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In this work we characterize experimentally the transition between periodic rotating waves and
synchronized chaos in a ring of unidirectionally coupled Lorenz oscillators by means of electronic
circuits. The study is complemented by numerical and theoretical analysis, and the intermediate
states and their transitions are identified. The route linking periodic behavior with synchronous
chaos involves quasiperiodic behavior and a type of high-dimensional chaos known as chaotic
rotating wave. The high-dimensional chaotic behavior is characterized, and is shown to be com-
posed actually by three different behaviors. The experimental study confirms the robustness of this
route. © 2006 American Institute of Physics. �DOI: 10.1063/1.2335815�
uilding arrays of coupled oscillators is quite an obvious
ay of creating high-dimensional, albeit still finite, phase

paces. The most intensively studied behavior of this type
f system is the case in which the rhythms of these oscil-
ators become entrained or synchronized, which in the
xtreme case of complete synchronization implies that the
ynamics of the coupled system takes place in a small
ubset of the phase space whose dimension corresponds
o a single oscillator: the synchronization manifold. None-
heless, it is clear that coupled oscillators are natural can-
idates to study more complicated behaviors, namely
hose in which the dynamics is high-dimensional and cha-
tic. In previous work a transition between chaotic syn-
hronization and periodic rotating waves was described
or an array of three Lorenz oscillators coupled unidirec-
ionally in a ring. Here we shall further demonstrate the
ynamical richness, and also the robustness of the route

inking these states through an experimental study. Two
ymmetry-related quasiperiodic attractors will be shown
o lead to a high-dimensional chaotic attractor, and, later,
he transition from this attractor to synchronized chaos
ill be shown.

. INTRODUCTION

In nonlinear dynamics many studies have helped to un-
eil the richness of transitions, including the transitions to
haotic behavior, by means of systems with a low phase
pace dimension �typically 3 for continuous systems and 1 or
for maps�. On the other extreme, one has the case of con-

inuous systems described by a nonlinear partial differential
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equation, and that formally live in an infinite-dimensional
phase space. In practice, many important complex systems
like the atmosphere, the ocean or the brain are high-
dimensional objects. In order to understand them one usually
resorts to some kind of statistical assumption �see, e.g., Ref.
1�, whose validity increases as the number of active modes
involved in the description. The goal of the present work is
to study the intermediate range by focusing on a dynamical
system of medium dimensionality applying the tools used
routinely for low-dimensional systems.

A straightforward method to design high-dimensional
systems is based on coupling together several low-
dimensional systems �oscillators�. In the present study we
use as a unit element the Lorenz oscillator2 �arising itself
from a drastic truncation of Navier-Stokes equations�.
Coupled oscillators have been much studied in the context of
synchronization �both periodic3,4 and, since the 1980s,
chaotic5�. Chaotic synchronization became a subject of inter-
est for a wide community of scientists �from the viewpoint of
both theory and applications� after the work by Pecora and
Carroll in 1990.6 Thus, a large number of studies have been
devoted to chaotic synchronization and its applications �see,
e.g., Refs. 7–9 and references therein�. In our case it is of
greater interest the regime in which complete synchroniza-
tion is lost, as this will lead to a higher dimensional attractor.
A widely studied class of these type of behaviors is the blow-
out bifurcation, leading to riddling behavior,8,10 as are sev-
eral types of intermittent behavior, like on-off intermittency.
Of interest is that one can classify types of attractors ob-
tained after these transitions, the so-called chaotic
hierarchies.11

Interestingly enough, loss of �complete� synchronization
of coupled chaotic oscillators leads quite often to phase re-
lations among the coupled oscillators. The selection of these

phase patterns is a topic of large interest in a biological con-

© 2006 American Institute of Physics2-1
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ext, with applications ranging from neuroscience and brain
unction12 to animal locomotion.13 In the latter case, circular
eometries of coupled cells are used for modeling central
attern generators14 because the system’s symmetries pro-
ide the different phase patterns observed for different gaits.

Some previous studies have focused on the emergence of
ertain phase patterns from synchronized states, mostly
eriodic15–17 oscillators. A class of phase patterns in chaotic
ynamics occur after a symmetric Hopf bifurcation on a cha-
tic synchronized state takes place.18 In particular, a chaotic
otating wave �CRW� appears, as predicted by symmetry
rguments.14 In the present work we shall try to shed light on
he transitions among the different spatio-temporal patterns
ccurring in this kind of system, in the spirit of previous
orks,19,20 not only in a neighborhood of a synchronized

tate. Some of these spatio-temporal structures are in fact
oherent structures, such as the periodic,18,21,22 and chaotic23

otating waves, PRW and CRW, respectively, that have been
ound in rings of coupled chaotic oscillators, and then also
tudied by other authors,24–26 including the transition be-
ween different modes.27 Other transitions between periodic
nd chaotic waves are reported in Ref. 28. The present work
ffers an experimental survey of the states between synchro-
ous chaos and a periodic rotating waves, including three
ypes of chaotic rotating wave and quasiperiodicity.

