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Abstract

We show that diversity, in the form of quenched noise, can have a constructive effect in
the dynamics of extended systems. We first consider a bistable φ4 model composed by
many coupled units and show that the global response to an external periodic forcing is
enhanced under the presence of the right amount of diversity (measured as the dispersion
in one of the parameters defining the model). As a second example, we consider a system
of active-rotators and show that while they are at rest in the homogeneous case, the
disorder introduced by the diversity suffices to trigger the appearance of common firings
or pulses. Both effects require very simple ingredients and we expect the results presented
here to be of interest in similar models.

1 INTRODUCTION

In dynamical systems, the elimination of some internal degrees of freedom leads to an effective
Langevin equation which contains so-called noise terms [1]. Those terms aim to represent
in a probabilistic description our lack of knowledge about the exact microscopic dynamics.
Typical effects of the noise terms are the erratic movement of the Brownian particle or the
disappearance of the ferromagnetic phase at high enough temperatures. Given these and other
similar examples, people were led to identify noise and disorder. However, one of the most
astonishing developments of the last decades in the field of stochastic processes is that noise
can have a constructive role. There are now several examples of that counterintuitive role
of noise: phase transitions where a more ordered phase appears when increasing the noise
intensity [2]; stochastic resonance where the response to an external forcing improves in the
presence of noise [3–5]; coherence resonance [6] (also named as stochastic coherence [7]) where
an optimal periodicity in the output of the dynamical system appears for the right noise value,
noise sustained patterns, structures and fronts [8,9], etc. In these and other similar examples,
the constructive role appears only in a limited window range of noise intensities. Too a large
noise always recovers its disordering features. Studies have been performed in simple low-
dimensional systems as well as in extended systems with many degrees of freedom [10, 11]. In
the latter case, a usual assumption is that the units composing the ensemble are identical in
the sense that they all have the same values for the relevant parameters characterizing their
dynamical behavior. The only difference in their detailed dynamics comes from the noise terms
which take randomly different (uncorrelated) values for each of the units.
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When considering extended systems [11], mostly in the biological sciences, the assumption
of identical units is not an appropriate one, since those systems present a, sometimes large,
diversity in the units. For example, cells of the same type vary in size and shape, as well as
having different membrane conductivities, etc. Hence, it is not reasonable to assume that, even
in the absence of noise, they will behave in the same way. Natural diversity (also known as
“variability”) has been considered in several different contexts: from the quenched noise terms
representing impurities in magnetic systems [12] (where the critical temperature is lowered
by the presence of the impurities) to the Kuramoto model of coupled random oscillators with
different natural frequencies [13,14] (where synchronization is destroyed for a sufficiently large
dispersion of frequencies). All these examples lead us again to identify diversity with disorder.

However, as in the case of noise, some recent studies lead to the conclusion that diversity
might have a constructive role. Some previous work has shown the existence the phase tran-
sitions [15] and patterns [16] induced by quenched dichotomous noise. In this paper we will
briefly comment on two recently found effects: resonance to an external forcing and common
firing, both induced by diversity. In forced systems non-linear systems, we have proven [17]
that the global response of an extended system to an external forcing can be improved when
the units of the system are not identical. In the case of global firing, we have shown [18]
that diversity can help the units of an extended system to pulse in synchrony. In both cases
the basic mechanisms for the emergence of the collective behavior (described in detail in the
following sections) require only very generic properties and both effects could occur in similar
systems.

The paper is organized as follows: in section 2 we study the φ4 model, a paradigmatic
bistable model for phase transitions: in subsection 2.1 we show the usual role of diversity,
which leads to the disappearance of the ferromagnetic order. Next, in subsection 2.2 we show
that the global response of the model to a periodic forcing shows a maximum for a well defined
value of the diversity. In section 3 we discuss a system of active rotators, a paradigmatic model
for collective excitable behavior. First, in subsection 3.1, we first discuss the usual disordering
role of diversity, while in subsection 3.2 we show that a collective behavior, in the form of
synchronized pulses, appears for the right value of the diversity. The main conclusions of the
paper are summarized in the final section 4.

