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Chapter 1

Preface

YNCHRONIZATION is the dynamical process by which two or more oscillators
S adjust their rhythms due to a weak interaction [1]. Part ef tihiversality of
this phenomenom comes from the vast variety of systems aldggderience this
effect. By just thinking about the many different objectegant in Nature that
periodically repeat its state, i.e., oscillate, and thaséhsystems are generally not
isolated but interacting with each other, it is easy to resythat synchroniza-
tion must be acting on a huge number of structures at diffesesles [2]. From
an audience in which people tend to accommodate their ctapsund in unison
[3], to thousands of pacemaker cells in our heart tissudrgpikeir action poten-
tials together to induce a beat in our heart every few se¢cdhdsobjects able to
experience sync cover a wide spectrum [4]. Today, synchation is studied in
hundreds of examples of engineering and physical scieasesgll as in the less
understood and challenging biological and social entjtie4, 5].

To explain the basics of synchronization let us take a biefice to a modern
adaptation of one of the earliest examples in which sync wes moticed more
than three centuries ago. The historical setup consistedset of two pendulum
clocks hanging from a common support [1]. In a more recentrausical version
of such an experiment we consider two almost identical pemdunetronomes
resting on a light wooden board which lies on two soda cans Té setup can
be seen in Figure 1.1. Usually, one can set any of the metresdmbeat from
few decades to hundreds of times per minute. By prescribligigtly different fre-
guencies of oscillation to both metronomes, one expectshka pendula would
remain swinging at different rhythms. However, when bothetkeepers sit on the
same movable platform, it is usually observed that theimfty uncorrelated au-
dible ticks start to approach in time, and eventually thegt ep being heard in
unison. Then, we say that the metronomes have synchronikled.almost un-
noticeable motion of the base is responsible for the monmemtansfer, or “com-
munication”, between both metronomes in such a way thatuallys favors the

1



2 Preface

simultaneous swing of both pendulum bobs. How long it takesst/stem to reach
this state and whether this sympathy of swings occurs wétpdndula bobs mov-
ing toward the same or opposite directions, are questiomsevholution depends
on the details of the system, such as the mass of the pendiilithaririction of
the base. But the important point here is that this effecyisdbomeans a matter of
chance. It develops for a determined range of disaccorckifréyuencies of both
metronomes before coupling them, and when it appears iedtabmall perturba-
tions of the system. It is this robust capability of a precisgching of oscillations
between different systems what the concept of synchraoizé about.

Figure 1.1. A pair of sim-

ilar metronomes laying on
a light wooden base is a
very simple and illustrative
system demonstrating syn-
chronization. The horizon-
tal movement of the plat-
form is the responsible for
coupling the motion of both
oscillators. After Ref. [5].

Since it was first formally described by Christiaan Huygemd 665 [1] syn-
chronization, understood as an agreement or entrainmeritydims, has been
extensively reported in very diverse fields. It is exploitedhightech applications
in devices such as electric power generators or Josephsotious SQUIDS[1].
By the same phenomenon, chemical oscillations are able¢otoained to a given
period, as in the famous Belousov-Zhabotinsky reactiorjestitio optical forc-
ing [1]. In other order of complexity, physiological leve$ different hormones
and proteins are governed by biological clocks, which ate abadjust and lock
their rhythms to the frequency of an appropriate externadlutegion. In a clear
example, circadian rhythms in our bodies are consequerfci® @daptation of
our biological clocks to the 24-hours day-night oscillatiof variables such as
temperature or illuminance [1,4,5]. Spectacular casegraftgonization are also
found in large populations of living organisms. The simidtaus chirp of some
singer crickets in a house yard or the coincident flashingn@fisands of fireflies
(Figure 1.2) in the riverbanks of southeast Asia have amtmedcientists and the
general public for centuries [5]. Sometimes, however, fifgearance of synchro-
nization has unexpected side effects that are not funny.dhdts opening day, a
lateral excitation of the London’s Millennium Bridge waslurced by the hundreds
of people‘s synchronized walking pace. The amplitude ofdbeillation of the

1SQUID stands for Superconducting QUantum Interfering Benand it is the most sensitive
magnetic field detector known to man.



bridge exceeded seven centimeters and it was enough talsmampleasant and
even scaring feeling among the pedestrians [5].

The examples commented before :
concern very diverse systems and nev-
ertheless, all of them share the charac-
teristic of falling into the category of ei-
ther periodic oscillators or rotators. If
this was the full story, even occupying
an important place in science and tech-
nology, synchronization would have not
become one of the hotest research top-
ics in nonlinear science as it is consid-
ered today. A great boost that was to
shake the investigation in synchroniza-
tion came in the early nineties, from
probably one of the more unexpected
ways.

Figure 1.2. Thousands of fireflies from the
In February of 1990, Lou Pecora and Lampyridaefamily flashing simultaneously

Tom Carroll, from the US Naval Re- iy acave in New Zealand.

search Laboratory at Washington D.C.,

published in Physical Review Letters a paper entitled “®yoization in Chaotic
Systems” [7]. By that time, just to have in mind the idea of@yonizing two of
such systems could be easily qualified by any expert in thet dih hopeless task.
Chaos is a dynamical regime in which a system becomes eXiregmsitive to ini-
tial conditions and reveals an unpredictable and randkenbiehavior, even though
the underlying model of a system exhibiting chaos can bermtéstic and very
simplé. If there was a system challenging the capability of syneizing that
was a chaotic one. And yet, Pecora and Carroll were right.y Deenonstrated
that chaotic synchronization could be achieved by drivingeplacing one of the
variables of a chaotic system with a variable of anotherlainchaotic device. A
pair of Lorenz systems, being considered as one of the meatligamatic models
in chaos theory, was selected in their paper to numericatlygpchaotic synchro-
nization for the first time.

The illustration of the convergence of two chaotic trajee®to the same val-
ues opened a new perspective to fundamental questions jmetieusly indepen-
dent chaos and synchronization themes. Applications, erother hand, found
in the newborn chaotic synchronization a promising toole@akploited in spread
spectrum communications and cryptography. In this ladd,figle main idea con-
sists of hiding or encrypting a message into the noise-likeet of a chaotic output
and use the chaotic synchronization property by an authdniart to recover the
message. The masking of the message to be encoded is userddiyned at the

20nly three nonlinear ordinary differential equations cerwne non-invertible map are enough
to produce a chaotic flow of data in a computer.
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physical layer by the “mix” of the signal with a chaotic camrgenerated by a non-
linear element. After the transmission over an appropgat@munication chan-
nel, the recovery of the message is based on the synchrionizgtenomenon, by
which a receiver, quite similar to the transmitter, is alolegproduce the chaotic
part of the transmitted signal. Then, by a proper comparigdhe input and out-
put at the receiver, an efficient decoding of the messageegpiiormed. In 1993,
two researchers from the MIT experimentally demonstratedatorking principle
of this private communication scheme [8]. They used analegt®nic circuits
emulating the behavior of two chaotic Lorenz systems. H@&wne®iectronic cir-
cuits suffer from severe drawbacks that make them unsaeitiaolpractical com-
munication schemes. Electronic circuits have in generas#ricted bandwidth
limited to a few tens of kHz, and moreover their output sigsahot suited for
modern communication transmission lines based on optlwaldi A natural ques-
tion was then, is there any source with a large bandwidtteretly nonlinear and
ready to be used in real communications standards?

The answer had five letters, LASER. Since May 1960, when Tdreo#.
Maiman succeeded for the very first time in History to maimtailaser action
in a ruby crystal, these devices have truly revolutionized industries sisctoan-
munications or medicine. In 1994, Pere Colet and Rajarskiviwrking then at
the Georgia Institute of Technology, proposed a solidedter system to demon-
strate synchronization and message encryption in theabpkienain [9]. However,
very soon the attention moved toward another class of lasech more promising
for this and other applications in consumer electronicsiafmdmation technology,
the Semiconductor Lasers (SLSs).

NS \ TN While in the beginning of the laser
3 ry era the dream of any laser scientist was
A \\% B to achieve a stable, high-intensity and
RN Y spectral pure laser beam, the modern
Q perspective today is to promote the un-
| ' derstanding and control of the laser in-
stabilities, i.e., deviations from its con-
tinuous wave (CW) emission. In this re-
spect, it took little time to realize that
Figure 1.3 Typical semiconductor laser g| s are nonlinear dynamical systems able
with its package capsule. to generate a rich variety of behaviors
and that we could actually take a great advantage from it.gEmeration of ultra-
short pulses, all-optical processing of information, ticeeof carrier signals in the
microwave range, or cryptography based on chaotic comratioits are just a few
examples of applications that benefitted from our presemirabon the dynamics
of lasers. The scenarios leading to dynamical instatslitea SL are diverse.
Either by modulating its injection current, injecting ligimto its active material,

3Interestingly several investigators though to have demnatesi by that time that laser emission
could not be generated with ruby as an amplifier medium.



or feeding back part of the emitted light, a SL is capable dfileking dynami-

cal instabilities. These cases are paradigmatic examphesena self-interaction
or unidirectional influence on a SL leads to a complex dynahtehavior. For-
tunately, they are not the only options to explore the exgitproperties of the
dynamics of lasers.

This work is devoted to the investigation of the instatahtidue to mutual in-
teraction between two SLs. The reasons for the conveniehsech a study are
multiple. First, under the nonlinear dynamics vision, ttisfiguration serves as
an excellent testbed model for one of the most ubiquitousga®es in Nature, i.e.,
the mutual interaction of two oscillators. It is worth to edhat the reciprocal or
bidirectional action between two systems should not beidered just as a double
unidirectional problem. The intuition gained in studiesuofdirectional schemes
can easily fail when applied to a bidirectional configuratitn a mutually coupled
situation, for instance, the time the signal needs to cooma fine system to prop-
agate up to the other might become a critical parameter. i§hige case for SLs.
Due to the huge speed of the light, two SLs a few centimeteag awolve interac-
tion delay times of the same order than the time scale of thdyB8amics, typically
in the subnanosecond range. The fact that these two timessaed comparable
makes the interaction delay time an extremely importansictemation in the qual-
itative and quantitative behavior of the system. Secoi the applications point
of view the study of the instabilities arising from the cdnglof several SLs can
produce some practical benefits. The coherent summationeobdcillations of
the electric fields of many SLs has been used since years mpbesivay to obtain
high-intensity laser beams, while locking is a key phenoonen synchronization
that is of interest in applications such as frequency seatibn and wavelength
tunability. Optical bistability is another feature pres@mthe mutually coupled
scheme of two SLs and its use is of central importance fooatilcal information
processing techniques. Finally, a better understandirapabtic synchronization
in bidirectionally coupled arrays of SLs can lead to new sgdaad improvements
in applying optical chaos to encryption purposes.

What type of dynamical instabilities will arise when coumgjitwo or more
similar SLs? Under what conditions will these instabisitiee able to come into
sync? How does a delay in the interaction between two of systieimis affect their
synchronization? How do the number of units in an array of &dthe topology
of the network of connections influence their state of syndicWWfeatures of syn-
chronization are model-independent and which are specifteet details of the SL
nature? Certainly, with such interesting questions sorfwetsfhave already been
made in order to explore the instabilities in mutually cadpktonfigurations of
lasers [10-12]. However, a general overview of the mechamisf synchroniza-
tion in the presence of a time delayed interaction is stiflassary. Essentially, the
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aim of this thesis is to contribute to a satisfactory answehé former questions
and some related aspects. A principal objective is therrattktthe routes of the
emergence of complex instabilities arising from the muinigraction of SLs and
study their synchronization properties.

To successfully accomplish this goal, it is necessary tdyasaappropriate
models of semiconductor lasers under the nonlinear dyreparspective. Conse-
guently, in the next chapters of this thesis, the necessaryepts and tools to carry
out this task are developed. Starting by defining what syorghation means and
identifying the requirements that are needed to call theisgneous variation of
two variables synchronization, it is proceeded with thesprngéation of the different
hallmarks and measurements of sync (Chapter 2). The neptarhia dedicated
to the study of delay-differential equations (DDE) and tte¢ability. This type of
equations naturally appears in our modeling of schemesugiled SLs and their
understanding and manipulation is basic for any analydiseomodels. The fourth
chapter collects a short description of the most populartétions occurring in
dynamical systems. Finally, a summary of the basics of SLdatlireg and dynam-
ics is presented in Chapter 5.

The description of the subsequent chapters proceeds aw$oll

e Chapter 6. This chapter investigates the dynamics of armsystmsisting
of two SLs with an optoelectronic interaction. In this tygecoupling the
output light from each laser is converted into a photocuraen the resulting
electronic flow is used to drive the bias current of the otHerl® a similar
way, a delayed self-interaction is introduced through albeek loop. The
feedback strength and delay time are quantities that datieodynamical
state of the uncoupled SLs. By changing the value of thessnpeters one
can tune the laser optical intensity to operate in a CW stet@|late, emit
short pulses, or even behave in a chaotic way.

First, an appropriate modeling of the system to describé&tigdynamics
up to the required temporal resolution is needed. The wargneisses with
the application of bifurcation theory to the dynamical systresulting from
the model. This analysis is sometimes far from trivial duthtbappearance
of delayed variables in the equations. When possible, aoalylescriptions
of the regions in the parameter space where a given ingjabddivelops are
reported. If not, extensive numerical simulations aregrened to charac-
terize and illustrate specific phenomena, like the queigcbimscillations in
the system due to their delayed interaction, also known eattdby delay”
effect [13, 14], or some symmetry-breaking events. Biftiotadiagrams
and the computation of the cross-correlation function aildgtt phase are
used to evaluate the synchronization dynamics of the syspan variation
of the coupling rate and delay time. Still in the synchroti@aissue, the



Arnold tongues’ dependence on the delay time is numericiponstrated.

Laboratory experiments regarding the route to chaos anttgegth by de-
lay” effect were performed in collaboration with the Elécat Engineering
Department of the University of California, Los Angeles (L. These
results are used to check the corresponding theoreticahamarical pre-
dictions and motivate further investigation of the system.

Chapter 7. The optical field description of a typical EdgeHingy Laser
(EEL) is basically scalar. These devices generally emit single and
well defined polarization state and the dynamics of the apimtensity fol-
lows the one of the carriers number. How two vectorial oatlls behave
and synchronize under their bidirectional interactiorhieréfore a question
that one cannot answer by studying typical EELs. Anothegrlasructure
with more degrees of freedom is required for such studiesticét-Cavity
Surface-Emitting Lasers (VCSELS) are, on the other hanaemely inter-
esting and useful devices that can help us in this respedir Tirain char-
acteristic is that they lase in the orthogonal directionhi® junction plane.
A direct consequence of this feature is that their polaiopadirection is not
fully fixed. They usually emit linearly polarized (LP) ligatong one of two
orthogonal preferred directiong éndy) due to the weak material and cav-
ity anisotropies [15]. VCSELSs are then, excellent candigdb study the
synchronization properties of vectorial oscillators. frthe nonlinear dy-
namics point of view, this type of lasers has also the adgantd suffering
from instabilities not easily found in an isolated EEL, s@shpolarization
switching (PS) and an inherent polarization bistability. this chapter the
nonlinear dynamics of two bidirectionally linked VCSELssitudied. This
time, however, the interaction between the two lasers is@mdo be of
coherent nature. Each laser is subjected to the direct ilnggaction of its
counterpart.

After adapting a well known model of a solitary VCSEL to takeoi ac-
count the mutual influence between the lasers, the origihefiS induced
by the mutual coupling of two VCSELSs is presented. The exathmanism
is explained in terms of the bifurcations that the fixed poioftthe system
undergo. A characterization of the bistable PS is performithl views to
fast switching applications. The study of the effects of aatignement be-
tween the two eigenaxes of the coupled VCSELSs results irdthan type of
PS which can be induced by rotating one of the VCSELSs withees the
other. Moreover, by this rotation stable elliptic polatiaa modes are found
to be stable in this condiguration. Finally, under the iteml hypothesis of
the non-existence of anisotropies, the synchronizatiothefpolarization
dynamics of two bidirectionally coupled VCSELs is reportdd this case,
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both polarization vectors diffuse around the equator ofRbhicaré sphere
because of noise sources. However, computation of the-corsslation
function between the Poincaré components of both VCSElesats a clear
entrainment between them.

Chapter 8: In an ensemble of interacting systems, as imuoatathe dy-
namics of the individual agents is the network of connestitivat link the
nodes. It is natural then to ask how the synchronization véadk like in
an array of three or more SLs with different type of connetioln 1990,
Herbert G. Winful and Luftur Rahman [16] already demonsulathaos syn-
chronization in a linear array of three mutually coupled SLisey observed
the identical synchronization between the first and thisgia in the array,
while the temporal traces of any of the extreme lasers andeh&al one
remained uncorrelated. A few years later, Rajarshi Roy afldmorators
[17, 18] conducted experiments in 1-d and 2-d arrays of ddiecoupled
Nd:YAG lasers, in search for synchronization patterns ssitbe array. In
all these setups, however, the semiconductor or solig-sésers interact
through the overlap of their evanescent electric fields. tRese cases the
coupling is instantaneous. Then, some immediate questiopup: how
does a delay in the interaction between the lasers mod#ypibture? What
type of synchronization solutions will be obtained? Is thenber of lasers
in the array a critical parameter in the sync structure?

Here, we analyze the behavior of arrays of three up to six Sutiatly
interacting with a finite time delay to provide an answer ® filrmer ques-
tions. Computation of the cross-correlations index as atfon of coupling
strength and other parameters is performed for two diftenetworks of
connections; the open-end and loop configurations. Synymedisons show
up to be responsible for the spatial distribution of the syanization solu-
tion.

Chapter 9: The main contributions and conclusions to thikwoe summa-
rized. Future perspectives of the study of synchronizadiot dynamics of
lasers is also conjectured in this section of the thesis.
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Chapter 2

An overview to
synchronization

HE fundamentals of the synchronization phenomena, whichbilitudied in

forthcoming chapters for interacting semiconductor Isseere first noticed
by the great Dutch scientist Christiaan Huygens as early6@5.1While sick and
staying at bed for a couple of days watching two clocks hapgin a common
support, Huygens observed “a wonderful effect that nobamyidchave thought
before” and which later on in his memoirs he described as

... Itis quite worth noting that when we suspended two cleokson-
structed from two hooks embedded in the same wooden beamothe
tions of each pendulum in opposite swings were so much ireamat
that they never receded the least bit from each other andatedsof
each was always heard simultaneously.

This historical example of synchronization and many otlemmmena (as the
synchronized dynamics of mutually-coupled lasers) canroistood within the
unifying framework of the nonlinear sciences. We will staytdefining what we
mean by synchronization in the language of the nonlineaantycs.

2.1 Definition

The modern definition of synchronization is adjustment of rhythms of oscil-
lating objects due to their weak interaction Before going further in the expo-
sition of the main features of sync, first, it is important t@ke clear what we
exactly mean by concepts such as oscillating object, rhytnweak interaction.

11



12 An overview to synchronization

Self-sustained oscillators

Strictly speaking, synchronization is only properly defirfer a specific class of
dynamical systems, namely nonlinear dissipative selfasusd oscillators. One
should note that this statement is not so restrictive asghtréeem.

Dissipation of energy occurs in most of macroscopic praeeasd it is respon-
sible for the appearance of attractors in the phase spacdyofaanical system. A
limit cycle, i.e., an isolated closed curve in the phase spiscfor instance the at-
tractor associated to the motion of a dissipative periodiiliator. Quasiperiodic
and chaotic behavior develop on more complex geometridénoa living in the
phase space, as the torus and the so-called strange afiraetpectively. The
appearance of such attracting structures is fundament#hdosystem to “forget”
about its initial condition and make its motion stable ursleall perturbations. A
conservative system, however, cannot stand as an adegsteption of stable
oscillations. As soon as the periodic movement of a contieevaonfiguration
is perturbed there is a variation in the energy of the systBure to the need of
conserving the newly acquired energy level any spontaneziusning to the old
oscillatory orbit is strictly forbidden. Moreover, the dimearity of the system is
a necessary condition to sustain stable oscillations. dridessipative systems are
unable to maintain oscillations with a constant amplitude.

On the other hand, a self-sustained oscillator mainly diffeom a driven one
by the fact that the former is an autonomous system, wheheakter shows an
explicit temporal dependence. Indeed, the periodicalifigran a driven oscilla-
tor imposes a “clock” on the dynamics that makes its motiorth@noscillatory
cycle being anchoraged or pinned to the external force. Amnaerjuence forced
oscillators are not able to experience synchronizatioth aitother system. Self-
sustained oscillators, however, can easily shift theialion or “phase” within the
oscillatory loop and adapt their rhythms of oscillations.

Therefore, synchronization is mainly studied in regularigdic) and com-
plex (chaotic or quasiperiodic) self-sustained oscillatio dissipative dynamical
systems. The peculiarities of synchronization in noiskied oscillators will be
presented in the following sections.

The rhythm of oscillations

The main attribute of the rhythm of a given oscillatory objiscthe characteristic
time it takes the system to repeat a characteristic evemta lperiodic oscillator,
this characteristic time is obviously given by the periodta oscillationT. The

inverse of the period, the cyclic frequengy= 1/T, is the principal quantifier
of the rhythm of a self-sustained oscillator used alongwusk. Since a chaotic
oscillator never repeats its state the characterizatiats ohythm must be refined
in this case. Thinking about a chaotic waveform as a seriegadés with different
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amplitude and period, it is possible to define the mean frecpef the chaotic

process as the number of cycles within a large interval o tifor noise-induced
oscillators one can define the rhythm of the oscillationshasftequency of the
transitions between different states of the system. Thuthe stochastic bistable
oscillator the “frequency” is defined as the inverse of tharahteristic switch-

ing time between the two stable states. When a local potetescription of the

bistable problem is available this frequency is sometinoesputable from the po-
tential characteristics and noise intensity. The invefdise frequency is usually
known as the Kramers’ time.

The strength of the interaction

The interaction or coupling between two oscillators caruoticrough rather com-
plex mechanisms. Nevertheless, there is usually a smabfggarameters that
controls the intensity of the interaction, namely the coupbktrength. Thus, the
coupling rate regulates how strong an oscillator affeatsntiotion of another. Of
course, the mutual interaction need not to be symmetric. edteeme case of
asymmetric coupling corresponds to an unidirectional erfee of one oscillator
on another. In any case, when the coupling strength is sagstimat it implies
severe restrictions on the degrees of freedom of the cordp®gstem, and as
a result the motion of the two subsystems becomes necgseaifled, the syn-
chronous motion of both subsystems becomes trivial. Lgosmbaking, we talk
about a true synchronization effect only if the couplingesgrith is weak enough.
The frontier between a weak and strong coupling is not alvetger. As a rule of
thumb we will say that the interaction is weak, and consetijyeone can speak
about the appearance of a synchronization process, if thedirction of a cou-
pling meets two requisites. First, it must not qualitativehange the behavior of
the subsystems compared when they were isolated. And seeeen coupled the
individuality of each subsystem should be maintained.

In conclusion, synchronization can occur if:

e the systems are able to oscillate by their own, i.e., whelatiso both sys-
tems exhibit stable self-sustained oscillations;

e the adjustment of rhythms between oscillators is achieved weak inter-
action.

Upon the requirement of such conditions, some phenomenarthduce a cor-
related variation of two variables must be disregardedussgynchronization pro-
cesses. This is the case, for instance, of the resonancecefifinear oscillators.
Another example is the synchronous variation of couplmdiced instabilities.
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When isolated these systems remain stable, and it is ordy #ifé introduction
of a coupling term that they develop some kind of dynamicélavéor. This phe-
nomenom is preferred to be called entrainment of osciltati@ther than sync.

The physical reasons why some coupled dynamical systerdstaesync are
as diverse as the systems themselves. In a more abstracthewever, one can
track this predisposition independently of the origin af #ntities involved in the
process. The next section tackles the appearance of symztion in a unifying
framework by ignoring the details of the oscillatory praz@sd focusing on the
generic properties of any limit cycle.

2.2 Why does synchronization take place?

In a dynamical system the Lyapunov Exponents (LES) givedteaf exponential
divergence from perturbed initial conditions [19]. Sinbe tate of separation can
be different for different orientations of the initial sepon vector, the number
of LEs is equal to the dimension of the phase space considdriee Lyapunov
spectrum is formed by all the Lyapunov exponents and they aery important
measure that give us a lot of information about a dynamicstlesy. For instance,
their sum indicates the average divergence of trajectami@sdynamical system.
A negative sum indicates that we are dealing with a dissipdtow, whereas a
zero value is, by the Liouvills theorem, the signature of conservatives ones. The
appearance of a chaotic regime is also registered by at de@st. E becoming
positive.

From its very definition, a zero LE is related to a directiorttie phase space
along which the distance between two initial conditionssieet converge nor di-
verge. Itis easy to prove that in a continuous dynamicaksyshere is at least one
LE that is zero and this corresponds to the direction of the fle., the trajectory
of the system in the phase space. As a consequence, a ptotuidger the length
of that orbit can easily produce a displacement in the paéstdbing the state of
the system in the phase space. But what does this have toldsymithronization?

Well, it is precisely theneutral stability along the orbit of a limit cycle, i.e.,
the attractor associated to a periodic self-sustainedlatscj the essential prop-
erty which the synchronization effect relies on Let us see how this “freedom”
in the motion along the limit cycle is the main attribute cenirig the system the
possibility to synchronize.

By the phase of the oscillation one usually describes thdipoof a system
within a cycle of its periodic waveform. The phase of a sebtained oscillator
is then the variable associated to a zero LE that corresporals orbit around its
limit cycle. As a result, there is no a prefererred value far phase but this can
be easily adjusted by a weak perturbation or interactioneM&uch a perturbation



2.3 The hallmarks of synchronization 15

comes from the coupling with another oscillator, the outedma phase pulling
which usually tends to fix the phase difference between th@mnsynchronization
to occur, the phase pulling effect must dominate over ametieehanism that goes
in the opposite direction, this is the detuning in frequesciThe balance between
this two mechanisms, natural detuning and phase pullingaltiee coupling, dic-
tates if synchronization eventually occurs. Only when thase pulling is able
to overcome the natural dispersion due to an uni- or bidoeat interaction syn-
chronization shows up.

In large populations of coupled systensgnchronization can also be under-
stoodas a self-organization processWithout any master or leader entity govern-
ing the dynamics, the individual systems might spontangdesd to oscillate in
synchrony. Under appropriate conditions, the phase pudiffects on each oscilla-
tor manage to consistently evolve towards a state wherge feaction of the pop-
ulation maintains synchronous oscillations at a commanuieacy. In these cases,
the network of connections between the elevated numbeeragsis essential to
determine if synchronization takes place or not. The moptifao architectures in
physical, biological, and social problems include the glatr all-to-all coupling,
lattice, random, small-world and scale-free networks.hia thesis, however, we
mainly focus our studies in the synchronization and noalirdynamics of SLs in
an 1-dimensional lattice. In Chapter 8 we tackle the impmeaof the opened or
closed nature of this lattice.

The main distinctions of sync have already been commentedealinteract-
ing systems are able to achieve a common frequency of dsmilland maintain a
bounded phase difference. A proper analysis and measurerhtrese synchro-
nization marks are studied in the next section.

2.3 The hallmarks of synchronization

In the Huygens classical notes about the sympathy of se&s;l@ne can also
find a description of how the concordance between the pendaigements was
maintained, even if initially one of the clocks was slightigcelerated.

The observation that, due to a proper interaction, oseiljasystems with dif-
ferent natural periods are able to end up oscillating atdneesfrequency is at the
heart of the synchronization concept. Itis precisely tffisot what the adjustment
of rhythms in the synchronization definition refers to. Tadhe coupling-induced
coincidence of frequencies of several interacting systisnksown as frequency
entrainment or locking. Intimately related to this effeshe encounters the fact
that the phases of the oscillators involved in the lockingstikeep a fixed linear
relation. In this way, when the phase difference betweenaswaillators is bound,
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they are said to be phase locked. Both effects, frequencyhase locking, find
multiple applications such as the tuning of powerful getwgaby the injection of
a very precise but weak signal or the bit synchronization ademn communica-
tions schemes or demodulation of frequency-modulatecalsgmith phase-locked
loops (PLLS).