Our approach to this problem has been both numerical
nd experimental �our experimental setup—consisting of
lectronic circuits—is described in Sec. III�. Digital and ana-
og simulation are quite complementary, and their combined
se allows a deeper understanding of problems that may be
oo difficult if studied with theory and digital simulation
lone. The might of analog simulation may be summarized in
he following facts:29 �i� it readily enables us to survey large
olumes in parameter space looking for interesting
henomena—guiding and optimizing numerical computa-
ions; �ii� analog circuits are real physical systems, and so its
henomenology is genuine, and the observed behaviors are
obust against parameter mismatch and in the presence of
oise; �iii� one can play with time scales to make dynamics
lower or faster at convenience. In particular, in the case that
ne wishes to study a small region in parameter space, as is
he case of the quasiperiodic dynamics studied in this work
cf. Sec. IV B�, through analog simulation it is possible to
ocate—and check the robustness of—the desired behaviors
n quite a fast and convenient way �to be compared with
erforming systematic searches using fine meshes in param-
ter space�.

An important problem of recent interest is shadowability,
hat is the possibility of modeling in the computer certain
ypes of nonlinear deterministic dynamical systems. In par-
icular, in recent theoretical studies it has been advocated that
ome of these systems cannot be properly modeled,30 i.e., are
ot shadowable, to the point that in these systems working
ith experimentally measured time series makes more sense

han working with a mathematical model. One of the situa-
ions in which this may happen is when one �or more�
yapunov exponents fluctuate around zero, a manifestation
f nonhyperbolicity. Coupled chaotic oscillators are strong

andidates to exhibit this behavior. Our system is a candidate

wnloaded 29 Sep 2006 to 130.206.76.175. Redistribution subject to AIP
to exhibit this form of nonhyperbolicity, while other mecha-
nisms like tangencies between stable and unstable manifolds
cannot be excluded either.

Nonhyperbolic systems, as the Lorenz oscillators that
makes part of our system, may also be sensitive to noise,31

including the unavoidable noise always present in experi-
ments. For this reason, it makes a lot of sense to try to double
check the predictions of numerical simulation, specially re-
garding such strongly sensitive behaviors as quasiperiodic
dynamics and high-dimensional chaotic attractors, as these
attractors are very fragile.

The paper is organized as follows: Section II presents a
short description of the system, and an overview of the dif-
ferent behaviors in parameter space by means of a numerical
computation of the Lyapunov exponents. In Sec. III, the elec-
tronic setup and some of the techniques used in this paper are
explained. Section IV gives rise to the experimental results,
that are analyzed by means of fast Fourier transforms �FFTs�
and Poincaré cross sections. Finally, in Sec. V the main re-
sults contained in this paper are discussed.

II. BACKGROUND AND SYSTEM OVERVIEW

In this section we introduce the model and present a
numerical exploration of some of basic features of the
system.

A. The system

Our system consists of a ring built with three Lorenz
oscillators coupled unidirectionally using the partial replace-
ment method.32 In this situation, the differential equations
governing the dynamics read:

ẋi = ��yi − xi�, ẏi = Rxi − yi − xizi, żi = xiyi − bzi, �1�

where xi� =xi−1 if i�1 and x1� =x3. This coupling method
makes possible the chaotic synchronization of the three cells
for some values of the parameters R, �, and b. A physical
interpretation can be found for this kind of coupling, apart
from being a generalization of Pecora-Carroll6 master-slave
coupling. Asymmetry in a coupling models advection �i.e.,
transport in one direction� in a discretely coupled system. In
particular, the simple unidirectional �gradient� coupling,
K�xi−1−xi�, represents the completely asymmetric case with
only advection �and no diffusion�. Our coupling, Eq. �1�,
represents the case in which the coupling constant, K, is
made exactly equal to the R parameter. This has the advan-
tage in the electronic implementation of not introducing
more parameters to the system, which makes it easier to
calibrate and manipulate the setup, in addition to having a
straightforward implementation �cf. Sec. III�.

In previous studies18,19,21,33 some interesting phenomena
had been unveiled for this system, and here we put all these
behaviors in a unified framework.

A useful representation of Eq. �1� can be written in terms
of the discrete Fourier modes of the system, that are defined
in the following way, as a function of the oscillators coordi-

nates:
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Xk =
1

3�
j=1

3

xj exp�2�i�j − 1�k
3

�, k = 0,1 �2�

ith analogous expressions for Yk and Zk. Note that the mode
=0 is nothing but a simple average along the ring. Also it
ust be pointed out that working with the Fourier modes

Xk ,Yk ,Zk� is equivalent to working with the oscillators co-
rdinates �xj ,yj ,zj�. In fact, it is just a change from nine real
ariables to three real and three complex variables, and
herefore no information is lost.