2 DIVERSITY-INDUCED RESONANCE IN THE φ4 MODEL

The φ4 model (also called Ginzburg-Landau or model A) is one of the basic models in equi-
librium statistical mechanics and has been used to model many physical situations, although
the simplest application is to describe the paramagnetic-ferromagnetic transition that occurs
as a function of the temperature. In this model, a set of real variables xi(t), i = 1, . . . , N are
located in the sites of a regular d-dimensional lattice.

dxi

dt
= axi − x3

i +
C

Ni

∑
j∈Ni

(xj − xi) + ηi. (2.1)

Here Ni denotes the set of neighboring sites with which site i interacts, and Ni is the number
of such neighboring sites. C is the coupling constant. An usual version of this model includes
in Ni only the 2d nearest neighbors of i. In this paper, we will be considering the mean-field or
all-to-all coupling version in which all sites interact with the same strength. Hence Ni contains
all the lattice sites and Ni = N . The disorder ηi is usually considered to be a white noise of
intensity proportional to the temperature. The model then displays a phase transition from an
ordered (ferromagnetic) phase to a disordered (paramagnetic) phase at a critical temperature
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Tc [19]. This is the generic behavior when a > 0 and C > 0, the only cases considered in this
paper.

As we stated in the introduction, we are interested in analyzing the role of diversity in the
units xi. To this end, we neglect the thermal noise. Instead, the diversity appears as quenched
noise, i.e. the values ηi (with i = 1, . . . , N) do not depend on time, and are independently
drawn from a probability distribution g(η). At this moment we only assume a symmetric
distribution g(η) = g(−η). The mean value of the distribution is 〈ηi〉 = 0 and the correlations
are 〈ηiηj〉 = σ2δij . The standard deviation σ is a measure of the diversity.

2.1 The disordering role of diversity

In this section we review the disordering effect that diversity has on the φ4 model defined above.
We use the all-to-all coupling where a full analytical understanding is possible. The all-to-all
coupling assumption simplifies the problem and allows one to reduce it to a one variable. This
is basically the Weiss mean-field treatment which is exact in the case of global coupling. Let
us introduce the global variable m(t) as:

m(t) =
1
N

N∑
i=1

xi(t). (2.2)

The “magnetization” is defined as the time average of this global variable:

m = 〈m(t)〉. (2.3)

The coupling between the xi variables appears only through this collective variable:

dxi

dt
= (a− C)xi − x3

i + Cm + ηi. (2.4)

This can be interpreted as a relaxational dynamics dxi

dt = −∂V (xi)
∂xi

with a potential:

V (xi) =
C − a

2
x2

i +
1
4
x4

i − (Cm + ηi)xi. (2.5)

In the limit t → ∞ the variable xi will tend to one of the minima of V (xi). We restrict
ourselves from now on to the case C ≥ a for which the potential V (xi) has a single minimum,
hence avoiding the possible metastable states that could occur otherwise. For fixed values of
m and ηi the variable xi will tend to the unique solution of the cubic equation:

x3
i + (C − a)xi = Cm + ηi. (2.6)

The explicit solution is xi(ηi,m) = − γ
ui

+ ui with the notation ui =
(
αi +

√
γ3 + α2

i

)1/3

and
γ = (C − a)/3, αi = (Cm + ηi)/2. To determine the value of the mean-field variable m we use
the self-consistency relation (the subindex i is now dropped from the notation):

m = 〈x〉 =
∫

dη g(η) x(η, m), (2.7)

where, assuming self-averaging, we have replaced the sum over variables by an average over
the realizations of the diversity variables η. Using the symmetry property of the distribution
g(η) the self-consistency relation can be expanded for small m:

m = F1m + F3m
3, (2.8)
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where F1, F3 > 0 are coefficients that depend of a, C and σ. As in the standard Weiss theory,
this equation can have one or three solutions depending on the value of F1. If F1 > 1 then the
only solution corresponds to the disordered phase m = 0. For F1 < 1 there are two additional
solutions m = ±m0, which correspond to the ordered phase. A detailed analysis shows that for
fixed a and C the ordered solution m 6= 0 appears for a diversity σ smaller than a critical value
σc, while a diversity σ > σc only admits the disordered solution m = 0. In this sense, diversity
has a similar role to noise since a large diversity destroys the ordered state. The phase diagram
is plotted in figure 1 panel (a), in the case of a Gaussian distribution for g(η) and a = 1, C = 1.

In this case, the critical point can be computed as σc =
[

Γ(1/6)
21/33π1/2

]3/2

= 0.7573428 . . ..

2.2 The constructive role of diversity

We now consider the same model under the influence of a periodic forcing. In the case that the
dynamics is driven by noise (instead of disorder) it is well known the existence of stochastic
resonance, i.e. an optimal value of the noise intensity for which the response of the system
reaches a maximum value [5]. We now demonstrate the existence of a similar effect under the
presence of quenched noise. In the globally coupled case, we study the response to a periodic
forcing of weak amplitude A and frequency Ω:

dxi

dt
= axi − x3

i +
C

N

N∑
j=1

(xj − xi) + ηi + A sin(Ωt). (2.9)

By a weak amplitude A we mean that its effect is such that the units make small oscillations
around one of the equilibrium positions x = ±m0. The global response is quantified by the
average position of the units m(t) = 1

N

∑
i xi(t) for which we now derive an evolution equation.