In the systems under study in this work, coupled semicomduessers, the
frequency and phase locking will be one of the main signataféhe occurrence of
sync and the basic criteria to establish whether periodictapnization has taken
place. In the former section, we have shown what charatitariare necessary
for a system to have the possibility to experience sync. Umdet conditions
does this process eventually develop and which are the mescha involved, are
fundamental questions in the synchronization theory tleataview below.

2.3.1 Frequency locking

Imagine two nonidentical oscillators, like the pair of nogiomes in the intro-
ductory section. When isolated the two systems oscillatgeneral, at different
rhythms. This is, they exhibit a certain mistmach in theitunal frequencies or
detuningA f = f» — f1. Once coupled, the phase pulling effect on each oscillator
modifies their frequencies of oscillation to new valdgsand F5». A basic question
in synchronization is: how is the curv&F' = F» — F; as a function of the natural
detuningA f for a pair of coupled systems?

For a fixed and weak coupling strengthone can guess some aspects of this
curve without entering into the exact details and originhaf oscillators. Assum-
ing that a weak interaction can only induce small changesénftequencies of
the oscillators, it is clear that there must be a criticalidetg beyond which the
frequency locking cannot be possible. For small detunimgthe other hand, one
typically observes that a moderate coupling induces thguercies of both os-
cillators to become identical. The crucial point here i tihés occurs not only
for one specific value of the natural detuning but for a findege ofAf. This
results in the appearance of a plateau inAfe versusA f curve, i.e., the relation
Fy = F5 holds for a finite interval ofA f. Figure 2.1 (a) plots the typical aspect of
AF as afunction ofA f.

Usually, the stronger the coupling the wider the plateaupBiting the lock-
ing band width for different levels of coupling strengthsarbtains the so-called
major Arnold tongue. The name is after the Russian matheraatiVladimir
Arnold who studied these synchronization regions for a dyinal system known
as the sine circle mapand which typically resemble the tip of a tongue [20].
Figure 2.1 (b) shows the usual shape of the main synchromizatgion in the

The sine circle map is given by iteratifig 11 = 6, + Q — x/27 sin (270, ), wheres and(
may be interpreted as the coupling strength and drivingiaqy, respectively.
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coupling strength«) versus detuningX /) plane.
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Figure 2.1 a) Typical curve ofAF as a function ofA f. The plateau of the curve for small
detuning is the frequency locked region. b) Scheme of thenrAanold tongue or synchro-
nization region for two weakly interacting oscillators.

In terms of bifurcation theory, a brief description of whishsummarized in
Chapter 4, one can give a widely general interpretation@stimchronization pro-
cess. In order to fix ideas, we consider the situation whexen#ttural frequency
mismatch between the oscillators is increased for a fixeglowy strength and
thus, inducing a transition to a non-synchronized regimigis Torresponds to an
horizontal cut of the Arnold tongue in Fig. 2.1 (b). For zeetuhing, the phase
difference between the oscillators is fixed and it can bealised as operating in
a stable fixed point. A small detuning may change the locatidhe fixed point,
but still this continues being stable and therefore, regrtsg a locking solution.
Further increment of the detuning, however, tends to eadgtulestabilize the
fixed point. The route towards desynchronization usualguos through different
mechanisms depending on how this fixed point becomes uest&sdddle-node
(for small ) and Hopf (for moderate) are the most common bifurcations that
the fixed point undergoes as the frequency mismatch is vahietdoth cases the
system is lead to a quasiperiodic regime which eventualiyi¢es a loss of the
frequency locking in the immediate neighborhood of the Adriongue. For very
large coupling strength or highly nonlinear oscillatodsere are more complex
bifurcation scenarios that can lead to the destruction n€lssonization and the
appearance of chaos [1].

At this point, it is illustrative to compare the frequencygking properties be-
tween an unidirectional and a bidirectional coupling. lruardirectional scheme,
only one oscillator (master) influences or forces anothawés. In this case, the
only possible frequency locked solution is that of the slaystem shifting its
frequency towards the master on&;(,, = fmaster). Consequently, inside the
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Arnold tongue region the locking frequency is constant aleaiical to the forcing
frequency. On the contrary, when two oscillators affectheaiber in both direc-
tions of interaction, they usually “negotiate” the commaeguency at which they
lock. The locking frequency is normally found between thtural frequencies of
both oscillators but not necessarily. This time, however,dommon frequency of
oscillation varies within the synchronization region ahig ia function of both the
coupling strength and detuning.

The main Arnold tongue, between one-way or mutually intiémgaoscillators,
was defined as the region where both systems achieve a comeguency of os-
cillation. This is, inside the synchronization region th&ao between the coupling-
induced frequencies in both systems is exactly one. Foe ldegjuning, however,
it is relatively common to find one oscillator operating atreguency which is a
multiple of the other. For instance, if isolated the ostilfa exhibit frequencies
such thatf; ~ 2f5, then once coupled it is highly probable that they will lobkit
rhythms toF} = 2F5, instead ofF; = F>. In general, there are many regions
where the frequencies of the oscillators keep a definedoelaetween each other
without being identical. These are higher order synchadion regions. Within
the lockbands of these zones the ratio between frequergesational number,
i.e., F1/F, = q/p € Q. One speaks then of synchronization of orger.

2.3.2 Phase locking

Since the frequency gives the rate of growth of the phase o$aeiliator, the phases
of two systems with their frequencies locked share the séytbm of increment.
Therefore, an immediate consequence is that the phaseedifiey) = ¢ — ¢
between two locked oscillators, even fluctuating, must rerbaunded. We say
then that the systems have also achieved a phase lockindieMatically, this is
expressed as¢, — ¢; |< constant More generally, we can consider phase lock-
ing of orderp : ¢ if |pp1 — q¢2| < constant

The actual value of the phase shift between the oscillatdssa very impor-
tant quantity characterizing the synchronization sotutibtained. The coupling
between identical systems leads, in general, to a phasetaté or phase-repulsive
interaction between the phases which favours the in-phasatbphase dynam-
ics, respectively. Anti-phase dynamicg (~ w) refers to the cases where the
oscillators are mostly encountered in opposite statesenf thotion cycles, while
in-phase ¢ ~ 0) stands for the solutions where the systems are in the same po
sition along the oscillatory orbit. The original obsereatiby Huygens with both
pendula swinging in opposition is a clear example of antigghsynchronization.
The selection of the shift between phases is eventuallym&ied by the coupling
network, interaction strength, and detuning.
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One of the simplest mathematical models describing therdigsof the phase
difference between two weakly coupled oscillators is gilgrihe Adler equation
[21]

dip :
%—Af—FI{SIDTIZ). (2.1)

Provided the condition Af |<| ~ | this equation has at least a pair of real solu-
tions in the(0, 27) interval, one of which is stable and consequently prediats t
phase locking of the oscillators.

One must realize then that an accurate determination of ltlasgpand fre-
guency of each individual oscillator involved in the intetian is of fundamental
importance for identifying a synchronization process. Wit a good estimation
of these quantities the former locking fingerprints becoselass from a practical
point of view. However, only in a very limited number of casestraightforward
computation of the phase from the modeling equations, if syossible. In the
next section, analytic representation, a technique badoffrom signal process-
ing, and other methods are explained in order to obtain aunea$ the phase and
frequency of an arbitrary signal.

2.3.3 Instantaneous amplitude and phase of a signal

In the same sense that a pure harmonic oscillati@os(wt) is often represented
by the complex expressiaf cos(wt) +iA sin(wt) = A exp(iwt) to simplify some

algebraic manipulations, the generalization of this cptioa to arbitrary signals
is given by the analytical representation [22]. The ide@isduip the signal with
an imaginary part so that concepts such as the phase andwiepif the process
are more accessible. The analytical signal of a real-vahaeidblex(t) is defined

by the complex functiorx(t) = x(t) + iy(t), wherey(t) is the Hilbert transform
of x(t).

The Hilbert transform [23] of a real function is an integnarisform obtained
from the convolution of the signal(t) with 1/(xt), i.e.,

y(t) =Hlz](t) = 1 xx(t) = ! / 2(t) dt’, (2.2)

t—t

—00

where the integral must be taken in the Cauchy principalevaense in order
to avoid the singularity at = t’. When applying the Hilbert transform to the
function cos(wt), one obtains the functioeos(wt — 7/2) = sin(wt). In general,
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the Hilbert transform of a signal produces a function witl fihase of each one
of its spectral components delayed by2. By analogy with the pure harmonic
case, one can already guess that the analytical signal céivaieoa definition
for the amplitude and phase of any signal. In fact, when &amifn polar form
x(t) = z(t) + iy(t) = A(t) exp(¢(t)) the analytical representation gives rise to
the envelope amplitude

A(t) = x(@) |= v (x()* +y(t)?), (2.3)

and instantaneous phase

y(t)

o(t) = arg (x(t)) = arctan <m> (2.4)
of the signalx(¢). Then, the instantaneous frequency of the signal can beedefin
in a straightforward way as(t) = d¢/dt. However, it must be remarked that
a physical interpretation of the former definition is only anengful if z(¢) is a
narrow-band signal. If so, the instantaneous frequencybeaimterpreted as the
frequency of the stronger component of the power spectrum©gfwhen com-
puted in a running window. The main drawbacks of the anai/tiepresentation
approach used here, is the sensitivity of the Hilbert tramsfto the mean value of
the signal and to low-frequency trends in the data. Spgcidlé non-stationarity
of the data might result in the lost of some loops when compitie value of the
phase. Recently, a similar technique based on a wavelafdram that overcomes
some of the problems that the analytical representaticsepte has been proposed
by Lachaux et al. [24].

In summary, when carefully computed, the analytical sigqpgroach can pro-
vide an useful generalization of the concept of phase fegular oscillators, and
in particular for chaotic systems.

Another measure of the phase of an irregular temporal tranebe designed
by completely different means; a Poincaré map of the sigiale procedure is
based on defining a Poincaré surface at which every cro$wedfdjectory of the
signal is assumed to represent that the oscillator has ebeapa full cycle, i.e., its
phase has increased2m. By linear interpolating the phase between the crossing
events one ends up with a functional definition of the phasmdadrbitrary signal.

This technique is specially suited when the studied temi@@aes contains
a train of marker events, such as action potentials in eleatdiogram (ECG)
or electroencefalogram (EEG) recordings. These episodeshen be used as
reference points or crossing times along the Poincar@sirfDenoting by, the
times at which thgth well-defined event occur, one can estimate the phasess tho
points a®27j. The phase is then calculated as
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t—1t;

o(t) = 2mj + 2r——-L— . (2.5)
ti+1 — 1

In this case the definition of the frequency of the procesaker as the number

of characteristic events per unit time. Note that the dévigeof the phase is a

discontinuous function at the crossings of the Poincarfaset ;.

In any case, both procedures (Hilbert or wavelet transfoamd Poincaré
maps) enable one to investigate the phase dynamics of gul@reoscillator and
detect possible relation between several of them.

2.4 Different kinds of synchronization

Recently, the word synchronization has gained populamnithe nonlinear dynam-
ics literature [25]. Not only used to describe the procesadjfisting of rhythms
that we have introduced in this section, it is also appliedjit@ account for a
number of related phenomena. Different types of synchetinia capture differ-
ent relationships between the signalgt) andx.(¢) of two interacting systems.
Below, the most important characteristics of the diffeténts of synchronization
are summarized.

In chaotic systemsone can distinguish the following types of synchronous
motion:

e Identical or complete synchronizationt refers to the coincidence of the
outputs of two chaotic systems due to their coupling. Thdutham of the
coupled system occurs then within the hyperplane defined By = x(t).

In general, this exact solution only exists for identicabaotic oscillators
and its stability, and therefore its observation, is reldtethe negativity of
the maximum LE of the variational equation fe = x5 — x;. This is,

only for those coupling schemes which damp out perturbatioansverse
to the synchronization manifold the identical synchroticraiis observable
[7,25,26].

The statistical nature of LEs allows for some structure$iwithe synchro-
nization hyperplane to be transversally unstable andisélergodic average
of the maximum LE be negative. Consequently, when the systanders
near these unstable sets some bursts of desynchronizagamsaally de-
tected and alternate with a perfect identical synchroimnasolution. Cu-
riously, not always a stronger interaction between the ygtbms leads to
a more stable synchronization manifold, but sync is onlplstén a given
range of coupling strengths. Regarding this issue an irapbedvance was
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developed by Pecora and Carroll in Refs. [27, 28]. There, stenatability
function able to predict the desynchronization threshaluls size limits for
the identical sync of an array of linearly coupled systems devised.

Generalized synchronizatiofhis type of synchronization attempts to cap-
ture a more general relation between two coupled systemsier@lized
synchronization is usually defined as the existence of a 8maw invert-
ible mappingF : x2(t) = F [x1(t)] between the trajectories of two coupled
chaotic dynamical systems [29]. Some authors distinguetivdéen strong
and weak synchronization depending on this mapptbgeing smooth or
not [30]. More recently, the definition of generalized symetization has
been extended to a general functional relatitfx;, z2) = 0 between the
states of two coupled oscillators [31].

In unidirectionally coupled systems this type of synchzendl solution has a
clear interpretation; it means that the state of the slagéegay can be com-
pletely determined or predicted by observing the mastemmi@only, the
task of proving the existence of generalized synchrornain a system is
much easier than finding the actual function that relatel batputs. In
particular, the auxiliary approach suggested by Abarbainal [32,33] pro-
vides a simple test to check the existence of generalizedhsgnization.
This test is explained in the next section.

Phase synchronizatiorSince the phase of an oscillator is much more sen-
sitive to perturbations than its amplitude, for low couglistrength two in-
teracting oscillators can achieve an entrainment of tHe@isps with the in-
teraction hardly affecting their amplitudes. Phase syomization expresses
the regime where the phase difference between two irregslatiators is
bounded but their amplitudes remain uncorrelated [34]

Lag synchronization.This type of synchronization takes into account re-
lations between two systems when compared at differentstif2g]. The
manifestation of a relations such ag(t) = x2(t — 7) due to a coupling
between the two systems is claimed as a lag synchronizakionpositive
(negative)r the system is said to lag (advance) the dynamics of system
This type of sync can appear in instantaneously couple@ssf35] but is
prominent in cases where the interaction time between stdrsg needs to
be taken into account [36].

Anticipated synchronization is a special type of lag syonoiration. When
systeml affects unidirectionally to syste) and still the latter is able to ad-
vance the dynamics of the first one [36], we call this countsiiive process
anticipated synchronization. The most common scheme &rebsnticipa-
tory sync appears when the transmitter is affected by a fezdlong loop
[37]. In this way, it is possible for the receiver to be infleed by the trans-
mitter sooner than the transmitter is affected by its ownllieek, and thus
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the receiver can advance the dynamics of the transmittéowttviolating
causality [38, 39].

Periodic systemsypically exhibit:

e Classical synchronizationt refers to the classical adjustment of rhythms of
interacting periodic oscillators as defined in Section 2.1.

e Localized synchronizationit is used to describe situations where two cou-
pled oscillators display periodic oscillations at a comrfrequency but with
very different amplitudes [40, 41]. Its phenomenology reltes to the one
displayed by discrete breathers (i.e., periodic spacaioe oscillations) in
discrete and continuous media.

Noiseeffects in synchronization include:

e Noise-induced synchronizationVhen two non-interacting oscillators are
subjected to the same fluctuating forces the trajectorié®ibf systems can
actually converge to the same values [42]. This synchrtinizanduced by
a common noise source is another example where random fliectsi@an
bring some order to a given dynamics, such as in the cohemratechastic
resonance phenomena [43]. In order to achieve synchramzahe ad-
dition of noise needs to make the individual oscillator éxha negative
largest LE. One can argue then, that for noise-free chagsiems this type
synchronization only works when the addition of noise sizabthe intrinsic
dynamics, i.e., the noise destroys the deterministic esipial sensitivity to
initial conditions. However, even under such conditions $lgstem is still
noisy and therefore unpredictable [42].

e Stochastic resonanc&his effect is often illustrated in threshold or bistable
systems subject to a small external modulation. The stticha&sonance
phenomenom is then described as the existence of an optiroisa level
that produces a cooperative effect with the periodic faycimhis is, for an
adequate degree of randomness the noise-induced trasdigiween states
(the crossing of a threshold or the jumps between differgatlieria) can
enhance the periodic response of the system to the extenta. f In the
synchronization framework, one can also consider thiscetis a locking
between the average noise-induced switching rate andehedncy of the
external periodic forcing.

Even seemingly independent the former types of synchrbaizare often en-
countered in the same dynamical system. In general the titandg a control
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parameter can induce passages between the different syigdtion solutions for
the same system. Rosemblum et al. [44] studied the transibetween synchro-
nized states in two symmetrically coupled non-identicalatit oscillators. They
observed that when increasing the coupling strength, @sysbmposed of two
Rossler oscillators undergoes first a transition to phasehsgnization. Further
increase of the coupling rate induces the appearance ofsytagnronization so-
lution before tending to a complete synchronization regime

Certainly, most of the previous definitions can be adapt@dde general cases
as arrays of oscillators with a number of units larger than t&weven oscillatory
media. We will not further comment on these possible geizatadns but proceed
by analyzing the most used quantifiers and schemes for tegetie different
types of synchronization.

2.5 Measures and detection of sync

As argued by Pikovsky et al. [1] in synchronization measumets one should dis-
tinguish the cases in which one is able to modify or changéntieenal parameters
of the system under study or not. This difference leads talspéout active and
passive experiments, and the techniques and tools to fuant detect synchro-
nization in both cases are in general quite different.

For periodic oscillators, the comparison of frequencied pimases before and
after coupling them is the best test to check if classicabcalized synchronization
has taken place. A complete characterization of the synctation process re-
quires the computation of the different Arnold tongues oklmnd regions. There-
fore, for such a description, an active control of the detgrand coupling strength
between oscillators becomes necessary.

When such a procedure is not an option, the assessment gfittiersnization
between two oscillators turns out to be less conclusiveehegal, only an analysis
of the interdependence of two signals (possibly noisy andsiationary), which
are assumed to be generated by two interacting oscillaga@sitable. To this re-
spect, cross-correlation analysis is very common sincéoiva to detect linear
interdependences between two different processes. Orthibeltand, mutual in-
formation has been also used to quantify the overlap ofim&tion content of two
systems, whereas the concept of transfer entropy has heds@n proposed to
measure the information exchange between two dynamicisilesret5].

Along this thesis, cross-correlation will be the most intpat quantity in
determining the degree or quality of the synchronizatiotwben two systems.
The cross-correlation function gives a measure of the éxtemhich two sig-
nals correlate with each other as a function of the time dtgghent between
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them. Its implementation from a series of bivariate data {x1, z9, ...z} and
y = {v1,¥2, ...yn }, Which is sampled at regular intervals= iAt is given by the
discrete convolution of the two signals:

SN @i =) (5 -9)]
; , for k<O0;
VI (@i—2)2V/ TN, (vi—7)>
I'(k) = (2.6)
SN (@i —7) (yir ki —T7)] for k>0
VEX, (@22, (vi—9)? =

whereT andy represent the temporal average of the signals. This meabkore

similar two temporal series, once shifted by atag kAt, are and it is especially
indicated to quantify the quality of complete and lag syodiration in chaotic

systems. A cross-spectrum, on the other hand, is the Fduaiesform of the

cross-correlation function, and it is used to uncover dati@ns between two se-
ries at different frequencies.

When dealing with generalized synchonization most of tmed one can only
aspire to demonstrate the existence of a functional commmelsetween the outputs
of the two dynamical systems under consideration. The dracat of the map-
ping between systems is often reserved to academic examiiesstandard test
to check the existence of generalized synchronization detvwwo unidirection-
ally coupled (master-slave) elements is provided by thdiaaxsystem approach
developed by Abarbanel [32]. The steps in the test proc&edHis:

e Consider an identical copy or replica of the slave systemtiichvwe call
2.

e Start evolving the systems 2 andsibject to the same unidirectional injec-
tion from the master but starting from different initial cbtions.

e Then if both, the slave and replica systems, synchronizatichly af-
ter a transient timelim, . z2(t) = x4(¢)), one concludes that a func-
tional relationship must relate the outputs of master astesy 2,z4(t) =
F (21(2)).

An important generalization of this test has been elabdraie Zheng and
collaborators [33]. They extended the procedure to detecealized synchro-
nization in bidirectional coupling schemes and more coocapéid networks.

From a time series analysis perspective the detection agafyanchronization
in chaotic or noisy systems is performed by the computatioanoappropriate
phase difference between oscillators. In this case the omwstenient technique
to infere the individual phases of the oscillators (Hilbevavelet, Poincaré, etc.)
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must be chosen depending on the type of data to be investjggdenentioned in
Section 2.3.

When the number of interacting oscillators is large othethods to describe
synchronization are necessary. Sometimes it is usefuttdlra concept from the
statistical physics of phase transtions; the order paremmehat was the approach
followed by Kuramoto to succesfully characterize the syanfzation transition
in a set of globally coupled phase oscillators [46].

2.6 Oscillation quenching

The oscillation quenching or Bar-Eli effect [47] is the stggsion of oscillations
of interacting systems due to its coupling. Strictly spagkihis is not a synchro-
nization process but we include it here as another couptidgeed phenomenon.
It usually appears for larger coupling strengths than theelssonization thresh-
old since affecting the amplitude of the oscillators reesiia stronger interaction
than that necessary for only shifting their phases or fregies. One of the first
descriptions of this effect was due to Lord Rayleigh [48],ondbserved that two
similar organ-pipes could drive each other to almost séemben standing side by
side.

The cease of the oscillatory behavior in weakly coupledtloycle oscillators
can induce important consequences in both biological aydigdl systems. In
fact, the appearance of this phenomenon in some cell systeemss to be related
to severe pathologies [13]. Hopf or some spatio-temporfardations have also
been associated to the dynamical behavior of diseaseseldgratory or cardiac
arrest or epileptic seizures [49]. The modern perspecsigegnize then the impor-
tance of a dynamical understanding of these type of diséadbe identification
and treatment of various illnesses.

Regardless of its biological motivation, the bases of thenghing effect can
be illustrated through the study of two generic weakly cedphonlinear oscil-
lators. To this end, a discrete version of the complex Girguandau equation
provides a universal model of coupled oscillators near tbstillatory threshold
(Hopf bifurcation) [2]:

Ay = —iAA; + Ay — (71 + a1)| A1 PAs + (ke +i01) (A — Ay) (2.7)
Ag =iAAy + poAs — (72 + OéQ)‘AQPAQ + (ke +102) (A1 — Ag) (2.8)

In the modelA, > represent the complex amplitudes of each oscillator. The pa
rametersy, and v describe the linear and nonlinear gain/losses, whileakes
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into account the dependence of the frequency of the osaoillain the amplitude.
A = (wy —w1) /2 is the detuning or mismatch between the natural frequernties
the oscillators. Regarding the coupling coefficient, teisomposed by a reak()
and imaginary §) part representing dissipative and reactive terms.

For the illustration of the phenomenon a simplified versibthe model can
be used. Isochronous: (= 0) and dissipatively coupled (= 0) similar oscilla-
tors differing only in their natural frequencies of osdilde are considered here
[50]. Exploring the coupling strength versus detuning paeter space several dy-
namical regimes can be obtained as shown in Figure 2.2. Téwrching region is
limited by the locking and phase drift areas, and it is natitteat a large detuning
between the oscillators is needed in order to produce thin @gaquenching ef-
fect. Consequently, two identical (condition that regsiife = 0) instantaneously
coupled oscillators are not allowed to experience a mutuahghing in their os-
cillations.

Figure 2.2. Dynamical regimes in the coupling versus detuning planevofdoupled oscilla-
tors. 1) Quenching region, Il) locking area, and Ill) phasétdone. After Ref. [13].

Dynamically, the quenching area corresponds to the stabidin of the stationary
or fixed point solutiond; = A, = 0 due to the variation of either the detuning or
coupling strength.

The effect of considering a time delay in the interactiomlestn the oscillators
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opens a new branch of possibilities for the synchronizadind other coupling-
induced effects. In particular, in the next chapter we mevige important conse-
guences of having a delayed interaction in the observafitimescillation death.



Chapter 3

Delayed interactions

T has been known for a long time that some problems need to logiloles by

models that include past effects. Examples of such typeaiflems are found
everywhere. In the two-body problem in electrodynamics,iristance, one must
take into account that the interaction between two disthatged particles does
not occur instantaneously, but the influence of particda particle2 at timet must
have been induced at some earlier instant-, and viceversa [51]. Control theory
is another field where delayed interactions become extseimglortant. A typical
strategy in control systems consists of an automatic clatrthat monitors the
state of the system and makes adjustments to the system dragisdbservation.
Since these adjusments can never be made instantaneodslgyarises between
the observation and the control action. Such a feedbackrseigea very common
setup giving rise to dynamical systems in which its actustbestiepends on the past
history of the own system [52].

As observed in the former examples and as it will be the caseatially-
separated interacting lasers, the finite propagation itelecf signals stands as
one of the main causes for the occurrence of delayed intenactHowever, it is
not the only one. Latency periods are also typical source®lafys which model
the time that a system needs to produce or process an outputingtance, in
population dynamics the inclusion of latency times (désog the gestation or
maturation periods of new individuals) induces also theeapgnce of delayed
terms in the modeling of the process [53-55]. An importarsecia the famous
Mackey-Glass equation

ax(t — )

Tra(t—mn’ (31)

z(t) = —bx(t) +

which models the dynamics of white blood cell productiorhi@ human body [56],
and it is a paradigmatic example where the proliferation gifizan population en-

29
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tails a time delay.

Summarizing, there is a large and important class of dyransgstems in
which the rate of change of the state is determined by theptesd also by past
states of the system. When the delay times are large enoagipacable to the
internal time scales of the system, then Ordinary DiffaegriEquations (ODES)
usually fail to accurately describe its dynamics. It is irstbontext where Delay
Differential Equations (DDESs) naturally appear in the mougof such systems.

In this thesis the physical distance between two coupledcsgmmuctor lasers
(propagation time) is the responsible for the dependentleeoflynamics of laser
1 on the past state of laser 2, and viceversa. Therefore tukdg ef DDEs and
the stability of their different solutions becomes crudgmaéany serious analysis of
the dynamics of coupled SLs. To this end, in the followingtiees the definition,
classification, and the linear stability issue for solusiai DDEs are introduced
with views to be applied in our semiconductor laser modeling

3.1 Delay Differential Equations

3.1.1 Definition

A delay differential equation is a functional differentejuation where the highest
order derivative only occurs with one value of the argumand this argument is
not less than the arguments of the unknown function andrtgirdng derivatives
[52].

Such type of equations (as Eg. 3.1) are also called Retardectibnal Dif-
ferential Equations (RFDEs) and belong to the more gengpa of differential
equations with deviating argument. Next, we proceed toridesthe types of
DDEs and their most remarkable features when compared tosODE

3.1.2 Classification and main features

The different types of DDEs are usually classified accordingeveral and possi-
bly overlapping criteria.

Attending to the nature of the delays appearing in the deilfgrential equa-
tions one can distinguish between the following categories

e Constant In this case the possibly multiple delays involved in thaeagtmpn
are fixedr; = ¢, 9 = Co,...T:n = Cpp,. Itis probably the most common and
easy to analyze type of DDE, specially if the delays are consmete.
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e Variable. At least of one the delays is not constant but exhibits ati@ixp
dependence on the time variable= 7(t). Therefore, this class of systems
is nonautonomous even if no other time dependence is cectairthe terms
of the equations.

e State dependent When one or more of the delays is a function of the state
of the system = 7(x(t)) the resulting DDE is rather complicate to analyze.
Even its numerical simulation is far from trivial. One shewlotice that the
grid points one must use for its evolution in a finite diffezerscheme are
not known a priori and interpolation methods are needed.

Another classification refers to the number of delays inedlin the right-hand
side of the equations. When the number of delays appearitigeiDDESs is finite
they are calledliscrete DDEs, while if the delay is spread over a continuum of
values then we are dealing withdéstributed DDE [55].