It is a general principle that, when working with assem-
lies of identical oscillators, desynchronization occurs asso-
iated with the instability of some discrete mode of the
ystem.10,34 In this way �complete or identical� chaotic syn-
hronization is understood as a state where all transverse
odes �k�0� are identically zero and asymptotically

table.35 Also, the mode that determines the motion into the
ynchronization manifold �k=0� exhibits chaotic dynamics.
his means that each oscillator follows exactly the same cha-
tic trajectory, in our case inside the Lorenz chaotic attractor.
ue to the small size of our ring there is only one complex

ransverse mode k=1.
In the remainder of this section, we first introduce the

ifferent spatio-temporal structures that appear depending on
he parameters of the system. These structures correspond to
ifferent behaviors and are identified by means of numerical
omputations. Then, we present a brief qualitative explana-
ion of the general behavior and a detailed study of a route
hat links these structures.

. Lyapunov exponents and attractors

In previous studies,23 it was demonstrated that the com-
utation of the transverse Lyapunov exponents to the syn-
hronization manifold allows us to determine �approxi-
ately� the region of the parameter space where

ynchronized chaos is stable. Nonetheless, if one wishes to

haracterize better the spatio-temporal structures emerging

wnloaded 29 Sep 2006 to 130.206.76.175. Redistribution subject to AIP
from desynchronization, it is worthwhile to compute the
spectrum of Lyapunov exponents �LEs� for the whole set of
variables �nine in our case�. Since the LEs measure the ex-
ponential rate of growth along different directions in an at-
tractor, they can be used as an identification tool of qualita-
tive changes in the dynamics of the attractor.

The method used for the calculation has been the one
developed by Benettin et al.36 and Shimada and Nagashima37

and described in Ref. 38. For the orthonormalization process
we have used a modified Gram-Schmidt method. The inte-
gration of the system of differential equations �1� and the
copies of the linearized system has been done by means of an
adaptive step size algorithm based on a fourth order Runge-
Kutta method.39 A first characterization of the different be-
haviors of the system has been achieved by keeping constant
one parameter, b=3, and computing the four largest
Lyapunov exponents �LEs� as a function of the parameters �
and R.

The results are presented in Fig. 1, and were obtained by
computing trajectories of 8�104 t.u., after transients of
105 t.u. Then, using as a criterion the Lyapunov spectrum,
the different attractors have been characterized on the �R ,��
plane �see Table I for the correspondence between the
Lyapunov spectrum and the corresponding attractor�.
Thus, we find that, in the interval R� �29,38�, there is a

FIG. 1. Regions of the plane �R ,��, for b=3, where
different states are numerically found for a system com-
posed of three Lorenz oscillators coupled according to
Eq. �1�. Notation: FP, fixed point; SC, synchronous
chaos; CRW, chaotic rotating wave �subregion II exhib-
its a second LE above zero, i.e., hyperchaos, we took
10−3 as a cutoff to consider �2 positive�; T2, two-
frequency quasiperiodicity; PRW, periodic rotating
wave. The symbols “�” and “�” indicate the loci of R1

and RH �see main text�, respectively.

TABLE I. Correspondence between Lyapunov spectra and attractors. Fourth
to ninth Lyapunov exponents are negative in all cases.

Lyapunov spectra Attractor

��,�,�,�,¯� Fixed point
��,0,�,�,¯� Synchronous chaos
��,0,0,�,¯� Chaotic rotating wave I and III
��,�,0,�,¯� Chaotic rotating wave II
�0,0,0,�,¯� 3-Torus
�0,0,�,�,¯� 2-Torus
�0,�,�,�,¯� Periodic rotating wave
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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egion when R is small �denoted as FP in Fig. 1� where
ll the LEs are negative, which indicates that the three
scillators “collapse” to the same fixed point C±

�±�b�R−1� , ±�b�R−1� ,R−1� �the meaning of the sym-
ols “�” and “�” is explained below in this subsection�.
lso, there exists a region with synchronous chaos �SC�
here the Lyapunov spectrum contains one positive and one
ull exponents.

For larger values of the parameter R, the synchronized
tate becomes unstable through a soft “blowout” �nonhyster-
tic� bifurcation. This means that, as R is increased, more
nd more unstable periodic orbits �UPOs� embedded into the
ynchronous attractor become transversely unstable through
opf bifurcations, in such a way that above a particular
alue of R �depending on �� the synchronized state becomes
nstable on average �blowout bifurcation�.40 This bifurcation
s preceded by the phenomenon of attractor bubbling,41 that
ccurs when the system starts visiting transversely unstable
POs which makes the attractor size increase. The transition
ay be classified as soft, because the trajectory does not

epart significantly from the �unstable� synchronous state,
nd this indicates that instabilities of the UPOs occur through
upercritical Hopf bifurcations. This oscillatory instability
ives rise to an interesting spatio-temporal structure called
haotic rotating wave �CRW�.

