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Abstract

Here we present a study of stochastic resonance (SR) in an extended FitzHugh–Nagumo system with a field dependent

activator diffusion. We show that the system response (here measured through the output signal-to-noise ratio (SNR)) is

enhanced due to the particular form of the non-homogeneous coupling. Such a result supports previous ones obtained in a

simpler scalar reaction-diffusion system and shows that such an enhancement, induced by the field dependent diffusion -or

selective coupling-, is a robust phenomenon.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic resonance (SR) is one of the most interesting noise-induced phenomena that arises from the
interplay between deterministic and random dynamics in a nonlinear system [1]. A large number of examples
showing SR occur in extended systems: for example, diverse experiments were carried out to explore the role of
SR in sensory and other biological functions [2] or in chemical systems [3]. These, together with the possible
technological applications, motivated many recent studies showing the possibility of achieving an
enhancement of the system response by means of the coupling of several units in what conforms an extended

medium [4–6].
In previous works [5,6] we have studied the stochastic resonant phenomenon in extended systems, when

transitions between two different spatial patterns occurs, exploiting the concept of the non-equilibrium

potential (NEP) [7,8]: a Lyapunov functional of the associated deterministic system that, for non-equilibrium
systems, plays a role similar to that of a thermodynamic potential in equilibrium thermodynamics. Such NEP
characterizes the global properties of the dynamics: attractors, relative (or nonlinear) stability of these
attractors, height of the barriers separating attraction basins and, in addition, allowing us to evaluate the
e front matter r 2006 Elsevier B.V. All rights reserved.
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transition rates among the different attractors. In another work [9] we have also shown that, for a scalar
reaction–diffusion system with a density-dependent diffusion and a known form of the NEP, the non-
homogeneous spatial coupling changes the effective dynamics of the system and contributes to enhance the SR
phenomenon.

Here we report on a study of SR in an extended system: an array of FitzHugh–Nagumo [11] units, with a
density-dependent (diffusive-like) coupling. The NEP for this system was found within the excitable regime
and for particular values of the coupling strength [6]. In the general case, however, the form of the NEP has
not been found yet. Nevertheless, the idea of the existence of such a NEP is always underlying our study.
Hence, we have resorted to an study based on numerical simulations, analyzing the influence of different
parameters on the system response. The results show that the enhancement of the signal-to-noise ratio (SNR)
found for a scalar system [9] is robust, and that the indicated non-homogeneous coupling could clearly
contribute to enhance the SR phenomenon in more general situations.
2. Theoretical framework

2.1. The model

For the sake of concreteness, we consider a simplified version of the FitzHugh–Nagumo [6,8,11] model. This
model has been useful for gaining qualitative insight into the excitable and oscillatory dynamics in neural and
chemical systems [10]. It consist of two variables, in one hand u, a (fast) activator field that in the case of
neural systems represents the voltage variable, while in chemical systems represents a concentration of a self-
catalytic species. On the other hand v, the inhibitor field, associated with the concentration of potassium ions
in the medium (within a neural context), that inhibits the generation of the u species (in a chemical reaction).
Instead of considering the usual cubic like nonlinear form, we use a piece-wise linear version

�
quðx; tÞ

qt
¼

q
qx

DuðuÞ
qu

qx

� �
þ f ðuÞ � vþ xðx; tÞ, ð1Þ
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qt
¼

q
qx
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qu
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� �
þ bu� av, ð2Þ

where f ðuÞ ¼ �uþYðu� fcÞ, and xðx; tÞ is a d-correlated white Gaussian noise, that is hxðx; tÞi ¼ 0 and
hxðx; tÞxðx0; t0Þi ¼ 2gdðx� x0Þdðt� t0Þ. Here g indicates the noise intensity and fc is the ‘‘discontinuity’’ point,
at which the piece-wise linearized function f ðuÞ presents a jump. In what follows, the parameters a and b are
fixed as a ¼ 0:3 and b ¼ 0:4. Finally, � is the parameter that indicates the time-scale ratio between activator
and inhibitor variables, and is set as � ¼ 0:03. We consider Dirichlet boundary conditions at x ¼ �L.
Although the results are qualitatively the same as those that could appear considering the usual
FitzHugh–Nagumo equations, this simplified version allows us to compare directly with the previous
analytical results for this system [6].

As in Ref. [9], we assume that the diffusion coefficient DuðuÞ is not constant, but depends on the field u

according to DuðuÞ ¼ Du½1þ hYðu� fcÞ�. This form implies that the value of DuðuÞ depends ‘‘selectively’’ on
whether the field u fulfills u4fc or uofc. Du is the value of the diffusion constant without such ‘‘selective’’
term, and h indicates the size of the difference between the diffusion constants in both regions (clearly, if h ¼ 0
then DuðuÞ ¼ Du constant). DvðvÞ is the diffusion for the inhibitor v, that here we assume to be homogeneously
constant.

