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Abstract.

In this work we study the absorbing state phase transition of a recently introduced

model for interacting particles with neighbourhood-dependent reproduction rates. The

novelty of the transition is that as soon as the active phase is reached by increasing

a control parameter a periodically arranged structure of particle clusters appear. A

numerical study in one and two dimensions shows that the system falls into the Directed

Percolation Universality class.
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1. Introduction

The study of continuous transitions into absorbing states has been of interest during

decades [1, 2, 3]. Since the dynamics is trapped in the absorbing configuration and

therefore it is irreversible, they constitute an interesting case of nonequilibrium phase

transitions. Some examples showing this kind of transitions include the contact process,

epidemic spreading, directed percolation (DP) and reaction-diffusion systems. In

general, the phase diagram of these systems involves two different phases: an absorbing

one, in which the density field vanishes, and an active phase, where the expectation

value of the density is different from zero. A high degree of universality has been found,

and many of the known examples fall into the DP universality class [1, 2, 3].

Recently, in the context of population dynamics with possible applications to

plankton populations or bacterial growth, a model where particles interact with other

ones located within a finite distance was introduced [4]. The particles form clusters

that are periodically arranged in the system for large values of a control parameter.

When this parameter decreases a transition into an absorbing phase, with no particles

alive, occurs. The novel feature is that the transition to the absorbing phase is directly

performed from an active phase which shows a spatially periodic structure. According

to the DP conjecture [5, 6, 7], all of the transitions into a unique absorbing phase,

provided that interactions are short-ranged, and that extra symmetries, memory effects

and quenched disorder are absent, belong to the DP class. Since our model presents a

transition characterized by the spatially periodic structure of the active phase, which

means that additional symmetries are broken, it is a priori possible that the system falls

into a new, or at least, different universality class from DP.

In this paper we study the nature of this absorbing state phase transition in one

and two dimensions. First we show the periodic spatial pattern that is formed in the

system in the active phase growing from a localised seed. The structure function is

then calculated showing the existence of a peak at nonzero wavenumber (signature of

an structured phase) even for values of the control parameter very close to the critical

one. The exponents characterising the phase transition are then studied via spreading

simulations from a particle seed. We will show that they are in complete agreement with

the DP exponents, so that our system falls into the Directed Percolation universality

class. We will argue that the insensitivity of the exponents of the absorbing transition

to the periodic nature of the active phase may be due to the lack of a true long-range

order of the periodic phase in the thermodynamic limit, so that we do not have actually

an infinite number of active phases.

2. Model and spatial structures

The interacting particle model is introduced in [4] and further studied in [8, 9, 10]. It

considers initially N0 particles in the interval [0, L] for the 1d case, and in the square

[0, L] × [0, L] for 2d, with periodic boundary conditions. The particles are performing
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independent Brownian motions, leading to diffusion with diffusivity D. At every time

step (time is discretised) a particle (say particle j) is chosen. It dies, disappearing from

the system, with rate βj, or reproduces, i.e. it replicates itself, with rate λj. In this last

case the newborn is placed at the same location as the parent particle. The death rate

is taken to be constant, β0, and the birth rate, λj, depends on the number of particles

N j
R within a distance R from its position, i.e.

λj = max(0, λ0 −N j
R/Ns), (1)

where the maximum condition is to assure the positivity of the rate, and λ0, and Ns

are constants, identical for all the particles. As shown in previous works, the control

parameter of the system is µ = λ0 − β0. We normalise time so that λ0 + β0 = 1 and

then giving the value of µ fixes both λ0 and β0. It is clear that this type of interacting

particle systems, where birth rates decrease in spatial areas of high particle density, has

direct application in biological population dynamics [4, 8, 10] as models of competition

for resources. More general particle models developed in the same spirit can be found

in [11].

For an appropriate election of the parameters R and D (essentially a small D value

is enough as shown in [4]), which we fix in all our calculations to be R = 0.1 and

D = 10−5, periodic spatial structures emerge in the system when we are in the active

phase above a critical point µc. If µ < µc particles become extinct. In fig. 1 we show

how these structures emerge from a localised initial pocket of particles. The plot is for

one (left) and two (right) dimensions and µ = 0.7 (the critical values of µ are later

on computed to be µ1d
c = 0.341(2) and µ2d

c = 0.308(1) in one and two dimensions,

respectively). In the one-dimensional case we plot the x coordinate of the particles in

the horizontal, and on the vertical the time variable. One can see that the number

of particles increases and they begin to organize in periodically arranged clusters. At

longer times the particle number stabilizes and a fluctuating periodic arrangement of

particle clusters is established as the asymptotic state.