CRWs arise in systems exhibiting a Hopf bifurcation not
n a steady state, as it is customary, but on a chaotic state.
he Hopf bifurcation takes place in the k=1 complex mode

transverse subspace�, with fixed point dynamics at the syn-
hronized state, leaving the k=0 chaotic synchronization
anifold qualitatively unchanged. Thus, close to the onset of

he bifurcation, region I, a CRW is the combined dynamics
temming from a chaotic dynamics in the synchronization
anifold with the oscillation introduced by the Hopf bifur-

ation, that is symmetric14 as it stems from the k=1 mode,
hat is present in the system due to coupling.

The CRW state in region I was first found for a ring of
hua’s circuits23 and later for a ring of Lorenz oscillators.19

n analogous behavior was found in Ref. 25 for coupled
aps in a ring. For this system, the CRW is characterized by
fast oscillation �compared to the time scale of the chaotic

scillation�, introduced by the Hopf bifurcation. The CRW is
ssociated with a phase difference of 2� /n between neigh-
oring oscillators �where n is the number of units in the
ing�, superimposed to the chaotic motion. We distinguish
hree regions with this state depending on the LEs. In regions

and III, there exists one positive and two vanishing
yapunov exponents �the degeneracy of this exponent is not

heoretically proved, so it is plausible that one exponent has
ery small magnitude although it is indistinguishable from
ero in practice�. In region II, instead, there are two �clearly�
ositive and one vanishing LEs.

At larger values of R we observe a small region that
xhibits two-frequency quasiperiodicity �T2�. The Lyapunov
pectrum does not contain any positive exponent, hence
haos has disappeared, instead there are two null Lyapunov
xponents which correspond to the two incommensurate fre-

uencies of the quasiperiodic regime. Finally, for large R we

wnloaded 29 Sep 2006 to 130.206.76.175. Redistribution subject to AIP
find periodic dynamics �PRW� and, accordingly, only one
Lyapunov exponent is zero, whereas the rest are negative.

It is interesting to notice that, in Fig. 1, there exists a
wedge-shaped region where a fixed point state replaces the
CRW dynamics. This is due to the fact that inside the stripe-
shaped region of the �R ,�� plane bounded by the � and �
symbols, the Lorenz system exhibits tristability: two fixed
points �C±� and the chaotic attractor. The fixed points be-
come unstable, though a subcritical Hopf bifurcation, at

RH =
��� + b + 3�

� − b − 1
, �3�

whereas, as explained by Yorke and Yorke,42 the chaotic at-
tractor is born from the unstable chaotic set at a boundary
crisis at some R1�RH �� fixed�. The value of R1 cannot be
found analytically, but it is easy to obtain it numerically,
because at this value there exists a double heteroclinic con-
nection between the fixed point at the origin and each un-
stable cycle surrounding C+ and C−.

The loci of R1 and RH on the �R ,�� plane are depicted in
Fig. 1 with “�” and “�” symbols, respectively. For the Lo-
renz system, the basin of attraction of the chaotic attractor is
much larger than the basins of C±. For this reason, in the
region bounded by the “�” and “�” symbols and the sym-
metric Hopf bifurcation �the diagonal line that separates the
SC and type I regions for ��19.25� the synchronized chaos
�SC� state is typically found, instead of fixed point behavior.
Synchronized dynamics occurs inside the invariant synchro-
nization manifold, and the chaotic state is reached for most
initial conditions. However, when the SC becomes trans-
versely unstable through the above mentioned symmetric
Hopf bifurcation that should lead to a CRW, the existence of
tristability strongly affects the dynamics. The potential CRW
becomes only a transient state beyond the instability of the
SC �plausibly the attractor touches its basin boundary�. This
explains the white, FP, wedge-like region for ��19.25 and
R�32. This wedge terminates at the line of “�” symbols as
the Lorenz system is no longer tristable for R�RH �the cha-
otic attractor is then the only attractor of the Lorenz system�.

C. Transitions along the line �=20

Once the different behaviors have been identified, our
goal is to perform a more detailed characterization of the
attractors that appear in the system, and in their transitions.
To make feasible the study we have varied R while the other
two parameters have been kept fixed: �=20 and b=3. Figure
2�a� shows the values of the four largest Lyapunov exponents
along a line for a slightly larger range of R than in Fig. 1.

In the right-most range of Fig. 2�a� the motion of every
oscillator is periodic in such a way that adjacent oscillators
exhibit a phase difference of 2� /3. This state is what we
denominate a periodic rotating wave �PRW� and is charac-
terized by a fast frequency. At R	39.25 this state undergoes
a pitchfork bifurcation giving rise to two symmetry related
PRWs. This transition occurs at the point where the second
Lyapunov exponent touches zero.

Figure 2�b� shows that, when R decreases, a couple of

Lyapunov exponents reaches zero at R	35.26, inducing a
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opf bifurcation leading to quasiperiodicity �in accordance
ith Fig. 1�. The new frequency does not exhibit any spatial
ependence and manifests uniformly along the ring, being
lower than the previous one. Also, it was demonstrated in a
revious numerical work33 that an additional Hopf bifurca-
ion leads to three-frequency quasiperiodicity, T3, that exists
n a very small interval of the parameter R �it is not large
nough to become visible in Fig. 1�. It can be seen in the
nset of Fig. 2�b� that a couple of Lyapunov exponents
eaches zero at R	35.0955 which precedes three-frequency
uasiperiodicity T3 at lower values of R.

