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Abstract

Many networks emerge as the outcome of a collective interaction, such as the World Wide Web (WWW); others are the consequence of
the biological evolution, such as the brain. In contrast to these examples, we investigate the topology of trees generated by single individuals.
Computer users generate directory structures to store and manage information in files. Analyzing the directory and file trees generated by different
users we have access to different realizations available for statistical analysis. We characterize the architecture of directories and files created by
different computer users by means of the degree distributions and number of leaves, degree–degree correlations, average distance to root, and
community size distributions. We compare the different topologies in the search for similar managing patterns, and compare the trees obtained
with two simple models of growing networks and with a model that interpolates between them and incorporates the heterogeneity of the computer
users.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is superfluous today to emphasize the importance of
the processes of storing and retrieving information in the
new knowledge-based society. An interdisciplinary area of
research dealing with information and knowledge management
has emerged and is being termed ‘mapping knowledge
domains’ [1]. Questions considered in this framework address
the way in which information is stored, organized and retrieved.
A general goal is to improve the work of search engines that
currently only index a small fraction of the WWW [2].

In this context we analyze in this paper different possible
models to describe the tree structure of the files stored in a
computer cluster by the users of the computer facilities of our
own Department. In comparison with other studies in the broad
literature on data analysis of complex networks we identify two
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specificities of our data. First, the networks analyzed are not
the result of a collective action of agents, but something created
by a single individual. Secondly, we can analyze statistically
different realizations of different sizes of the network, since
each user of the computer cluster has created its own tree with
a different number of files.

Possible extreme models for the structure of the file tree
that we analyze are one describing a random process of file-
storing or the alternative one that describes a fully rational and
optimized process of file storing. Our data is best described
by models that incorporate randomness and arbitrary choices
within rational design: in the framework of the discussion
of tinkering versus engineering in natural or technological
realities [3,4] we might say that what we produce while
storing our files is an artificial reality by a tinkering process
similar to the way that complex natural systems are believed
to operate. The old-style good engineer works according to
a preconceived plan aiming to deliver an ‘ordered’ perfect
object. However, the new complex technological realities are
the result of a flexible, self-organizing and adaptable process,
like the WWW, or the result of an engineering design that
has to allow for functionality, evolution, changing environment,
reuse and refactoring, as, for example, software systems [5,
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6]. Therefore, these artificial realities are to a great extent the
result of tinkering, with building mechanisms that appear to be
similar to those naturally used in the management of our own
knowledge domain.

An interesting question is to decide if the structure of the
file trees belongs to a class of efficient networks, that is, if
it can be obtained from some optimization principle. River
networks [7,8] and the vascular system [7,9,10] are examples of
efficient networks in which transportation costs are minimized.
This is captured in the allometric scaling relating topological
properties with network size. For instance, the binary tree
of communities [11] obtained from the e-mail network of
a real organization [12] seems to belong to the same class
as the river networks, for our file trees we find exponents
in the same class as food webs [13] and the community of
scientific collaboration [12]. It is also interesting to note that the
optimization principle defining the efficient networks discussed
in Ref. [7] is not the only possible optimization principle. In
fact, it has been shown that a different optimization process can
explain the selection of preferential attachment strategies [14]:
by tuning a parameter which weights two contributions in
the optimizing energy, preferential attachment appears at the
boundary between random and forced attachment.

In this paper we provide an extensive characterization of
individual user computer directory and file trees, calculating
a number of quantitative measures. In a first short report on
this analysis [16] we gave some evidence that a model with
a single parameter that balances the ratio between preferential
and random attachment reproduces topological features of the
directory trees. Here we include file and directory trees and we
substantiate the merit of that model by comparing in detail our
data with the predictions of a preferential attachment growing
tree model and a random growing tree model. Although the
pure preferential attachment growing model reproduces main
features of the data, this comparison sets its limits of validity
and elucidates the important role of the parameter introduced
in the model of Ref. [16]. This parameter incorporates the
heterogeneity of the individuals in the parameter independent
preferential attachment mechanism. Our detailed comparison
with the random and preferential attachment models includes
the analysis of degree distributions (Section 2), degree–degree
correlations (Section 3), average distance between files [17–20]
(Section 4), and distribution of community sizes in the tree [12]
and allometric scaling exponents [7,13] (Section 5). General
conclusions and open questions are summarized in Section 6.