It is worthwhile noting that when the parameter h is large enough, under some circumstances the coupling
term might become negative. This is what is known as ‘‘inhibitory coupling’’ [12]. This is a very interesting
kind of coupling that has attracted much attention in the last years, both in neural and chemical context, that
we will not discuss here.

This system is known to exhibit two stable stationary patterns. One of them is uðxÞ ¼ 0, vðxÞ ¼ 0, while the
other is one with non-zero values and can be seen in Fig. 1. We will denote with Pu;v

0 ðxÞ and Pu;v
1 ðxÞ, the

patterns for u and v fields. Further, we consider that an external, periodic, signal enters into the system
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Fig. 1. We show the stable patterns that arise in the system. There is one stable pattern that is identically zero, i.e. Pu
0ðxÞ ¼ Pv

0ðxÞ ¼ 0 and

another which is non-zero (Pu
1ðxÞ, Pv

1ðxÞ). The patterns for the fields uðxÞ and vðxÞ are plotted in dashed and solid lines, respectively. The

parameters, are Du ¼ 0:3, Dv ¼ 1, h ¼ 2.
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through the value of the threshold fc,

fcðtÞ ¼ fc þ df cosðotÞ, (3)

where o is the signal frequency, and df its intensity.
All the results shown in this paper were obtained through numerical simulations of the system. The second

order spatially discrete version of the system indicated in Eqs. (1), (2) reads

_ui ¼ Du;iðui�1 þ uiþ1 � 2uiÞ þ ðDu;iþ1 �Du;i�1Þðuiþ1 þ ui�1Þ þ f ðuiÞ � vi þ xiðtÞ, (4)

_vi ¼ Dvðvi�1 þ viþ1 � 2viÞ þ bui � avi. (5)

We have performed extensive numerical simulations of this set of equations exploiting the Heun’s
algorithm [13].

2.2. Response’s measures

Since the discovery of the stochastic resonance (SR) phenomenon, several different forms of characterizing
it have been introduced in the literature. Some examples are: (i) output SNR [1,14]; (ii) the spectral
amplification factor (SAF) [15,16]; (iii) the residence time distribution [17,18], and, more recently;
(iv) information theory based tools [19–21]. Along this paper, we will use the output SNR at the driving
frequency o.

In this spatially extended system, there are different ways of measuring the overall system response
to the external signal. In particular, we evaluated the output SNR in three different ways (the units being
given in dB):
�
 SNR for the element N=4 of the chain evaluated over the dynamical evolution of uN=4, that we call SNR1.

�
 SNR for the middle element of the chain evaluated over the dynamical evolution of uN=2, that we call SNR2.
Having Dirichlet boundary conditions, the local response depends on the distance to the boundaries.

�
 In order to measure the overall response of the system to the external signal, we computed the SNR as
follows: we digitized the system dynamics to a dichotomic process sðtÞ: at time t the system has an
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associated value of sðtÞ ¼ 1 ð¼ 0Þ if the Hilbert distance to pattern 1 (or 0) is lower than to the other
pattern. Stated in mathematical terms, we computed the distance D2½�; �� defined by

D2½f ; g� ¼

Z L

�L

dxðf ðxÞ � gðxÞÞ2
� �1=2

in the Hilbert space of the real-valued functions in the interval ½�L;L�, i.e.L2. At time t, a digitized process
is computed by means of

sðtÞ ¼
1 if D2½P

u
1ðxÞ; uðx; tÞ�oD2½P

u
0ðxÞ; uðx; tÞ�;

0 if D2½P
u
1ðxÞ; uðx; tÞ�XD2½P

u
0ðxÞ; uðx; tÞ�:

(
(6)

We call this measure SNRp.
3. Results

As indicated above, Eqs. (4) and (5) have been integrated by means of the Heun method [22]. We have fixed
the parameters � ¼ 0:03, fc ¼ 0:52 and adopted an integration step of Dt ¼ 10�3. For the signal frequency we
adopted o ¼ 2p=3:2 ¼ 1:9634295 . . . : The simulation was repeated 250 times for each parameter set, and the
SNR was computed by recourse of the average power spectral density.

Fig. 2 depicts the results for the different SNR’s measures we have previously defined as function of the
noise intensity g. We adopted the following values: df ¼ 0:4, Dv ¼ 1:0 and N ¼ 51. In all three cases it is
apparent that there is an enhancement of the response for h40, when compared with the h ¼ 0 case, while for
ho0 the response is smaller.
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. 2. SNR vs. g, the noise intensity, for the three different measures we use. The parameters are df ¼ 0:4, Dv ¼ 1:0, o ¼ 2p=3:2, N ¼ 51.

e different curves represent different values of h, showing an enhancement of the response to the external signal for g40. In particular it

hown: h ¼ �2 ðþÞ, h ¼ �1 ðnÞ, h ¼ 0 ð�Þ, h ¼ 1 ð&Þ and h ¼ 2 ð�Þ.
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Fig. 3. SNR vs. h, the selectiveness of coupling, for the three different measures we use. The parameters are df ¼ 0:4, Dv ¼ 1:0,
g ¼ 0:032 ð�Þ, 0:32 ð&Þ, 0:6 ð�Þ, 1:2 ð&Þ, 3:2 ð�Þ, Du ¼ 0:3, N ¼ 51.
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In Fig. 3 we show the same three response’s measures, but now as a function of h. We have plotted the
maximum of each SNR curve, for three different values of the noise intensity, and for df ¼ 0:4, Dv ¼ 1:0,
g ¼ 0:01; 0:1; 0:3, Du ¼ 0:3, and N ¼ 51. It is clear that there exists an optimal value of g such that, for such a
value, the phenomenon is stronger (that is, the response is larger). It is apparent the rapid fall in the response
for ho0.