The system goes continuously, by increasing the value of the control parameter

µ, from the absorbing configuration (no particles) to the active phase as can be seen

in fig. 2. There we plot the average stationary density, ρst, as a function of µ for

one-dimensional systems with different sizes. This figure suggests a transition, when

the system size goes to infinite, at around µ = 0.342 (in good agreement with the

more accurate values obtained below from seed numerical experiments). The steady

density is computed averaging over time in the steady state and also over many different

realizations the number of particles and dividing by system size. The average over the

realizations considers only those that do not enter into the absorbing phase. In two-

dimensional systems a finite-size analysis of long-time steady states is computationally

expensive and will not be attempted here. However, our following calculations of the

exponents by seed spreading methods seem to confirm that we have also a continuum

phase transition in two dimensions.
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Figure 1. Left: 1d system. The spatial positions of the particles are in the x axis

and time is in the y axis. A periodic array of fluctuating clusters is reached at long

times. Right: 2d system. Spatial distribution of particles at time t = 200. The

region with clusters expands and at long times the whole system is covered with a

periodic arrangement (with hexagonal symmetry) of fluctuating clusters. In the two

plots µ = 0.7 (deep into the active phase), and D = 10−5, Ns = 50 and R = 0.1. Both

structures emerge from a seed of 500 particles localised in the center of the system.

A proper measure of the periodic spatial structure is given by the structure factor,

I(k) ≡
∣∣∣
∑N(t)

j=1 e
ik·xj

∣∣∣
2

, where N(t) is the number of particles in the system at time

t and {xj} are their positions. From the numerical computation of I(k) we check

whether the spatially structured character of the active phase is maintained as we

approach from above the critical point, µc. In fig. 3 we plot the structure factor in

the one-dimensional case (left) for different values of µ (close to µc). The same quantity,

but circularly averaged for the two-dimensional case is shown to the right. In the 1d

case the values of the control parameter are µ = 0.3416, 0.3436, 0.36, 0.38, and in 2d

µ = 0.32, 0.33, 0.34, 0.36. The largest peak of I(k) is obtained at k = 0, and provides

the square of total number of particles in the system. In the plots, in order to concentrate

on the secondary peak which gives information about the spatial structure [12], the value

of I(0) is set to zero. On the other side, it is important to realize that the position of

the secondary peak in k = kM 6= 0 only slightly changes by increasing µ, which shows

that the pattern structure is reached just when the active phase is developed, i.e. just

above µc. Summing up, the fact that the secondary peak is different from zero and

that the value of kM remains almost invariant when different values of µ are considered,

support the fact that the system is spatially structured even very close to the absorbing

critical point, for both one and two dimensions. Moreover, the location of the peak gives

information about the periodic structure by signalling the number of clusters n in the

system (by kM = 2πn/L) [8, 10].
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Figure 2. Average stationary density of particles for values of µ close to the critical

value in the 1d system. The different system sizes considered are detailed in the legend

box. Other parameters as in Fig. 1

3. Critical behavior

By now we have shown that, at least in 1d, the transition from absorbing to active

phase is continuous. Moreover the analysis with the structure factors has revealed that

this transition occurs simultaneously with the appearance of a spatial pattern, i.e., the

active phase always present a periodic structure. We now proceed to study the critical

properties of this peculiar transition. The first step is to localize with a good confidence

the critical value of the control parameter, µc, in both one and two dimensions. This is

done by evolving in time a small seed of particles and monitoring the total number of

particles, N(t), averaged over all the runs [13, 14]. At the critical point it must scale

asymptotically as a power law, N(t) ∝ tη, showing some curvature at sub- and super-

critical values, which helps us to identify the critical point. This is shown in fig. 4. We

obtain µc = 0.341(2) in 1d, and µc = 0.308(1) in 2d.

Besides N(t), the total number of particles, we compute the survival probability,
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Figure 3. Structure factors for different values of the control parameter. For clarity,

the large peak at k = 0 has been suppressed (i.e. we really plot I(k) − I(0)δk,0).

Left panel is for the 1d system with size L = 5 and, from top to bottom, µ =

0.38, 0.36, 0.3436, 0.3416. The right panel corresponds to the 2d system so that the

structure factor is circularly averaged. From top to bottom µ = 0.36, 0.34, 0.33, 0.32.

The rest of the parameters for both panels are the same as in fig. 1.

Figure 4. Time evolution of the total number of particles in the system. Left is for

1d and, from top to bottom, µ = 0.3440, 0.3424, 0.3412, 0.3404, 0.30. Right is for 2d

and from top to bottom µ = 0.32, 0.3084, 0.3081, 0.3080, 0.3040. Other parameters as

in Fig. 1. In both plots we average a number of realizations between 1200 and 2000.

The critical value of µ, µc, is the one corresponding to the line in which upwards or

downwards curvature is absent.
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Figure 5. Number of particles versus time right at the critical point µ = µc (averaged

between 1200 and 2000 runs). Left is for 1d and right for 2d. Other parameters as in

Fig. 1. The lines give the best fit to the plots, with slopes 0.30 (1d) and 0.25 (2d).