2. Degree distributions

We obtained data from 63 computer users of an academic
research facility. The users range from permanent staff to
temporal visitors, and include researchers from both sexes, and
several ages and nationalities. The nodes in a directory tree are
the directories or folders in a user’s computer account, where
two directories are connected if one of the directories is a
subdirectory of the other. Two examples of trees in the data
set are shown in Fig. 1. In addition to the directory trees we
analyze file trees. In the latter, also the files in a user’s account
Fig. 1. Two directory trees of sizes (a) N = 260 and (b) N = 66.

are included as nodes. Each such node has a single link to the
node that represents the directory in which the file is stored.

The degree ki of a node i is the total number of links
connecting i with other nodes. In a tree, the mean degree
averaged over all nodes only depends on the number of nodes
N . It is given by

〈k〉 =
2(N − 1)

N
= 2 −

1
N

, (1)

which approaches 〈k〉 ≈ 2 for large N . The simplest
characterization of a network is its degree distribution P(k), i.e.
the fraction of nodes with degree k. In the analysis of empirical
data, it is more convenient to calculate the cumulative degree
distribution (especially for skewed distributions) given by

Q(k) =

∞∑
j=k

P( j). (2)

In other words, the cumulative distribution is the fraction of
nodes with degree k or higher.

In Fig. 2 we show the cumulative degree distributions for
the nine largest of the 63 directory and file trees. In all cases we
observe distributions with a power law decay Q(k) ∼ k−γ+1

with an exponent in the range 2.2 < γ < 2.8. The power law
decay extends to the value of kmax such that Q(kmax) = N−1.
This indicates that the cut-off of the distributions is only due
to the finite size of the tree. There is no indication of an upper
bound on the degree causing an explicit cut-off. Even though,
the cumulative degree distributions of the file trees are not as
good as for the directory trees, they are also skewed and show
tails of power law decay (Fig. 2).

In order to understand the emergence of the degree
distribution let us now consider simple models for the
construction of a directory tree. We assume that users build their
trees by iteratively adding nodes, i.e. creating new directories.
The effect of eventual removals of nodes from the trees is
considered to be negligible. Then we are left to defining a rule
for the attachment of a new node. In Ref. [16], we introduced
a model of a growing tree with a parameter that balances the
ratio between preferential and random attachment. This model
has been shown to capture the topology of the directory trees
selecting a value of the parameter to each user. Here we focus
on two limiting cases: pure preferential attachment and pure
random attachment. In a first approach we assume that the
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Fig. 2. Cumulative degree distributions (�) of the nine largest directory trees in
the data set. For each of the systems also the cumulative degree distribution of
the corresponding file tree is shown (+). The latter values have been multiplied
by a factor of 10 for plotting. Sizes of these nine directory trees are in the range
500 < N < 1600, for the file trees we have 10,000 < M < 22,000.

user places a new directory completely at random: each of the
existing directories has an equal probability of being chosen as
a parent directory. In this homogeneous attachment model the
cumulative degree distribution converges towards the geometric

Qhom(k) =

(
1
2

)k−1

, (3)

for k ≥ 1, and Qhom(0) = 1. For a systematic comparison
between the model and all 63 trees let us consider two derived
quantities: the fraction of leaves and the largest degree. One is
the fraction of leaves P(1), the number of nodes with only a
link. For the homogeneous attachment model we find

Phom(1) = Qhom(1) − Qhom(2) =
1
2
. (4)

This is clearly below the values found for the empirical trees,
cf. Fig. 3(a). There is also a clear discrepancy between the
model and the data with respect to the largest degree kmax of
a given tree. While empirically kmax grows algebraically (with
an approximate exponent of 1/2), the model yields

khom
max = log2 N (5)

as a solution of the equation Qhom(khom
max ) = N−1. In summary,

the homogeneous attachment cannot serve as a model for the
construction of the directory trees because it does not reproduce
the feature of the broad degree distribution.

In the context of complex networks, a model has been
proposed that reproduces the power law distributed degree. In
Fig. 3. (a) Relation between total number of nodes and the fraction of leaves for
the 63 directory trees. With one exception, for trees of all sizes the fraction of
leaves is clearly above 1/2. (b) The largest degree kmax as a function of system
size (circles). The squares are a running average with a window size of 10 data
points. The solid line follows kmax ∝ N 0.49 as the result of a fit to the data.

this model, nodes are added iteratively to the existing structure
just as in the above scenario. The target nodes to which
they attach, however, are not chosen with equal probability.
Linear preferential attachment is used: the probability that an
existing node i receives the link from the newly added node
is proportional to the degree ki . For this model the degree
distribution asymptotically decays as a power law

Qpref(k) ∼ k−γ+1 (6)

with γ = 3 [21].
As a technical detail, we note that the root node is assigned

an extra ‘dangling’ link. Otherwise the attachment rule would
not be defined in the case N = 1. Then the sum of the degrees
of all N nodes in the system is 2N − 1.