By averaging the previous equation over the whole population, we obtain in the limit of large
N :

dm

dt
= am− 1

N

∑
i

x3
i + A sin(Ωt). (2.10)

We now introduce δi = xi −m and assume that the values of δi are evenly distributed around
0. This leads to:

dm

dt
= m(a− 3∆)−m3 + A sin(Ωt), (2.11)

with ∆ = 1
N

∑
i δ2

i . Hence, in the absence of forcing, m(t) follows a relaxational dynamics in
an effective potential:

V (m) =
3∆− a

2
m2 +

1
4
m4. (2.12)

The potential barrier between the two minima is (a−3∆)2

4 . If the units are all identical, ∆ = 0
and the barrier takes its maximum value. Any source of diversity will lead to ∆ > 0 and the
height of this barrier decreases for increasing diversity until it eventually disappears altogether
if ∆ = a/3. Therefore, it is possible that a forcing of weak amplitude A that is subthreshold
in the absence of diversity, becomes suprathreshold when diversity increases. It is predicted
then that the global response m(t) will increase suddenly when the diversity reaches a given
value. For a large diversity, though, the potential V (m) becomes monostable and the system
again executes oscillations around a single minimum, now located at m = 0. The existence
of this resonance phenomenon can be clearly seen in figure 1(b) where we plot the spectral
amplification factor η = 4A−2|〈eiΩtm(t)〉|2 as a function of the diversity σ.
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Fig. 1. Diversity induced resonance in the φ4 model. In panel (a) we show the magnetization m

as a function of the diversity σ for the φ4 model with quenched disorder defined in Eqs.(2.1). The

parameters are a = 1, C = 1 and the values of ηi are taken from a Gaussian distribution g(η) of zero

mean and variance σ2. The line is the prediction of the mean-field theory and the symbols are the

results of numerical simulations of the dynamical equations (2.1) for system sizes N = 50, 102, 103, 104

(the transition sharpens as N increases). Panel (b) plots the spectral amplification factor η as a

function of diversity when the same system is forced by a periodic forcing of amplitude A = 0.2 and

period Ω = 500. The line is the prediction of an adiabatic theory [17] (not explained in the main text)

and the symbols correspond to the numerical simulations in the case N = 103. In the right panels, we

show some representative trajectories xi(t) (thin lines) and the average trajectory m(t) (thick line) in

the case of σ = 0.20 (panel c), σ = 0.54 (panel d) and σ = 2.0 (panel e); the other parameters as in

panel (b). Note the wide variations of m(t) in panel (d), corresponding to the optimal response to the

external forcing.

In panels (c-e) of figure 1 we plot some representative trajectories for the individual units
xi(t) as well as the mean m(t). In the case of small diversity, it can be seen that the units
execute small oscillations around the same minimum following the external forcing (panel
c). As the diversity increases over a critical value, the amplitude suddenly increases (panel d).
Finally, for too large diversity, each unit now executes small oscillations, but each one oscillates
around a different location and, hence, the amplitude of the oscillations of the global variable
m(t) decreases (panel e), in agreement with the previous discussion.
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3 COMMON FIRING IN THE ACTIVE ROTATOR MODEL

Dynamical systems on a circle have been a paradigm to study synchronization phenomena [14].
This is due to their simplified dynamics that, in some cases, allows for analytical results.
Nevertheless their simplicity, the results in those systems turn out to be broad applicability.
In this section, we will focus on a system called active rotator. It exhibits either an oscillatory
or excitable behavior, depending on the system parameters. The model we will consider is a
globally coupled set of active rotators [13,20] whose dynamics is given by

φ̇i = ω + ηi − sinφi +
C

N

N∑
j=1

. sin (φj − φi) . (3.1)

The global coupling of strength C is written such that it is 2π-periodic. The parameter
ωi = ω + ηi is the natural frequency of the j−th unit. For uncoupled units, if ωi < 1, the unit
is excitable: there are two-fixed points (one stable and another unstable). Any perturbation
such that the system overcomes the unstable fixed point produces a firing of the unit: a large
excursion until it arrives to the stable fixed point. On the other hand, if ωi > 1, there are no
fixed points and the unit is in the oscillatory regime. The values of the natural frequencies
are drawn from a probability distribution function g(ηi), of mean 〈ηi〉 = 0 and correlations
〈ηiηj〉 = σ2δij . We consider the case ω < 1, such that when σ = 0, all the systems are in the
excitable regime and, in the absence of perturbations, they will all stay in perfect order at the
stable equilibrium point. This order is degradated by the presence of diversity that makes each
unit act differently from the others. We first study how the order decreases with diversity.

