, 164]. An important example is that of the Calcium-signalling mecha-
nism [165, 166] present in neurons in thalamus, pancreatic acinar cells, etc.
It occurs in regions where the Ca2+ (often responsible for intra-cell com-
munication) is across the cell membrane to form what is called Ca2+ wave.
Another example is that of the neuron-glion interaction [167, 168] in which
the glion acts in some circumstances as an intermediary messenger between
pre- and post-synaptic neurons. Interestingly enough, most of the models
of this interaction are rather simplistic circuits with three or four compart-
ments connected diffusively at first approximation, very close to our own
approach.

A similar architecture to the one studied here may be responsible, for
example, for the activities of neural circuits in a nucleus found in the brain of
songbirds [169]. In such circuits the connection between different functional
units of the brain is mainly due to inhibitory coupling, whereas the connec-
tions within each unit are mainly through the activator variables. Since a
strong activator coupling tends to synchronise the population of interacting
units, one can neglect, as a first approximation, that each functional unit is
composed itself of several units, and restrict oneself to a case in which only
one (mean) unit is considered for each region of the brain, coupled with
others through the inhibitor variable. In this architecture the oscillating
element is directly surrounded by inhibitory coupled excitable elements.

The suppression of global oscillations and the prevention of undesirable
neural synchronisation is an ongoing issue in medicine and neuro-science
and many techniques have been proposed previously in the literature, e.g.
the permanent high-frequency stimulation [170, 171], the demand-controlled
deep brain stimulation techniques [172, 173], the delay feedback control of
collective synchrony [174] or the noise-induced excitability [175]. The results
of the present chapter can be also potentially useful for this research direc-
tion if applied not to inhibitory but negative coupling which can also lead
to the appearance of multirhythmicity [102]. There, our result should imply
that it is possible to suppress undesirable oscillations while still being able
to propagate external stimuli.



Chapter 11

Selective coupling in

extended excitable systems

11.1 Introduction

Stochastic resonance is one of the most interesting noise-induced phenomena
that arises from the interplay between deterministic and random dynamics
in a nonlinear system [17]. A large number of examples showing stochastic
resonance occur in extended systems: for example, diverse experiments were
carried out to explore the role of SR in sensory and other biological functions
[32, 176, 177] or in chemical systems [178, 179, 180]. These, together with the
possible technological applications, motivated many recent studies showing
the possibility of achieving an enhancement of the system response by means
of the coupling of several units in what conforms an extended medium [181,
182, 183, 184, 185, 186, 187].

In previous works [183, 184, 185, 186, 187] stochastic resonant has been
studied in extended systems, when transitions between two different spa-
tial patterns occur, exploiting the concept of the non-equilibrium potential
(NEP) [188, 189, 190, 191, 192, 193, 194, 195]: a Lyapunov functional of
the associated deterministic system that, for non-equilibrium systems, plays
a role similar to that of a thermodynamic potential in equilibrium thermo-
dynamics. Such NEP characterises the global properties of the dynamics:
attractors, relative (or nonlinear) stability of these attractors, height of the
barriers separating attraction basins and, in addition, allowing us to eval-
uate the transition rates among the different attractors. In another work
[115] it has also been shown that, for a scalar reaction-diffusion system
with a density-dependent diffusion and a known form of the NEP, the non-
homogeneous spatial coupling changes the effective dynamics of the system
and contributes to enhance the SR phenomenon.

In this chapter, we study SR in an extended system: an array of FitzHugh–
Nagumo [44, 196, 42] units, with a density-dependent (diffusive-like) cou-
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pling. The NEP for this system was found within the excitable regime and
for particular values of the coupling strength [187]. In the general case, how-
ever, the form of the NEP has not been found yet. Nevertheless, the idea of
the existence of such a NEP is always underlying our study. Hence, we have
resorted to an study based on numerical simulations, analysing the influ-
ence of different parameters on the system response. The results show that
the enhancement of the signal-to-noise ratio found for a scalar system [115]
is robust, and that the indicated non-homogeneous coupling could clearly
contribute to enhance the SR phenomenon in more general situations.

11.2 Non-equilibrium potential

The non-trivial behaviour found in models such that complex Ginzburg–
Landau equations, reaction-diffusion –where FitzHugh–Nagumo model finds
also an application–, and many other non-equilibrium systems, is not due to
the non-variational character of the dynamics: for those systems there is no
Lyapunov functional for their dynamics. However, Graham et al. [188, 189],
showed that it is possible to write a functional that preserves some properties
of a Lyapunov potential. It corresponds to an extension of the notion of the
(equilibrium) thermodynamical potential to non-equilibrium problems.