In this model the expected number of leaves N1 grows as

1N1 = 1 −
N1

2N − 1
(7)

because each increment of system size N → N + 1 adds a new
leaf (first term) and each existing leaf receives a second link
with probability (2N − 1)−1 (second term). For large 2N � 1,
Eq. (7) is solved by N1 = (2/3)N . The fraction of leaves is
given by

Ppref(1) =
N1

N
=

2
3

(8)

in the preferential attachment model. Compared with the
homogeneous attachment model, the preferential attachment
generates a larger number of leaves in trees of the same
size. The latter model agrees better with the empirical data in
Fig. 3(a).
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Fig. 4. Degree–degree correlation coefficient r . The solid line is the result
of a power-law fit to the directory trees (◦). The degree–degree correlation
coefficient is also plotted for trees generated with the preferential attachment
model (+).

The expected largest degree is subject to the growth equation

kpref
max(N + 1) =

[
1 +

1
2N − 1

]
kpref

max(N ) (9)

with the asymptotic solution

kpref
max ∼ N 1/2. (10)

Though fluctuations are large, Eq. (10) precisely captures the
trend of the empirical data in Fig. 3(b).

3. Degree–degree correlations

Clearly the degree distribution is not an exhaustive
characterization of the directory trees. It is quite evident that
two networks can display the same degree distribution but
show different correlation patterns in the wiring. Going one
step beyond now, we ask if on average the neighbors of
highly connected nodes tend to have high degrees or low
degrees. Such degree–degree correlations are captured by the
assortativeness [22,23] defined as

r =
〈kl〉 − 〈k〉

2

〈k2〉 − 〈k〉2 , (11)

where the averaging 〈〉 is taken over all links in the tree, such
that the quantity r is the Pearson correlation between the degree
k at one end of a link and the degree l at the other. The degree
correlations are categorized into assortative (r > 0), neutral
(r = 0) and disassortative (r < 0). Technological networks,
such as the WWW and the Internet, have been found to be
disassortative, i.e. nodes of large degree have a significantly
increased fraction of neighbors of low degree [22–24].

Fig. 4 shows the (negative) correlation coefficients −r of the
directory trees for different users. All trees we have analyzed
are disassortative (r < 0) in agreement with previous results on
artificial networks. However, the magnitude of r decreases as
N grows. The trees generated by the preferential attachment
model show qualitatively the same behavior. Moreover, |r |

decays algebraically with N in the model. A power law fit
r ∝ N−α results in α = 0.35 ± 0.04 for the data points of
the directory trees and αpref

= 0.350 ± 0.001 for trees from the
preferential attachment model. However, for given system size
the disassortative mixing in the directory trees is by a factor 1.3
larger than in the model.

4. Distances

A natural way of characterizing the shape of an object is to
compare its volume with its length. For instance, for a growing
object, a dimension can be defined by observing the scaling
of the length with the volume. The volume of a directory tree
is the number of nodes N . A measure of length on a tree is
based on the chemical distance disti j defined as the number of
links contained in a shortest path between nodes i and j . Note
that in a tree the path between any two nodes is unique so the
minimality in the definition is not required here. We consider
the sum of distances from the root with the index i = 1

Λ =

N∑
j=1

dist j1, (12)

which is easy to estimate for the growth models. For both
homogeneous and preferential attachment the evolution of Λ
follows

Λ(N + 1) = Λ(N ) + Λ(N )/N + z. (13)

A first-order approximation of the solution is Λ(N ) = zN ln N .
For homogeneous attachment z = 1, because the randomly
chosen parent node’s expected distance is Λ/N and the new
node is one step further from the root than the parent node is.
For preferential attachment z = 1/2. This results directly from
an equivalent formulation of the preferential attachment rule:
choose a node at random and then attach the new node either
to the chosen node itself or to its parent node with probability
1/2. The average distance from the root λ = Λ/N is

λhom(N ) = ln N (14)

λpref(N ) =
1
2

ln N , (15)

for homogeneous and preferential attachment, respectively.
Fig. 5(a) shows for the 63 directory trees that average

distances λ from the root increase as the logarithm of system
size. The best fit of the form λ(N ) = z ln N +b yields z = 0.54
and b = 0.02. The preferential attachment model (z = 1/2)
reproduces the behavior of average distances more accurately.