Ps(t), which is the probability that the system remains in the active phase at time t, and

the mean-square radius, R2(t), defined as the mean-square distance of all the particles

with respect to the center of mass of the system (remember that as the initial seed of

particles grow many clusters form), and also averaged over all the runs. At the critical

point there is no characteristic time scale and these magnitudes scale asymptotically as

Ps(t) ∝ t−δ,

R2(t) ∝ tz. (2)

In figures 5, 6 and 7 we plot, respectively, N(t), Ps and R2 vs time at the critical point

for one and two dimensions. The slopes of the linear fits shown are, in 1d: η = 0.30,

δ = 0.17 and z = 1.09; in 2d: η = 0.250, δ = 0.43 and z = 0.72. In all the plots the

system size is chosen to be very large, L = 100, in order to avoid finite-size effects, and

the total number of runs is between 1200 and 2000. These values are in good agreement

with the DP critical exponents [1, 2, 3] so that one can conclude that the model studied

is in the DP universality class.

4. Discussion and summary

Despite the non standard features of the active phase in the absorbing phase transition

considered here, our numerical results identify it as pertaining to the DP universality

class. There is a naive analytical argument supporting this finding: An approximate

Langevin equation for a stochastic quantity Φ(x, t) that under averaging gives the

expected value of the local particle density was derived in [4] by using Fock space
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Figure 6. Survival probability versus time right at the critical point µ = µc. Left is

for 1d and right for 2d. Other parameters as in Fig. 1. The lines give the best fit to

the plots, with slopes −0.17 (1d) and −0.43 (2d)
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Figure 7. Mean square radius versus time right at the critical point µ = µc. Left is

for 1d and right for 2d. Other parameters as in Fig. 1. The lines give the best fit to

the plots, with slopes 1.09 (1d) and 0.72 (2d)
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techniques. It has the form

∂tΦ(x, t) = D∇2Φ(x, t) + µΦ(x, t)

− 1

Ns
Φ(x, t)

∫

|x−r|<R
dr Φ(r, t) + η(x, t) , (3)

with η(x, t) being a noise term with zero mean and very complex correlations (see [4]),

which depend on Φ(x, t) itself, so that the noise is multiplicative, and including both

types of terms, spatially local and nonlocal. The important point, however, is that

these correlations have a finite range (of order R). Although non-local, the interactions

in Eq. (3) are also of finite range R. Therefore if we scale all lengths by the system

size L and take the thermodynamic limit L → ∞ to study critical properties, the

relative interaction range R/L tends to zero and, after appropriate scaling of the

interaction parameters, we recover a local partial differential equation that is nothing

but the Reggeon Field Theory, i.e., the continuum description of the DP universality

class. The idea is that non-local but finite-range interaction becomes local under the

renormalization group microscope. This argument will fail, and corrections to the

DP exponents may appear, if there are additional conserved quantities coupled to the

dynamics. Since the deterministic part of Eq. (3) has periodic solutions [4, 8, 10], one

of such conserved quantities could be the phase of the periodic pattern, if the noise

term in (3) turns out to be unable to restore the translational symmetry broken by the

deterministic pattern forming process. Thus, a possible explanation of the persistence of

DP exponents here is that the active phase does not really break translational symmetry

in the thermodynamic limit, and thus we do not have an infinity of active phases but a

single one with only short-range order.

A preliminary check of these ideas has been performed in one dimension (in

nonequilibrium models, symmetry breaking can occur even in low dimensions [12]).

To analyse the periodic ordering we define an order parameter φ as the value of the

secondary peak of the structure factor (also averaged over time and realizations), i.e.,

φ =< I(kM) >. Note that if particles are distributed at random then < I(k 6= 0) >=<

N > and typically < N >∝ Ld, whereas for particles arranged with long-range periodic

order at wavenumber kM we have < I(kM) >∝ L2d. Thus, the scaling with system size

of the order parameter φ contains the needed information about the presence or absence

of long-range order and thus of translational symmetry breaking.

In fig. 8 we show φ/L versus µ for different system sizes in the 1d case. The

good collapse of the data for the different sizes is consistent with the interpretation

that long-range periodic order is suppressed in the thermodynamic limit (large L) at

least in one dimension. If this preliminary result is maintained for larger sizes and for

two-dimensional systems, then the DP exponents found here can be understood as a

consequence of having short-range interactions and a single active phase, not an infinity

of them. Further numerical work along these lines will be the subject of future research.

In summary, we have shown that a system of Brownian particles competing for

the resources in their neighborhood presents a continuous absorbing phase transition.
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Figure 8. Ordering parameter φ (see definition in the text) divided by the system

size L vs the control parameter µ in the 1d case. The different values of L used in the

plot are written down in the legend. Other parameters as in Fig. 1. The good collapse

of the data is consistent with the absence of long-range periodic order.

The active phase is made of particle clusters periodically arranged but, despite this

peculiarity, the absorbing transition falls into the DP universality class in both one and

two dimensions.

5. Acknowledgments

We acknowledge many useful discussions with Miguel A. Muñoz, and his contributions
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