The functional equations with deviating arguments that aldfihinto the pre-
vious definition of RFDE are calledeutral. One important example of neutral
equations is given by equations in which the delayed terneaspin the highest
order derivative.

Regarding the dimensionality of the phase space descripedskt of DDES,
it should be noticed that the initial condition needed twe@DESs is given by the
past history of the variables up to the maximum delay, x@), Vt € (—7maz,0).
Since this is a continuum of points the phase space of DDES§iste-dimensional
in the same way that Partial Differential Equations (PDE® also infinite-
dimensional (see Figure 3.1). Another important propdrgt DDEs share with
PDEs is the fact that only one equation is needed in ordeodyze chaotic behav-
ior, as opposite to what happens in ODEs where at least ttmgaed equations
are required.

initial
function
S, () 7, () 5@
—'r ‘E 2“5 t

Figure 3.1. The initial condition of a DDE is given by the past history bétvariable up to the
maximum time delay. To evolve the solution of a DDE at titrike state of the system at time
t — 7 is needed. The continuum of states frore= —7 to ¢ = 0 represents the appropriate
initial condition.

The differences with respect to ODEs do not stop there. Tiperexin the
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field of DDEs always try to put some words of caution on the &gy of treating
DDEs on the same foot than ODEs [51,57]. They remark thatelelrities and
differences that delay differential equations exhibithwigspect to ordinary dif-
ferential equations are sometimes unexpected and thengetion of results from
one type of equations to the other is not only a matter of rigjars practice occurs
sometimes among some researchers yielding wrong restiésTdylor expansion
of delayed terms (even with small delays) can fail to quatitiély describe the
solutions of the system when compared to the original egnafs well as the-
orems for the existence and unicity of solutions in ODEs arenmaintained for
DDEs. Dynamically the differences are also noticeable exdinear regimes. For
instance, a linear system of ODEs can only have decreasingreasing exponen-
tial solutions but a linear set of DDEs can display non-#liascillatory behavior.

3.2 Stability theory

The question of the existence of a given solution is as inapbras its stability
to attract nearby trajectories. The solutions of any dywcaméystem including
delayed terms or not may be asymptotically stable (attragtonarginally stable
(i.e., only Lyapunov stable) or unstable. In particulag gtudy of the stability of
stationary and periodic solutions is accessible and canggva great insight into
the qualitative behavior of the system. To this end, one efriost useful tech-
nigues in determining the stability of solutions of dynaahisystems, the linear
stability approach, is explained here for RFDEs.

3.2.1 Linear stability of retarded functional differential equations

Linear stability analysis takes the first order approxigranf the differential equa-
tions of motion and study the evolution of small perturbasi@round a given so-
lution or trajectoryx*(t). Let us consider a system of RFDE, possibly including
several constant discrete and distributed delays

(1) = f (8,x(8),%(8 = 71), oo X(E = 7o), K (1); 1) | (3.2)
wherex € R™ and f is a function of the time, the instantaneous and delayed

variables and a set of parameters x(¢) is the delayed variable weighted by a
given distribution of delays

%(t) = / g(t, T)x(t — 7)dr . (3.3)
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The past dependence in the former equation is then compogsed fixed
retardsry, 7o, ..., 7, and a delay distributed on a continuum interval of values
7€ (0,0) CR.

The linearization of the system (3.2) around the soluti(¥) leads the so-
called variational equation for the variabtét) = x(t) — x*(¢),

m g

50 = A0y (®) + 3 A0t~ )+ B(O) [ty - n)dr . (34
=1 0

wherein then x n matrices

of
Ai(t) = Ix(t — 1) | (5% (£),56 (=71 )00 " (=T ) R (£):12) > (3.5)
and
of
B(t) = 8)—(—@)|(x*(t),x*(t—Tl),...,x*(t—Tm),i*(t);u) , (3.6)

are the corresponding Jacobians of the discrete and digtdltlelayed variables,
respectively.

For stationary solutiong*(t) = x* | x* = 0 an exponential ansatz for(t)
and linear algebraic theory tell us that the variationalatigm can only be satisfied
with the non-trivial zero displacement solution if

A(A) = det (M —Ag =) Ajexp(—Ar) — B/eXp()\T)g(T)dT) =0,

i=1 0
(3.7)

wherel is then x n identity matrix.

The key point in these type of studies is that the distributb the infinitely-
many roots or eigenvalues of Eq. (3.7), which in general take complex values,
rules the stability of the system through the following tfezn [51, 52]:

a necessary and sufficient condition in order that all saog of
Eq. (3.4) approach zero as— oo is that all the roots of the char-
acteristic equation 3.7 have negative real part.
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3.2.2 D-Subdivision method

Expanding out the determinant in Eq. (3.7) the characierexjuation takes the
guasi-polynomial form

m

AG) = N+ po(N) + 3 pi(N) exp(—Am) + / exp(—Ar)g(\ T)dr, (3.8)
0

i=1

wherepy(A), pi(A), andg(\, 7) are polynomials in\ of degree at most — 1. At
this point, it is important to realize that since the zeroshig quasi-polynomial
depend continuously on the variogs o, and the coefficients of the polynomials,
the number of roots a\ (\; ) = 0 can only change if a root crosses the imaginary
axis.

Based on this key fact and the theorem stated in the formeiosea pro-
cedure known as D-Subdivision [55] works out the stabilifytte linear system
(3.4). To determine the stability of a stationary solutiomigiven parameter space
(t41, p2, ---, pug) the method proceeds as

1. Locate the borders where the characteristic equatioratrast with zero
real part, i.e.,A\ = iw. These borders separate the parameter space into
subregions with a different number of solutions with pesitieal part.

2. Check the direction of the crossing of the eigenvaluefiede frontiers to
know if the number of roots with positive real part increasedgecreases at
these boundaries. For example, if the parametds varying, the derivative

dR(N) < d\ ) <8A 8A>
R () - w (22,92 3.9
dpik dpuk Our" OX (3:9)

must be evaluated at the borders between subregions.

3. Determine how many zeros of the characteristic equatime positive real
part in one of the subregions in which the step 1 divides thesidered
parameter space.

4. From the former steps one should be able to locate thegioheewhere all
roots have negative real part, and therefore the systerabtest

The transcendent nature of Eq. (3.7) makes the analysiedt#bility issue
for DDEs much more delicate and cumbersome than for ODEsyrcase, from
the infinitely-many complex roota = « + iw the borders of stability are de-
termined by the pure imaginary eigenvalues= iw. A promising approach for
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the computation of the former steps consists of the replaoéwf the exponential
terms in the expression (3.8) by their Rekasius transfoi@h [=.,
1—-T;A
exp(—A7;) = TrTn (3.10)
which is exact for pure imaginary values b= iw with

2
7; = — arctan(w7;) . (3.11)
w

The main advantage of such a substitution is that the algefa#ure of the charac-
teristic equation in terms of the new paramefebecomes polynomial. Of course,
the price we have to pay is that the relation betwg&eandr; is not polynomial.
Nevertheless, with such a procedure a simple Routh-Humwitaria can then be
used for the counting of roots with positive real part [55]th€ root counting
techniques have benefited from some theorems in compleablartheory such as
the Argument Principle [52].

A remarkable feature of the characteristic equation isnitariiance with re-
spect tavr; — wT; + 2xl, with [ € N, which is known as the clustering property.
It allows to describe a family of infinitely-many solutionisofders) with only one
critical delayr. and this invariance property.

In some cases the stability of DDEs can be determined by daéubniques
different from linear stability analysis. For instancee tinding of a Lyapunov-
Krasovkii functionals [36, 59] allows to interpret the dynias of the system as a
potential problem from which its stability is easily integed. Full computational
approaches are also valid when physical insight to the lgyaproblem is not
required. The Matlab package DDE-biftool [60] allows toauatically continue
and analyze the linear stability of stationary and periattutions of DDEs by
numerically locating the eigenvalues of the characteristjuation. Its use in this
thesis is restricted to the stability of the periodic orbitth a view to explain some
bifurcation diagrams in Chapter 6.

3.3 Oscillation quenching revisited

In Chapter 2 we have seen how two coupled oscillators coalad ascillating pro-
vided their frequencies were different enough. The inclusif delay times in the
interaction between the oscillators is responsible forreesef modifications of
this mutual quenching effect.

The influence of the delay in the amplitude of the oscillatican be modelled
through the system [13]
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Ay = —iAA 4 AL — (71 4 o) A1 PAy + (ke +i61) (A2 (t — 7) — Ay)
Ay = iAAy+ Ay — (72 + ag)|A2|P Ag + (ke +i02) (AL (t — T) — Ag)
(3.12)

where A, > represent the complex amplitudes of each oscillator ard the

time delay in the interaction. Figure 3.2 shows the diagrdnhe different dy-

namical states of Eq. 3.12 in the coupling strength verstisndegy plane (with

a; = §; = 0). It can be observed that, as opposite to the case of instoua

coupled oscillators, detuning is not required in order teasbe this quenching,
and consequently a delay in the coupling line opens the Ipiigsto observe os-
cillation death in coupled identical systems & 0) [14].

6r (b)
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Ke

Figure 3.2. Dynamical regimes in the coupling versus detuning planevofdoupled oscilla-
tors. 1) Quenching region, Il) locking area. The delay isteet = 10.

The first experimental confirmation of this “death by delajfeet was ob-
tained in 2000 by Herrero and collaborators who studied theachics of two
mutually coupled thermo-optical cells [61]. To our knowgedwe present in this
Chapter 6 the first experimental confirmation of this effa@ semiconductor laser
setup.
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Basics of bifurcations

N this chapter we just attempt to sketch, without any kind ¢difler mathemat-
Iical rigor, some of the most common bifurcation scenari@d tan occur in a
nonlinear dynamical system. The identification of thesditaize changes in the
behavior of a system allows to track the passage from sirogernplex dynamics
keeping a significant insight at every step of the transitionthe Results part of
this thesis, we extensively apply bifurcation theory ta@érdhe role of the delay
and the network of connections in the emergence of chaoticsgnchronization
behavior between mutually-coupled semiconductor lasers.

4.1 Definition

It is important to recall that since most of real systemsluidiong our models of
laser systems, are dissipative entities their long-ternadyics eventually settle on
attracting sets of zero phase volume. Each of the attraptesent in a dynamical
system is usually surrounded (although riddle basins ae@bssible) by its own
basin of attraction, and motions started within a basin @synptotically to the
attractor lying within that region of the phase space.

Then, bybifurcation we mean a qualitative change in the topology ofhe
attractor-basin phase portrait under the quasi-static varnation of a control
parameter. At a bifurcation pointu = u. the ensembles of trajectories that fill
the phase space to generate the phase portrait suffer ryoa @ulantitative but a
gualitative modification.

As we will see later, bifurcations are usually related to¢hange of stability
of existing attractors or the birth and death of these asgtigpsolutions [62]. The
nomenclature and classification of these bifurcating evarg often not unified in
the literature. In the following sections, we offer a sirfiplil classification and
summary of the most common type of bifurcations that will céag help in ana-
lyzing the different dynamics observed in Chapters 6-8 ardmil set a proper
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notation.

4.2 Classification

The different types of bifurcations can be organized adogrtb several criteria.

When the characterization of a bifurcation can be reduceati¢cstudy of a
small neighborhood of a single point in phase space, thedaifion is said to be
local. It is important to remind that by various techniques, sucPaincaré maps
(see next section), the analysis of limit cycles and otheaetbrs can be reduced
to the study of a fixed poiniGlobal bifurcations on the other hand, often involve
connections between the invariant manifolds of distandisesblutions, producing
changes in the basin structure which cannot be describedocahregion of the
phase space [62,63].

Bifurcations are also classified according to the numbeaddimeters that one
must change in order to achieve the structural stability givan bifurcation (i.e.,
make it topologically robust against additional pertuidrad of the system). This
number is said to be theodimensionof the bifurcation [64]. Here, we restrict
ourselves to introduce the most typical codimension-orkcadimension-two bi-
furcations since they are the most often encountered inaser lsetups.

Finally, another category of bifurcations can be distisped depending on
how an attractor loses its stability at a given bifurcatirgnp which to fix ideas
we denote here by, = .. In supercritical bifurcations an attractor loses its
stability as it intersects a stable attractor that onlytexas supercritical values of
the control parametep(> 1.). In subcritical bifurcations, however, an attractor
loses its stability by colliding with the unstable path oftausture that only exists
at subcritical values of the control parameter< 1) [62].

The consequences of the supercritical or subcritical ratfia type of bifur-
cation are quite important in the dynamics of a system and Wepay proper
attention to it in the Results part of this thesis. The maifeténce lies in the
fact that in a supercritical bifurcation the qualitativeadlge in the dynamics of
the system occurs through a smooth transition, i.e., thdoaewattractor continu-
ously grows from the bifurcating point, while in a subcridifurcation as soon
as the original attractor loses its stability the systenmeences a sudden jump to
a distant and unrelated attractor. As a related propertyhave that on reversal
of the control parameter around the subcritical bifur@aioint the system does
not necessarily jump to operate again in the original attraand thus generates a
hysteresis loop which might be interesting for some appboa.
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4.2.1 Basic local bifurcations for flows and maps

Local bifurcations in a dynamical system such as a vectat Geflow

= f(z,pn), xeR™ pekRP, (4.1)

are characterized by the eigenvalues of its linearizedmjcey = = — x*

. of
i =Ll (4.2

on a given fixed point™ | f(z*, 1) = 0, which is stable only if all the eigenvalues
are on the left hand side of the complex plane.

Closely related, the theory for bifurcations of discretadisystems or maps

z— f(z,p), x€R®, peRP, (4.3)

is very similar and relies on the study of the eigenvalueb@gissociated linearized
map

of
yr— 5o ley (4.4)

In this case, however, the stability criteria now demandsha eigenvalues (or
Floquet multipliers) of this map to lie within the circle ofadulus 1 in the com-
plex plane.

A key connection between both types of dynamical systemssfiimd maps,
is that a periodic solution in a continuous system can becesed to a fixed point
of amap. This is the idea behind the Poincaré map technitneglocing the study
of a limit cycle to the crossing points of the orbit with a givenanifold or sur-
face in the phase space (see Figure 4.1). This conceptiobecsinaightforwardly
applied to more complicated orbits in phase space to redhecdimensionality of
the bifurcating structure.

Figure 4.1: Poincaré return map of a periodic orbit.



40 Basics of bifurcations

In any case, the loss of stability of an attractor is usuadiyogiated with the
crossing through the imaginary axis (unit circle for mapsamall number of
eigenvalues of the linearized dynamics of the system.

A very important result, stated as the Center-Manifold Theq tells us that
a given local bifurcation can be studied and characterizedobusing only on
the space spanned by the eigenvectors related to thesmlceigenvalues [65].
This and other similar techniques basically allow us to cedthe dimension of
the problem without loosing any essential information alibe bifurcation. Nor-
mal forms are low dimensional and universal models reptawgdifferent types
of these simplified dynamics from which one can illustraféedent local bifurca-
tions as we do in this section.

Summarizing, in both classes of dynamical systems (flowsvaaqk), different
types of bifurcation are associated to the different patkseigenvalues or multi-
pliers can follow towards instability. Then, conditionsceusymmetries or other
type of constrains help to distinguish between bifurcatianth the same type of
eigenvalue transition.

In the following, we highlight and briefly comment on the tgpeaf local bi-
furcations of codimension one associated to the most impbrtormal forms for
both flows and maps.

e Saddle-node Also known adold bifurcation or limit point , in this bifur-
cation two equilibria (one stable node and one unstable ddlspsimulta-
neously appear as a single control paramgt@asses a threshold..The
bifurcation diagram in phase space and the eigenvalue tommslifor flows
and maps are collected in Figure 4.2.

a) b) Im c) Im

Re Re

Figure 4.2. a) Saddle-node bifurcation diagram. b) Bifurcation canditfor flows. c) Bi-
furcation condition for maps. In the bifurcation diagrarolid (dashed) lines indicate stable
(unstable) structures.

e Transcritical . It occurs when one stable and one unstable steady-stdtes co
lide at the bifurcation point,. and exchange their stability. Figure 4.3 shows
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the underlying transition diagram and the bifurcating ¢toiis.

a) b) Im c) Im

Figure 4.3. a) Transcritical bifurcation diagram. b) Bifurcation catiwh for flows. c) Bi-
furcation condition for maps. In the bifurcation diagrarolid (dashed) lines indicate stable
(unstable) structures.

e Pitchfork. In the supercritical version of this bifurcation, a fixedmidoses
its stability as it produces two new stable fixed points whemes control
parameter is varied. In its subcritical form, the bifuroatioccurs as a fixed
point collides with the unstable branches of two previowstistent fixed
points. It is important to mention that this and other typébiturcation
only appear in dynamical systems with an appropriate symynfietflection
invariance in this case). Bifurcation diagram and eigamsltransition are
shown in Figure 4.4.

e Hopf (Naimark-Sacker for maps). In the supercritical Hopf bifurcation, a
stable fixed point becomes unstable as a stable limit cyderis from it. In
its subcritical variation, a fixed point intersects an @rggtunstable branch
of limit cycle orbits at the bifurcating threshold and as assguence the
steady-state loses its stability.

In this type of bifurcation some properties about the linyitle that is born
or is intersected at the bifurcating point can be obtained. amplitude,
for instance, typically grows as the square root of the disteof the con-
trol parameter to the bifurcation point, i.ed, o | — p.|'/?. Regarding
angular information, for continuous time systems the aagirequency of
oscillation of these limit cycles near the bifurcating greld is given by
the imaginary part of the eigenvalues crossing the axis +iw, while for
maps the same quantity is given by the the argument of the leanmair
of Floquet multipliers leaving the unit circlé expi¢ asQ = ¢/2r (see
Figure 4.5). When the map is assumed to correspond to thsirmgogoints
of an orbit with a given Poincaré surface, the Naimark-8adkfurcation
leads to a quasiperiodic motion with two independent fraegies such that
if the ratio between frequencié®/w, ..., iS an irrational number then, the
trajectory on the newborn attractor becomes dense on tfecswf a torus.
On the other hand, f)/w,ct.,n = p/q is a rational number the orbit after



42 Basics of bifurcations

a) ~ < b)
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Im d)

Figure 4.4. a) Pitchfork supercritical bifurcation diagram. b) Pitatk subcritical bifurca-
tion diagram. c) Bifurcation condition for flows. d) Bifurtten condition for maps. In the
bifurcation diagram, solid (dashed) lines indicate sté¢bfestable) structures.

the bifurcation is still strictly periodic and one speaksuaty/q resonances
or locking since the ratio between both frequencies is lisuaintained in

a given region of the parameter space. In this context, gtoorsoft reso-
nances refer to the cases wher€ 4 andqg > 5, respectively.

e Flip. This bifurcation formally occurs only for discrete timerdymical sys-
tems or maps. It is related to the instability of a fixed poirit)(and the
appearance of an orbit alternating or flipping between twiatpdz_ and
). From the perspective that the fixed point of the map undeggthe
bifurcation describes the crossing of a periodic orbit ljvgeriodT’) with a
Poincaré section, the newborn solution represents adyale with approx-
imately twice the period of the original orbity 27. For this reason this
bifurcation is also known as period-doubling bifurcatiohhe eigenvalue
characteristic of this type of bifurcation is the transitiof one Floquet mul-
tiplier becoming more negative than -1 as indicated in Fagub.

At this point, it is worth to remark that even if all the formafurcations are of
codimension one, not all of them are generic under the vaniaff a single control
parameten;. For instance, the transcritical and pitchfork bifurcaticare struc-
turally unstable under perturbation of their modeling diques or normal forms,
and require further constrains or symmetries to physicabigear upon changing
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a) b)

e a
R

Figure 4.5. a) Hopf supercritical bifurcation diagram. b) Hopf subicat bifurcation dia-
gram. c) Bifurcation condition for flows. d) Bifurcation adition for maps. In the bifurcation
diagram, solid (dashed) lines indicate stable (unstalegtsires.

«/\ »Re
4

Figure 4.6. a) Flip bifurcation diagram. b) Bifurcation condition foraps. In the bifurcation
diagram, solid (dashed) lines indicate stable (unstaitagtsires. The numbers in the figure
help to follow the sequence of motion in the new orbit.
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one parameter.

Some codimension-two local bifurcations, i.e., two conparameters need to
be simultaneously varied in order to meet the bifurcaticintpare reviewed below.
These bifurcations are sometimes interpreted as theioall® intersection of two
codimension-one bifurcations in a given parameter spabe.importance of this
points is that they typically act as organizing centers efdiinamics of a system.
Thus, the unfolding of these bifurcations, i.e., the chiréxation of the dynamical
regimes in the vicinity of the bifurcating point in a givenrpmeter space, often
leads to a rich variety of phenomena such as excitabilighal bifurcations, etc...
[66]. In the following we list some characteristic bifuricats for flows [65] that
we will encounter in posterior chapters within our analydisoupled lasers:

e Gavrilov-Guckenheimer. This type of bifurcation is often interpreted as
the coincidence of a saddle-node and a Hopf bifurcationhéthifurcating
point a simple real eigenvalue and a a pure imaginary paiultimeously
cross to the real positive plane as shown in the left panelqfrE 4.7.

e Takens-Bogdanov This bifurcation corresponds to an accumulation point
of a Hopf bifurcation branch, i.e., a limit point in a family blopf bifur-
cation where the imaginary part of the eigenvalues tend®to. zConse-
quently, they are identified by a double zero of the charatieequation as
displayed by Figure 4.7.

e Hopf-Hopf. The intersection of two families of Hopf bifurcation leatds
this type of codimension-two bifurcation, where two comxpt@njugate
imaginary eigenvalues are simultaneously becoming ulestabhe eigen-
values condition is represented at the third panel of Figure

a) Im b) Im c) Im
A A
x> o
x>
— % »—»Re Re ——»Re
x>
X > x>

Figure 4.7. Eigenvalues conditions for a) Gavrilov-Guckenheimer, &féns-Bogdanov, and
¢) double Hopf bifurcations.

Successions of the former types of bifurcations (both cedision-one and
two) often organize universal routes to chaos in a dynansigsiem as some pa-
rameter is changed. An infinite cascade of period-doublifgdations or a finite
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sequence of Hopf bifurcations followed by the generic ibgitst of a toroidal at-
tractor are typical examples of such paths toward chaagiores.

The characterization of the route to chaos in mutually-tedigemiconduc-
tor lasers upon variation of the delay in their interactismmalyzed in Chapter 6.
There, several of the former bifurcations are identifiechim transition from sim-
ple to chaotic behavior in our laser setup. However, thedufilanation of some
elements of the bifurcation diagram towards chaos needs tine presence of bi-
furcations that cannot be described in a local region of tiesp space. A simple
passage over the most typical global bifurcations is ptesemelow.

4.2.2 Global bifurcations

As mentioned before, global bifurcations are difficult tame since they typi-
cally involve changes in non-localized structures of thagghspace. These events
can also lead to chaos through different routes than lofaldaitions do.

For instance, global bifurcations are often related to teation of orbitse(¢)
for which the limits

lim z(t) = 2] and lim z(t) = x5 (4.5)
t— —00 t— 400

exist. If z7 = 25 represent the same steady-state, the newly created cimnect
orbit at the bifurcating point is said to ®moclinic, otherwise it is calledet-
eroclinic. Both homoclinic and heteroclinic connections are impursolutions
that can organize the appearance of chaotic attractorskéyhebservation to un-
derstand why these connecting orbits lead to chaotic behethat their existence
often implies an infinite number of intersections betweandtable and unstable
manifold of a saddle point. Thus, the tangle of intersecpoints induces then
trajectories that are pushed away and pull back to the saditié and thus seem
to wander randomly around the phase space near to that pgdint [

Crises are also a major source of bifurcating events in waidhmaotic attractor
collides with an unstable fixed point or limit cycle. The aft@th of such a crash
is often the sudden disappearance or expansion of a chéintictar and its basin
of attraction. Among the more important types of crises care distinguish the
boundary and theinterior crises.

In the first class of crises an unstable fixed point or limitlegacollides with
a chaotic attractor at the boundary of its basin of attracii®e some parameter of
the system is changed. As a consequence, trajectoriesetfuaiewvere wandering
around the chaotic attractor are now repelled by the urestikdd point or limit
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cycle toward another attracting structure in a differegioe of the phase space.
Then the old attractor and its basin completely disappéar tfe bifurcation.

Interior crises, on the other hand, are also produced whéraatic attractor
touches an unstable fixed point or limit cycle which this tiies within its basin
of attraction. When the impact between both structuresrscthie chaotic attrac-
tor experience a sudden increase in size because now trégscthat get close to
the unstable fixed point or limit cycle, they are propellectxplore new areas of
the phase space of its own basin of attraction.

Being a basic element in the investigation of nonlinear dyica, the con-
tinuation and study of the bifurcations of fixed points andqm#ic solutions for
continuous and discrete dynamical systems has been singebknefited from
the existence of several computational packages. AUTO ES) and DDE-
Biftool and PDDE-Cont for DDEs are for instance, populatwafe for detecting
different bifurcations by approximating the location oéteigenvalues of a char-
acteristic equation [60]. However, a word of caution mustdised against the use
of this type of programs as black boxes without an appropkabwledge of the
internal procedures and basics of bifurcating phenomenthid thesis, when pos-
sible analytical approaches are always preferred. Onlyhap@er 6 the package
DDE-Biftool is used in order to compute the stability of melic orbits.

4.3 Symmetry methods for bifurcations

Dynamical systems often exhibit a certain invariance witigh be helpful in an-
alyzing and understanding some general phenomena thgingen symmetry
properties, are typically model-independent. The difieymmetries exhibited
by both configurations, open-end and ring, allow us to expédtdrent types of
synchronization patterns.

Here it is important to realize that the invariance of the elind) equations of
a system under a given set of transformations is, in gengi@ioperty not inher-
ited by their solutions, i.e., a particular solution of syetnt ODEs or DDEs need
not to be symmetric. However, the set of all solutions mussyrametric. For
example, the normal form of the supercritical pitchforkubifation ¢ = px — 2%)
is symmetric under the reflection of the sign of the state— —x, while each
one of the newborn paths of stable fixed points is clearly especting (i.e., it is
breaking) this symmetry (see Figure 4.4). Instead, whasyinemetry of the sys-
tem tells us is that the existence of one of these asymmaetitches implies the
presence of the other so that the set of both solutions isiamtaunder reflection.

In order to make this type of statements more precise anddeae@/mathemat-
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ical framework in which concrete predictions for the symehzation solutions of
our laser systems could be made, it is necessary to intratieceoncept of sym-
metry of a system of ODEs or DDEs. Thus, a symmetry of a sysfesquations

X = f(X, X(t - T)? :u) ) (4.6)

is described in terms of a set of transformations of the béggthat preserves
the structure of the system. This is usually expressed aadtien of a group

of transformations’ on a vector space (in our case with laser models we deal
typically with R™ or R™ x S™) such that for every solution of the syster(t)

and element of the group, vz(t) is also a solution [67]. It is in this precise
sense that we mentioned that any of the two new paths of fixiedispereated in a
pitchfork bifurcation breaks the reflection symmetry of Hystem, and still since
the Zs-symmetry-group transforms one path of steady-stateshetother, this is
maintained for the set of solutions.

The most common symmetries that we will encounter in our agtsvof lasers
are the dihedral grouf,,, (bidirectional ring ofm lasers), the cyclic grouf.,,
(unidirectional ring ofm lasers), and the permutation grofip. Open chains of
lasers of lengthn will exhibit in general symmetries of the ty[@& x Zs... cor-
responding to the exchange of lasers equally distant frencéimter of the chain.
For our interests, the theory of equivariant (symmetrig)aiyical systems can be
of great help in classifying these possible spontaneousratm-breaking events
according to the specific symmetry groups of our configunatioln fact, differ-
ent synchronization behaviors (our main subject of intgrean be understood
as different ways of breaking a given symmetry. At this pothe main results
from symmetry methods that we can use in order to obtain suthsaification
are rather technical. Loosely speaking they can be statéiedact that when a
symmetry of a group is broken there is a hierarchical arnanaye of the subgroups
under which the system can still be invariant. Such an aemaegt is known as
the isotropy lattice of the symmetry group [67] and it hasrbesry helpful in clas-
sifying and selecting the possible behaviors in symmetritesns. In our specific
case, special attention is paid to the role of the delay, hadnportance of the
length of the lasers chaim and the type of network, in the synchronization and
symmetry-breaking properties.