Let us consider a dynamical system whose dynamics is given by

ẋi = Fi({xi}) +
√

D Qi ξi(t) i ∈ 1 . . . N. (11.1)

We stick here to a situation in which the noises are delta-correlated, additive
sources: 〈ξi(t)ξj(t

′)〉 = δij δ(t − t′) (in which δij = 1 if i = j, zero otherwise
and δ(t − t′) is the Dirac’s delta function). Once again, D Qi is the noise
strength of the i–th noise source. All the elements Qi are non-negative and
fulfil Qi ≤ 1. In particular, if the i–th term whose noise intensity is the
largest, then Qi = 1.

The Fokker–Planck equation for this system is given by

∂

∂t
P =

∑

i

∂

∂xi
(Fi({xi})P ) +

D

2

∑

i

Qi
∂2

∂x2
i

P. (11.2)

Asymptotically, the solution to this equation tends to a stationary distri-
bution PS({xi}). In [188], the non-equilibrium potential (NEP), Φ({xi}),
associated to this Fokker–Planck equation, is defined by

Φ({xi}) = − lim
D→0

D ln (PS({xi} , Qi)) . (11.3)

This definition, also implies that

PS({xi}) = Z exp

(

−Φ({xi})
D

+ O(D)

)

, (11.4)
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with Z is a normalising constant.

The normalisation condition of the probability distribution function, and
equation (11.3), ensure that the non-equilibrium potential has a finite global
minimum.

It has been shown [188], that the non-equilibrium potential satisfies a
Hamilton–Jacobi-like equation

∑

i

∂Φ({xi})
∂xi

+
∑

i

Qi

2

(

∂Φ({xi})
∂xi

)2

= 0, (11.5)

which allows to write for the time-evolution for the functional Φ,

dΦ {xi}
dt

=
∑

i

Fi({xi})
∂Φ({xi})

∂xi
= −

∑

i

Qi

2

(

∂Φ({xi})
∂xi

)2

≤ 0, (11.6)

thus showing that it is a decreasing function of time.

11.3 The model

For the sake of concreteness, we consider a simplified version of the FitzHugh–
Nagumo [187, 192, 193, 194, 195, 44, 197, 196, 42] model. This model has
been useful for gaining qualitative insight into the excitable and oscillatory
dynamics in neural and chemical systems [42]. It consist of two variables,
in one hand u, a (fast) activator field that in the case of neural systems
represents the voltage variable, while in chemical systems represents a con-
centration of a self-catalytic species. On the other hand v, the inhibitor
field, associated with the concentration of potassium ions in the medium
(within a neural context), that inhibits the generation of the u species (in
a chemical reaction). Instead of considering the usual cubic like nonlinear
form, we use a piece-wise linear version

ǫ
∂u(x, t)

∂t
=

∂

∂x

(

Du(u)
∂u

∂x

)

+ f(u) − v + ξ(x, t) (11.7)

∂v(x, t)

∂t
=

∂

∂x

(

Dv(v)
∂u

∂x

)

+ β u − α v, (11.8)

where f(u) = −u + Θ(u − φc) (with Θ(x) the Heaviside function), and
ξ(x, t) is a δ-correlated white Gaussian noise, that is 〈ξ(x, t)〉 = 0 and
〈ξ(x, t)ξ(x′, t′)〉 = 2γδ(x − x′)δ(t − t′). Here γ indicates the noise intensity
and φc is the “discontinuity” point, at which the piece-wise linearised func-
tion f(u) presents a jump. In what follows, the parameters α and β are fixed
as α = 0.3 and β = 0.4. Finally, ǫ is the parameter that indicates the time-
scale ratio between activator and inhibitor variables, and is set as ǫ = 0.03.
We consider Dirichlet boundary conditions at x = ±L: u(0) = u(L) = 0 and
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v(0) = v(L) = 0. Although the results are qualitatively the same as those
that could appear considering the usual FitzHugh–Nagumo equations, this
simplified version allows us to compare directly with the previous analytical
results for this system [187].