3.1 The disordering role of diversity

Order in the position of the units, can be measured by means of the Kuramoto order parameter.
Let us define the (complex) variable ρ(t)eiΨ(t) as the location of the center of mass of the
rotators:

ρ(t)eıΨ(t) =
1
N

N∑
i=1

eıφi(t) (3.2)

The Kuramoto order parameter, defined as the time average of this variable,

ρeıΨ =
〈
ρ(t)eıΨ(t)

〉
, (3.3)

plays somehow the role of the magnetization m in the φ4-model. The argument Ψ is the global
phase of the system. The modulus ρ is a measure of the order in the position of the particles:
it is equal to 1 if all the units have the same phase, and it is ρ = 0 for a situation in which
the units are uniformly distributed around the circle. However, in the excitable regime there
are two different dynamical regimes that could give rise to a value ρ > 0: a dynamical one, in
which the units fire pulses synchronously, and a static one, in which all the units are at rest in
the stable fixed point.

We now show how to compute ρ. A straightforward algebra leads to dynamical equations
for the angles φi in which the coupling between units appears only through the global variables,
ρ, Ψ, as:

φ̇i = ωi −R sin(φi − α), (3.4)

where R = (1 + 2Cρ cos Ψ + c2ρ2)1/2 and tanα = cρ sin Ψ
1+cρ cos Ψ . We now make the approximation

of constant values for ρ and Ψ. According to this equation, the rotators split in two categories:
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(i) those for who the natural frequency satisfies |ωi| < R are in the excitable regime and the
probability density function of the angle distribution is a delta function centered around the
stable angle f(φi) = δ(φi − φi∗) with φ∗i = arcsin(ωi)/R; (ii) those for which |ωi| > R are in
the oscillatory regime and the probability distribution is inversely proportional to the angular
velocity f(φi) ∝ |φ̇i|−1. Computing the normalization constant we have:

f(φi) =


δ(φ− φ∗i ) |ωi| < R ,√

ω2
i
−R2

2π
1

ωi−R sin(φi−α) ωi > R,
√

ω2
i
−R2

2π
1

−ωi+R sin(φi−α) ωi < −R.

(3.5)

This, in turn, allows to find the average value that appears in the definition of the Kuramoto
order parameter as 〈eiφi〉 = F (ηi, ρ, Ψ), with

F (ηi, ρ, Ψ) = eiα ×



√
1− ω2

i

R2 + ıωi

R |ωi| < R,

ı

(
ωi

R −
√

ω2
i

R2 − 1
)

ωi > R,

ı

(
ωi

R +
√

ω2
i

R2 − 1
)

ωi < −R.

(3.6)

Finally, the order parameter is found by solving the consistency equation (the subindex i is
now dropped from the notation):

ρeıΨ =
〈
eıφ

〉
=

∫
dη g(η)F (η, ρ,Ψ). (3.7)

This equation has to be solved numerically. In figure 2(a) we plot ρ versus the diversity σ in
the case of a Gaussian distribution for g(η) and the values ω = 0.95, C = 1 together with the
results of numerical simulations of the dynamical equations 3.1. It can be seen that the order
parameter decreases monotonically as the diversity increases, although there is no sharp phase
transition to a state of ρ = 0. This is the usual role of disorder. In the next subsection, we
will show how diversity can induce a common firing of the active rotators.

3.2 The constructive role of diversity

In order to analyze the global behavior we derive evolution equations for the average variables
ρ(t) and Ψ(t). We start by taking the time derivative of Eq.(3.2) and introducing the deviation
with respect to the average angle behavior as δi(t) = φi(t) − Ψ(t). By expanding eiδi =
1 + iδi +O(δ2

i ), we are led to ρ̇(t) = O(δ2
i ) and [18]:

Ψ̇ =
ω

ρ
− sinΨ +O(δ2

i ). (3.8)

This remarkable equation shows that the global phase Ψ follows the same dynamics than a
single rotator but with an effective natural frequency ω/ρ. In the case of no diversity, σ = 0, and
ω < 1, all the rotators are in the rest state and ρ = 1. As soon as some disorder is introduced
in the rotators, the order parameter ρ decreases such that when ρ = ω the global phase Ψ
becomes oscillatory. This is a true phase transition between a static phase and a dynamic
phase in which the rotators pulse synchronously. As the value of ρ changes continuously at the
transition point it can not be used to characterize the phases. To distinguish between the two
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Fig. 2. Common firing in the active-rotator model. In panel (a) we show the Kuramoto order param-

eter ρ as a function of the diversity σ for the active-rotator model with quenched disorder defined in

Eqs.3.1. The parameters are ω = 0.95, C = 4, N = 400 and the values of ηi are taken from a Gaussian

distribution of zero mean and variance σ2. The line is the mean-field prediction obtained by solving

the self-consistent equation (3.7) and the dots are the results of numerical simulations of the dynamical

equations (3.1). Panel (b) plots the Shinomoto-Kuramoto order parameter ζ as a function of diversity.