At the left of the quasiperiodic domain, R�35.093 84,
he CRW domain is found. It may be seen in the left most
art of Fig. 2�b� and the inset of Fig. 2�a� that the zone of
RW with the largest values of R exhibits two vanishing LEs

at least, very approximately�. This region with degenerate
ero LE is what we call region III. Degeneracy also occurs in
egion I. The dynamics in region III roughly resembles an
ntermittent motion between the two former mirror T3. In
ontrast, region I is characterized by a uniform chaotic mo-
ion �the average of the three oscillators that follows a tra-
ectory very similar to that of a single Lorenz oscillator� plus
n oscillation with the known phase shift of 2� /3. Region II
hows intermittent jumps between the dynamics of regions I

IG. 2. �a� The four largest Lyapunov exponents of a ring of three unidi-
ectionally coupled Lorenz systems, Eq. �1�, along the line �=20 �see Fig.
�. The inset shows the LEs from second to fourth in the interval with CRW
ynamics. It may be seen that the second LE becomes slightly positive
hich indicates the existence of hyperchaos. �b� Detailed figure of the tran-

ition from PRW to CRW; the existence of three-frequency quasiperiodicity
3 is confirmed in the inset where three vanishing LEs exist. The Lyapunov
xponents have been obtained from the model Eq. �1�.
nd III. The behavior in region II, namely the transition from

wnloaded 29 Sep 2006 to 130.206.76.175. Redistribution subject to AIP
two zero Lyapunov exponents to a clearly positive and a zero
Lyapunov exponent is similar to the one reported in Ref. 43
for two coupled Lorenz oscillators.

At this point, once we have a general view of the system,
it is when we resort to the experiment to get more informa-
tion about these behaviors.

III. EXPERIMENTAL SETUP

In the work presented here the experiment is not only a
validation of the numerical results. Rather, both numerical
and experimental studies were developed in parallel and both
have interacted in a constructive way to achieve a more clear
view of the behavior of the system. The experimental setup
consists of a ring of three Lorenz analog circuits, represent-
ing Eq. �1�. The electronic circuit consists of three integra-
tors, one for each variable, and the nonlinear terms are rep-
resented using analog multipliers. The first step in designing
the circuit is to rescale both the three state variables x, y, and
z in order to fit within the range �−10 V,10 V� �a more re-
stricted range than that corresponding to the power supply,
�−15 V,15 V��, and such that the circuit operates in the fre-
quency range of around 1 kHz. Thus, the circuit is basically
the one described in Refs. 21 and 44, except that the time
scaled has been slowed by an order of magnitude, for reasons
explained below. The transformation applied to the variables
of circuit i is, thus, the following:

xi = xi/5, yi = yi/5, zi = zi/10, t = t/A, A = 102. �4�

This rescaling of variables leads to the following set of dif-
ferential equations, in which the variables, xi, yi, zi, are volt-
ages across the three capacitors of circuit i, and in which the
time is expressed in seconds,

ẋi = A��yi − xi�, ẏi = A�Rxi − yi − 10xizi� ,

�5�
żi = A�2.5xiyi − bzi� .

In Eq. �5�, ẋi=dxi /dt, ẏi=dyi /dt, and żi=dzi /dt, as the time
is expressed in rescaled units, and xi has the same meaning
as explained after Eq. �1�.

The results have been obtained by sampling with a Na-
tional Instruments NI–4454 acquisition board, that allows a
maximum sampling rate of 51.2 kSa/s �or kHz� simulta-
neously in its four available channels with a resolution of
16 bits. The possibility of sampling simultaneously the three
circuits used in our study is a very important feature in the
present study, as it allows a much better resolution of the
nine-dimensional phase space that describes the system.

The reason why the circuits have been slowed down
from the original implementation in Ref. 21 is to improve the
accuracy in the determination of the Poincaré sections pre-
sented in Sec. IV. Poincaré sections have been obtained from
interpolation of the digitally acquired data, and as the sam-
pling frequency is fixed, and the circuits have been slowed
down to minimize the error.

The spectra presented in Sec. IV consist of the power
spectral density �PSD� of signal x1�t� for different parameter
values. In these calculations a sampling rate of 25.6 kSa/s

21
has been used, and up to 2 =2 097 152 points have been
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cquired in the cases of three-frequency quasiperiodicity and
RW dynamics to study the low frequency component of

hese behaviors.

V. EXPERIMENTAL RESULTS

In this section, a survey of the different behaviors ob-
ained in our experimental setup is presented �for decreasing
alues of R�. For each behavior we show a temporal evolu-
ion of the x variable �in one or all the oscillators�, the power
pectral density of the x1 coordinate, and a Poincaré section
efined, in all but one case, by the following condition:

Z0 
 1
3�

i=1

3

zi = �R − 1�/10 �Ż0 � 0� , �6�

orresponding to the rescaled variable; for the original vari-
bles one would have R−1 on the right-hand side.