Chapter 5

Basics of lasers

n the brief history of the laser the almost simultaneous ancement at the
Iend of 1962 by groups from MIT, IBM, and General Research Laiooies
of the creation of the first semiconductor lasers stands lkbsiinvention opened
a door toward the miniaturization, cost-efficiency, andsamuently massive use
of this type of devices in multitude of applications we useour everyday life.
These kind of lasers, besides of having very interestingpgntaes for practical
applications, exhibit huge gain coefficients and an inhenem-linearity which
make them excellent candidates to develop dynamical iiedof high interest
for academics and industry.

Here, we briefly review the basic ingredients of the lasinipadn semicon-
ductor lasers in order to establish a minimum background loiclwwe could dis-
cuss the nonlinear dynamics and synchronization of suctcekein the following
chapters.

5.1 Once upon a laser

Stimulated emission is the process by which light passingutih a fluorescent
material can be amplified. The proposal of this mechanisnhénlight-matter
interaction by Albert Einstein in 1916 is usually considkthe beginning of the
laser theoretical foundation. Einstein introduced thecepi of induced or stim-
ulated emission when studying the thermal equilibrium oétao$ atoms with the
electromagnetic radiation. He noticed that besides therpbsn and spontaneous
emission of a photon by an atomic system, a new process wass&®g in order to
recover from thermodynamical arguments the Planck forrfarlahe black body
radiation. Thus, the concept by which the encountering ofxaited atom with
a photon, which is resonant with an atomic transition, caule emission of an
identical photon, was first devised.

49
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Although the first experimental evidence of stimulated sinis was observed
by Ladenburg and Kopferman in 1928, the interest on thiceffecreased among
the physicists. The main reason was the apparent impassddicreating inverted
populations with more atoms in the excited state than thergtcstate so that
absorption would not dominate the process and stimulategsean could occur.
In fact, it was clear that the Boltzmann distribution of ogation of energy levels
assured that population inversion could not occur in a systethermodynamical
equilibrium. An external pumping of energy or the isolatairexcited atoms could
solve this problem but it was necessary to wait until 1954m@bkarles H. Townes
introduced the key element for the light amplification depshent. His idea of
placing the amplifying medium inside a resonant cavity s #m oscillation could
start, provided that the gain of the stimulated emissioriccouercome the cavity
losses, led to the first practical microwave amplificatiorstisnulated emission of
radiation or MASER.

The transition from the maser to the laser, or equivalefriyn the microwave
to the optical domain was far from being trivial. In a semipaper published
in Physical Review in December of 1958, Townes and his potidal assistant
Arthur L. Schawlow described the first detailed proposaldoitding a laser with
the fundamental idea of a pair of mirrors facing each othayiph the role of the
resonant cavity. The effect of the mirrors was to select ftbennon-directional
light of the fluorescent material only those photons profiagaalong the cavity
axis, and consequently made them to pass through the amglifyedium several
times by bouncing back and forth between the mirrors befueg €scape through
a partially transparent mirror, and hence generating ailksefer beam. The much
smaller wavelength of the visible light compared to the miave and the problem
of finding the appropriate excitation media made the expemial development of
the laser an exciting and difficult one. But in May of 1960, Araerican physicist
Theodore H. Maiman eventually achieved the first laser a&fioa pink ruby rod
with its ends silver-coated and placed in a spring-shapstléenp.

Later on, many different laser systems have been succlgsisiiilt but almost
all of them (including the semiconductor laser that will becdssed below) still
consist of the same three ingredients than the first origasdr, namely, aan
active medium hosting the stimulated emissionb) a pumping source respon-
sible of creating the necessary population inversion anc) a cavity providing
a feedback and frequency selection mechanism

Townes and the USSR physicists Basov and Prokhorov shaeeNdhel Prize in Physics in
1964 for developing the maser.

2The emission of this first laser was pulsating because ofittee fevel nature of the ruby system
was unable to maintain a permanent population inversion.
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5.2 Semiconductor lasers

5.2.1 Introduction

John Von Neumann, one of the fathers of the quantum theory,al&m the first
in proposing semiconductor materials as candidates toligbstamplification as
early as 1953. The idea of recombining electron-hole paiis p-n junction was
culminated when the lasing action in semiconductors waséported in 1962 by
four independent groups from MIT, IBM and General Resea@hdratories. The
characteristics of this type of laser considerably difficirem the first laser devel-
oped only two years before and required of an extraordinioyte The pumping
mechanism consisted of electronic injection rather thaniitense discharge of
photons from a flashlamp as used in the ruby laser. Moredwerliscrete levels
of energy between which the laser transition took first pladée ruby had noth-
ing to do with the energy bands of the semiconductor maseriblhe laser cavity
is also very special and exclusive in a semiconductor laseiitavas first formed
by the polished facets perpendicular to the junction planeugh the reflectivity
that provides the index change in the interface of the samligctor material and
the air.

In 1963 Kroemer in USA and Alferov and Kazarinov in USSR inelegently
suggested the crucial improvement of using heterostrestior semiconductor
lasers. The heterostructure consists of placing the actaterial sandwiched be-
tween two semiconductor layers with a wider band gap (Sea&€&ig.1). The huge
reduction in the injection current necessary to operateetinew lasers and the im-
provement of characteristics such as the optical confinechento the heterostruc-
ture addition permitted that with the advent of the first ficat demonstration of
this type of lasers in 1969, the semiconductor laser becamihé very first time
the small, cheap and fast source of light widely used today.

metal contact

//p-type (material A)

’_p-type (material B)
1\n-type (material B)

| “n-type (material A) Figure 5.1 Diagram of the
: double heterostructure of a
n-substrate ; L
(material A) typical edge-emitting laser.

metal contact

Of course, a lot of advances have taken place since those dsys of the
semiconductor laser history, but here we only want to manti@ breakthrough
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related to the introduction of the vertical-cavity surfamitting lasers (VCSELS)
in 1979. From the design point of view, the main novelty thé taser introduced
was the fact that the output of light was normal to the junciane, instead of
parallel as in the conventional edge-emitter lasers (spa&r€b.2). Nowadays, this
type of lasers are a hot topic of research and they offerrygttdéormance for sev-
eral applications where a cheap, low power, and compactsadiight is needed.
However, these devices can suffer the problem of an und@drdynamics of the
polarization of the light they emit. A study of the mutual pting of VCSELSs is
presented in Chapter 7.

= metal contact
. & i
=~ - upper Bragg reflector (p-type)
—quantum well Figure 5.2 Diagram of

: *lower Bragg reflector (n-type) a simple VCSEL structure

‘ highlighting the dielectric

L mirrors and the fact that

7 n-substrate their light output is perpen-

dicular to the semiconduc-
tor material junctions.

metal contact

5.2.2 Semiconductor laser rate equations

Most lasers are typically described through three macmsc@riables being the
electric field, population inversion, and material polatian. Depending on the
time scales in which the three variables decay, none of tlwm, or even two
of these variables can be adiabatically eliminated. A diaation of lasers is
made according to the number of variables eliminated. Helzss C lasers are
those in which the three decay constants are of the same afrdesignitude and
no adiabatic elimination of any of the variables proceedsthls case the three
variables are needed to accurately describe the main gys@cesses in the laser.
In Class B lasers only one of the variables is eliminated ammddf them are still
required to capture the dynamics of the laser. Finally, ms€IA lasers, only one
variable governs the evolution of the system.

Since in a semiconductor the relaxation time for the poddion is much
shorter than for the rest of variables, it can often be adiieddy eliminated and
then the semiconductor laser falls into the Class B groupe futhe complex
nature of the electric field§ = v/Se'¥, whereS is the optical intensity ang
is the optical phase) we end up with three equations, whiohbeadeduced from
Maxwell and Schrodinger equations after a series of ingobrapproximations, to
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describe the dynamics of a typical edge-emitting semicotmldaser

where N stands for the population inversiof, is the photon decay ratg; is the
carrier decay rate] is the current density injection, and= ¢(XV, S) is the gain
function.

As we can see, for a solitary laser the optical phase is justaé” of the popu-
lation inversion and optical intensity variables, and asr@sequence the dynamics
of these variables are decoupled from the phase. This mhaha single-mode
class B semiconductor laser cannot exhibit chaotic dynabecause at least three
ordinary differential equations are required in order tseslve that complex be-
havior, and only two equations are coupled in the system of El)-(5.3).

However, the effect of external perturbations on the sendaotor laser intro-
duces additional degrees of freedom able to excite veryaachplex dynamical
states as bistability, excitability, or even chaos. Amdrg\ariety of ways of per-
turbing a semiconductor laser, we point out the injectiotigiit into the active
region of the laser, the feedback of light from the same lagerits own active
region, and the modulation of the current supply=£ J(¢)). Any of these mod-
ifications of the solitary laser setup is subject to a greall dé analysis by the
researchers because of intrinsic and applications intedeshis work we study
another kind of perturbation that consists of the mutual coyling of two or
more semiconductor lasers and which allow us to study the pmmmenon of
synchronization, which has been introduced in Chapter 2.

In the case of VCSEL devices the polarization propertiehefdlectric field
need to be considered. If in edge-emitting semiconductertathe geometry of
the cavity is the predominant effect in selecting the paktion of the emitted
light, in VCSELSs (due to their cylindrical structure) thetimal transitions occur-
ing in the emission or absorption of photons become a kedignt in determin-
ing the polarization state. A now standard approach to desthe polatization
effects in VCSELs is the Spin Flip Model (SFM) [15]. This mbdensiders only
transitions between the conduction and the heavy-holeshahthe semiconduc-
tor material. Moreover, within the SFM framework such baads approximated
by discrete levels populated by two different spin carrecsording to the third
component of their angular momentum (see Figure 5.3).
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Figure 5.3. Level structure
on which the SFM is based.

Conduction levels

PN E. and E_ represent las-
J=+1/2 Y J=12 . .
z : ing processes associated to
E E right and left circularly po-
J =+3/2 v 3 J=-3/2 larized light, respectively.

Both spin populations are
Heavy hole levels coupled through the spin-
flip mechanisms-y;).

For this four-level system the standard Maxwell-Bloch doumes, after the
macroscopic material polarization has been adiabatiedillyinated, read

Ey = k(1+ia)[N+n—1]Esx — (va +iv,)Ex (5.4)
N = =% [N—p+(N+n)E> + (N-n)E-[], (55)
—ysn = e [(N +n)[ B4 = (N —n)| E_P]

whereE, are the two circularly polarized components of the slowlgyiray am-
plitude of the electrid field N is the total carrier density, anad is the popula-
tion difference between the two spin reservoir sublevets.the derivation of the
model the decay ratg, = . + 2v;, wherey, is the decay rate of the electron-hole
recombination processes, has been introduced in a pheotogaral way. Such
a spin relaxation mechanism is responsible for the cougirtge two two-levels
systems associated to the emission of right and left cirguteolarized photons.

5.2.3 Polarization of light

In Chapter 7, when studying the polarization dynamics of tmdually-coupled
VCSELSs we will follow the spin flip model to describe the safif lasers plus an
appropriate modification of the equations in order to actéunthe mutual optical
injection.

An appropriate mathematical description of the polariwattate of a VCSEL
or any other source of light is given by the Stokes parameTdrsse are related to
the circular and linear components of the electric field #evic:

So = |BP+|E_|> = B> + |Ey?,

S1 = 2R(ELE*) =|E.* — |E,*,

Sy = —23(E E*)=-2R(EE,),
|EL > —|E_|? = —23(E;E,) .
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Thus, theS, parameter describes the total light intensity and the s&fig’' S,
Sa/So, andS3 /S, define a vector pointing at the surface of a sphere which con-
tains all the possible states of polarization of light. Sacéphere, known as the
Poincaré sphere, is represented in Figure 5.4 where tlaeipation and ellipticity
angles are also defined.

Figure 5.4. Poincaré sphere. The linear polarized states on lightri¢he equator of the
sphere, while the poles represent completely circularrizald states. The angles defined on
the figure are known as the polarization angland ellipticity angley.
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Chapter 6

Mutually-coupled
semiconductor lasers:
stability, route to chaos, and
synchronization

Asl we have seen from the introductory chapters, a semicondiaster array
is just one of the many examples in which the interaction gésa similar
nonlinear systems can lead to rich variety of emergent betsayl]. Neurons,
chemical oscillators, or Josephson junctions are otheeseptative cases of cou-
pled nonlinear oscillators that have attracted the atiardf researchers from dif-
ferent fields. However, quite surprisingly, only recentigvi the effects of the
finite propagation speed of the signals in the interactioconipling between sev-
eral of these systems been taken into account. In this ahapgeprecisely focus
on the effect of these delay times, which constitute a riclig®of instabilities, on
the dynamics and synchronization of semiconductor lassesys.

In Chapter 1, we emphasized the fact that semiconductorslase ideal can-
didates for exploring the behavior of nonlinear systemsmihey are coupled or
subject to external perturbations. Besides their inhenemiinearity these type
of devices can be well characterized and controlled in expgarts, as opposed to
most of biologically oriented systems. Moreover, a longlitian accompanies the
study of these type of devices. The nonlinear dynamics oi@®rductor lasers
have been an active field since the early 70’s. Since theerdiif configurations

1This chapter is based on the papers:
R. Vicente, S. Tang, J. Mulet, C.R. Mirasso, and J.M. Liu,£Wev. E70, 046216 (2004);
S. Tang, R. Vicente, M. Chiang, C.R. Mirasso, and J.M. LilEEE]. Selected Topics in Quantum
Electron.10, 936 (2004) ;
R. Vicente, S. Tang, J. Mulet, C.R. Mirasso, and J.M. Liu,£Wev. E73, 047201 (2006).
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of SLs have been investigated theoretically and experiaigntin particular, the
optoelectronic interaction of SLs has been mostly studiedsingle device subject
to feedback [68—73] or in unidirectionally coupled scheljrds-77], where appli-
cations to encoded communications have been extensivaegidared [78-80].

In this chapter, we investigate the dynamical propertiesvofsemiconductor
lasers subject to a bidirectional optoelectronic couplifihe organization of the
chapter is splitted in two parts in order to separately apgndhe cases where each
laser is subjected (additionally to the mutual couplingd teedback loop or not.

After a common theoretical model is presented in the nexti®@gdn the first
part of the chapter we consider lasers that when decoupleithiea continuous
wave (CW) operation since no feedback loops are includeds,Wwe focus on the
instabilities arising from the lasers delayed interactionl the entrainment prop-
erties of these instabilities when the coupling strengtankanced. Bifurcation
theory is applied in Sections 6.2.1, 6.2.2, and 6.2.3 toydinally obtain different
stability charts. There, the role of the delay in destainijzzhe system is clarified
as well as we identify a quasiperiodic route to chaos. Theedegf similarity
between the instabilities emerging in both lasers and tiedative timing are ob-
tained in Section 6.2.4 by cross-correlation analysis|eMdéction 6.2.5 collects a
series of experimental results concerning the confirmaifaquasiperiodic sce-
nario toward chaos and the achronal entrainment of ing#iabibetween lasers. A
brief summary of the results and the main conclusions ofritiestigation of this
configuration is given in Section 6.2.6.

In the second part of the chapter, in addition to the mutuakaction, the ef-
fect of optoelectronic feedback loops acting on each ofdkerk is considered. It
is important to remark that this kind of configuration, in winiboth, the interac-
tion between systems (mutual coupling) and the self-iotema (feedback loop)
are subject to inherent time delays, is not specific to owarlastup. Just the op-
posite, it is very common to find that systems that establislingeraction with
other elements also have a tendency to form self-feedbagsloMoreover, the
inclusion of the feedback loops embodies the possibilitiutee the dynamics of
the uncoupled lasers between oscillatory, pulsating, en@haotic behavior de-
pending on the strength and delay time that characterizée#guback interaction.
First, we start by discussing the new bifurcating scenafithis configuration in
Section 6.3.1. The “death by delay” quenching of oscilladiégs an important ef-
fect in nonlinear dynamics and it is predicted for our lagesteam in Section 6.3.2.
There, we also find new features of this phenomenom due tonttiesions of
delayed feedback loops, which include the observation isfdfiect even for in-
stantaneously coupled oscillators. The synchronizatimpegrties of the system
are reviewed in Section 6.3.3 where the relative dynamicktha effect of the
delay on the frequency locked regions (or Arnold tongueg)vsstigated. Labo-
ratory confirmation of some of the predictions and main aasiohs are given in



6.1 Model 61

Sections 6.3.4 y and 6.3.5, respectively.

6.1 Model

Here, we illustrate the system under study and provide traefirg equations and
values of the more relevant parameters. The fixed pointseadgtstates of the
model are also included in this common section.

6.1.1 The system

In the general case, we consider the system, sketched ineFégl, composed by
two identical single-mode distributed-feedback (DFB) eemductor lasers sub-
ject to optoelectronic coupling and feedback. Thus, in latoyy experiments
the optical power emitted by each laser is first detected anglected into pho-
tocurrent by the PDs, to be later amplified and added to the diarent of its

counterpart laser (optoelectronic coupling) and to its avj@ction current (opto-

electronic feedback). These interactions are delayeddtleetfinite propagation
times of both the optical and electrical signals. It is intpot to notice that with

this setup negative couplings can be also achieved by stibyghe photocurrent
from the bias current instead of adding it. In any case, tjncall this chapter we
have maintained the strength of the optoelectronic intenas within reasonable
limits, such that the total injection current applied tole&aser is always positive.

I
4|>(5.—@+ H ------ LD2 |-BB)-
-+ T2 1
T b
T,
' LD]  foe b n 4

8

Figure 6.1. Scheme of two lasers subject to optoelectronic feedbacknartdal coupling.
LD: laser diode; PD: photodetector; A: electrical amplifier
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6.1.2 Modeling equations

Regarding the modeling of the system, we consider eaclasplédser described by
the usual single-mode semiconductor laser rate equat@in82]. Then, the dy-
namics of the photo; and carrierN; densities are properly modified to include
the coupling and feedback loops. The optical phase doeslayptpy role in the
modeling since the optoelectronic interaction is medidtedugh photodetectors
which are insensitive to the phase of the electric field.

The bidirectional optoelectronic coupling is accountedbfpadding in the car-
rier rate equation of each Iasé’g-, a term with the delayed photocurrent generated
by its counterpart lasetx S3—;(t — T3—;). Similarly, the effect of the feedback
loops is taken into account by including to the bias of easkr#he photocurrent
generated by itselfx S;(t — 7;). Hence, the dynamics of the system is governed
by the following rate equations for the evolution of the mivoand carrier densities
in both lasers

dS1

I = (Peg1 — %1)51 ) (6.1)
dN J

d—tl — j+66152(t—T2)—l—fflSl(t—Tl)_’YslNl _glsl ) (6'2)
dSs

I = (Pg2— %2)52 ) (6.3)
dN- J:

d—t2 — 6—2 + §c251(t — Tl) + foSQ(t — 7'2) - 732N2 - g2S2 ) (6'4)

wheresS| ; is the intracavity photon densityy » is the carrier density, ang » is
the material gain. The subindices 1 and 2 distinguish betvibeth lasers{.; o
and¢y; » stand for the coupling and feedback strengths, which carabiéyecon-
trolled by adjusting the gain factor of the electrical arfipts in Figure 6.1.1" »

are the delays in the coupling lines between lasers whetgaare the delay times
in the feedback loops. Other parameters appearing in ta@gaiations are the bias
current density/, the cavity decay rate., the spontaneous carrier relaxation rate
~s, the confinement factor of the laser waveguigehe electron charge, and the
active layer thicknessg. An infinite-bandwith photodetector-amplifier response is
assumed for the moment. The effects of high or low cutoffieetries of a filtered
photodetection process are considered in Section 6.3.2.

To continue with the development of the model we need to kriewdepen-
dence ofg on the state variables. Numerical calculations and expsriah mea-
surements show that in a wide operation range the materialhgs a linear de-
pendence on both the carrier and photon densities. Therefay, S) is expanded
as
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g~ go+gn(IN — No) + (S — So) , (6.5)

whereg, = 7./I" is the material gain at the solitary threshald,= dg/ON > 0is
the differential gain parameter, = 0g/9S < 0 is the nonlinear gain parameter,
Ny is the carrier density at threshold, afiglis the free-running intracavity photon
density when the lasers are decoupled from feedback or inateeactions. The
parametersg,, andg, are taken to be approximately constants.

With a view to normalize the modeling equations, we definefttlewing
dimensionless variables for the photon density (S — Sp)/So, carrier density
n = (N—Np)/Ny, bias current/ = (J/ed—~sNop)/vsNo, couplingk. = &.I'/ve,
and feedback strengthy = £¢I"/~.. Working with this normalizations = —1
when no light is emitted by the laser whide= 0 when the optical intensity equals
that of the solitary value, i.eS,. J accounts for the excess of the bias current
over the solitary threshold. After introducing Eq. (6.5)airEqgs. (6.1)-(6.4) the
normalized rate equations read

ds 1 Vr o

il ’Yl—’yfnl(sl +1) — v, 51(51 + 1), (6.6)

dt 781']1

= 77171’1 Ji1(L+ 81) + vey gy 1 [L+ B2t — 1)) (6.7)
e

+ 781"€C1j1 [1 + 52(t - TZ)] - fYSlﬁl - 751j1§1 - 7n1ﬁ1(1 + 51)7

ds oo Vo o

2 72—’}:2712(32 +1) — vp,52(52 + 1), (6.8)

dt 782']2

dn o - . ~ -

d—tz = %JQSQ(].“"SQ) +752l€f2J2 [1+$2(t—T2)] (6.9)
2

+ Vsaheg o [L+ 81(t — T1)] — Vsyiia — Vs, J282 — Ynyiia(1 + 32),

where the differential and nonlinear carrier relaxatiotesaare defined ag, =
gnSo and~y, = —I'g,Sy, respectively. At this point, it is important to note that
sinceSy = JvsNoT' /7, both~, and~, are not independent parameters but are re-
lated to the bias current. With these definitions the relaratscillation frequency
(ROF) can be calculated as

1
fr - %(’Yc’}/n + ’Yp’Ys)UZ . (610)

The values of the internal laser constants are taken frorb@dsory charac-
terization of devices that have been used for experimetddies in [72]. These
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arey, = 2.4 x 10" s7, 4 = 1458 x 10° s7!, v, = 3J x 10° s7!, and
Y =3.6J x 107 571,

The dimensionless coupling and feedback strengths carldieddo the prop-
erties of the photodetection instruments as

nca, I
= — 6.11
Re, f Qe f 2ng/yc Next » ( )

a., s being the coupling and feedback amplifier multiplicatioctéas, respectively,
1 the quantum efficiency of the photodetectojs, a parameter that takes into ac-
count additional external lossesthe speed of light in vacuunay,, the laser facet
losses anah, the group refractive index. For a typical case=€ 0.5, e, = 1,
am =48 cm™t, ng = 3.5, 9, = 0.24 ps !, andT" = 0.3) ks is of the order of
~ 0.1, whena,  is fixed tol. Then, the magnitude of. (or xs) can be easily
modified just by changing the corresponding amplificaticctdaor the external
attenuation. In addition, the sign af. (or x;) can be reversed by subtracting
the generated photocurrent from the bias instead of adtling the analysis per-
formed in the next sections we explore both positive and tivegaalues for the
coupling and feedback strengths.

6.1.3 Fixed points of the model

Apart from academic examples, full analytical solutionsnohlinear dynamical
systems, like the model presented here, are very rare. #etbases, bifurcation
studies of fixed points or other phase space structures @adpra systematic
methodoloy to collect a great deal of information about tif&eiknt dynamical

regimes that can rise in the setup under investigation. ,Nex{roceed to locate
the fixed points or equilibria of our laser model.

As a previous step we reduce the number of free parametene ohddel by
assuming that we are dealing with two device-identical rasemder symmetric
operation. Hereafter, we adopt bias currents £ J, = J), coupling strengths
(ke, = Key = Ke), feedback strengths:¢, = sy, = xy), and feedback loop de-
lays (m = 7 = 7) to be the same for both lasers. It is worth to stress thatthes
approximations fit within the symmetric conditions in whitie experiments were
performed. Moreover, it is well known that this kind of degesite conditions
are responsible for the appearance of the organizing ceoféhe dynamics even
under small asymmetries or perturbations. Nevertheléss,worth to mention
that albeit the assumption of symmetry there are still sbe ftontrol parameters,
namelyJ, s, Ty, Ts, # s, andr.
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The conditions we impose to find fixed points solutions &) = 314,
S9(t) = Sast, N1(t) = nus, andne(t) = nog. The search of equilibria in the
system reveals the existence of four different fixed pointe first solution (FP1)
is given by

S1st = —1,
s = J,
Sost = —1,
fose = J.  (6.12)

This fixed point defines the “off” state of the lasers. Thersstetwo additional
fixed points (FP2 and FP3), which correspond to the case ichuvbine laser is
emitting while the other is switched-off. These solutioapresent the only possi-
ble asymmetric steady-states of the system and read

5 o RfYeTYn
t — )
’ Ve (1 = Kf) + WYs
Nist = Jeds Sist s
YeVn
§2$t = -1 5
fiost = J(1+ ke +kedis) ,  (6.13)

for the solution named FP2, while FP3 is obtained by just arging this subindices
1 and 2. Finally, the steady-state conditions allow for omeenfixed point defining
the “on” state for both lasers (FP4):

(HC + ﬁf)’Yc’Yn

Sist = Sost = ,
’ T (1= Re = )Y — W
Nist = MNost = jzpzs S1st - (6.14)
cin

6.2 Bidirectional coupling without feedback

Here, we consider the situation in which the feedback loagsrnat included

(ks = 0) and only the mutual coupling excites both lasers simutianly. Next,

we proceed by investigating the stability, route to chaod, entrainment of insta-
bilities developed under this configuration.
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6.2.1 Stability analysis of fixed points

We start by analyzing the linear stability of the fixed poiftisnd in the modeling
section. The characteristic equation particularized tgpoablem reads

of of of
det<—,\1+ Sl t mery | P+ 5
Xst

oxp(—)\Tg)> =0, (6.15)

Xst

wherex = (31,71, 32,72)" andf is the flow defined by the right-hand sides of
Egs. (6.6)-(6.9). The notatiax; stands for the delayed varialagt — 7). In the
following, we focus on the study of the eigenvaluesf Eq. (6.15) for the different
fixed points.

Fixed point FP1

First, we treat the stability of the steady-state in whicHas®r is emitting light,
i.e., FP1. Once linearizing Eq. (6.15) on the expression BL,FEq. (6.12),
the resultant characteristic equation turns to have onlga solution,\ =
(A + 9p7s)/(3s). This eigenvalue becomes zero, and consequently the fixed
point becomes unstable, At= 0, i.e., at the solitary threshold.

This result supports the interpretation that thresholdicgdn in SLs can only
occur through coherent interactions where a superpoditidhe intracavity laser
and some injected fields is possible. In our case, since ttoel@gtronic interac-
tion is by nature phase insensitive no threshold reduci@xpected. Similarly to
the solitary case, as the bias current is increased the fagalility of the “off”
state is mediated by a collision in the phase space with thé state (FP4) in a
transcritical bifurcation.

Fixed points FP2 and FP3

The symmetry between these two fixed points allows for a $anabus study of
both of them. In this case the computation of the charatieesuation leads to
the following four eigenvalues

A1 =  —Ys, (616)
P— Ye Yn+E&c j/yz Yn+Yp Vs , (6 17)
A4 = *’Y’rL*’Yp*’Ysi\/(’Y7L+’Y7;+’Ys)2*4 (e mtpas) (6.18)

Evaluating the real part of these roots it is observed thigttbie second eigenvalue
can have a zero real. This occurs when the coupling streregttedses down to
the critical value defined by
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s
YeVn

KE=—1 (6.19)

To inspect how these two asymmetric fixed points becomeestabthe cou-
pling decreases we need to invoke here the study of a fixed phinse detailed
stability is investigated in the next section; the symneesteady-state FP4. The
key observation consists of realizing that FP4 can losetatsilgy at exactly the
same critical coupling strengt’ for which FP2 and FP3 become stable. This
transition is mediated by a real zero eigenvalue of FP4 bawppositive for fur-
ther decrease of the coupling. Then, at the critical cogpgjiven by Eq. (6.19)
we have a situation in which the three fixed points FP2, FP@ Fdv experience
a simultaneous change or flip of their stability. Atypicathis situation is that ex-
changes of stability between steady-states usually isvadMisions of fixed points
in the phase space (as we have seen in the local bifurcatereved in Chapter
3) and nevertheless such collisions between FP2, FP3, ahdreRtrictly forbid-
den for the symmetric situation that we are considering.h&tes last point can
be checked by noticing that expressions Eq. (6.13) and Etg)6annot coincide
regardless of the value @&f..