-1 -0.5 0 0.5 1
x/L

0

0.2

0.4

0.6

u,
v

Figure 11.1: We show the stable patterns that arise in the system. There
is one stable pattern that is identically zero, i.e. P u

0 (x) = P v
0 (x) = 0 and

another which is non-zero (P u
1 (x), P v

1 (x)). The patterns for the fields u(x)
and v(x) are plotted in dashed and solid lines, respectively. The parameters,
are Du = 0.3, Dv = 1, h = 2.

As in [115], we assume that the diffusion coefficient Du(u) is not constant,
but depends on the field u according to Du(u) = Du [1 + hΘ(u − φc)]. This
form implies that the value of Du(u) depends “selectively” on whether the
field u fulfils u > φc or u < φc. Du is the value of the diffusion constant with-
out such “selective” term, and h indicates the size of the difference between
the diffusion constants in both regions (clearly, if h = 0 then Du(u) = Du

constant). Dv(v) is the diffusion for the inhibitor v, that here we assume to
be homogeneously constant.

It is worthwhile noting that when the parameter h is negative, the cou-
pling term might become negative. This is what is known as “inhibitory
coupling” [102]. This is a very interesting kind of coupling that has attracted
much attention in the last years, both in neural and chemical context, that
we will not discuss here.

This system is known to exhibit two stable stationary patterns. One of
them is u(x) = 0, v(x) = 0, while the other is one with non-zero values and
can be seen in figure 11.2. We will denote with P u,v

0 (x) and P u,v
1 (x), the

patterns for u and v fields. Further, we consider that an external, periodic,
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signal enters into the system through the value of the threshold φc,

φc(t) = φc + δφ cos(ωt), (11.9)

where ω is the signal frequency, and δφ its intensity.

All the results shown in this chapter were obtained through numerical
simulations of the system. The second order spatially discrete version of the
system indicated in equations (11.7) and (11.8) reads

u̇i = Du,i(ui−1 + ui+1 − 2ui) + (Du,i+1 − Du,i−1)(ui+1 + ui−1)

+f(ui) − vi + ξi(t) (11.10)

v̇i = Dv(vi−1 + vi+1 − 2vi) + β ui − α vi. (11.11)

We have performed extensive numerical simulations of this set of equations
exploiting the Heun’s algorithm [12, 123].

11.3.1 Response’s measures

Since the discovery of the stochastic resonance, several different forms of
characterising it have been introduced in the literature. Some examples are:
(i) output signal-to-noise ratio (SNR) [17, 29], (ii) the spectral amplification
factor (SAF) [119, 39], (iii) the residence time distribution [198, 35], and,
more recently, (iv) information theory based tools [199, 200, 201]. Along
this chapter, we will use the output SNR at the driving frequency ω.

In this spatially-extended system, there are different ways of measur-
ing the overall system response to the external signal. In particular, we
evaluated the output SNR in two different ways (the units being given in
dB)

• SNR for the element N/4 of the chain evaluated over the dynamical
evolution of uN/4, that we call SNR1. Having Dirichlet boundary con-
ditions, the local response depends on the distance to the boundaries.
Although that, (and except for the units located at the ends of the
chain) the results are independent on the exact position of the unit in
which the response is measured.

• In order to measure the overall response of the system to the external
signal, we computed the SNR as follows: We digitised the system
dynamics to a dichotomic process s(t): At time t the system has an
associated value of s(t) = 1 (0) if the Hilbert distance to pattern 1 (0)
is lower than to the other pattern. Stated in mathematical terms, we
computed the distance D2[·, ·] defined by

D2[f, g] =

(∫ L

−L
dx (f(x) − g(x))2

)1/2
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in the Hilbert space of the real-valued functions in the interval [−L,L],
i.e. L2. At time t, a digitised process is computed by means of

s(t) =

{

1 ifD2 [P u
1 (x), u(x, t)] < D2 [P u

0 (x), u(x, t)]
0 ifD2 [P u

1 (x), u(x, t)] ≥ D2 [P u
0 (x), u(x, t)]

, (11.12)

We call this measure SNRp.

11.4 Results

As indicated above, equations (11.10) and (11.11) have been integrated by
means of the Heun method [12]. We have fixed the parameters ǫ = 0.03,
φc = 0.52 and adopted an integration step of ∆t = 10−3. For the signal
frequency we adopted ω = 2π/3.2 = 1.9634295 . . .. The simulation was
repeated 250 times for each parameter set, and the SNR was computed by
recourse of the average power spectral density.