. Periodic rotating wave

The state denominated periodic rotating wave �PRW� is
ound for large values of R.21,22 This state is characterized by

fast periodic motion of the oscillators of the array, and
hase differences of 2� /3 between adjacent oscillators. It
an be considered as a motion where only the complex mode
=1 is active, whereas the k=0 �synchronous� mode is ap-
roximately at rest. If the ring were larger other modes could
anifest.45

It was shown in a previous paper19 and explained above,
hat although for large R there exists a centered PRW �whose
ynamics may be accurately described in analytic form46�,
hen R is decreased this state undergoes a pitchfork bifur-

ation and two symmetry related PRWs appear. The temporal

volution of the oscillators of the array is shown in Fig. 3�c�,
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and the 2� /3 phase differences among them can be clearly
appreciated. Also, in Figs. 3�a� and 3�b�, we show the
Poincaré section �different from that defined in Eq. �6� due to
the absence of appreciable motion for the k=0 mode� and the
power spectrum. For the Poincaré section we obtain, very
approximately, a single point, as expected for a limit cycle.
On the other hand, the power spectrum shows a peak at f1

=532.4 Hz and some harmonics.

B. Quasiperiodic attractors

A further decrease of R leads to a supercritical Neimark-
Sacker bifurcation of the symmetry-related PRWs. The
former limit cycles are substituted by quasiperiodic motions
on the surface of two �mirror� tori �T2�. In Fig. 4 this new
state is presented. The time scale of the new frequency f2 is
approximately on the same order of an isolated Lorenz os-
cillator and, opposed to the former frequency f1, it has no
spatial nature, i.e., it does no induce any phase shift between
the oscillators �see Fig. 4�c��. It can be seen in Fig. 4�a� that
the Poincaré section of the T2 is �quite accurately� a smooth
closed curve. The power spectrum, shown in Fig. 4�b�, ex-
hibits two incommensurate frequencies �f1 , f2� as well as lin-
ear combinations of them �f1− f2 , f1+ f2 , f1+2 · f2 , . . . � and
harmonics �2· f2 ,2 · f1 , . . . �.

In Sec. II we noticed that numerical simulations indi-
cated the existence of three-frequency quasiperiodic dynam-
ics �see also Ref. 33 for a thorough study of three-
dimensional quasiperiodic dynamics for this system�.
Nonetheless, years ago, it was stated by Newhouse, Ruelle
and Takens47 that small perturbations to the flow may con-
vert three-frequency quasiperiodicity to a chaotic flow on a
strange attractor lying in the 3-torus �T3�. Hence, the exis-

FIG. 3. Periodic motion �PRW�: experimental results.
�a� Poincaré surface of section for the system showing a
point. The representation has been carried out using the
complex mode representation of the system Eq. �2�,
where the axes correspond to the x variable, uniform
mode �k=0� and real part of the k=1 mode. The
Poincaré section has been defined by the condition:

Re�Z1�=1 with Re�Ż1��0. �b� Power spectrum of vari-
able x1�t� showing the main peak and harmonics. �c�
Temporal series of variable x in the three circuits show-
ing a 2� /3 phase shift between them.
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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ence of three-frequency quasiperiodicity—appearing, for ex-
mple, through a secondary Neimark-Sacker bifurcation—
as conjectured to be unlikely in real systems for which

mall inhomogeneities and noise are unavoidable. However,
variety of numerical simulations48,49 and some experiments

usually involving periodic forcing,50 but see Ref. 51� have
hown that stable three-frequency quasiperiodic motion is
ossible.

In our system, apart from the numerical evidence of
hree-frequency quasiperiodic behavior �cf. Sec. II C and
ef. 33� there are other arguments that allow us to under-

tand why a T3 can be stable in this system. Namely, Rand52

roved that in systems with rotational symmetry there is sup-
ression of lockings in modulated rotating waves. This is
ecause one can make a coordinate transformation to a sys-
em with one less rotation, i.e., in the transformed setting the
ystem only has one frequency and exhibits no lockings. In a
ifferent context, this result allows to understand the absence
f lockings in meandering spiral waves in homogeneous ex-
itable media.53 As our system is discrete, this symmetry
ould be only exact in the continuum limit, but some inhi-
ition of the lockings �usually precursors of the transition to
haos� should be expected. A second factor that is also ex-
ected to help in keeping stable the T3 attractor in a range is
he disparity in the frequencies of the torus, that should nar-
ow the corresponding Arnold tongues, and, thus, make reso-
ant interactions �that destroy the torus� less likely and
fficient.