In Figure 6.2 we plot the paths and indicate the stability B2F-P3, and FP4
as a function of the coupling strength. Figure 6.2 is geedral assuming a short
coupling time delay so that we guarantee that no Hopf bifionacan affect FP4
as we will demonstrate in the next section. The way out to tnenér apparent
contradiction relies on appreciating that only at the caitcoupling the stationary
conditions for system Eqs. (6.6)-(6.9) allow for an extréuson consisting of a
continuum of fixed points (CFP in Figure 6.2). This continuafrsteady-states,
lying on the lines; + s, = —1, it is found to connect the other three fixed points
involved in the stability flip and mediates in their exchamgstability.

In summary, the stability analysis tells us that when vagyihe coupling
strength towards more and more negative values a suddesititvarfrom the “on’
state of both lasers (FP4) to the regime in which one of trex Iasitches off while
the other remains lasing (FP2 or FP3), takes place. Phlysittak transition cor-
responds to the point at which, if operating on FP4 the negatbupling starts
generating an effective current (bias plus photocurreelve the solitary thresh-
old. Therefore, by any small perturbation the system dsgesin the“on’ state in
favor of one of the competing asymmetric fixed points. Oncerafing in FP2 or
FP3 the dynamics is again stable because the light coming dree of the lasers
is converted in enough negative photocurrent to switchitetfounterpart laser.

So far the perfectly symmetric configuration of the coupksklrs scheme has
led us to a highly degenerate picture of the bifurcating rmams. To see how the
breaking of this symmetric scenario modifies the formerypgtin the following
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CFP

Figure 6.2. Paths of the fixed points in the — 52 phase space projection as a function of
the coupling strength.. Solid and dashed lines indicate of the stable and unstallecter

of the fixed points, respectively. Different fixed points tionations are labeled as FP (1)-(4).
The continuum of fixed points (CFP) only exists for the caticoupling strength at which the
stability flip occurs.

we allow for different coupling strengths in the two waystud interaction between
lasers, i.e.kq.1 # keo. TO fiX ideas we sek.; = 0.5, while k.o is varied up to
cross the critical coupling. Figure. 6.3 shows the contilomaof the different
fixed points as a function a@f.,. Under these asymmetric conditions it is observed
that only the laser receiving the stronger negative cogplin this case laser 2)
switches-off. This occurs when the negative photocurreneived induces the
crossing of the threshold current only for laser 2. Now, tlabigity flip uniquely
occurs between FP2 and FP4 being mediated by a transchitfoatation.

Fixed point FP4

The fixed point FP4 represents the regime in which the twadagperate in the
“on’ state emitting a constant optical intensity. While floeemer analyzed fixed
points could only become unstable by the transition of o zero eigenvalue,
FP4 allows for more complex situations.

The bifurcation analysis for this fixed point starts as udtah its associated
characteristic equation. For simplicity, we recover héme perfectly symmetric
configuration for which both lasers emit an identical ofdtipewer, i.e.,515 =
S2¢¢ = S andnig = nagy = 7, as given by Egs. (6.14). Thus, the characteristic
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Figure 6.3. Paths of the fixed points in th& — 3> phase space projection as a function
of the coupling strength.2.sub k.1 has been fixed to 0.5. Solid and dashed lines indicate
of the stable and unstable character of the fixed pointsentisply. Different fixed points
continuations are labeled as F.P. (1)-(4).

equation for FP4 reads

exp(—2AT) [ke e yn (143)]°=

[a,,, (Ys4+A) (142 )4+ (Yn+7s +A+7n §)+ ”;J;f (=X fitys (J—itJ 5))] ? ,

(6.20)

where the delay timed{ and7y) appear in the above equation only through their
sum, T = (T7 + T»)/2. A first important conclusion is that the individual value
of each of the delay times is not important for the stabikiyue provided that the
round-trip time of the system remains fixed.

Once the characteristic equation has been written downreeepd to locate
the Hopf bifurcations of FP4 in the control parameter spaemsed by the current
injection J, coupling strengths., and delay timel’. The bifurcation condition
consists of insertingh = iw into the complex Eq. (6.20) and looking for real
solutions forw # 0. After separating both sides of the equation into real and
imaginary parts, the delay timi& can be easily eliminated to obtain a single a
biguadratic expression far
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w4 bw?+c=0, (6.21)

with coefficientsh andc given by

— Yeyn ) 2 2 )2 2 - ~
b = (T) +('Ys +n? (1+3)"+(vp+279p 8)"+2 70 (143) (vp+ys+27p 5))

—23e9n (o, J (143)+7 (yn+Yp+rn 5427 8))
vs J

("/p vs J (142 3)+7c Tn (j*ﬁ+j 5))2,((]”,10 Ye Wn(1+§))2
J2 ’

C

and whose solutions are

w= :I:% b+ Vb —4c. (6.22)

It is important to recall here that the expressions of thdfiments b andc only
depend on the internal and the control paramefeasd .. Therefore, the values
of the current injection and coupling strength fix the salos forw, i.e., the imag-
inary part of the eigenvalues that cross the imaginary aWen associated to
Hopf bifurcations this imaginary part corresponds to thgudar frequency of the
newborn limit cycles. Itis clear then that the coupling tidedayr, even necessary
for the appearence of periodic solutions does not play aleyimadetermining the
frequency of the limit cycles when they are born.

Once the proper values af have been obtained with Eq. (6.22) the critical
time delay for which the transition of eigenvalues takex@lean be determined
as

. w (vs J (p+vs+29p 8)+n (= itys T (143)
T*(w)=1 arctan {‘( e e e e I 5)))))” ' (6.23)

Since the termexp(—2iwT’) in Eqg. (6.20) remains invariant under the transform
T +— T+ mmn/w, Ym € Z (property known as clustering in Chapter 3), the for-
mer expression unfolds an infinite series of critical deleyes given that at least
one reall™ exists.

Thus, the necessary and sufficient condition for the extsterfi a Hopf insta-
bility in the system is given by the condition that at leasé @aal solution forw
exists. From Eq. (6.22) it can be observed that this condisahat the quantity
—b =+ (b — 4¢)'/? is a real and positive number. Since the sigwa$ irrelevant
we can only distinguish two branches of solutionsdaidepending on the sign we
choose inside the square root of Eq. (6.22):
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Wi = ((—b + (02— 4c)1/2) /2)1/2 (6.24)

and

W = ((—b —®? - 4c)1/2) /2)1/2 : (6.25)

To work out this condition a little bit more we define the distnant D = b% — 4c.
The existence of a real solution far is guaranteed in the regions for which
D>0nNnB<0O0U(®>0nc< 0). Inthe areas of the coupling strength
versus injection current plane where such conditions disfieal we can assure
the existence of a real solution ferand consequently, a critical delay time given
by expression Eq. (6.23) beyond which at least a pair of cerwigenvalues have
a positive real part.

In the next subsection we collect all the information abdw tixed points
bifurcation study in order to create stability charts in thest relevant parameter
spaces.

6.2.2 Stability diagrams

Here we provide a complete overview of the stability of thigedént fixed points
with respect to variations of the injection current, conglstrength, and time de-
lay.

Current versus coupling strength

In Figure 6.4, we show the stability diagram of FP4 in thedtign current versus
coupling strength parameter spacevs. .). From the formerly studied condi-
tions of instability, three different regions can be idéad in that plane.

Within the Delay-Independent Stable Region (DISR) the fipetht FP4 is
stable regardless the values of the coupling times. Thieeesytstem tends to op-
erate in its symmetric state given by FP4 no matter what thimigice between the
lasers is. At the Delay-Independent Unstable Region (DI the fixed point
FP4 is always unstable independently of the coupling tifiée. asymmetric FP2
and FP3 become stable as soon as the coupling strength skecm@awvn to the
critical valuer for which FP4 exactly enters into the DIUR zone. Finallysit i
also observed the existence of two Delay-Dependent Stag®R (DDSR) where
the stability of the symmetric fixed point FP4 is not only detmed by the cur-
rent and coupling strength but also depends on the exa whthe coupling time.

From Figure 6.4 one can observe some more remarkable feathirst, it is
important to notice that for a given coupling strength thisralways a value of
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Figure 6.4. Stability diagram in the coupling strength versus injacttarrent plane. vs.

J) according to the signs dP, b andc. Solid, dashed and dotted lines represent the zero-level
contours forD, b andc, respectively. DISR: Delay Independent Stable Region. RIDelay
Independent Unstable Region. DDSR: Delay Dependent Sdgjeon.

the bias current which is able to stabilize the symmetriadestate operation of
the system (to induce a transition into the DISR zone for FRdpther interest-
ing characteristic is that it is easier to destabilize th&teay through negative or
inhibitory couplings than with positive or excitatory onéote that the border be-
tween the DDSR and DISR regions appears for smaller values wie coupling
is negative than when it is positive. Both effects, the ditediion of the system
for large currents and the larger instability threshold gositive couplings, can
be related to the increment of the damping of the relaxatemillations when the
bias or the injected photocurrent increase. Finally, it isttvto mention that the
sizes of the different stability regions in Figure. 6.4 sgly depend on the non-
linear carrier relaxation rate parametgr An increment of this parameter, which
corresponds to the gain saturation of the lasers, yields¢daction of the DDSR
island located at positive coupling strengths. Hence, thdimear gain parame-
ter, besides introducing an essential nonlinearity in §stesn, becomes a very
important value since it tends to stabilize the dynamicsraddces the ranges of
parameters where instabilities may develop.
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Coupling strength versustime delay

In order to better understand the effect of the time delayherstability properties,
we fix now the value of the bias current to a moderate value 1/3. The goal
here is to build from the bifurcating events affecting FR4sitability chart in the
coupling strength versus coupling time plane.

The procedure followed to construct such a stability diagcansists of:

1. fixing a value for the coupling strengkt,
2. find the corresponding values®of > given by Egs. (6.24)-(6.25),

3. compute the critical delay times associatedt¢w; ) for different values
of m,

4. and repeat the former steps varying the coupling strelogbbtain a family
of Hopf curves in the:. versusT plane.

Figure 6.5 shows the critical delay time curves correspando both eigenfre-
guenciesv; andws, for values ofm ranging from 0 to 5.

For the stability issue besides the critical delay time earwvhich tell us the exact
parameter values for which a pair of eigenvalues lies onrieginary axis, we

still need to check when the eigenvalues cross from thedefi right half-plane

of the complex plane or viceversa. This information is beaotg#d by computing

the implicit derivative of Eq. (6.20) with respect 10

X —Aexp(—2AT)
— = o , (6.26)
dI'  h(A)§x + T exp(—2AT)
whereh()\) denotes the function
h()\) = ["ic’Yc’Yn('Yc’Yn + ’Yp’Ys)]_l X [(1 - 250)7271%"’_

297 s + e + A2 (Ve (L = hie) + ppvs) +
)‘(’Yp’Ys(’Yn + v + 75) + ’Yc’Yn(’Yn + Y+ s — RC’YS))] . (627)

We have numerically evaluatetit(\)/dT | ~i., , from Eq. (6.26) as a function
of m for several coupling constants. The results are shown inr&i§.6. Since
for all the values ofs. andm investigated we obtain thatR(\)/dT | =i, > 0
anddR(\)/dT | x=iw, < 0, one must infer that the destabilization of eigenvalues
occurs at the critical delay curves associated to the aiggnéncyw,, while sta-
bilizationstake place at the lines associated with
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Figure 6.5. Hopf curvesl™ (w1,2) withm = 0, 1, 2, 3, 4, and5 in the coupling strength versus
coupling time plane. Solid and dashed lines distinguiskvben the sequences associated to
w1 andws, respectively. The Hopf curve associatedItd(wz) with m = 0 has not been
considered here, since it appears at negative coupling tieias.
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From Figure. 6.6 it can be also deduced that the “velocityvlaich the eigen-
values cross the imaginary axis, in one or other directi@trehses monotoni-
cally with the period ordefn. These results, together with the fact that> w-
(which implies that the periodicity id" for the appearance of the destabilizing
lines, 27 /w1, is smaller than the corresponding to the stabilizing csipre/w,),
demonstrate that the rate at which the eigenvalues becostabl® atv;, when
increasingdT’, is larger than the rate they become stable-atTherefore, an arbi-
trarily large number of unstable eigenvalues can be actiiesesufficiently long
delay times. It is at this point when we can guarantee thenalesef stability
islands inside the most external borders of the curveseaulatt Fig. 6.5. The re-
sulting stability diagram for FP4 is then shown in Fig. 6.7.
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Figure 6.7. Stability diagram of the FP4 in the coupling strength vs etitelay plane obtained
from the external margins of the critical lines in Figure @rid the critical linex} = —1 —

TpVs /’YC’Yn-

Once the bifurcating study of the fixed points of the systemlen completed
and the main stability maps constructed, we further comtiowr investigations by
looking at the properties of the periodic solutions and thée to chaos followed
by the system.
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6.2.3 Periodic solutions and the route to chaos

In the preceding part we have shown that the system can babiestd through

a Hopf bifurcations with imaginary past; », leading to the appearance of oscilla-
tions at the same frequencies. The characteristics anititgtabthese limit cycles
are of fundamental importance to understand the transitiche system to more
complex behaviors.

Here, we first study the evolution of the eigenfrequencigs (i.e., the fre-
guencies of the periodic solutions when they are born orafieg function of the
coupling strength. We also compare these values with thbdeaelaxation os-
cillation frequency (ROF) which defines a very importantdistale of any semi-
conductor laser system. In the computation of the ROF valigesgse the effective
injection current, i.e., bias plus photocurrent, in ordeiobtain a more accurate
description of the relaxation oscillations occuring in toeipled system.

Figure 6.8 illustrates the values of the eigenfrequendies negative coupling,
it is observed that the instability toward periodic solagooccurs at frequencies
near the free-running relaxation oscillatiofis= 2rw; ~ ROF (k. = 0) = 2.4
GHz. For positive couplings, howevefi, grows close, but always above, the ROF
of the coupled system. Concerning the frequefigyt is observed that when stabi-
lization of the output of the lasers occurs, it is throughrareise Hopf bifurcation
at a frequency close to 2.4 GHz for positive coupling valuss @ a much lower
frequency for negative ones.

Once the period of the limit cycles solutions has been clearaed we next an-
alyze the structure and stability of these periodic sohgiembedded in the phase
space. In particular, we will focus on understanding thele in the route to chaos
of the system as the coupling delay time or distance betwezlasers increases.

Route to chaos

The bifurcation diagram obtained for the normalized phatensitys; as a func-
tion of the coupling time between the lasers is shown in Egu®. A similar
diagram is registered fof,. We will see in this section how the main features
of this diagram, namely a) the sudden transitions from cli@ygo periodic be-
havior (P), b) the increasing size of the quasiperiodic drabtic regions (Q and
C, respectively), and c) the clear repetitive structurehed tiagram, are nothing
else but the signature of the properties of the limit cycleshe dynamics of the
system. In Figure 6.9 it is also noticeable that the routeh@os traced by our
mutually interacting lasers resembles the one followed biyngle laser subject to
optoelectronic feedback [72].
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Figure 6.8. Eigenfrequenciedi > (solid lines) and ROF (dashed line) as a function of the
coupling strengthk..

To accomplish our goal we represent in Figure 6.10 the #falilagram for
different limit cycles as a function of the coupling time. élimterpretation of this
plot and its relation to the bifurcation diagram goes asofedl. First, we typi-
cally observe how decreasing the time delay a subcriticgdfHiifurcation (A)
[83—85] gives rise to a limit cycle that undergoes a stabijzold bifurcation at
another point (B). Then, this fold or saddle-node bifur@atior limit cycles is fol-
lowed by a Naimark-Sacker (C) bifurcation. At this point thmit cycle in which
the system is operating develops into a torus and a quasifierdynamical state
emerges. When further decreasing the time delay, a tora&doevn is generally
observed leading to fully developed chaos. For even shoeleys, the sudden dis-
appearance of the chaotic behavior observed in Figure @d@sto be induced
by a boundary crisis (D) that occurs when another unstabié Gycle collides
with the chaotic attractor that was born around the torusallyi, the amplitude
of the periodic solution goes back to zero (E). Since thetloycle is born (A)
and annihilated (E) on FP4, the periodic orbit path conndifsrent points on
the continuation path of FP4. Similar periodic orbit briddmit between different
steady-states have been reported in the literature of sechictor lasers subject
to coherent optical feedback [83, 84, 86].

This quasiperiodic route to chaos is rigorously checkeduthn the computa-
tion of the Floguet multipliers at the appropriate pointstds illustrated in the
right panels of Figure 6.10. At the point labeled as (B), wsarle how a real Flo-
quet multiplier is entering into the unit circle through tie0) coordinate, while
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Figure 6.9. Bifurcation diagram fo; as a function of the coupling delay time. The coupling
strength has been fixed to. = 0.5. Only maxima of time series were recorded to plot the
bifurcation diagram. The labels “P”, “Q” and “C” on the top tife diagram identify the
dynamical states as periodic, quasiperiodic and chaetspeactively.

for the point (C) two complex conjugate Floquet multiplien® leaving the unit
circle at+ exp(i0.77) giving rise to a toroidal attractor. The winding number or
ratio between the periods of the two quasiperiodic moti@hkintg place on the
torus can be estimated and coincide with the numerical sinouls to be around
27/0. 77 ~ 3.

The above explanation was illustrated with the limit cyadesering the delay
times in the range- 440 — 720 ps. Taken into account that any other limit cycle
in Figure 6.10 has similar properties to the one just desdrimow we can easily
understand that: a) all the sudden transitions from contplexgular behavior are
probably induced by crisis events, b) the size of the islasfdguasiperiodic or
chaotic behavior amounts to the distance between the fd@itnd (D) which in-
creases for longer delay times, and c) the qualitativelgtiige structure found in
Figure 6.9 comes from the fact that new periodic solutiorth wimilar properties
arise as the delay is increased.

We illustrate in Figure 6.11 the route to chaos obtained fthennumerical
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Figure 6.10. Left panel: Stability diagram for limit cycles as a functiofithe coupling delay
time. The coupling strength has been fixedito= 0.5. Continuous and dashed lines indicate
stability and instability, respectively. Right panel: glet multipliers at the points labeled as
“B” and “C” in the left panel.

simulations when the coupling delay time is decreased. odeahpraces, power
spectra, and return maps clearly indicate a quasiperiaditerto chaos that per-
fectly agrees with the theoretical analysis and is also fxy@atally confirmed in
the following sections. In the first row, a perfectly periodiate is observed for a
delay time ofT" = 840 ps, giving rise to a single peak in the power spectrum near
the ROF and a single spot in the return map plot. Decreasmglétay down to
T = 800 ps, the quasiperiodic state is revealed by the power spectiinere, a
slow frequency corresponding to the envelop frequencystaffaquency coincid-
ing with the pulsating frequency and several harmonics aadifigs between fast
and slow frequencies are clearly observed. The annulgresheeturn map also
confirms the quasiperiodic behavior. Finally, for a delayi'of 720 ps, a chaot-
ically pulsating sequence is obtained. In this case, a leroggectrum and return
map are expected as it can be checked in the figure.

6.2.4 Mutual entrainment of laser instabilities

Once the different dynamical states have been charaaleaimbthe transition from
regular to complex behavior is well understood, it is inséireg to know whether
the lasers are able to mutual entrain their dynamics or rostddy this, here we
compute the maximum of the cross-correlation functipp..) between the two
laser outputs as a function of the coupling strength, foroatgh ns) and a longlp
ns) coupling time;I". Only values ofx. = 0.25 are considered since the system

~

operates in a stable regime for smaller values.
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Figure 6.11 Numerically computed quasiperiodic route to chaos. Lelftiiom, time series;
Central column, power spectra; Right column, return mapsmRop to bottom the delay time
T is 840 ps,800 ps and720 ps, respectively. The coupling strengthcis= 0.5.

In Figure 6.13(a) it can be seen that for sHBr& large correlation coefficient
is obtained for a large range of the coupling coefficientsvextheless, it must
be noticed that for most of the coupling rates both lasersadpen a periodic
regime exhibiting synchronous (zero-lagged) pulsatiofhen the time delay is
perturbed aroune- 1, perfectly entrained antiphase oscillations are alsorobse
for most of the couplings. Only for values 8f around~ 0.5 do the lasers op-
erate in a quasiperiodic or chaotic regime and in these ¢hsamaximum of the
cross-correlation coefficient drops down~a0.7.

When performing the same analysis but this time increasiagoupling time
up to 15 ns, we observe that for almost any coupling coefficient basiels enter
into a quasiperiodic regime or even into a chaotic pulsasiage for intermediate
couplings. In this case, the maximum of the cross-coratioefficient remains
close tol except for intermediate coupling values for which it decays- 0.8.
Now, the time lag at which this maximum is found always cquoegls to~ +7'.
Contrary to the previous case, now when slightly changirggdélay time (but
still within the long delay time limit), the lag at which theaximum of the corre-
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Figure 6.12 Maximum of the cross-correlation functiop,{..) as a function of the coupling
strength for (a)l' = 1 ns and (b)I"' = 15 ns.

lation appears continues being located-at-7T and no zero-lagged solutions are
found. When reversing the sign of the coupling coefficiemgrider to take into ac-
count negative coupling values, we find that the cross-tadioa function decays
to much smaller values than for their positive coupling detyparts, revealing that
mutual entrainment is more difficult to achieve in the case ithhibitory couplings
are considered.

In order to further study the relative dynamics between the lasers and
its dependence on the coupling delay time, the maximum o€tbss-correlation
function and the time lag of this maximum are investigatech dsnction of7".
The results are presented in Figure 6.13 for a fixed valueeo€tiupling strength
ke = 0.5. Figure 6.13(a) shows the maximum correlation betweenwoedser
outputs. It can be clearly seen that the correlation maxindegereases from a
value near 1 for shoff’, to a value around 0.8 for large delay times. We conclude
that a high correlation between the two laser outputs is obtgined when they
exhibit periodic behavior at short values’Bf while it decreases when they enter
into chaotic regimes. In panel (b) we plot the absolute vafiibe lag at which the
maximum of the correlation appears. We have to stress ttedl dases the cross-
correlation is a symmetric function of the lag, which indesathat in average does
not exist a defined leader or laggard role of any laser. Fait §heaome windows
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of in-phase and anti-phase dynamics, corresponding togation of both lasers
in corresponding in-phase and anti-phase limit cycles,ohserved. There also
exist some windows appearing for intermediate distancesioh the lag between
series is larger than the coupling delay tifieThese regimes mainly correspond to
situations where both lasers operate in quasiperiodidsorBifter these windows
the lag between the two outputs tends to the coupling detag 47" for large
values ofT’, where the lasers behave chaotically.
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Figure 6.13 a) Maximum of the cross-correlatiop,{...) as a function of the coupling delay
timeT. b) Absolute value of the lag at which the maximum of the ci@@selation function
occurs. In both cases the coupling strength has been fixed£00.5.

6.2.5 Experimental results

As it was mentioned in the introductory part, laboratory erkpents were per-
formed in collaboration with the Electrical Engineeringdaetment of the Univer-
sity of California, Los Angeles in order to confirm the romess of some of the
theoretical expectations and push the theoretical modeddount for more realis-
tic situations. Here, we concentrate on experimentally aestrate the quasiperi-
odic route to chaos and to show the mutual entrainment piepeaf the lasers.

In the experiments, the lasers were InGaAsP/InP singleenideB lasers both
operating at 1.299m wavelength and temperature stabilizeHC. The two
lasers, which were chosen from the same wafer, are closdlyhethin their char-
acteristics to be highly identical and fit within the symnemodeling assump-
tions. The photodetectors were InGaAs photodetectors aviiGHz bandwidth,
and the amplifiers were Avantek SSF86 amplifiers with 8.8 GHz bandpass
characteristics. The laser intensities measured by thiegétectors were recorded
with a Tektronix TDS 694C digitizing sampling oscilloscopéh a 3-GHz band-
width and a sampling rate up tox 10'% Samples/s. Power spectra were measured
with an HP E4407B RF spectrum analyzer that has a spectrgériiom 9 kHz
to 26.5 GHz. The mutual coupling strength and the couplingydéme could be
adjusted by changing the attenuation on the coupled ogimaér and the optical
path length in the coupling channel, respectively.
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Figure 6.14 shows a sequence of three dynamical states as@ckgular puls-
ing (RP), two-frequency quasiperiodic pulsing (Q2), andatft pulsing (C), re-
spectively, obtained by varying the coupling delay timesuad7; = 75 ~ 15
ns. Due to experimental limitations shorter coupling timerevvery difficult to
explore and all experimental measurements were performétkeilong coupling
time limit. Although the coupling strength is experimetalifficult to measure,
we estimate it to correspond to a valueQf between0.5 and7. For each dy-
namical state, the time series, power spectrum, and retamfrom the system
output at the photodetectors are plotted as in the firstygg@nd third columns,
respectively.
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Figure 6.14. Experimental quasiperiodic pulsing route to chaos whenedesing the coupling
delay time (from top to bottorff" is decreased arourfd = 15 ns) for mutually coupled lasers
with the configuration shown in Figure 6.1. RP: Regular mgsstate; Q2: Two-frequency
quasiperiodic pulsing state; C: Chaotic pulsing statestiiolumn, time series; Second col-
umn, power spectra; Third column, return maps.

In panels (a)-(c) the system is found in a regular pulsinggstehe time series
in Figure 6.14(a) shows a train of regular pulses with a @ngtulsing intensity
and interval. The power spectrum in Figure 6.14(b) has omé/fandamental puls-
ing frequency,f1, which is about 1 GHz, close to the experimentally deterghine
ROF. The Poincaré map section in Figure 6.14(c) is obtaayeacording a peak
sequence”(n) at the local intensity maxima of a pulse train and furthetttjig
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P(n) versusP(n + 1), as it was done for the numerical results. In the regular
pulsing state, the output has a constant peak intensitythendeturn map shows
only one spot. The fluctuations in the time series and, caresgty, the scattering

in the return map are mainly caused by the noise in the systehthee sampling
errors from the oscilloscope.

When the coupling delay time is decreased, we can observehmwaystem
enters into a two-frequency quasiperiodic pulsing staté e pulsing intensity
modulated at a frequencyf, as shown in panels (d)-(f) of Figure 6.14. There,
the time series clearly shows this modulation of the peakniity. In the power
spectrum, besides the pulsing frequerfgyan incommensuratg, indicating the
modulation of peak intensity shows up. The appearance ofita@mmensurate
frequencies,f; and fs, is the indication of quasiperiodicity in our coupled laser
system. In the return map, the data points are still scattdre2 to noise and
sampling errors. However, we can see that the distributioRigure 6.14(f) is
more scattered than that in Figure 6.14(c) because of thellatozh on the pulse
intensity.

In panels (h)-(j), when the delay is further decreased, ystem enters into a
chaotic pulsing state. From the time series, we find that thetipulse intensity and
the pulsing interval vary chaotically. At the same time, plogver spectrum of the
chaotic pulsing state is broadened with a much increasekjb@amd, indicating
the onset of chaos. The return map shows a highly scattestibdtion in a large
area.

Therefore, the system is shown to enter a chaotic pulsing $teough a
guasiperiodic route as it was predicted by the analysisefithit cycles embed-
ded in the phase space.