Further insight into the shape of the trees is gained by
considering the change of λ when the trees are rewired. The
two rewiring procedures randomization and compactification
both conserve the degree distribution. For a rewiring step we
first divide the tree by breaking a randomly chosen link (i j).
In the component containing the root we break a randomly
chosen link (lm). The three components are then reassembled
by establishing links (il) and ( jm) [25]. A randomized tree is
obtained after 10N random rewiring steps. In the procedure of
compactification a rewiring step is accepted only if it does not
increase the average distance λ. Otherwise we undo the step.
Rewiring is iterated until λ cannot be reduced by further steps.

In Fig. 5(b) average distances after rewiring are plotted
against the distances on the original trees. Apart from small
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Fig. 5. Left: average distance λ of nodes from the root of the directory tree
as a function of tree size N . The solid line is the result of a logarithmic fit.
Right: average distance λrewired from the root after rewiring. The two rewiring
modes are randomization (◦) and compactification (+), see main text for details.
The straight line follows λrewired = λ, that is invariant under rewiring. Each
value λrewired for randomization is an average over 1000 randomized trees,
each obtained after 10N random rewiring steps.

Fig. 6. Size distribution of the 16,452 communities in the 63 directory trees
(solid curve). The size distribution from the preferential attachment model is
also shown for comparison (dashed curve). The latter distribution has been
averaged over 100 independently generated trees of size N = 16,452.

trees (original λ < 2), the rewiring significantly influences
the average distances. By compactification λ > 2 is typically
reduced to values λrewired ≈ 2. Randomization approximately
doubles the average distance on the larger trees. With respect to
distance, the structure of the original directory trees is smaller
than their random counterpart but not optimal, as the distance
to the root can be reduced by compactification.

5. Community structure

Another distinctive property of many networks is its
community or branch structure. An intuitive definition of a
community is a subset of nodes which have most of their links
between the members of the community and a few of them
with members outside the community. Communities in a social
network could represent a social group while a community on
the WWW might represent pages on related topics. It is thus
evident that being able to detect the communities in a network
can help us to uncover its topology and make more efficient use
of the networks. For instance, in the case of the WWW it can
help us to locate information in fewer search steps.

A community is here defined as the set of directories and files
contained recursively in a directory. Given a node i , the size of
Fig. 7. Allometric scaling. The directory trees yield a total of 16,452 allometric
data points (squares). The solid curve is a running average with window size 20.
For comparison the values from the preferential attachment model are shown
(+).

its community is represented by Ai . In Fig. 6 the distribution
of community sizes follows a power law P(A) ∼ A−τ , with an
exponent τ = 2.0. We have checked that the scaling is present
not only for the aggregate statistics shown here but also holds
for the individual trees. In the case of a tree, the distribution
of A indicates the probability that deleting a randomly selected
directory would remove a fraction of files. For comparison, we
have also plotted the community distribution for trees of the
same size generated with the preferential attachment algorithm,
for which the scaling exponent τ = 2.0 has been reported [26].

It is interesting to note that a similar scaling for the
community of scientists [27,28] has been recently reported.
There the network is constructed linking scientists that have
authored a paper together. The exponent of the distribution of
communities follows a power-law behavior with an exponent
τ ' 2. The Internet also seems to belong to the same class [29].
However, a different class is formed by river networks [8,30,
31], informal networks in organizations [12] and jazz musician
networks [28] where the corresponding exponent gives a value
∼1.45.