Figure 11.2 depicts the results for the different SNR’s measures we have
previously defined as function of the noise intensity γ. We adopted the
following values: δφ = 0.4, Dv = 1. and N = 51. In all three cases it is
apparent that there is an enhancement of the response for h > 0, when
compared with the h = 0 case, while for h < 0 the response is smaller.

10
-2

10
-1

10
0

10
1

γ
0

5

10

15

20

SN
R

1 [
dB

]

10
-2

10
-1

10
0

10
1

γ
0

5

10

15

20

SN
R

p [
dB

]

Figure 11.2: SNR vs. γ, the noise intensity, for the two different measures
we use. The parameters are δφ = 0.4, Dv = 1., ω = 2π/3.2, N = 51. The
different curves represent different values of h, showing an enhancement of
the response to the external signal for γ > 0. In particular it is shown:
h = −2 (+), h = −1 (△), h = 0 (⋄), h = 1 (�) and h = 2 (©).

In figure 11.3 we show the same two response’s measures, but now as
a function of h. We have plotted the maximum of each SNR curve, for
three different values of the noise intensity, and for δφ = 0.4, Dv = 1.,
γ = 0.01, 0.1, 0.3, Du = 0.3, and N = 51. It is clear that there exists an
optimal value of γ such that, for such a value, the phenomenon is stronger
(that is, the response is larger). It is apparent the rapid fall in the response
for h < 0.
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Figure 11.3: SNR vs. h, the selectiveness of coupling, for the two dif-
ferent measures we use. The parameters are δφ = 0.4, Dv = 1., γ =
0.032 (©), 0.32 (�), 0.6 (⋄), 1.2 (�), 3.2 (×), Du = 0.3, N = 51.
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Figure 11.4: SNR vs. h, the selectiveness of coupling, for different val-
ues of Du. The parameters are δφ = 0.4, Dv = 1. γ = 0.32, Du =
0.0 (©), 0.1 (�), 0.3 (⋄), N = 51.
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Figure 11.5: SNR vs. Du, the diffusiveness in activator variable u, for the
two different measures we use. The parameters are δφ = 0.4, Dv = 1.,
γ = 0.1 (©), 0.32 (�), 1.0 (⋄), while the white symbols represent h = 2 and
the black ones, h = 0. The system size is N = 51.

In figure 11.4 we show the dependence of SNR on h, for different values of
the diffusion which depends on the activator density Du. It is apparent that
the response becomes larger when the value of Du is larger. However, as was
discussed in [183, 184, 185, 186, 187], it is clear that for still larger values of
Du, the symmetry of the underlying potential (that is the relative stability
between the attractors) is broken and the response finally falls-down.

Figure 11.5 shows the results of the SNR, but now as function of Du,
the activator diffusivity, for different values of γ, and for δφ = 0.4, Dv = 1.
and N = 51. It can be seen that, independently from the coupling strength
Du, the response to the external signal grows with the selectiveness of the
coupling, showing the robustness of the phenomenon.

Next, in figure 11.6, we present the results for the SNR as function of
Dv, the activator diffusivity, for different values of γ, and for δφ = 0.4,
Du = 0.3, and N = 51. We see that for h ≥ 0 the response is more or less
flat, however, it is again apparent the SNR’s enhancement for h > 0. For
h < 0 we see that the system’s response decays very fast with increasing Dv.
This effect could be associated to the fact (as found in those cases where
the NEP is known [183, 184, 185, 186, 187]) that in the underlying NEP
the bistability is lost as a consequence of the disappearance of some of the
attractors [192, 193, 194, 195].

Finally, in figure 11.7 we depict the same two SNR’s measures but as a
function of N , the system size. For the two measures SNR1 and SNR2, we
see that, for different values of h and γ, the response is very flat, and does
not seem to be too much dependent on N . It is clear that there is an increase
of the response when h increases. At variance, for SNRp, the dependence
to N is apparent: the SNR decays to zero, in a fast or slow way, depending
of h = 0 or h > 0. Here δφ = 0.4, Du = 0.3, Dv = 1., γ = 0.01, 0.1, 0.3.
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Figure 11.6: SNR vs. Dv, the diffusiveness in the inhibitor variable v.
The parameters are δφ = 0.4, Du = 0.3, ω = 2π/3.2, N = 51. γ =
0.1 (©), 0.32 (�), 1.0 (⋄), while the white symbols represent h = 2 and the
black ones, h = 0.
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Figure 11.7: SNR vs. N , the system size, for the two different measures
we use. The parameters are δφ = 0.4, Du = 0.3, Dv = 1., γ = 0.32,
h = −2 (©), 0 (greysquares), 2 (�).
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11.5 Conclusions