Regarding the entrainment of instabilities emerging fromdoupling of both
lasers, we have also experimentally observed that for thg telay time limit
the maximum of the cross-correlation function between e intensity signals
appears atv £7°, as it happens in the numerical analysis. Figure 6.15 shaws e
perimental temporal traces and the cross-correlationtifumbdetween these two
series. Although the correlation value is significantly ésvimainly due to noise
originated in the sampling process) than the one prediatedenically ¢~ 0.8 for
this operation regime), the two largest maxima still ap@gdne lags~ +7.

Hence, these experimental results verify qualitativegyrissults obtained from
the numerical simulations concerning the demonstratidhetuasiperiodic route
to chaos followed by the system when the distance betweetaslees or delay
time is varied, and the achronal synchronization betweein thaotic dynamics.
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Figure 6.15 Experimental temporal series and their cross-correldtimction in the long
delay time limit. The coupling delay time 8 = 15 ns.

6.2.6 Conclusions

In this first part of the chapter we have extensively studig@rmalytical, numeri-
cal, and experimental means the stability diagrams andsgnization of a system
composed by two single mode semiconductor lasers withdmtional optoelec-
tronic delayed coupling.

Our analysis has provided a clear understanding of the basihanisms lead-
ing to the different dynamical instabilities and the roley®d by the different
parameters, namely the injection current, coupling stterend delay time.

The route to chaos when varying the coupling delay time har tieeoretically
identified and experimentally confirmed as a quasiperiodenario with crisis
events.

The effect of the coupling delay time on the mutual entrainhpeoperties be-
tween the lasers has also been investigated and confirmedgbyiraental results
which qualitatively agree with the analytical and numdrarzalysis.

As a final conclusion it is worth remarking that the validitiytioe fixed points
stability analysis performed in this chapter for the optogionic coupling can be
directly translated to the case when the interaction betiesers is of incoherent
optical nature [87]. This result comes from the observati@t the characteristic
equation for a general model of incoherent interactiongedmearized on the
corresponding fixed points, leads to the same expressiohaa®ltained in the
optoelectronic case with negative coupling Eq. (6.20). yGnproper scaling of
the coupling strength§. inconerent —— —&c.optoelectronic N€EAS to be performed
in order to establish a complete analogy. The similaritiesvieen both types of
interactions extend even to the nonlinear regime since rinatsimulations show
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the same route to chaos and entrainment phenomena are aisd $ly these two
schemes.

6.3 Bidirectional coupling with feedback

Once the dynamics of our mutually-coupled configurationehbgen character-
ized, we can now approach the different effects and questisan by the addition
of feedback loops to each one of the lasers. Thus in the sguahdf this chapter
we investigate the instabilities arising from the delayeigraction between two
self-oscillating lasers. Due to the inclusion of the feexkbbbops we can tune
the dynamics of the uncoupled lasers between steady,aiscyll pulsating, and
chaotic behavior so that we can investigate the effect ofdiétay on different
synchronization properties of the system. Other dynanpbanomena like the
guenching of oscillations are also reviewed.

First, we start by investigating the stability problem oé tixed points in the
presence of feedback loops. Unless explicitly mentionesyjnametric configura-
tion is chosen for the feedback lines;{ = ko = ky andry; = 740 = 7).

6.3.1 Stability diagrams

The four fixed points that we considered in the previous sastcan modify their
location and stability properties due to the feedback lodpg main objective of
this section is to build up the stability charts of these fipethts in the coupling
versus feedback strengths plane and in the coupling veeedbéck delay times.

Fixed point FP1

We start by analyzing the case of one of the symmetric stetatgs. The behavior
of FP1 (“off’ state) is unaffected by the photocurrent tisatded back to the laser
because they are not emitting any light. Thus its stabilitytlis still given by the
solitary threshold/ regardless of the coupling and feedback interactions.

Fixed point FP4

For the study of the stability of the other symmetric fixedmppFP4, it is conve-
nient to separate the cases where real or complex eigesvaloss the imaginary
axis.

Real eigenvalues. The analysis of the characteristic equation for FP4 yiglés t
condition to obtain a real zero eigenvalue=£ 0) as
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1— ’Yp’Ys.

6.28
YeTn ( )

Re = Rf = —

This is the generalization to the critical coupling stréngiven by Eq. (6.19) once
feedback loops are included. Therefore, inside the regédineld by the inequality

ke — Ky < —1 — Yp7s/7 7 in the coupling versus feedback strengths plane one
can assure that there is at least one eigenvalue of FP4 wakiévp real part and
consequently the fixed point is unstable. We notice thatdabiglition is indepen-
dent of the time delays, i.e., regardless of the valu€s ahdr the simultaneous
and symmetric CW operation of both lasers is unstable.

While discussing the transition of real eigenvalues to tgbhtthand side of
the complex plane, we can take advantage and analyze sonmetmibn-two
bifurcating points. Takens-Bogdanov points (TB), for argte, are associated to
a double zero eigenvalue crossing the imaginary axis. Thusder to find these
points one must the set of parameters that simultaneoussfystine nullity of the
characteristic equationY(A = 0) = 0) and its derivative @A /O\|x—o = 0). The
first condition is already given by Eqg. (6.28) while the settone demands

Tp s (Y +p +'YS)+Hf'Yg'Y%T+'YC'Yn [’Yn +'Yp+(1_“c_"ff)'Ys +"ff'Yp'YsT)]

=TkcYeYn (Yern +YpYs ) -
(6.29)

Consequently, the location of the parameters correspgridia TB point can pro-
ceed for example, by fixing the feedback strengghto a given level and obtain
a compatible value fok. from Eq. (6.19). Then, Eq. (6.29) provides a linear re-
lationship between the delay timesandl’ for which a TB point must appear.
Besides these mathematical conditions the positivenebsthfdelay times is an
unavoidable physical requirement. The usual interpiaiadif these codimension-
two points as accumulation points of a Hopf curve whose diggonencies tend to
zero has been numerically checked by continuing a family@fHbifurcations.

Complex eigenvalues. A bit more complicated than the previous case is the de-
tection of bifurcations involving complex eigenvalues. t lus begin by writing
down the characteristic equation for FP4. Due to the symnudtpoth the config-
uration and the solution that we are considering the chewiatit equation factor-
izes as

(ue‘” + N2 Fgh 4y — ve_/\T> (ue_)‘T +pN gy + ve_)‘T> =0,
(6.30)
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whereu, v, p, ¢, andy are coefficients that only depend on the internal and control
parameters., s ¢, and.J.

The search for Hopf bifurcations starts from the finding obseof any of the
two factors of Eq. (6.30) after having imposed the conditidrpure imaginary
eigenvalues) = iw. Then, the eigenfrequenciesmust satisfy at least one of the
equations

ue” T — pw? +iqw +y Fve?T =0 . (6.31)

The separation into real and imaginary parts of the formaatons

ucoswr — pw? +y = FvcoswT =0 (6.32)
—usinwT + qw = FusinwT = 0, (6.33)

allows an easy elimination of the coupling delay tiffidoy squaring and adding
Egs. (6.32)-(6.33). After this manipulation the resulteguation forw reads

wh +bw? + e+ (dw?® + €) cos(wr) + fwsin(wr) =0, (6.34)

where the coefficients are involved functions of the paranset

bA?=2 (—Ltretrs) ve® yn +7p2 7% (1 +7p) " +2 7 15 +752)
+27e Y0 ¥ ¥s ((nA0)2 = ((—24Ket5s) Wtyp) Ys—(—148c+r7) 752)
+7e2 12 ((m+7)2 =2 (= 1+Ketng) yn—(—2+Kc+rg) 1) s + (—1+mc+nf)2 752),
eA2=—((vem+7p¥5)” (1462 =K 52) Y2 2 =27 Tn 1o Vs =2 V52)),
dA ==2K7Ye Yn (Ye Ynt+7p Vs);
eA?=—2k¢ e Yn (Ye ntvp ¥5)°,
FA2 ==25¢vevn (Ye Yo+ ¥s) (= (e Yo (m+7))+(=1HKet5) Ye Yo vs = o Vs (Im+7p+75));
A=(—1+kethrg) Yem—Tp Vs -
Coupling versus feedback strengths. As in the first part of this chapter where
no feedback loops were considered, the location of the megio the parameter
space where a real solution ferexists or not is of central importance. In con-

structing the stability diagrams these regions signal e/héopf bifurcations are
possible. Thus, the Delay-Independent Stable Region (DisEomposed by the
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set of points in thes. versusk; plane where, independently of the values of the
delay timesr andT’, no real solution fot exists. Within that zone of parameters,
there is no combination of feedback and coupling delay tiai#s to destabilize
the constant and identical output of both lasers. On theapnthere are also re-
gions in thex, versuss  plane where the existence of a real solutionfatepends
on the specific values of the feedback and coupling delaystirSBeich zones form
the delay-dependent stable region (DDSR), and there onalways find a proper
combination of delay times that induces oscillations inldsers through a Hopf
bifurcation. Finally, we can define the delay independestalrie region (DIUR),
where no matter the delay times we chose the operation onsHitétable. In this
case, the condition given in Eq. (6.28) defines an area whemganvalue with
positive real part exists independently ofind7T’, and as a consequence FP4 is
unstable regardless the distance between lasers and thméddoop lengths.

The search of these different stability regions directlyefas to deal with the
existence of real solutions for the transcendent equatipri=34). At this point of
the analysis, one of the possible approaches to constrobtassatability diagram
consists of fixing the coupling. and feedback ; strengths, and numerically look
if any real solution forw appears when scanning the feedback delay timdt
is important to remind that the coupling delay tiriehas been eliminated from
Egs. (6.32)-(6.33). Hence, depending on the output of tasch for real solutions
one could classify the points, « r) as belonging to one stability region or another
(DISR, DDSR, or DIUR).

This procedure, however, requires a nested sweeping & gaemeters plus
the numerical resolution of a transcendent equation foh edcthe parameter
points scanned. Instead, we develop here a much less cdinpatademand-
ing approach that will enable us to find analytical condgiam the coefficients
of Eq. (6.34) for the stability of the system. Since the cogdfits of Eq. (6.34)
only depend o, andx; one can finally translate the stability conditions on the
coefficients to the coupling versus feedback strength petens plane and obtain
the desired stability map.

Let us start by considering the left-hand side of Eq. (6.3adunction of
the two variablesv and 7, Q(w, 7). The main question is how can we obtain
analytical conditions for the existence of real roots(## The idea behind the
method considered here is that when looking for zeraQ@f, 7) one could scan
thew versusr plane in a suitable manner to make the problem easier. Frem th
infinitely-many choices for scanning such a plane we find ¢hgteat advantage
can be taken if it is scanned through the family of hyperbalas= i = constant
By doing so, on each of these curves Eq. (6.34) reduces tortnforder polyno-
mial Qp,(w) = w* + rw? + sw + t, where the coefficients, s andt are functions
K, ke, andh. Now, the conditions on the coefficients to have no real smistcan



20 Mutually-coupled semiconductor lasers

be obtained from the algebraic structure of polynomials ceshvariable.

Thus, in the same way that the sign of the quaritity- 4ac distinguishes the
cases when a quadratic functié(z) = 22 + bx + ¢ has any real root or not,
a series of discriminants can be defined for higher ordernoohjals giving us
conditions on the coefficients for the existence and mudiiyl of real roots. To
our purposes, all we need to know is that the discriminards whll help us to
classify the roots of); can be computed as determinants of some minors of the
Sylvester matrix betweefp and its derivative)’ [88]. The expressions of the
discriminants of a fourth-order polynomial are

A = 1,

Ay = —r,

Ay = —2r3 — 95>+ &t

Ay = —4r3s? — 27 + 160t + 144rs%t
—128r%t2 + 2567 .

The relation between the number of real zeros (counting theltiplicity) and the
discriminants of a quartic polynomial is collected in Tablé.

| Number of real root§ Multiplicity | Discriminant conditions \
0 0 Ay>0N (A3 <0UA,<0)
0 0 (A4:A3:O)QA2<O
2 1,1 Ay <0
2 2 A3 <0NA;=0
4 1,111 Ay >0NA3>0NA4>0
4 1,1,2 Ay >0NA3>0NA4=0
4 2,2 A2>0ﬂ(A3:A4:O)ﬂS:0
4 1,3 A2>0ﬂ(A3:A4:O)ﬂS7§O
4 4 Ay =A3=A4,=0

Table 6.1 Classification of the real zeros of a quartic polynomial.

Now, only varying one parameteh) with the former criteria we analytically
obtain a series of regions in the versuss ; plane where we guarantee that no real
roots can be found. These points determine the DISR zone simenatter what
the values of the delay times amount to, Eq. (6.34) canna haweigenvalue on
the imaginary axis. Numerical simulations also confirm theation of the DISR
zone on the parameter space here predicted.



6.3 Bidirectional coupling with feedback 91

Only now we are in conditions to obtain the full stability gram of FP4. With
the former procedure placing the DISR zone and Eq. (6.28}ifigrthe DIUR
region, the stability chart fof = 1/3 is presented in Figure 6.16. It is important
to notice that for the value of bias chosen,and play a highly symmetrical
role at destabilizing FP4. It must be observed that by irgngathe magnitude
of the coupling or feedback strength the system is able terento the DDSR
independently of the sign of these interactions, exciyatorinhibitory. However,
this is not the case regarding the DIUR zone where it is vepoittant the sign of
the strengths considered. For instance, only with eithezrg megative coupling
or a very large positive feedback, or a combination of boghsystem falls into the
DIUR regime. So, we see how an inhibitory coupling and antetaiy feedback
complement each other in order to destabilize the symmieR#&

A naive interpretation of the destabilizing role of the inikdry coupling in our
system is that a negative coupling interaction tends tdokstea kind of competi-
tion between both lasers. Thus, the lasers simultaneaydly tlecrease the power
of their counterpart what eventually favors the operatioone of the asymmetric
states of the system.

[ T T T T [ T T T T [ T T T T [ T T T T [
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Figure 6.16. Stability diagram in thex. versusx; plane for FP4, showing the delay-
independent stable region (DISR), the delay-dependeblestagion (DDSR), and the delay-
independent unstable region (DIUR). The boundary betwee®DSR and DIUR is defined
by the transcritical line, Eq. (6.28)l = 1/3.

Coupling versus feedback delay times. So far we have identified the effect of
the different strength values in the stability of the systedext, we fix the cou-
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pling and feedback strength values and focus on the roleecdetieral delay times
in the system.

To this respect, once a solutiarhas been obtained from Eq. (6.34) the critical
coupling delay time§" are recovered from Egs. (6.32)-(6.33) as

1 (3] bR
Te(w) = — (arctan P(Fe, iy, 7, 0) + mw) , (6.35)
w q(ﬁC7"€faT7w)

wherem € Z, andp andq are defined by the following expressions

P = [0Ys(n + 9+ s) + Ve (m +vp — (=1 + Ke + Kp)7s) ] w
+ K pYeYn(YeIn + Yp7s) sin(wT)

0= =% + s (W — WYs) — Yern (2975 + (=1 — ke + Kp)w?]
+ K YV (Yern + YpYs) cos(wT) .

For such combination of delays we can guarantee that atdaagiair of conjugate
eigenvalues lie on the imaginary axis. The Hopf curves indbepling versus
feedback delay times are shown in Figure 6.17 for the ease ~; = 0.25 and
J=1/3.

The most salient feature of this figure is the similar role/pthby the feedback
and coupling delay times in destabilizing the system. Coueetly, the pattern of
dynamical behavior observed when increasing the distaeteden the lasers and
keeping constant the feedback lengths is qualitativelgtidal to the one obtained
by maintaining fixed the coupling time parameter and entayrgie feedback loop
times. However, an important time scale difference betwhertwo delay times
is noticed. For instance at appropriate parameter valuesninimum coupling
time needed to excite oscillations+s10 ps, while the equivalent for the feedback
delay time exceeds tH6#) ps.

In the same figure, at the intersection of these Hopf curvesdenmstify the
double Hopf codimension-two points where two pairs of purmelaginary conju-
gate eigenvalues exist. To complete our findings on codime+ia/o bifurcating
points it is worth to comment that the simultaneous requéenof Eq. (6.28) and
Eq. (6.35) provides a set of parameters where a single zef@ quair of purely
imaginary eigenvalues coexist.

Fixed points FP2 and FP3

The study of the stability of the asymmetric steady state? &Rl FP3 through
their characteristic equation turns out to be challengimgahy analytical treat-
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Figure 6.17. Hopf curves and stability diagram in tfféversusr plane for FP4. The oblique
lines indicate the regions where the fixed point is stablethatcrossing of the Hopf curves,
a double Hopf codimension-two bifurcation takes place. hBibie feedback and coupling
strength are fixed at 0.25. = 1/3.

ment. Nevertheless, we have undertaken extensive nurhgruaation of Egs.(6.6)-
(6.9) to analyze their stability map. The stability chaadsFP2 and FP3 are equiv-
alent and presented in Figure 6.18. The boundary betweeR@d DDSR is de-
fined by the condition Eq. (6.28). There also exists a smédlydimdependent sta-
ble region (DISR) for FP2 and FP3 bounded by the critical ¢jiven by Eq. (6.28)
on one side, and by the minimum feedback coefficient thatlis tabexcite oscil-
lations in the solitary laser case ~ 0.24 for J= 1/3), on the other side.

With the former analysis we have gained the necessary inisighthe stability
and bifurcations of the system to approach new problemsiircaofiguration. In
the subsequents sections we address the prediction oféhaé‘dy delay” effect in
our system as well as some general phenomena in the theasypied oscillators,
such as frequency locking and chaotic synchronization.

6.3.2 Death by delay

When uncoupled, a proper combination of the feedback dineangd feedback de-
lay time can set the lasers to operate as periodic oscBlater., with their optical
intensities varying periodically. Then, once they are dedpit is interesting to
know which are the effects of increasing the distance betvtiee oscillators or
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Figure 6.18 Stability diagram in thes. versusk; plane for FP2 and FP3, showing the
delay-independent stable region (DISR), the delay-degenstable region (DDSR) and the
delay-independent unstable region (DIUR)= 1/3.

lasers. In particular, we investigate the phenomenon dfiatson death by which
the coupling between two oscillators might be able to quehelir oscillations
through a collapse to the zero-amplitude state [2, 13, §9,R8 we have seen in
Chapter 3, when delay is absent in the coupling term a laggedsion or detun-
ing in the natural frequencies of the oscillators besidedfasi/e coupling are
required to observe this phenomenon [1, 2,50]. Only regeRtimana et al. [13]
showed that these restrictions can be relaxed if the caydidelayed, i.e., if the
communication between both oscillators cannot be cornsitieistantaneous com-
pared to their internal time scales.

This important effect, commonly known in the literature dgdth by delay”
can be predicted in our laser system with the help of our foioifarcation anal-
ysis. We tackle the problem of finding these quenching regioyn computing
the Hopf curves for FP4 in the. versusT plane, and checking the direction of
crossing of the eigenvalues at these borders.

Following this procedure, we are able to find closed regiorthe parameter
spacex,. versusl’ where the fixed point FP4 is again stable and induces the déath
the oscillations in the system. These regions which ar@saded by supercritical
Hopf lines (if subcritical, bistability could easily pravietrajectories to converge to
FP4) are called “death islands” and are shown in Figure &d8ifferent feedback
delays. r is fixed to 0.3 and/ = 0.1. Under these conditions when uncoupled
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both lasers oscillate with a fundamental perioed00 ps.
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Figure 6.19. Hopf curves and “death islands” (shadowed regions) inctheersusT” plane for
FP4 for several values of the feedback delay time 975 ps @&y fbs (b), 1125 ps (c), 1200 ps

(d). The feedback strengthis = 0.3 and the bias current is set to 10% above threshold, i.e.,
J=0.1.

We find that the “death by delay” phenomenon appears in a wadanpeter
range in our system. For feedback delay times belew 925 ps, not shown in the
figure, no “death islands” appear since the lasers are stablewhen decoupled.
“Death islands” start to emerge when the solitary laserergulself-sustained os-
cillations atr ~ 950 ps. Several “death islands” computed foe= 975 ps can be
observed in Figure 6.19(a), which are regularly, althoughcompletely, spaced.
The existence of multiple islands when varyihdt is also experimentally demon-
strated in the corresponding section of this chapter. hteresting to observe that
the size of these islands decreases when the coupling di@lay tincreases until
they completely disappear fdr = 1500 ps. Moreover, the number of islands and
their size continuously decrease when increasingtil they completely disappear
for 7 = 1225 ps. In the regions surrounding the “death islands” eaclr laseally
operates in a limit cycle. When varyirif new limit cycles are created and they
are born in alternation between in-phase and anti-phaseisthafter a limit cycle

where both lasers oscillate in-phase is born, the next igtte that is created is
an anti-phase one, and so on. Consequently, when jumpio@itdeath island”,
the mutual drift to the stationary-state occurs throughegi@a series of in-phase
or anti-phase oscillations of exponentially decreasinglauode, depending on the
limit cycle in which the lasers were operating before thegum

This is illustarated in Figures 6.20 and 6.21. In the firseoae have analyzed
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the behavior of the laser outputs when moving into the firsgtt island” of Fig-
ure 6.19(a). When running a simulation of Egs. (6.6)-(6a8fer transients have
been skipped, d@t= 5 ns we vary the coupling delay froffi = 50 ps to7" = 0 ps.
This change iff" causes a mutual drift to the zero-amplitude state througitiass
of in-phase pulses with a decreasing exponential envekgeeKigure 6.20).
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Figure 6.20. (a) Quenching of the oscillations when the coupling delagtianged T = 50
ps+— T = 0 ps). The temporal series of laser 2 has been vertically aligpl for clearness
reasons. (b) Top: eigenvaluest= 50 ps; bottom: eigenvalues & = 0 ps. The bias,
feedback coefficient, and feedback delay time correspotitose of the Figure 6.19(a). The
coupling is fixed ak. = —0.2.

Figure 6.21 shows the oscillation death when the distantedam lasers is
changed froml" = 350 ps toT" = 250 ps, i.e., the coupling parameters move
within the second island in Figure 6.19(a). Notice that nbe transition to CW
occurs through anti-phase oscillations of decreasing il

a) 0.01
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Time (ns) D()\) <16*

Figure 6.21. (a) Quenching of the oscillations when the coupling delaghanged " = 350
ps— T = 250 ps). The temporal series of laser 2 has been verticallyatispl for clearness
reasons. (b) Top: eigenvalues&t= 350 ps; bottom: eigenvalues & = 250 ps. The
bias, feedback coefficient, and feedback delay time coorebfo those of Figure 6.19(a). The
coupling is fixed ak. = —0.2.

A very interesting feature of Figure 6.19(a) is the fact thia¢ of the “death
islands” reaches th€ = 0 axis. This is also illustrated in the oscillatory death in-
duced in Figure 6.20 where the coupled delay time is movedrwero and still



6.3 Bidirectional coupling with feedback 97

a quenching of the oscillations is observed. These featuseillations quench-
ing for T' = 0) is also independently confirmed by the direct computatibthe
eigenvalues of the characteristic equation with the MATLipdgkage for analysis
of delay differential equations DDE-Biftool [60]. There&y there is an apparent
contradiction with the above-mentioned arguments thatlantical oscillators can
drive each other to a zero-amplitude state in the absencelay th the coupling,
as it was illustrated in the Figure 2.2 of Chapter 2.

And however in our scheme we detect the quenching of two iicedrdscilla-
tors even for a zero-delay in the coupling. We have checkediidaser setup and
in some universal models of oscillators (Ginzburg-Land@a) this controversy
arises from the special origin of the pulsating behaviortinlaser system. Based
on these observations we conjecture that if a system is¢eastillations under the
presence of a delayed feedback term no delay in the coupéitvgelen oscillators
is needed in order to observe the death effect for idengicalpled oscillators.
Most of preceding studies of “death by delay” [13,50, 61,84Je only considered
a time delay in the interaction between subsystems but tbeifeedback loops, if
any was included. Thus, our results indicate that in ordéndace the quenching
of oscillations neither an asymmetry nor a delayed coupdirggrequired. Just a
delay, independently of its origin, is necessary to relaxdhenching conditions
for identical coupled oscillators.

The role of a finite bandwidth of the photodetector-amplifiesponse on the
lines of Figure 6.19 have also been taken into account fottarfmmparison with
the experiments presented below. The effects of a high fcframfuency of the
filters is not important when this cutoff occurs at frequesdiigher than the relax-
ation oscillations frequency of the lasers (as mostly happe the experiments).
On the contrary, a low cutoff frequency removes the contisupart of the spec-
trum of the lasers, what is found to entail an increase ofiteecf the death islands
and to even create new ones.

6.3.3 Synchronization

The synchronization of both lasers is studied here for ttiferent situations. For
identical lasers, we first consider the case of coupled layite oscillators, and
secondly we address the synchronization of chaotic oswila Finally, we ana-
lyze the role of slightly asymmetric operation of the lasérke different types of
synchronization are characterized by two figures of meaitnely, the correlation
degree between amplitudes and the relative phase of tH&atiens.
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Identical systems

Several phenomena related to synchronization concepeaappour multiple de-

layed system. Starting from a configuration in which botletasire self-sustained
oscillators due to their own feedback loop, we study the @og# and phase syn-
chronization between the laser intensities as a functioth@fcoupling strength

and coupling delay time.

The correlation between the amplitudes of the signals isacierized through
the maximum of the cross-correlation function, while thag#gsynchronization is
studied by means of the analytical signal concept congtduatith the aid of the
Hilbert transform [23]. The Hilbert phase allows us to getiege the concept of
phase for arbitrary signals, although it has only a cleasjgay meaning when the
spectrum of the signal is narrow-band. See Chapter 2 for i dibnition of the
Hilbert phase.
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Figure 6.22 Bifurcation diagram fos; (black) ands. (grey) as a function of". Maximum
of the cross-correlation functioni. Mean Hilbert phase differencA¢y. The feedback pa-
rameters are; = 0.3 andT = 1 ns, while the coupling strength is fixedat = —0.1. The
bias is set toJ = 1/3.

In Figure 6.22, we find from top to bottom the bifurcation deg of the laser
intensities wherY" is varied, the maximum of the cross-correlation functiamg a
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the mean Hilbert phase difference between the laser sigimigestingly, we can
observe how increasing the coupling delay time a sequensgnuinetry-breaking

or pitchfork bifurcations for limit cycles occurs. The bké&zg of theZ,-symmetry
under the exchange of laser 1 and 2 in the Eqgs. (6.6)-(6. 0y im$tance, clearly
observed atl" ~ 500 ps. Before that point the two lasers operate in an in-phase
symmetric limit cycle and both lasers display oscillatiamish the same ampli-
tude. After the bifurcation, the system operates in one eftityo newly created
asymmetric limit cycles where each laser pulses with a iffeamplitude but at
the same frequency. A plot of the symmetric and the two asytmerianit cycles
created at the pitchfork bifurcation that occur§at- 500 ps is shown in Fig. 6.23.

ALC
SLC

1F ALC

Figure 6.23 Portrait of the limit cycles involved in the spontaneous eyetry-breaking bifur-
cation. SLC and ALC stand for symmetric limit cycle and asyetwic limit cycle, respectively.
The SLC is plotted when is still stable&t= 496 ps, while the ALC are showed just after the
bifurcation takes place &t = 498 ps.

Thus, depending on the initial conditions the perfectly Byatric system spon-
taneously tends to operate in one of the asymmetric limiesyclhe amplitude of
the oscillations in each laser becomes different, as shoviaigi. 6.24. There lies
the localized synchronization concept by which two mutuedupled systems can
exhibit synchronized oscillations with different ampties [40, 92]. We also note
that by increasing further the coupling delay, larger abetween the amplitudes
of both lasers can be achieved, as is illustrated in Fig..6.25

The localized synchronization is also characterized by @zevo relative
phase between the two oscillators. By increasing the dedaplmg time each
of these asymmetric limit cycles bifurcate to a torus andsgpariodic dynamics
with different amplitude are observed for each laser. Furihcreasing the bifur-
cating parameter a transition to a more complex behaviarrscevhere both lasers
show irregular oscillations with similar amplitudes andeenti-phase dynamics is
observed. For larger delays, we can appreciate how thensystels to operate in
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Figure 6.24. Temporal series of the lasers when operating in the SLC and. Alhe time
traces has been vertically displaced for clearness rea3ops the lasers oscillating with in-
phase dynamics on the SLC; middle: the lasers are operatioige of the ALC and pulsating
with different amplitudes; and bottom: changing the init@nditions the lasers operate in the
other ALC. Solid line: laser 1; dashed line: laser 2.
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Figure 6.25 Increasing the coupling delay time 6= 530 ps, the ratio between amplitudes
becomes as large as 2. Solid line: laser 1; dashed line: 2aser
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an anti-phase limit cycle, which eventually undergoes émeestype of bifurcations
than those commented for the previous in-phase limit cyidiés kind of structure
going from an in-phase limit cycle to an anti-phase limitleyand vice versa is
repeated ag' increases and consequently several islands of localizezhsyniza-
tion, quasi-periodic dynamics, and in-phase and anti-@lpassating behavior are
found.