In Fig. 4 we show the dependance of SNR on h, for different values of the diffusion which depends on the
activator density Du. It is apparent that the response becomes larger when the value of Du is larger. However,
as was discussed in Refs. [5,6], it is clear that for still larger values of Du, the symmetry of the underlying
potential (that is the relative stability between the attractors) is broken and the response finally falls-down.

Fig. 5 shows the results of the SNR, but now as function of Du, the activator diffusivity, for different values
of g, and for df ¼ 0:4, Dv ¼ 1:0 and N ¼ 51. It can be seen that, independently from the coupling strength Du,
the response to the external signal grows with the selectiveness of the coupling, showing the robustness of the
phenomenon.

Next, in Fig. 6, we present the results for the SNR as function of Dv, the activator diffusivity, for different
values of g, and for df ¼ 0:4, Du ¼ 0:3, and N ¼ 51. We see that for hX0 the response is more or less flat,
however, it is again apparent the SNR’s enhancement for h40. For ho0 we see that the system’s response
decays very fast with increasing Dv. This effect could be associated to the fact (as found in those cases where
the NEP is known [5,6]) that in the underlying NEP the bistability is lost as a consequence of the
disappearance of some of the attractors [8].

Finally, in Fig. 7 we depict the same three SNR’s measures but as a function of N, the system size. For the
two measures SNR1 and SNR2, we see that, for different values of h and g, the response is very flat, and do not
seems to be too much dependent on N. It is clear that there is an increase of the response when h increases. At
variance, for SNRp, the dependence to N is apparent: the SNR decays to zero, in a fast or slow way, depending
of h ¼ 0 or h40. Here, df ¼ 0:4, Du ¼ 0:3, Dv ¼ 1:0, g ¼ 0:01; 0:1; 0:3.
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Fig. 5. SNR vs. Du, the diffusiveness in activator variable u, for the three different measures we use. The parameters are df ¼ 0:4,
Dv ¼ 1:0, g ¼ 0:1 ð�Þ, 0:32 ð&Þ, 1:0 ð�Þ, while the white symbols represent h ¼ 2 and the black ones, h ¼ 0. The system size is N ¼ 51.
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Fig. 4. SNR vs. h, the selectiveness of coupling, for different values of Du. The parameters are df ¼ 0:4, Dv ¼ 1:0 , g ¼ 0:32, Du ¼ 0:0 ð�Þ,
0:1 ð&Þ, 0:3 ð�Þ, N ¼ 51.
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Fig. 7. SNR vs. N, the system size, for the three different measures we use. The parameters are df ¼ 0:4, Du ¼ 0:3, Dv ¼ 1:0, g ¼ 0:32,
h ¼ �2 ð�Þ, 0 (grey squares), 2 ðEÞ.
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Fig. 6. SNR vs. Dv, the diffusiveness in the inhibitor variable v. The parameters are df ¼ 0:4, Du ¼ 0:3, o ¼ 2p=3:2, N ¼ 51. g ¼ 0:1 ð�Þ,
0:32 ð&Þ, 1:0 ð�Þ, while the white symbols represent h ¼ 2 and the black ones, h ¼ 0.
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4. Conclusions

We have analyzed a simplified version of the FitzHugh–Nagumo model [6,8,11], where the activator’s
diffusion is density-dependent. Such a system, when both diffusions are constant (that is: Du40 and Dv ¼ 0),
has a known form of the NEP [6]. However, in the general case we have not been able to find the form of the
NEP (but the idea of such a NEP is always underlying our analysis) and we have to resort to an analysis based
on numerical simulations.

Through the numerical approach we have studied the influence of the different parameters on the system
response. From the results it is apparent the enhancement of the output SNR as h, the selectivity parameter, is
increased. This is seen through three different ways of characterizing the system’s response. We can conclude
that the phenomenon of enhancement of the SNR, due to a selectivity in the coupling, initially found for a
scalar system [9] is robust, and that the indicated non-homogeneous coupling could clearly contribute to
enhance the SR phenomenon in very general systems. This phenomenon is also robust to variations of the
parameter that controls the selectiveness of the coupling, up to a point that even in the case of inhibitory
coupling the phenomenon holds.

An aspect worth to be studied in detail is the dependence of the SNR on N, the number of coupled units. In
this way we could analyze the dependence of the so-called system size stochastic resonance (SR) [23,24] on the
selective coupling. The thorough study of this problem will be the subject of further work.
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