In our experimental setup it is difficult to discern unam-
iguously that we have observed T3 behavior, which is true
lso to some extent in the above mentioned experimental
eferences, especially because the parameter range in which

t is observed in the numerical simulations, cf. Sec. II C, is so
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narrow, namely 35.093 84	R	35.0955. Although for this
narrow range one should be able to resolve the phenomenon
with very fine resolution, and also taking into account the
unavoidable sources of noise and tolerances in the system,
we present now results that are compatible with the existence
of three-frequency quasiperiodicity in our electronic setup.
Nonetheless, the narrowness of the range in R found in the
numerical study makes the analysis of the electronic setup in
terms of three-frequency quasiperiodicity not absolutely
univocal. The 3-torus appears as a very slow modulation of
the former 2-torus �see Fig. 5�c��. Looking at the Lissajous
figure on the oscilloscope, it looks like a torus whose size
oscillates periodically.

The best way to characterize the 3-torus is to compute
the fast Fourier transform to identify the third frequency. The
problem arising due to the onset of a very small frequency
�on the order of 2 Hz� is solved using the data acquisition
board, that allows us to collect a large number of data.

The result is shown in Fig. 5�b�, where f1 and f2 are the
former frequencies and f3 is the third �and lowest� frequency.
This one is about two orders of magnitude smaller than f2, in
a similar fashion to the behavior found in some numerical
works �in a normal form of two interacting Hopf bifurcations
with symmetry54 and in a forced Taylor-Couette flow49�.

It is interesting to note the effect of the new very low
frequency on the power spectrum. In the 2-torus case, there
are linear combinations of the two incommensurate frequen-
cies giving sharp peaks �see Fig. 4�b��. However, for the
3-torus the existence of an additional frequency much
smaller than the other two makes to appear many peaks cor-
responding to linear combinations of the former peaks with
the very low frequency. As a result, this causes the peaks

FIG. 4. Two-frequency quasiperiodic motion: experi-
mental results. �a� Poincaré section for the system
showing a closed line. The representation has been car-
ried out using the complex mode representation of the
system �see the caption of Fig. 3 for an explanation�,
where the axes correspond to the x variable, real and
imaginary parts of the k=1 mode. The Poincaré section
has been defined by Eq. �6�. �b� Power spectrum of
variable x1�t� showing the two incommensurate fre-
quencies and linear combinations of them. �c� Temporal
series of variable x in the three circuits showing the two
oscillatory components.
corresponding to frequencies f1 and f2 �and linear combina-
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ions of them� to broaden; as may be seen in Fig. 5�b� �notice
hat we are using a logarithmic scale for both axes�. It is
ifficult to get a sharper peak for f3, because due to storage
imitations in the data acquisition process we could not use
ore than 176 periods of the low frequency.

We can also face the problem of the geometric visualiza-
ion of a 3-torus. Note that its dimension is three, the same as
ur space �R3�. Also the attractor of the CRW regime has a
igh fractal dimension. Therefore, to visualize these attrac-
ors a Poincaré section is very useful because it reduces the
imension of the attractors in one unity. It is shown in Fig.
�a� that the result of taking the Poincaré section of the
-torus, can be recognized as a 2-torus �cf. Fig. 2 of Ref. 33�.

. Chaotic rotating wave

This section summarizes the results for the three regions
see Figs. 1 and 2� where the CRW is found. Recall that a
RW is defined as a state where chaotic motion exists at the

ame time as an oscillation with phase difference of 2� /n
etween adjacent units.

If we start our path at some R with the 3-tori attractors,
e find that as long as the parameter R is decreased the

hree-tori become larger and larger. Then, at some point both
irror tori seem to merge to give rise to the CRW, such that

rajectories visit both sides of the phase space. Nevertheless,
careful numerical examination indicates that there exists a

ery small interval of R where the chaotic and the 3-tori
ttractors coexist. This is not surprising because, as we men-

ioned above, a single Lorenz system also exhibits multista-
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bility in a small interval of R. The mechanism creating the
�high-dimensional� chaotic attractor is a global bifurcation
that was explained in detail in Ref. 55.

In region III the trajectory of each oscillator is similar to
that found for the 3-torus, but now, there are jumps from one
to other side of phase space. That is, the trajectory seems to
jump between the former 3-tori. This can be seen in Fig.
6�c�. The Poincaré section is shown in Fig. 6�a� where the
two lobes appear in both regions corresponding to the �pre-
vious� symmetry-related 3-tori. The attractor looks blurred
because the dynamics in each lobe is more complex and also
due to the jumps between both lobes. Note that according to
the Kaplan-Yorke formula56 the chaotic attractor has an in-
formation dimension above four �see Fig. 2� and therefore
the Poincaré section saturates R3. Also, in Fig. 6�b�, as ex-
pected for chaos, we observe a wideband power spectrum.
The peaks of f1 and f2 are clearly distinguishable in region
III as, at least close to the onset in which the high-
dimensional attractor appears, chaos is associated to jumps
between the two lobes, and the typical frequency of these
jumps is quite low, of the order of f3 �cf. Fig. 6�c��.