5.1. Allometric scaling

A more sophisticated characterization of the community
structure of a tree can be given in terms of what is called
allometric scaling. Given a directory tree we first calculate for
a directory i its community size Ai . Then, we also compute the
sum Ci =

∑
j∈V (i) A j where V (i) runs over all directories in

i including itself. It has been found that the dependence of C
on A is a power law A−η with an exponent η that is universal
in river networks 3/2 and vascular networks in animals 4/3.
It has been proven [7,9,32] that in an efficient network the
exponent η is related to the embedding dimension D as η =

(D + 1)/D. This result predicts for river networks (D = 2)
η = 3/2, while for the vascular system (D = 3) η = 4/3, in
agreement with the empirical results. However, very recently it
has been reported that in plants the scaling exponent is 1 [33],
challenging the previous picture. This analysis has also been
performed in food webs. Food webs, with an exponent around
1.13, seem to deviate slightly from the efficiency hypothesis
that predicts an exponent 1 (D → ∞), possibly due to the
competition between species [13]. In the case of directory trees
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we first observe that it follows a scaling law with an estimated
exponent η = 1.2, see Fig. 7. This exponent also deviates
from the efficiency hypothesis. It is interesting to note that
the preferential model shows an excellent agreement with the
empirical data. The deviations from the efficiency hypothesis
can be explained in terms of logarithmic corrections to the
scaling law. The allometric scaling can be rewritten as Ci =∑

j∈V (i) dist j i = Ai (1 + λi ), where λi is the average distance
of the nodes in a community to node i . Taking into account
Eqs. (14) and (15) we obtain the scaling relation C ∼ A ln A.
Thus, the deviation from the linear scaling could be explained
by means of a logarithmic correction. It would be interesting to
test whether this result explains the deviations observed in food
webs [34,35].

6. Conclusions

Nowadays much information is stored electronically and
available on the WWW. Understanding how information is
stored by computer users is very relevant, for instance, for the
design of search engines. We have precisely characterized the
topological features of directory and file trees generated by
computer users in a research institution. Having access to many
different trees we are able to capture general features shared
by many users, but at the same time observe the differences.
This approach complements other studies which concentrate on
complex networks as the outcome of a collective phenomena.

We have observed that independent users generate trees with
similar structural properties. The main topological features of
the trees are

(1) a broad degree distribution;
(2) the average distance to the root increases logarithmically

with system size;
(3) negative degree–degree correlations that decay with the size

of the tree with a power law;
(4) distribution of community or branch size follows a power

law with an exponent τ = 2;
(5) allometric scaling with an exponent close to 1.

We have shown that these general properties can be captured
with a model of growing trees with preferential attachment, but
not with a model with random attachment. The model correctly
predicts the scaling of the distance to the root with tree size, the
distribution of community sizes and predicts a linear growth of
the allometric scaling with logarithmic corrections.

Despite these strong similarities between trees from the data
set and those from the model, one cannot conclude that the
preferential attachment model is a complete description of how
users build trees. A crucial assumption we have made is that
trees are generated mainly by iterative addition of nodes. In
reality, this means that users generate new directories much
more frequently than they delete and relocate existing ones.
When this holds and the growth generates a scale-free degree
distribution, as is the case here, the attachment probability must
be asymptotically linear in the degree. Preferential attachment
is a sufficient and necessary condition for a scale-free degree
distribution in growing networks [15,36]. Thus the next step of
research is to record trees from the same users repeatedly, e.g.
on a daily basis. This will allow us to check the aforementioned
assumption that iterative growth is the dominant process and
other operations can be neglected.

With such time-resolved data we expect to obtain insight
into users’ behaviour. For instance, spatiotemporal correlations
between attachment events are likely because users tend to
attach new directories to the same subtree (community) as
long as their work sticks to one given topic. Insight into the
mechanisms on the behavioral level should lead to a more
refined model. Ideally such a model would be mechanistic in
that it explains the users’ attachment choices in terms of the
features of the filed content.

The question whether optimization is a driving force of the
tree formation deserves further effort. In terms of observed
exponents and proposed models, directory trees resemble
structures of systems known to be under optimization pressure
(see the introduction of this paper). Going beyond these
analogies, optimality can be formulated rigorously in terms
of the cost of navigation and search of a given network
structure [37–39]. Search performance, however, crucially
depends on previous knowledge about the network [40].
Inevitably, the user’s partial memory of her/his own file
locations must enter an appropriate model of directory trees
in terms of optimization. However, it is unlikely that directory
trees are optimal structures with respect to a universal non-
changing measure of cost. If users tried to keep their trees
optimal under the influx of new content they would have
frequently to discard the structure and design it from scratch. In
contrast to textbooks, websites and other designed structures,
directory trees are tinkered [3].

In summary, by describing and modeling directory trees
generated by single users we advance in our understanding
on how information is stored and managed. Our approach
complements other studies that focus, for example, on the
WWW that emerges from the interaction of many users. We
have found that similar principles (preferential attachment)
explain the main features of the structures.
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