A transition to a state in which the units pulse synchronously can be observed by the non-zero value

of ζ starting around σ = 1.164. The line is the theoretical prediction Eq.(3.10) and the dots come

from the numerical simulations. In the right panels, we show some representative trajectories φi(t)

(thin lines) and the average phase Ψ(t) (thick line) in the case of σ = 0.63 (panel c), σ = 1.73 (panel

d) and σ = 3 (panel e). Note the transition from the quiescent state (c) to a situation of common

pulsing (d) and then to incoherent pulsing (e).

phases, Shinomoto and Kuramoto introduced another order parameter, ζ, in which the mean
value of the center of mass is subtracted before taking the modulus [20]:

ζ =
〈∣∣∣ρ(t)eıΨ(t) −

〈
ρ(t)eıΨ(t)

〉∣∣∣〉 . (3.9)

If we approximate ρ(t) by a constant value, it is ζ ≈ ρ
〈∣∣eıΨ(t) −

〈
eıΨ(t)

〉∣∣〉, the average over
time can be performed as an average over the distribution f(Ψ) of angles Ψ. As in the case
of a single rotator the distribution for ω < ρ is a delta-function centered around the stable
equilibrium value Ψ∗ = arcsin(ω/ρ), while for ω > ρ is is inversely proportional to the angular
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speed, f(Ψ) ∝ |Ψ̇|−1. This allows to perform the angular average with the final result:

ζ =

{
0 ω ≤ ρ,
2
π

√
2(ω −

√
ω2 − ρ2)(ω + ρ)K

(
2ρ

ρ−ω

)
ω > ρ,

(3.10)

where K(x) is the complete elliptic integral of the first kind. We plot in figure 2(b) the order
parameter ζ as a function of the diversity σ. Now it is clear the transition from the static state
to a regime of common pulsing at a critical value σc ≈ 1.164. In the right panels of figure 2 we
plot some representative trajectories for the individual units φi(t) as well as the mean angle
Ψ(t). For low diversity, the units are at rest in their stable points (panel c). As the diversity σ
crosses the critical value σc we can observe the synchronized firings (panel d). Finally, as the
diversity increases further, the units start to fire in an unsynchronized manner (panel e).

4 CONCLUSIONS

In this paper we have reported two effects in which some level of diversity induces a collective
effect in dynamical systems. In the case of diversity induced resonance, the global response,
as measured by the spectral amplification factor η of the average variable m(t) shows a clear
maximum as a function of the diversity σ. The mechanism of the resonance is particularly
simple: in the homogeneous case the forcing is subthreshold for all units; as the diversity
increases a fraction of the units are able to respond to the external forcing during half a period
and another fraction of the units respond during the next half period; through the coupling
terms, the sensitive units are able to pull the rest of the units in the direction of the forcing;
for too large diversity, the favorable units can not overcome the effect of the adverse ones.

In the active rotators system, we have shown the existence of a transition from the quiescent
state where all units remain in the fixed stable point, to a regime of common pulsing induced by
an increased in the diversity. Again, the mechanism is very simple: as the diversity increases,
a fraction of the units have natural frequencies in the oscillatory regime; those units, through
the coupling terms, pull the remaining ones into the oscillatory behavior.

Those two effects show a constructive role of diversity and are the analog of the same
effects induced by noise. It is to be stressed that it is the lack of perfect order that induces the
collective effect. Our studies show that it is actually the disorder in the units that produce those
collective effects and that it does not really matter whether the disorder is induced by noise,
diversity or some other source, such as a random component in the network of connectivities
or other sources. Since both phenomena require only generic ingredients, we expect that they
should be present in the dynamics of suitable physical and biological systems and we hope that
this work fosters experimental research in this direction.

This paper is the result of direct work of the authors with P. Colet, J.D. Gunton, C.R. Mirasso and A. Scirè.
We acknowledge financial support by the Ministerio de Educación y Ciencia (Spain), FEDER projects FIS2004-
5073, FIS2004-953 and the EU NoE BioSim (LSHB-CT-2004-005137).
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