Region I, at the left most part of the interval of R where
the CRW is found, shows a dynamics previously reported in
Ref. 19. The motion is apparently very simple because the
trajectory of the average of the three oscillators �mode k=0�
is very similar to that of an isolated Lorenz oscillator �see
Fig. 7�c��. Superimposed to that chaotic motion, every circuit
exhibits an oscillating component with a phase difference of
2� /3 between consecutive oscillators.58

Region II is clearly hyperchaotic �inset of Fig. 2�a�

FIG. 5. Three-frequency quasiperiodic motion: experi-
mental results. �a� Poincaré section showing the densely
filled surface of a 2-torus. The Poincaré section has
been defined by Eq. �6�. The axes are built with the x
coordinate: uniform �k=0� mode, real and imaginary
parts of k=1 mode �see the caption of Fig. 3 for an
explanation�. �b� Power spectrum of variable x1�t�. Be-
sides the two previous incommensurate frequencies,
there is an additional third frequency f3	2 Hz
 f1 , f2.
Interaction with this frequency �linear combinations�
causes broadening of the peaks of the two pre-existing
frequencies. A log-log representation is used to better
resolve the peak associated with f3, otherwise it would
be indistinguishable from the axis of ordinates. �c� Tem-
poral series of variables x for the three circuits; the
third frequency is the envelope that modulates the am-
plitude of the two other oscillations. Notice the different
time scale with respect to Figs. 3�c� and 4�c�.
shows an extra slightly positive LE�. The dynamics exhibits
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ome kind of intermittency between the behaviors observed
n regions I and III. One may speculate the existence of an
nterior crisis in the attractor. It may be seen in Fig. 7�b� that
he long intervals in one of the sides of the attractor �like in
egion III� are interrupted by intervals where both sides are
isited in a comparably faster way �like in region I�.

. CONCLUSIONS

In the present work we present a joint experimental and
umerical study of the route that connects some patterns oc-
urring in a ring of three coupled Lorenz oscillators, involv-
ng, namely, periodic and chaotic rotating discrete rotating
aves, and also synchronized chaos. The occurrence of the
ifferent behaviors has been first characterized in parameter
pace by analyzing the largest Lyapunov exponents. These
ehaviors have been then identified by direct analysis of the
xperiment, with the aid of power spectrum and in more
etail through the use of Poincaré sections.

A brief synopsis of the observed behaviors in a line in
arameter space �keeping � and b constant, and increasing
� is as follows. Complete synchronization among the cells
f the ring becomes unstable through a Hopf instability that
s characterized by a new fast frequency that induces a phase
hift of 2� /n between adjacent units. It is to be stressed that
ust above the loss of synchronization �region I� two
yapunov exponents vanish �at least at our precision level�,
nd only when R is increased further hyperchaos is found
region II�. The hyperchaotic regime exhibits an intermittent
ehavior between characteristic dynamics of regions I and
II. Curiously enough, region III �existing at larger values of
FIG. 6. Chaotic rotating wave, region III: experimental
results. �a� Poincaré section for the system with the at-
tractor compound of the two lobes �see Figs. 3 and 5 or
an explanation of the coordinates�. The attractor is
blurred because of the complexity of the new state com-
pared to the former 3-tori. The Poincaré section has
been defined by Eq. �6�. �b� Power spectrum of variable
x1�t�. There are still two peaks at the frequencies f1 and
f2. �c� Temporal series of variable x for one circuit
showing the jumps between the two lobes.
� exhibits, again, two vanishing LEs. Finally, chaos disap-
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FIG. 7. Chaotic rotating waves: experimental results. As the parameter R is
lowered the system passes from region III to regions II and I, as was ex-
plained before �see Figs. 1 and 2�. �a� Time series for a value of R slightly
smaller than in Fig. 6�c�. It corresponds to approximately the transition point
between regions III and II. �b� Region II. The motion is intermittent, alter-
nating dynamics between characteristic motions of regions I and III. This
results in two positive Lyapunov exponents. �c� Region I. Now, there is a
chaotic motion—with frequent jumps between both lobes—similar to the
Lorenz attractor �with a superimposed oscillation that is not visible in this

time scale�.
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ears giving rise to three-frequency quasiperiodicity. Later
n, two consecutive �inverse� Neimark-Sacker bifurcations
ive rise to a very coherent �symmetric under Z3�S1� state:
periodic rotating wave. Therefore we have shown here a

oute between two states �complete chaotic synchronization
nd periodic rotating wave� that have been studied in differ-
nt contexts, as we explained in the Introduction.

The close match between the numerical predictions and
he experimental results clearly indicates that the results ap-
ear to be robust under the presence of the unavoidable noise
resent in a physical experiment. This is true even when the
ystem is highly nonhyperbolic, e.g., in the parameter re-
ions in which one positive and two zero Lyapunov expo-
ents are present, the attractor contains an infinite set of un-
table two-dimensional tori. This close match between theory
nd experiment is also reassuring taking into account that
otentially the system is also a candidate to being subject to
bstructions to deterministic modeling,30 as another possible
anifestation of nonhyperbolicity.
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