We have analysed a simplified version of the FitzHugh–Nagumo model [187,
192, 193, 194, 195, 197, 196], where the activator’s diffusion is density-
dependent. Such a system, when both diffusions are constant (that is:
Du > 0 and Dv = 0), has a known form of the NEP [187]. However, in
the general case we have not been able to find the form of the NEP. Thus,
we restricted ourselves to study numerically the system in presence of selec-
tive coupling in the activator variable inspired on those results.

Through the numerical approach we have studied the influence of the
different parameters on the system response. From the results it is appar-
ent the enhancement of the output SNR as h, the selectivity parameter, is
increased. This is seen through two different ways of characterising the sys-
tem’s response. We can conclude that the enhancement of the SNR, due to a
selectivity in the coupling, initially found for a scalar system [115] is robust,
and that the indicated nonhomogeneous coupling could clearly contribute to
enhance stochastic resonance in very general systems. This is also robust to
variations of the parameter that controls the selectiveness of the coupling,
up to a point that even in the case of inhibitory coupling the phenomenon
holds.

An aspect worth to be studied in detail is the dependence of the SNR on
N , the number of coupled units. In this way we could analyse the depen-
dence of the so called system size stochastic resonance [129, 134, 97] on the
selective coupling. The thorough study of this problem will be the subject
of further work.



Part III

Conclusions and Prospectives
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In this work, we have explored different coupled systems, focusing on
the improving role that disordering ingredients can have on them. Most of
the results concern excitable systems, which are of predominant interest not
only in Physics, but also in Biology, Chemistry, and other sciences.

We will now summarise our main results divided by chapters, in the
same order in which they appeared during the exposition. The results of
this thesis open many possible extensions, and in the last section of this
chapter we discuss some of the possible prospectives that could be explored
in the future.

Results

5. Collective firing in excitable media

Large variety of physical, chemical and biological systems show excitable be-
haviour, characterised by a nonlinear response under external perturbations:
only perturbations exceeding a threshold induce a full system response (fir-
ing). It has been reported that in coupled excitable identical systems noise
may induce the simultaneous firing of a macroscopic fraction of units. A
complete understanding of the role of noise and that of natural diversity
present in realistic systems is still lacking.

We have developed a theory for the emergence of collective firings in
non-identical excitable systems subject to noise. In particular, we have
focused on the study of a system composed by active-rotator units. Excitable
systems can be classified in two different types, according to the bifurcation
they undergo to the oscillatory regime. Active-rotators are a prototypical
system for type I excitability. Our treatment allows us to find analytical
expressions for the relevant order parameters. We show that three different
dynamical regimes arise in this system: sub-threshold motion, where all
elements remain confined near the fixed point; coherent pulsations, where a
macroscopic fraction fire simultaneously; and incoherent pulsations, where
units fire in a disordered fashion.

We also show that the mechanism for collective firing is generic: it arises
from degradation of entrainment originated either by increasing noise or
diversity or also by reducing coupling strength.

6. Synchronisation of coupled FitzHugh–Nagumo systems

We extended the previous results to a system of coupled FitzHugh–Nagumo
systems is considered. This system is prototypical of Type II excitability.

We show, by means of extensive numerical simulations, that the main
results described in the previous chapter also hold for this kind of excitable
systems. We show that diversity and noise can produce a collective firing
phenomenon, which disappears whenever the disorder in the position they
produce is too large. The main problem here concerns the proper definition
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of a phase in this system, a non-trivial issue. We have opted to define it
through the use of the Hilbert transform, although similar results are found
for simpler phase definitions.

In these two chapters, we have shown that synchronisation phenomena
must be studied in a different way in autonomous (or oscillatory) and ex-
citable systems. In the latter, some degree of disorder in the position of the
units must be present in order to observe a collective, synchronous state. The
typical scenario of oscillatory systems, where noise or diversity degrades the
quality of the response, is only reproduced for excitable systems in the limit
of very large noise intensity (or very large diversity). For a small degree of
disorder, these disordering elements, have instead a positive role regarding
the coherence of the output.