The correlation degree, defined as the maximum of the crargstation func-
tion, is relatively high (.96 — 1) for the entire bifurcation diagram. The correlation
degree is almost perfect during the in-phase and anti-dhmaiecycles whereas a
small drop in correlation can be observed when the systematgsein the local-
ized synchronization regime.

Figure 6.26. From top to bottom: bifurcation diagram féf ands., maximum of the cross-
correlation functior”, and mean Hilbert phase difference. The feedback parasmter s =
0.3 andt = 1 ns, while the coupling delay time is fixed&t= 500 ps. The coupling strength
is scanned fromk. = —0.3 up tox. = 0.3.

Different type of structures and dynamical regimes show hgmthe bifur-
cation parameter considered is the strength of the interacFigure 6.26 shows
the bifurcation diagram, maximum of the cross-correlafionction, and Hilbert
phase difference between the two laser signals as a funatitre coupling rate
k.. Starting from an uncoupled configuration at the peint= 0, the phase dif-
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ference depends on the initial conditions and has been get@for convenience.
Upon increasing the coupling strength we observe how theosedlators remain
in an in-phase limit cycle. Further increment the coupliatgrieads to a sudden
transition to quasi-periodic behavior in both lasers whasase difference slightly
oscillates aroundr. After this island of quasi-periodic behavior, which apfea
from k. = 0.04 to k. = 0.047, a regime with anti-phase periodic oscillations is
reached. The amplitude of this limit cycle grows with the gling strength until
it reaches the value. = 0.2. Beyond that value complex dynamics develops.
When inhibitory coupling strengths are considered in tliedart of the di-
agram new dynamical regimes and synchronization progedre found. For
slightly negative couplingss. € (—0.03,0), we obtain an anti-phase dynamics
between the two laser outputs. When further decreasingdhpliog rate from
zero the system enters into a chaotic behavior area which witd a symmetry-
restoring bifurcation around,. ~ —0.1. Before this point is reached the two lasers
have passed through a regime of localized synchronizatibm avphase differ-
ence approaching zero as the coupling tends to the symmestigring bifurcation
point. In-phase oscillatory behavior is then observed! winé coupling value is
decreased down te@. = —0.15. Beyond this point and at least until the minimum
coupling strength we investigated.(= —0.3) the two lasers oscillate with very
different amplitudes. More important is the fact that theelawith smaller ampli-
tude enters into a period-two state while the one with |laageplitude remains in a
period-one state. This constitutes a second type of asyncnggnamical regime
we have identified for this perfectly symmetric system. Weasothat associated
to this sudden jump to a period-two asymmetric limit cyclerthis a discontinuous
change in the amplitude and frequency of the oscillatiorizoth lasers.

Chaotic synchronization

An important point we have just considered is the study ofrdtative dynamics
between the two lasers when they operate as self-sustagudthtors, i.e., peri-
odically oscillating when uncoupled. Regarding the dyrandgeveloped with this
starting regime, we have numerically observed that botbhimse and anti-phase
dynamics appear for both positive and negative couplindficants at certain
values of the coupling delay ting.

However, by increasing the feedback strength and delayweean force the
lasers to operate in a chaotic regime even when they are plecband study if
they manage to synchronize their intrinsically chaotictflations once the inter-
action is switched-on. In contrast to what occurs in theoglif coupled face-
to-face semiconductor lasers [10], we find that the isodir¢rero-lag) solution
between the two lasers can be stable in a wide range of operdthis is shown in
Figure 6.27 where the temporal traces, synchronizatiot) @hw cross-correlation
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function between the laser intensities are shown. For thelations the coupling

and feedback delay times are set to 3.5 ns and 3.85 ns, riegpectWe can see

in this case that the maximum of the cross-correlation fonatccurs at zero time
shift between the intensity signals, in agreement with tkgegmental findings

[89]. We also noticed that similar coupling and feedbaclagéimes are needed in
order to stabilize the zero-lag synchronization which ibs& when the two delays
become very different.
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Figure 6.27. Top: chaotic temporal series of the lasers intensities aftepling; middle:
synchronization plot; bottom: cross-correlation funotio between the two chaotic outputs.
When uncoupled, both lasers operate in the chaotic regiragatheir feedbacks loops with
k¢ = 0.4 andT = 3.5 ns. The coupling strength is. = 0.05 while the coupling delay is
T =3.85ns.

Slightly mismatched systems. Arnold Tongues

Another central aspect in coupled dynamical systems i®dkihg behavior. In
particular the frequency locking properties of two coupbedillators is a subject
of wide interest for both theoretical and practical appiaas (see Chapter 2). In
fact, the phenomenon of adjusting the internal rhythms gfstesn by an external
or mutual perturbation is one of the most investigated &ffiecthe synchronization
concept [1].

Here, we are interested in studying the effect of the cogplialay time on
these locking properties. In particular, we focus on theedepnce of the Arnold
tongues size (or frequency locking regions in the couplingngith versus detun-
ing plane) on the coupling delay time between lasers. Thikas the ability to
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lock between two oscillators depend on their distance. ®dhd, we retake the
configuration of two isolated lasers that are self-pulgptine to their feedback
loops. We consider the operation of both lasers in a pulgaégime where one of
the feedback loops is slightly changed with respect to therofThis change, that
we identify as a detuning, induces different natural pigsatrequencies. In our
case, the Arnold tongues define a region in the coupling gtineversus detuning
space where the intensity oscillations of both lasers lodké same frequency. In
this section, we numerically evaluate the dependence dgitheld tongues on the
coupling delay time between the lasers. The computed mdih Atnold tongues

are shown in Figure 6.28.
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Figure 6.28 Arnold tongues for different coupling delay times. a), B),d), e), and f) panels
correspond td” = 0, 1/4, 1/2, 3/4, 1, and 2 times the natural period of the a#@ilhs when
the lasers are uncoupled, which is about 348 ps. The feeditasigth is<; = 0.3. The bias
isJ=1/3.

We find that a change in the coupling delay time induces a @hamtpe width
of this tongue. The dependence of this width when the cogpdielay time is
changed is shown in Fig. 6.29 for a coupling coefficient= 0.08. It can be seen
that the width of the Arnold tongue displays repetitive aidns whose period is
close to one half of the period of the intensity oscillatiowich is about~ 348
ps. The salient feature is the capability of the couplinggéime to enhance the
width of the instantaneous Arnold tongue by a factor larganttwo.

To complete the study of the Arnold tongue we have analyzedpttysical
mechanisms underlying this repetitive variation of theking width. In our case,
the variation of the Arnold tongue width can be understootbbews. In the ab-
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sence of coupling, the electrical feedback loops generaite rgodulation in the
lasers. If we couple two of these lasers unidirectionally imaster-slave config-
uration, the slave laser locks to the externally imposeadk;land the coupling
delay time only imposes a relative phase to the oscillatiofe note, however,
that may exist a certain time shift between the emission efajbtical pulse and
the externally-injected electrical-signal since the pgwxis mediated by the dy-
namics of the carrier reservoirs in the active region of @mets; the electrical
injection from the coupling slightly modifies the gain moalibn created by the
feedback loops. This process allows for small adjustmehtheorepetition rate
through small temporal shifts of the pulses. Now, the rol¢hef coupling delay
time becomes significant in the case of bidirectional cagpsiince it can enforce
the locking of the oscillations as we explain now in more dlefanecessary con-
dition for periodic locking is that the time required by a gitto travel along the
complete path and returning to a given reference point meisinbinteger number
of the period of the locked oscillations. This time compsitee total coupling time
2T and the (small) nonlinear time shifts introduced by therag€l; and ATs.
Hence, the locking condition can be written288 + AT; + ATy = nTys., With

n an integer and’,,. the period of the oscillations. This condition has a rejwetit
structure wher?” is changed by~ T,,./2, which is reproduced in the oscillations
of the locking width (Figure 6.29(b)). We have seen that thened values of
ATy + AT, as a function of the detuning is limited in a certain intergaken by
the actual coupling strength. This limited tunability Afl}7 + AT leads to the
conclusion that there exist some valuesiofor which the locking condition can
be more easily satisfied (leading to large Arnold tonguess Wworth noting that
this effect can be exploited in any possible applicationnefzerobust locking state
between lasers is required.
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Figure 6.29. (a) The main Arnold tongue fdf' = 0. (b) Dependence of the locking width
with the coupling delay time fok. = 0.08. The feedback strength is; = 0.3, and the
bias current is 33% above threshold. The natural periodebttillations when the lasers are
uncoupled is about 348 ps.



106 Mutually-coupled semiconductor lasers

6.3.4 Experimental results

The laboratory equipment used to obtain the results thatresept here is that
described in the experimental section 6.2.5.

Starting with an experimental scheme similar to that slexdcim Figure 6.1,
we are able to experimentally reproduce the “death by dedéfgtt. Thus, for the
first time in semiconductor laser setups we observe the dirgnof laser intensity
oscillations upon varying the coupling delay time. Whenaupded, both lasers
exhibit an oscillatory behavior due to their feedback loopsowever, as soon
as the coupling strength and delay are adjusted to make #iensyfall into a
“death island”, an amplitude shrinkage in the oscillati®ebtained. Figure 6.30
shows the dynamical states of the two lasers before, ingikafter passing over
a “death island”, ag" is varied from 14.95 ns to 15.45 ns. Due to experimental
limitations, no shorter delays were able to be exploretpalgh it is expected that
the quenching of the oscillations can be found for shortéwegsof". Multiple
“death island” are found as predicted by the theoreticalyaismalthough they
continue to appear for larger delay times than expected ft@ranalysis of the
idealized model of Eqgs (6.1)-(6.4).
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Figure 6.30 From top to bottom, sequence of dynamical states showingubleition of the
laser characteristics before, inside and after passimyitfir a death island, respectively. The
coupling delay timél" is varied from 14.95 ns to 15.45 ns.

Within the same experimental setup, and just by choosingoapite strengths
and delays in such a manner that both lasers are driven toctickéate, we can
also study the issue of the chaos synchronization betwsensl§89]. Figure 6.31
shows the synchronization plot and the cross-correlatimetfon between the two
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laser outputs for coupling delay times6f = 75 = 15.4 ns. It is clear from the
figure that both lasers exhibit highly correlated chaotiilzgions. The maximum

of the cross-correlation function is located at the zegpgaint and is as high as
0.9. If we allow for different coupling delay times in eacheonf the coupling lines
between lasers (i.e1}, # T5), then we also observe how the largest peak of the
correlation function shifts away from the center by a magfetof|(7, — 71) /2|

and with a direction dependent on which coupling delay tisnghiorter.
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Figure 6.31. Chaos synchronization induced by mutual coupling. Leftgbahows a typical
synchronization plot between the two laser outputs. Righgbcontains the cross-correlation
functionI” between the two laser intensities~ 15 ns.

These experimental results agree qualitatively with tisellte obtained from
numerical simulations, and provide the verification tha& thost interesting fea-
tures that were predicted in this system are robust enoubh abserved in a real
system.

6.3.5 Conclusions

In summary, we have theoretically investigated the noalirdynamics and syn-
chronization properties of two bidirectionally coupledrseonductor lasers sub-
ject to optoelectronic feedback loops.

We have presented analytical and numerical studies foisglsgem. The sta-
bility analysis provides a first understanding of the me@ras leading to insta-
bility, and the exact role played by the different paranmsefeoupling and feedback
strengths and delay times) in such a process. In partionhave found a new
scenario for the quenching of the oscillations that occorthe absence of de-
lay time in the coupling line and even for identical oscola We attribute this
interesting behavior to the inclusion of delayed feedbacks.

We have also concentrated on the synchronization propesfidoth lasers
when they operate as limit cycle oscillators. We have ingastd the synchro-
nization scenario that occurs upon increasing the mutuaplow strength and
coupling delay time. When varying the coupling delay time, wave identified a
sequence for the formation of in-phase, and anti-phasé tiyales separated by
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symmetry-breaking bifurcations which lead to localized®@yonization between
the lasers. Regarding sthe slightly mismatched operafidimedasers it is shown
that a delay time in the coupling between them may improve tepability to
lock their oscillations.

At the laboratory level, analytical and numerical predics are in qualitative
agreement with the experimental findings of “death by detayd synchronization
scenarios.



Chapter 7

Mutually-coupled VCSELs: a
study of synchronization in
vectorial oscillators

HE! understanding and control of the lightwave polarizatioasers is of

fundamental importance in any polarization-sensitiveliagpon. The het-
erostructure of a conventional edge-emitting semicoraueiser (the ones con-
sidered in the former chapter) induces a large anisotropydmn the TE and TM
lasing modes. This fact forces this type of lasers to gelyegatit in a single and
well defined polarization state unless band structure eeging techniques such
as induced-strain are applied. On the other hand, vextmaty surface-emitting
lasers (VCSELSs) preferentially emit linearly polarizedP{Light along two orthog-
onal preferred directions:(andy) due to a combined effect of their weak material
and cavity anisotropies [15]. This polarization degreereéfilom provides these
type of laser structures a vectorial nature where new synitation phenomena
can emerge.

Different instabilities affecting the polarization vectof VCSELSs are found
in several setups. Polarization switching (PS) betweenithady eigenaxes is
often observed for VCSELSs when either varying the tempegabu the injection
current [93], when feeding back part of the emitted light][9t when injecting
external light into the laser structure [95]. Moreover,a/icexperimental studies
[96] have demonstrated that in the long distance regime titaahcoupling of two
similar VCSELs can also induce instabilities with a high megof synchroniza-
tion in both total intensity and polarization variables.vi#wer, a general study of

This chapter is based on the papers:
R. Vicente, J. Mulet, C.R. Mirasso, and M. Sciamanna , Optetters31, 996 (2006);
R. Vicente, J. Mulet, C.R. Mirasso, and M. Sciamanna , Patiogs of SPIE, Semiconductor Lasers
and Laser Dynamics 481, 648113 (2006).
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the properties of synchronization between two bidire@llyrcoupled VCSELSs is
still lacking in the laser dynamics literature.

In this chapter we investigate the mutual coupling of twoilkimfVCSELSs in
order to determine the role of light polarization dynamitsheir mutual entrain-
ment or synchronization. The system consists of two VCSEBC&§ each other
and bidirectionally injecting part of their emitted lightto the counterpart laser
active cavity. In a more general context, we can say thatyhamics of two vec-
torial oscillators interacting with a time delay is studiéithe modeling equations
of a face-to-face configuration of two VCSELSs are presenteskiction 7.1, where
the values of the main parameters are specified and justifieddescribe in sec-
tion 7.2 a new coupling-induced polarization switchingreme, where multiple
PS occur when continuously varying either the couplingngitie or the propa-
gation phase between the two lasers. With the help of a lifiorc analysis we
conclude that PS events are correlated to the creation oflinearly polarized
compound-cavity modes with higher gain. In addition, adh& region around
each PS which hysteresis width can be controlled by varyiegbupling param-
eters is characterized within the same section. It is ingmbrio remark that con-
trollable bistable PS in mutually-coupled VCSELSs can add henctionalities to
those applications employing a bistable region for fastavig applications [97].
Close to each polarization switching point, we find that ti&SELs may exhibit a
richer nonlinear dynamics including time-periodic, qpasiodic, or even chaotic
behaviors. In Section 7.3 we analyze the nonlinear dynaagcempanying the
PS as a function of the laser parameters, and in particubasgh-flip relaxation
rate. The effect of a rotational misalignment between th&ECs is investigated
in Section 7.4 where elliptic polarization states of lighe found to be stable un-
der this configuration, as well as we describe sudden jumpkeopolarization
vector for some critical angles. Section 7.5 collects thechyonization properties
of perfectly symmetric VCSELSs which enhance the fully veietionature of these
devices. To conclude Section 7.6 summarizes the main findifsgussed in this
chapter.

7.1 Model and parameters

Each solitary VCSEL is described according to the well dstlabd spin-flip model

which takes into account two spin sub-levels in the condacéind valence band
of the semiconductor material. [15]. Within this framewakow or moderate

mutual optical injection between two VCSELSs in a face-toefaonfiguration is

considered by including delayed optical injection term][9hen, the equations
governing the dynamics of the electric field and the popomatnversion in each
spin sublevel of the interacting lasers read
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Eix = —iAE: +r(1+ia) [Ny £n1 — 1] Eix — (ya +i7p) Eix
+ T Ey (t— 1)+ Fia(t), (7.1)
Ni = =7 [N —p+ (N +n)Egl? + (N —n)E-]?],  (72)
ny = —YsN1— Ve [(Nl + nl)‘El-i-’Q — (N1 — nl)’El—\z] ) (7-3)
Eor = iAFEsy + k(1 +ia)[No £ ng — 1] Eax — (4 + i7p) Eor
+ TR (t—7) + Fos(t) (7.4)
Ny = —7% [No— 4 (N2 + na)|Eay|* + (N2 — WZ)IEZ—\Q] ) (7.5)
—ysm2 = Ve [(Ng + n2) | By > — (Ny — no)| B 7]

where the subindicek, 2 label the VCSELsE- are the circularly-polarized com-
ponents of the electric fieldF. = (E, +iE,)/v2). N represents the total
inversion population while: is the difference of population inversions between
the up and down spin reservoirs associated to the emissioppafsite circularly-
polarized photons. The last term in the field equations E4) @nd Eq. (7.4) are
Langevin noise sources that account for spontaneous emisicesses. Their ex-
pressions aré’y (t) = \/[7.(N £ n)x+(t), wherex(t) are independent com-
plex random numbers with zero mean andorrelation.

Unless it is explicitely mentioned we consider the sameriateparameters
for both VCSELs. The only mismatches that we consider at spoits of the
analysis are a detuning between the free-running fregesrafiboth lasera =
wy — w1, and a misalignment between their tw@ndj eigenaxes, which is taking
into account by a rotation angte The meaning and values of the parameters in
Egs. (7.1)-(7.6) are collected in Table 7.1. The range afi-fip rates {) that
we have explored range frof ns—! to 1000 ns™!, in agreement with the usual
values reported in experiments on PS in VCSELs [99]. Theadtst between
both VCSELs is settd. = 6 cm (r = 0.2 ns). Consequently, the situation we
are considering here corresponds to a short or moderatdirgupne regime.
Nevertheless, the effect of the delay on the interactiomwéeh the VCSELSs is
fundamental to understand the dynamics of the system.

It is worth noting that since we considg; < 0 and~, > 0, thez-LP mode
exhibits a lower frequency and a larger gain thangthié® mode. Thusg is the se-
lected polarization mode for currents close to its thregalue. Figure 7.1 shows
the light-current characteristics of a solitary VCSEL wtitle typical parameters of
Table 7.1 and a low spin-flip rate{ = 50 ns~!') when the bias current is scanned
in discrete steps. There, a current-induced switchingeptilarization of the VC-
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| Symbol | Parameter \ Value
Q@ linewidth enhancement factoy 3
K field decay rate 300 ns!
Ye total carrier number decay rate 1 ns !
s spin-flip rate 50-1000 ns'
Ya amplitude anisotropy -0.1ns!
Yp phase anisotropy 3ns!
I normalized pump 1.5
3 coupling strength 0-30ns!
Qr propagation phase 0-27
T injection delay time 0.2ns
A frequency detuning -20-20 GHz
Ié) spontaneous emission factof 0-1x107°

Table 7.1 Range of values used in this chapter for the parameters apgéaEqgs. (7.1)-(7.6).

SEL (z — g) is found atu ~ 1.35 mediated by the simultaneous excitation of
both modes. An increase of the spin-flip rate postpones thimigher bias cur-
rents. For instance, for, = 1000 ns~! no PS can be observed up to the maximum
current explored, i.e., up to = 2.

In the next section we demonstrate that even for such a lalge wf the spin-
flip rate non-trivial polarization dynamics can occur whaw tVCSELS are cou-
pled. In fact, we demonstrate that multiple PS can actualinduced by varying
our main bifurcating parameters, namely the coupling gtteéi and propagation
phaser.

7.2 Polarization switching and hysteresis

7.2.1 Coupling-induced PS

We first consider the case of two mutually-coupled VCSEL$1wdentical laser
parameters, zero frequency-detuning, and with their galion eigenaxes per-
fectly aligned.

We begin by investigating the effect of varying the couplamd phase prop-
agation values on the polarization dynamics of each VCSEgure 7.2 shows
maps of the LP mode intensities of both VCSELSs upon the vanaif the cou-
pling strength(¢) and propagation phagé)r mod 27). Intensities are plotted
after removing transients and averaging oM@ns. The alternation between high
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Figure 7.1 Light-current curve for a solitary VCSEL with a low spin-flipte,ys = 50 ns~*.

Red (blue) color indicates the optical intensity of the€y) polarization mode. A current-
induced PS can be observed;at~ 1.3. The spontaneous emission factor is sefjte=
1x107°.

(red) and low (blue) power regions demonstrates succeBSvieetween orthogo-
nal LP states, i.e., sudden jumps to different polarizat&gimes induced by the
increment of the coupling constant or the propagation phateeen the lasers.
Moreover, it is also clear from the figure that these PS ewappear with a defined
periodicity in the coupling parameters. The maps of VCSEL& identical to
those of VCSEL 1 indicating that PS jointly occur at the samgpting conditions
for both VCSELSs.

We have cheked that the coupling-induced PS scenario Hedan Figure 7.2
is not sensitive to small modifications of the laser paramsaiethe breaking of the
symmetry of the configuration. Numerical simulations shbwat tthis coupling-
induced PS scenario is robust against small mismatch ofwibdaser parame-
ters including: linear anisotropies, different injectiourrents, spin-flip relaxation
rates, detuning, and misalignment of the polarization akeparticular, we still
observe the multiple bistable PS when the two modes opendtgedower side of
the gain curvey, > 0), i.e., with the lower frequency mode having a smaller gain.

Bifurcation analysis

In order to gain insight into the origin of the observed cinglinduced PS, we
must have a look at the bifurcations of LP solutions of Eqsl)({7.6) when the
coupling strength and propagation phase are changed. Twis kif monochro-
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Figure 7.2 Time-averaged intensities in thie and y-LP modes of VCSEL 1 and 2 as a
function of¢ andQr. Parameters are specified in Table 7.1.

matic LP solutions appear. Symmetric (asymmetric) fixedhigotorresponds to
identical (different) output power and inversion of botkdes. In our case, numer-
ical simulations have indicated that only symmetric LP 8ohs play a role in the
dynamics of the VCSELSs. Therefore, we focus on the symmgxed points.

These type of fixed points are obtained by imposing the iitiersteady-
state conditions;Fy. = FEget, B = Ege'@te) Ey, = Eyel@ite)
By = Fpel@tHot9) Ny 9 = Ny, andny o = 0. Hereyp describes the polarization
direction of the LP mode ang takes into account the relative phase between the
electric fields of both lasers. Such conditions are onlys§atl for a relative phase
¢ = 0 (¢ = m) leading to in-phase (anti-phase) electric fields in botlela. After
a little algebra, the frequency shift and inversion of thesyetric monochromatic
solutions read

w = £y, — ) —EV1+a?sin(¢ — Qr —wr —arctana), (7.7)

N = %[ﬂ;j:’ya—fcos((b—QT—wT)], (7.8)
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where+ stands forz andy polarized states.

As shown in Figure 7.3, the corresponding LP steady-stdtesydhei and
4 polarization directions are located on two different eléip in the frequencyu
versus inversion/{) plane. The steady-states are plotted for increasing saitie
the coupling strength near a PS evert € ¢ < 13.8 ns™!). Foré = 13 ns ' in
panel (a), we observe that the system operates in the lomession fixed point,
which in this case corresponds to an in-phadeP solution. An increase of the
coupling strength in panel (b) creates a new pait-2f° modes through a saddle-
node bifurcation. One of them is then a stable node and hewessible as a stable
attractor for the system. However, at this stage the systattinties operating in
the most stable maximum gain mode (MGM) of theolarized states ellipse. For
larger coupling strengths in panel (c), th.P MGM destabilizes to a limit cycle
through a Hopf bifurcation at the relaxation oscillatioeduency £ 2.7 GHz).
Further increasing, the oscillatory dynamics is interrupted and the laser lijnal
switches to ther-LP in-phase fixed point, which has become the new MGM in
panel (d).
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Figure 7.3. Panels (a)-(d) show the location of the symmetric fixed mointthe N vs. w
phase space f@f = 13 ns™!, ¢ = 13.25 ns !, € = 13.6, and¢ = 13.8 ns™ !, respectively.
Diamonds and triangles stand for the in-phase and antieptyg®larized solutions. Squares
and circles stand for the in-phase and anti-phagelarized solutions. Arrows identify the
attractor at which the system operates at every stage.

If the coupling rate is continously increased the formedgatibed process re-
peats and new PS are periodically induced following the sa@ehanisms. From
the simulations, we find that the periodicity of PS wlies varied approximately
amounts to the periodicity in the creation of a new saddidengair. For a fixed
polarization and relative phase, the number of solutionsqgs. (7.7)-(7.8) is pro-
portional to1 + &7 (1 + a2)1/2 /m. Consequently, taking into account that the
creation of new steady-states alternates between in-@rabsanti-phase modes,
the periodicity in the PS events in a definite direction wlda changed can be
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approximated by

Aépg = —— 1 7.9
<ps T(1+a2)1/2 (7.9)

This value corresponds to the increasé€ mecessary to create a new pair of modes
with a given polarization. For our set of parameters thisngjyacorresponds to
4.96 ns!, which agrees very well with the numerical results showniguFe 7.2
where different PS, with the same transitiagh+& ¢, for example), are regularly
spaced with an interval of 5 ns™!.

The PS events induced by changing the propagation phaséyimoving hor-
izontally in Figure 7.2) can also be understood in terms eftitiurcation of the
LP solutions. When the phase is continously decreased drota O it is observed
a pulling of the steady-states around the ellipses fromawed high inversion re-
gions. At the same time, a new pair of modes is created atwestovertex of each
of the ellipses while they are annihilated by an inverse lsaddde bifurcation at
the highest vertex. A similar bifurcating mechanism hasiregorted in mutually
coupled edge-emitting lasers [100]. The novelty of thisitm&tion scenario for
VCSELs is that since the process of creation of new pairs afera@t the lowest
corner of the ellipse occurs in alternation for thandy polarization modes, this
results into PS events when varying the propagation phabke. transformation
Qr — Qr + 7 interchanges the in-phase and anti-phase modes and ddfnes t
periodicity of the PS induced by phase changes.

Hysteresis

Now, if we reduce the coupling ratefrom large values down to zero, we find that
the PS events are slightly shifted from the locations at wiie found them when
the coupling was increased. This non-exact correspondehttee PS locations
when increasing or decreasing the coupling strength is & ahelication of the
existence of a hysteresis loop caused by coexistence ofadestable orthogonal
modes. The origin of this bistability is due to the fact tHa saddle-node bifur-
cation, which creates the stabteLP mode, is located at a smallethan the PS
point where another attractor losses its stability.