7. Global firing induced by network disorder

We have studied the effect of adding some repulsive links as the only source
of disorder in a set of otherwise identical active-rotator units: neither noise
nor diversity is added onto the system. We first isolate the effect of re-
pulsive links, showing that it can be rewritten separating the contributions
of attractive and repulsive links. In such a system, the only possible fully
synchronised state is a non-dynamic one, with all the units resting at the
fixed point of the dynamics.

For a fully random network of repulsive links, we show that there is an
intermediate amount of repulsive links such that collective firing appears.
Similar theoretical arguments than those developed in previous chapters
allow us to predict the transition point to collective firing. For this kind
of network, however, the size of the region of coherent pulses decreases
for increasing system size. We also show that the instability of the fully
synchronised state is the origin of the emergence of this coherent behaviour.

We finally demonstrate that for network realizations with defined degree
distributions, the size of the region of collective firings can remain even in
the thermodynamic limit. We show that the only relevant parameter is the
proportion of units that are coupled mainly through repulsive links to the
rest of the system.

8. Diversity-induced resonance

We present conclusive evidence showing that different sources of diversity,
such as those represented by quenched noise or disorder, can induce a res-
onant collective behaviour in an ensemble of coupled bistable or excitable
systems.

We first consider a bistable φ4 model composed by many coupled units
and show that the global response to an external periodic forcing is en-
hanced under the presence of the right amount of diversity (measured as the
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dispersion in one of the parameters defining the model).

We first present a theoretical treatment that allows us to qualitatively
explain the phenomenon. The origin lays in the increase in the dispersion of
the position of the units as diversity increases. This increase in the dispersion
causes that the effective potential governing the dynamics of the macroscopic
(global) position of the units experience a decrease in the height of the inter-
well unstable maximum. Then, a weak signal suffices to cause a motion
between both minima.

We extend our analytical study, obtaining analytical expressions for the
global response of the system. These results are in good agreement with
numerical results, showing that the response is indeed optimised for an in-
termediate value of the diversity. These findings show that intrinsic diversity
might have a constructive role and suggest that natural systems might profit
from their diversity in order to optimise the response to an external stimulus.

We also show that the same results appear in excitable systems, although
the explanation is more involved. Here, the diversity changes the relative
position of the fixed point of the macroscopic variables, in such a way that
the excitability threshold is lowered.

9. System size and diversity in an opinion formation model

We study a model for opinion formation which incorporates three basic
ingredients for the evolution of the opinion held by an individual: imitation,
influence of fashion and randomness. We show that in the absence of fashion,
the model behaves as a bistable system with random jumps between the two
stable states with a distribution of times following Kramers’ law. We also
demonstrate the existence of system size stochastic resonance, by which
there is an optimal value for the number of individuals N for which the
average opinion follows better the fashion.

As an extension of the results in the previous chapter, we propose an
extension to the model considering that the individuals are not equal when
deciding their opinion: we consider that each agent has a bias that favours
one of the states. We show that this ingredient suffices in order to obtain
larger response to the external influence (in this case fashion). This confirms,
the generality of the results obtained in previous chapters.

10. Noise-induced inhibitory suppression

For small chains of excitable and oscillatory FitzHugh–Nagumo units we
study the effect of inhibitory coupling. An important example is that of the
calcium-signalling mechanism present in neurons in thalamus, pancreatic
acinar cells, neuron-glion interaction, etc.

We have studied the control of oscillations in a system of inhibitory
coupled noisy excitable and oscillatory units where one of the end units is
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subjected to a periodic signal.

Using dynamical properties of inhibition, we have found regimes where
the oscillations in the internal units can be suppressed. However, the in-
formation signal (of a certain frequency) can be transmitted through the
system. The mechanism is a resonant interplay between noise and the trans-
mission signal provided by certain value of inhibitory coupling. Analysing
a system of three or four oscillators representing neural clusters, we show
that this suppression can be effectively controlled by coupling and noise
amplitudes.

11. Selective coupling in extended excitable systems

Here we present a study of stochastic resonance in an extended FitzHugh–
Nagumo system with a field dependent activator diffusion. We show that the
system response (here measured through the output signal-to-noise ratio) is
enhanced due to the particular form of the non-homogeneous coupling.

Such a result supports previous ones obtained in a simpler scalar reaction-
diffusion system and shows that such an enhancement, induced by the field
dependent diffusion –or selective coupling–, is a robust phenomenon.

Open questions and future work

The results presented in this thesis, indicate that in heterogeneous inter-
acting systems (i.e. those whose composing units are not identical) can
exhibit a coherent behaviour both: in presence or in absence of an external
signal. One can hypothesise that evolution could have adjusted the natu-
rally present diversity to values that allow (for example) sensory systems to
optimal values.

The finding of the diversity-induced resonance and the mechanism be-
hind collective firing in excitable systems, was done in systems with minimal
ingredients. We thus expect them to be of broad application and be of rele-
vance for varied research fields. We also demonstrated that the exact source
of disorder is not important at all, leading also to many possible extensions.

One of these possibilities is that of considering excitable chaotic systems.
There, it is their dynamics who naturally induce disorder in the positions.
We then envision that in them, a similar ordering role could be played
directly by their chaotic dynamics. This study should be done in systems
not strongly coupled –in such a way that the units do not become entrained-
,- and the disorder of the positions is preserved along one excursion.

Another possible scenario that must be considered is that of time-delayed
interactions. They emerge naturally in biological systems, where some sig-
nals take some time to reach the interacting neighbors. Time-delay causes
the units to evolve chaotically, as the effective dimension of the new sys-
tem is infinite. It would be of interest to investigate if the collective firing



161

mechanism applies to this situation.
We have developed very simple analytical arguments that have allowed

us to understand how natural diversity can play a constructive role in dy-
namical systems. However, a full theoretical framework to study this kind
of systems is lacking, and its development would be of fundamental interest.
This is, however, a non-trivial task. A first attempt would be to develop
Liouville equations in presence of diversity, although this appears to be a
very involved task that, anyway, could only be solved for particular cases of
the force terms.

Of course, an experimental verification, for example by recourse of anal-
ogous electronic circuits, of our theoretical predictions would be most wel-
come. If there is an optimum degree of diversity in the internal parameters
of natural systems, for example, neurons, is a more interesting question with
no clear answer.

It would be also of interest to analyse the role of diversity in extended
media. For example, non-linear optical media with impurities, or chemical
reactions occurring in non-homogeneous gels would be candidates to investi-
gate on them if self-sustained waves or spirals can exist and propagate. The
question is intriguing, and similar analytical arguments to those found re-
garding the transition to global firings in excitable systems show that some
oscillatory patterns can appear. Under which conditions these patterns can
become self-sustained would be also of great relevance.

With regards to discrete systems, the same applies. Heterogeneous sys-
tems apply naturally in Physics, for example, when one considers mesoscopic
representations of magnetic materials with impurities. The analytical de-
scription of the φ4−model we introduced when presenting the Disorder-
induced resonance phenomenon, is a direct representation of this Physical
problem. But similar considerations would lead to a similar model if one
introduces heterogeneity in the model for opinion formation introduced in
the last chapter.

We also studied spatially extended excitable systems. And specially the
role of inhibitory coupling on them. This kind of coupling is very interesting
by itself. And is present not only in inter-neuron or neuron-glion interac-
tions, but even in a system that is gaining much attention in the last years:
the genetic oscillators. This dynamical system is a mathematical representa-
tion of the protein synthesis within the cells. On them, this kind of coupling
also arises naturally.

We studied non-trivial dynamical regimes that appear in systems cou-
pled through inhibitor variables. However, a complete understanding (even
only through numerical simulations) of the synchronisation phenomenon in
presence of this coupling is still lacking. We observed that multi-cluster so-
lutions appear in the mean-field case. But a detailed study should be done
in order to understand it.
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For short, we expect that the work exposed in this pages will trigger
interest and will be a useful starting point for new research.



List of publications

This section lists the references where the results described in this thesis
were published, and the corresponding chapters. As of today, there are
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• “Disorder-induced resonance”
C.J. Tessone, C. Mirasso, R. Toral and J. Gunton
Physical Review Letters, 97 194101 (2006).

– 8. Diversity-induced resonance
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tic resonance”
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– 10. Noise-induced inhibitory suppression

• “Global firing induced by noise or diversity in excitable media”
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• “Collective effects induced by diversity in extended systems”
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– 8. Diversity-induced resonance

– 5. Collective firing in excitable media
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Communications in Computational Physics 2 , 177 (2007).



164

– 9. System size and diversity in an opinion formation model

• “Stochastic Resonance in an Extended FitzHugh-Nagumo System: the
Role of Selective Coupling”
C.J. Tessone and H.S. Wio
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• “Synchronization Properties of Coupled FitzHugh-Nagumo Systems”
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