Thus, in our mutually-coupled VCSELSs system the selecti@table compound-
cavity modes is accompanied by new features such as pdlarizawitching with
hysteresis. Figure 7.4 shows the multiple PS events wheimegf or 7, clarify-
ing the bistability that occurs when increasing, and thesrefesing, a control pa-
rameter. When sweeping the coupling strength both the lsweiicand switch-on
events of thez-LP mode are accompanied by hysteresis, whose widths akedb
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as H, and H» respectively in Figure 7.4(a). The orthogonal polarizattmmpo-
nent (not shown) displays a complementary behavior. IstiEigly, as shown in
Figure 7.4(c),H, and H> grow while increasing;, hence showing that the hys-
teresis width can be tuned with the coupling parameter. A s€#he propagation
phase also leads to multiple PS in Figure 7.4(b) but, in eshtio the previous
case, i) only the switch-on events of thd_P mode are accompanied by bistabil-
ity, and ii) the hysteresis width keeps constant when chrayi@gi- as a consequence
of the symmetry of Egs. (7.1)-(7.6) with respect to a charfgein .
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Figure 7.4. Panels (a) and (b) show the evolution of thé P mode intensity as we increase
(thin line) and then decrease (thick lingja) andQ2r (b). In (c) are shown the two hysteresis
widths H; and H, labelled in panel (a), as a function &f

Numerical simulations show that this bistable couplindticed PS scenario
is qualitatively preserved for different spin-flip rate wa$ ranging fromy, = 50
ns ! to 10* ns~'. However, the range of coupling strengths around the PSewvher
a total intensity instability appears increases for smagll.e., the system becomes
more unstable around a PS event for smaller values of theflgpiate. Moreover,
the amount of spontaneous emission noise slightly modH&P§ positions. Since
two stable orthogonal LP attractors coexist around eachélSg fluctuations may
favor the jump to an orthogonal LP-mode anticipating the Biitp
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7.2.2 Detuning-induced polarization dynamics

Even in carefully controlled experimental setups, thegmes of small mismatches
between the lasers and a slight deviation from perfectlymsgiric coupling condi-
tions are almost unavoidable. In this section we focus orftfeet of one of these
sources of mismatches. In particular we study the influefheedetuning between
the optical frequencies of the two VCSELSs on the PS dynamics.

It is important to note that when uncoupled a small variatibfew GHz in the
free-running optical frequency of the lasers is not ablenttuce a PS. However,
we show here that once coupled the continuous variationeobttical frequency
difference between the two VCSELSs can be responsible foriessef transitions
from a polarization state of the light to the orthogonal one.

06t (@) ) :
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VCS

L2

Power (a.u.) Power (a.u.
VCSIS ) é )

L2

VCS

Power (a.u.) Power (a.u.)
é VCSéL 1

Detuning (GHz)

Figure 7.5. Averaged polarization resolved optical power of VCSEL 1 S@ISEL 2 as a
function of the detuning fo¢ = 2 ns™* in panel (a), and fo¢ = 5 ns! in panel (b). The
propagation phase has been fixed at zero.

Figure 7.5 shows the optical power for theandy-polarization directions for
each VCSEL averaged ovéd00 ns as a function of the frequency detuning. Panel
(a) corresponds to a coupling strength seRtos™!, while panel (b) assumes a
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coupling rate ofs ns!. In the first case, we observe how the power associated
to theg-mode, which is the dominant one in the absence of detunimderngoes
significant drops as the detuning is increased to finally e&pee a complete dis-
appearance in both lasers /2w > 6 GHz. For larger detunings, in panel (a) the
intensity of the now dominanit-mode oscillates with a frequency closeAg2x.

The results contained in panel (b), obtained for a largeplog strengtht = 5
ns~! show again multiple switchings from one polarization mamithe orthogonal
one. However, even more interesting is the fact that thelkipation transitions
can occur in opposite directions for each VCSEL. This leadké result that two
mutually-coupled identical VCSELSs with slightly differeoptical frequencies can
operate simultaneously at stable orthogonal polarizatiades. For instance, in
panel (b) we observe that at zero-detuning both lasers &malarized photons
while for A /27 = 5 GHz, VCSEL 1 operates at thiepolarization mode and VC-
SEL 2 at thez one. AtA /27 = 8 GHz the roles of the dominant and suppressed
polarizations have been exchanged in both lasers and VC3&hdiv lasing hor-
izontally polarized photons, while VCSEL 2 is lasing in tixnode.

Interestingly, these detuning-induced PS are also accoiegbdy hysteresis
effects. Thus, in Figure 7.6 we represent the hysteresithwiof the different PS
as a function of the detuning. Anincrement of the hystensith can be observed
for larger detunings.
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2 o4 as a function of the detuning. Larger hysteresis
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B 05 the detuning mismatch.
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7.3 Dynamics accompanying polarization switchings

Figure 7.4(a) showed the evolution of the time-averagdd® mode intensity as
the coupling strength is increased and then decreased. yxmanucs in the light
intensity that occurs on a time-scale faster than the aiwegaime is therefore
removed from the time-series analysis. Nevertheless, twammgh any detection
scheme effectively introduces a filtering process, the dgsamics accompany-
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ing a PS can be of great help in understanding the details chamesm of the
switching and the undergoing synchronization between {GSHKLs.

Thus, Figure 7.7 complements the analysis of Figure 7.4{showing the
corresponding bifurcation diagram of the polarizatioreirsities as a function of
the coupling strength. Here, the extrema of fReP (7-LP) mode intensity time-
traces are plotted in black (red) for VCSEL 1 (left panelsjl MCSEL 2 (right
panels). In the upper panels (lower panels) of Figure 7.¢dl@ling strengtly is
adiabatically increased (decreased).
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Figure 7.7. Bifurcation diagram of the polarization-resolved optipalver as a function of
the coupling strength. The coupling rate is adiabatica#lyied upwards (upper panel) and
downwards (lower panel) for both VCSELs. The spin-flip rates = 1000 ns*.

As the coupling strength is increased each VCSEL displaygsjaesce of po-
larization switchings to steady-state solutions that laeecbmpound-cavity modes
analyzed in the previous section. However, the VCSEL canethibit a pulsating
dynamics when the coupling strength is slightly smallentti@at corresponding
to a polarization switching point. The pulsating dynamimdticed by the coupling
may correspond to a regular time-periodic, quasiperiodieven chaotic dynam-
ics as seen in various points of Figure 7.7. An example oftlaycle attractor
associated to a periodic dynamics near a PS point was showexdmple in Fig-
ure 7.3(b) in a projection of the infinite dimensional phakse.
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7.3.1 Spin-flip rate influence

The value of the spin-flip relaxation rate considered so far ig, = 1000 ns™! be-
ing comparable to measured values from experiments onae¥E€SEL devices.
Other experiments have, on the other hand, concluded orlesmvalues of the
spin-flip relaxation rate, of the order of = 100 ns~! or even less [101,102]. Itis
known from the literature that the value ©f may have a strong influence on the
VCSEL light polarization dynamics, in particular for therdymics that accompany
the polarization switchings [103—106]. In order to study #ifect of the spin-flip
rate on the dynamics accompanying PS in Figure 7.8 we platahe bifurcation
diagrams than in Figure 7.7 but for a smalgwvalue ¢, = 100 ns™1).
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Figure 7.8. Bifurcation diagram of the polarized-resolved optical povas a function of
the coupling strength. The coupling rate is adiabaticaflyied upwards (upper panel) and
downwards (lower panel) for both VCSELSs. The spin-flip rate.i = 100 ns*.

Interestingly, each VCSEL still exhibits a sequence of poédion switch-
ings to steady-state single LP mode solutions. Howevewdszi the polarization
switching points the VCSELs may exhibit a richer dynamicatdwior, including
a two-mode steady-state solution that destabilizes to-ier®dic, quasiperiodic
or chaotic behaviors. Typical time-traces of the two LP nsooleone of each VC-
SEL are shown in Figure 7.9 for specific values of the couplittigngth¢. The
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corresponding optical spectra are shown in Figure 7.10.
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Figure 7.9. Temporal traces for the optical power of VCSEL 1 for diffeareoupling strengths.
a)k=35b)k=450C)r=52d) k=70, e)r =385 andflx = 9.0ns . The rest of
parameters are as in Figure 7.8.

In particular, in Figure 7.9(a) fof = 3.5 ns™!, the two VCSELs exhibit a
chaotic dynamics. Regarding the polarization dynamicéiwieach VCSEL we
observe how thg-LP mode is dominant and exhibits fast pulsations with large
intensity modulation. When thg-LP power drops, th&-LP mode is suddenly
excited and becomes the dominant mode. The LP modes, theerekdnibit a mode
hopping on a time-scale much larger than that corresponiditige fast intensity
pulsations in each modes.

For a larger coupling strength as in panel (b) whete 4.5 ns™!, the VCSELs
dynamics bifurcate to a steady-state solution, with bothrideles emitting simul-
taneously. As shown in the optical spectra the two LP-modedazked to the
same frequency. Moreover, the two LP-modes of the secondBGBot shown
in Figure 7.10) share the same optical frequencies ungeifiat the two VCSELSs
are locked. Four modes (LP-modes of the two VCSELS) are fibrerdocked to
exactly the same frequency.

The two-mode steady-state solution in Figure 7.9(b) bétes to a limit cy-
cle dynamics in Figure 7.9(c) fari = 5.2 ns™!. The limit cycle frequency is
420 MHz, which is very close to half the birefringencg, (r) that separates the
frequencies of both solitary andj LP modes.

For a stronger coupling strength € 7.2 ns™1) this two-mode limit cycle dy-
namics undergoes a transition to a single polarization nstekedy-state solution,
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Figure 7.10. Optical spectra of VCSEL 1 for different coupling strengtle® = = 3.5, b)
k=4.50k=52d)k="70,e)xk =85 and f)x = 9.0 ns~'. The rest of parameters are
as in Figure 7.8.

Figure 7.9(d). When analyzing the bifurcation diagram afurée 7.8, we observe
that this transition seems to occur at a defined couplingigthe The bifurcation
to a single polarization mode is found at the coupling wheeerminimum of the
intensity oscillations of theé-mode becomes equal to the maximum of the oscilla-
tions of they-mode. This observation hints the fact that a collision wiiticycles
may have an influence on the polarization switching.

As we further increase the coupling strength the single rizglion mode
steady-state Figure 7.9(d) bifurcates to a single-mode-pisriodic dynamics with
frequency close to 3.6 GHz, Figure 7.9(e), and then to a twdeariime-periodic
dynamics with a slower frequency close to 2.2 GHz observddgare 7.9(f) for
£E=9ns L

Therefore, the two-mode limit cycle dynamics exhibitedamels (c) and (f) of
Figure 7.9 even appearing for slightly different couplinigestgh values{ = 5.2
ns ! and¢ = 9.0 ns™!, respectively) oscillate at very different frequencie®Q 4
MHz and 2.2 GHz, respectively, what possibly indicates &etbht origin of the
oscillations. Another interesting observation comes fthencorrelation analysis
between both VCSELSs intensities. In Figure 7.9(c) the twazation modes in
VCSEL 1 are completely in-phase with those of VCSEL 2, whilé-igure 7.9(f)
they are in a perfect anti-phase regime. In both cases, feweshould be noticed
that the correlation between the polarization modes withérsame VCSEL shows
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that both modes are phase locked in an anti-phase regimseGoently, we show
that different correlation properties between the two VCSHErom complete in-
phase to complete anti-phase) can be obtained dependimg erdct value of the
coupling strength linking the dynamics of both laser oatilis.

The visualization of these simulations in the Poincar&splprovide us a com-
plete picture of the polarization dynamics when increashmgcoupling strength
Figure 7.11. For small coupling strengths correspondingattel a), we can ob-
serve both lasers exhibit a chaotic polarization dynamibsres the polarization
visiting all possible sections in the Poincaré sphere.ddwer, the polarizations of
the two lasers run uncorrelated over the surface of suchespétdicating that no
synchronization is occuring between the VCSELSs. In formgurés we showed
that steady-states with non-zetaandy-polarization components were found for
intermediate coupling strengths. In panel b) we show thel stiates are associ-
ated to stable elliptic polarization modes instead of jost® modes. It is also
observed that the slow oscillations in panels c¢) and f) oliFég7.9 correspond
to limit cycle orbits on the Poincaré sphere, while fastil@@®ns in panel e) are
induced by fast changes in the total optical power with a fikeshr polarization.

a) RCP b

Figure 7.11 Stokes parameters in the Poincaré sphere for differerglicmustrengths. a)
k=235 Dbk =450k =2520dk =70 ek = 85 andf)x = 9.0 ns *. The
rest of parameters are as in Figure 7.8. Black and red disshg/CSEL 1 and VCSEL 2,
respectively.
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7.4 Misalignment effects

So far all the results concerning the coupling-induced R&tha accompanying
dynamics, including the synchronization properties hasenbobtained assuming
a perfect alignement between the eigenaxesndy) of both VCSELSs. In this sec-
tion we investigate the possible consequences of breakirgych a condition by
rotating one of the VCSELSs with respect to the other. Thisipwdation is easily
accessible from an experimental point of view and calls flullst vectorial study
of the polarization degree of freedom.

Numerical integration of Eqgs. (7.1)-(7.6) when scanning ¢bupling and ro-
tation angle between the VCSELSs leads to the output of Figur2. For a fixed
coupling, we notice that the effect of the rotation of a VCSEIlto continuosly
decrease the power associated to one of the LP-modes winiéegases the inten-
sity corresponding to the orthogonal one. For example-at5 ns™!, the z-mode
starts decreasing its power simultaneously in VCSELs 1 ane¢h2e theg-mode
gradually increments its power in both lasers. This tengdesenaintained until
the rotation angle becomes a bit larger than one quartevofutsoon 6 = /2 for
which the power of thg-mode reaches its maximum and thenode its minimum
value. From that point, the recovery of the initial valuessties at) = r, i.e., half
a revolution of one of the VCSELs, demonstrating that théesyss invariant to
an upside-down turning of one of the VCSELSs.

Figure 7.12, although indicating that there is a transfgyafer between the
andy linearly polarized projections, it does not capture how thansition occurs.
In the following we analyze the evolution of the componeritshe polarization
vector of both VCSELSs as a function of the rotation angjle

The four Stokes parameters are represented in Figure 7. i3fpolarization
of both VCSELSs when we rotate one of the VCSELSs. In Figure (&)lthe evolu-
tion of Sy, which represents the total intensity of light, indicatesttupon rotation
of one of the VCSELSs the total power emitted remains consdadtidentical in
both VCSELSs except for a tiny window where the intensity brees chaotic. Panel
b) of Figure 7.13 demonstrates that the projection of théoveaf polarization on
the S; axis is the same for the two lasers. This projection decesfasm its maxi-
mum attained a# = 0 and7 down to zero for values df slightly larger thanr /2
and3r /2. Regarding theS; and.S; components, in panels c) and d) it is observed
that the two VCSELSs always exhibit an opposite sign for§h@ndS; projections
of their respective polarization vectors.

Two key features are remarkable in Figure 7.13. One comes fhe obser-
vation thatSs; is in general different from zero for most of the valuesjofThis
fact yields to stable elliptic polarization states of liglhbur coupled configuration
which moreover can be induced by a pure mechanical operate@nby rotating
one of the lasers. One must remind that such states are ralyusund to be sta-
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Figure 7.12 Time-averaged intensities in thie and¢-LP modes of VCSEL 1 and 2 as a
function of¢ andd. Parameters are specified in Table 7.1.

ble in solitary VCSELSs. A second attracting characteristielated to the sudden
jumps in theS, and.S; components of the polarization vectors found for values of
the rotation angle ned ~ 7/2 and~ 37 /2. Thus, when crossing one of these
critical angles the polarization state of the VCSELSs ssffére sharp transition
(So, S1,S2,S3) — (So, S1, —S2, —S3). These jumps correspond to an inversion
of the polarization vector on th&, axis, occuring when one of the VCSELSs is ro-
tated by approximately half a revolution respect to the oldmer. Near the critical
angles off = /2 and3r/2 we found thatS; ~ 0 andSs is small compared to
So. Consequently, the abrupt inversion of the signSeffor those angles can be
thought as a sharp transition from-al5 to a+45 quasi-linearly-polarized emis-
sion of light in VCSEL 1, and the opposite transition for VASE

We have also shown in Figure 7.14 that by reversing the ootangle (i.e.,
turning the same VCSEL in the opposite sense) the sharpizatian switchings
occur at similar but slightly different angles. Thus, if lmcieasing the rotation
angle the first PS occurs @t~ 103° when rotating the laser in the other sense the
PS appear & ~ 75°. This difference provides a clear hysteresis spanning more
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than 30 angular degrees around the values-6f90° andf = 270°.

Figure 7.15 contains the evolution of the Stokes parameterthe Poincaré
sphere for increasing and decreasing the angle of rotdti@uch a representation,
the PS and hysteresis effects are evident.

Figure 7.15 Stokes parameters evolution on the Poincaré sphere oifgtiiteeimitted by the
two VCSELs when increasing and decreasing the rotatioreaay MCSEL 1 increasing, b)
VCSEL 2 increasing, c) VCSEL 1 decreasing, and d) VCSEL 2 decreasiry Black and
red distinguish VCSEL 1 and VCSEL 2, respectively. The agowdicate the sharp transitions
when varying the rotation angle.

Thus, in conclusion we have first described how the mechhmitztion of one
of the devices around the critical angles can be opticalbodad by the macro-
scopic polarization state of light of the VCSELSs, and sechad the bistability
found around such PS also permits to detect and record tise sérthe induced
rotation.
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7.5 Synchronization

In Section 7.3, we have reported that two mutually-coupl€S¥Ls can oscillate
in regimes of periodic in-phase or anti-phase dynamicsrd;hbe transition from
one to another solution was induced by varying the intevacstrengtht. How-
ever, in those cases the cavity anisotropies induce thawiheigenaxes: andy
are favored directions of the polarization state, thus isifmp serious constraints
to the vectorial nature of the synchronization scenario.

Here, in order to investigate the synchronization propertietween the com-
plete polarization vectors of two VCSELSs we assume that tiiso&ropies of both
laser cavities are negligible. By doing so we achieve toxréte preference of
the VCSELSs to emitt light polarized along some definite dimts. In such con-
ditions the fundamental question to be answered is how ttagipation vector of
each VCSEL is going to evolve?

First we analyze the situation corresponding to a solitaBS¥L. In the pure
deterministic case it is observed that all the linearly poéa states are equivalent
and neutrally stable. Consequently, there is no preferéorca particular state
and depending on the initial condition the polarizationtoesettles on a given
direction. In the presence of spontaneous emission ndisgydlarization vector
of each solitary VCSEL is found to diffuse around the equatiothe Poincaré
sphere, i.e., to perform a random walk visiting all the plosslinearly polarized
states.

Panel a) in Figure 7.16 shows the polarization vectors of WE&ELSs when
they are uncoupled and free from anisotropies. Clearlyj ettors diffuse with-
out any correlation between each other. For low couplingsratuch in panel b),
a kind of synchronization must occur between both poldorpatectors because
now they scan at the same time the same Poincaré sphera.regiointermediate
couplings (panel c¢)) one finds a region of chaotic states evher polarization vec-
tors visit all the sphere surface, while for larger intei@ttstrengths > 7 ns™!
both vectorial oscillators diffuse again around the equafde have also noticed
that the larger the coupling strength the smaller the ar#izedPoincaré sphere that
is visited in the same time.

Now, we can study whether such random walks can synchroFRigere 7.17
(left panel) shows the maxima of the cross-correlation fions between the
Stokes parameters of both lasers as a function of the cgugpliength. Remark-
ably, both polarization vectors continue to diffuse maiahpund the equator of
the Poincaré sphere driven by independent spontaneose sources and nev-
ertheless, a large correlation value is found between timardics of the three
components of both polarization vectors. The effect of theetdelay in the in-
teraction between the VCSELSs is reflected in the timing ofdjechronization
of the polarization dynamics. Figure 7.17 (right panel}tplihe lag at which the
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a) > RCP . b) 4
S SS
ACZTTIRSN
LTINS

0.5

Figure 7.16 Stokes parameters evolution on the Poincaré sphere oigtiitecimitted by the
two VCSELs for different values of the coupling strength;éa}= 0 ns™*, b) ¢ = 2 ns!,
c)¢ = 4ns! and d)¢ = 20 ns . Black and red distinguish VCSEL 1 and VCSEL 2,

respectively.
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maximum of the cross-correlation function between the telagzation vectors is
attained. For most of the coupling values the cross-cdialdunction is almost
symmetric around zero with two similar maxima-at. This fact is reflected in
Figure 7.17 where for large coupling rates the lag randomigtdlates between
200 ps and—200 ps, i.e., the coupling time.

Max. cross—corr. S,

. . . . . 3 . . . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Coupling (ns™) Coupling (ns™)

200F

Lag S,

—200
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—400

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Coupling (ns™") Coupling (ns™")
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Lag Sy
o

—200|

Max. cross—corr. S;

_osl ‘ ‘ 1 ~400

. . . . . . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Coupling (ns™") Coupling (ns™")

Figure 7.17. Left: maxima of the cross-correlation functions betweengblarization compo-
nents of both VCSELSs as a function of the coupling strengigh®lag at which the maxima
of the cross-correlations are found as a function of the ldogistrength.

7.6 Conclusions

In this chapter we have shown that mutual coupling may indoakiple bistable
polarization switchings in otherwise polarization stalsleSELSs.

A sequence of PS events has been found when varying the egLgttiength
or the propagation phase between the VCSELs. The definitedigty of these
PS events has been related to the creation of new compouiig-ozodes with
higher gain and orthogonal polarization. Each PS is accaiadéy a large hys-
teresis whose width can be tuned by the coupling paramegrsh controllable
bistable PS system is interesting for fast optical switghapplications. We have
also checked that this coupling-induced PS scenario ist@gainst modifications
of the corresponding laser and coupling parameters.
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Moreover, the effect of a detuning between the lasers fueaing optical fre-
guencies has been found to induce another type of PS.

Stable elliptic polarization states are achieved by thatimt of one of the
VCSEL respect to the other. This situation is also resptmgdr the appearance
of sharp jumps in some components of the polarization vexfteach VCSEL.

Finally, we have observed the temporal synchronizationheffolarization
vectors of isotropic VCSELSs. Thus, a true vectorial synafration in mutually-
coupled VCSELSs has been numerically demonstrated.



Chapter 8

Synchronization of three
mutually-coupled
semiconductor lasers

XPERIMENTS! and numerical simulations have demonstrated that the icmdpl
E induced dynamics of two semiconductor lasers interactinguigh the mutual
injection of their coherent optical fields exhibit a symmeéireaking [10, 12]. In-
stead of showing an identical behavior, spontaneouslytwizetwin lasers de-
velop an achronal generalized synchronization betweemn.thEhis type of sync
is mainly characterized by peaks #t-, with 7 being the coupling time, in the
cross-correlation function between the lasers interssitie

From a different perspective, investigations of threeantineously-coupled
semiconductor or solid-state lasers interacting throungir toverlapping optical
fields were performed by Winful et al. [16], and Roy and catliattors [17]. These
authors observed that when arranged in a linear array, ddédesynchronization
between the first and third lasers showed up, while the teahpa@ces of any of
the extreme lasers and the central one appeared rathereiated.

These interesting results motivate a deeper study on howuimder of lasers
and the network of couplings modify the synchronizationperties of SLs inter-
acting with a finite time delay. New questions need to be adde For instance,
can the isochronous solution between the first and thirdddse maintained even
when the lasers need a time to communicate? How will the sywic like if we
add a fourth laser to the array? What is the role of the synyrmirselecting
possible sync patterns? With a view to answer these questias study here the

1This chapter is based on the paper: “Zero-lag long-rangetsgnization via dynamical relay-
ing” by I. Fischer, R. Vicente, J. Buldu, M. Peil, C.R. Miras.C. Torrent, and J. Garcia-Ojalvo,
to appear in Physical Review Letters (2006)
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synchronization properties of semiconductor lasers gadnn open-end (linear
chain) and ring configurations. Arrays up to six SLs have beglicitely an-

alyzed. Symmetry arguments support the opinion that thenet of solutions
found for arrays of those size are maintained for larger remobunits.

After introducing the modeling equations and parameteespr@sent our main
results in Section 8.2. There we focus on the open-end coafign of three
mutually-coupled SLs. In particular, we show that zero-$ggchronization be-
tween the extreme lasers in an open-end configuration cachiievad by relaying
the dynamics via the central laser, which surprisingly leghkind the synchro-
nized outer elements. The characterization of the coupfidgced instabilities
and their robustness are also analyzed there. Subsequtinhseare devoted to
the effect of increasing the number of laser elements in bwthopen-end and
ring configurations. The role of the symmetry and delay itrietsg the possible
synchronization spatial profiles is also explained thereoAnection between the
chaotic synchronization solutions and the time-periodittggns of oscillation is
proposed. Finally, zero-lag synchronization betweeradistoupled lasers is used
to propose a new chaotic communication scheme in SectionGhdclusions are
summarized in Section 8.5 where the experimental confiomdiy the groups of
Darmstadt and Terrassa of the zero-lag sync in a laser setlga briefly com-
mented.

8.1 Model

The system under investigation consists of single-modec®ugpled via the de-
layed mutual injection of their lasing modes in a given netwof connections.
For numerical purposes the modeling is performed at thd Eveate equations
according to Ref. [98], which take into account the différeelayed coupling
terms between the SLs.

Figure 8.1. Open-end scheme of three mutually-coupled semiconduagars interacting
with a time delay.

The adaptation of such a modeling to the case of three mytoallpled SLs
interacting in an open-end configuration (as sketched inrgi§.1) reads
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) 1
By = iAwiBy+ 5 (1+i0) G(Ny, || B ) By

+ K1 exp(igar) Eo(t — T91) (8.1)
. I
Ny = ;1 — YNt — G(Ny, | E1||) || Ex | (8.2)

. 1
Ey = iAngg + 5 (1 + ’iOé) G(NQ, HE2||)E2
+ K12 exp(i¢12)E1 (t — T12) + K32 exp(i¢32)E3(t — T32) (83)

. I
Ny = ;2 — ¥eNa — G(Na, || Eo||)|| B2 ||? (8.4)

. ) 1 .
By = iDwsBs+ 5 (1+ia) G(Ns, || Es|) Es

+ Koz exp(igaz)Ea(t — To3) (8.5)
. I
N3 = ;3 — N3 — G(Ns, || Es|) || Es|* (8.6)

where E,,(t) is the complex amplitude of the optical field generated bgras
andV,, represents the corresponding carrier numper: || denotes the amplitude
of the complex field. The nonlinear gain functiG N,,,, || By ||2) is given by:

9(Ny — No)
1+ s||Enl?

G(NmanEmH) - 7-

The coupling parameters that define the interaction betwagitwo lasers are
given by the coupling weight,,,], the coupling time{r,,,,], and the coupling
phas€o,.,| = Q[Tmn] mod 27 matrices. Thus, in the case of a general network
the equations defining the interaction between lasers atewas

. 1
E, = iAw,FE,+ 5 (1 + Z.Oé) G(Nrm HEm”)Em

+ Z Knm eXp(i(bnm)En (t - Tnm) (87)
n#m
Iy,

N, = 2 = %N = G(Non, || B )| B || (8.8)
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8.2 Dynamics of three semiconductor lasers in an open-
end configuration

In the subsequent sections we focus first on the open-endyooation of three
mutually-coupled SLs. The internal laser parameters anenasd identical for the
three lasers; the linewidth enhancement factoe 3, the differential gaing =
1.2 x 107° ns!, the transparency value for the carrier numbgr= 1.25 x 102,
the saturation coefficient = 5 x 10~7, the photon decay ratg = 496 ns™!,
and the carrier decay rate = 0.651 ns~!. With these internal parameters the
threshold current of the three lasersljs = 17.35 mA. In the former equations,
the reference frequency for the slowly-varying amplitudehe electric fields is
chosen to b&) = (w; + wy + w3)/3, wherew; is the central frequency of each
solitary laser. DetuningsXw;) are taken with respect . Unless other coupling
conditions are explicitly mentioned in the text the couglstrengths, delay times,
and propagation phases are assumed to be identical in theotnpding branches
of Figure 8.1;%&172 = K21 = K32 = K23 = 20 nS_l, T1,2 = T21 = T32 = T23 =
3.65 ns, andgszg = 525271 = ¢3,2 = ¢2,3 = O rad.

8.2.1 Coupling-induced instabilities

In order to explore the instabilities emerging from the nalittoupling of three
semiconductor lasers interacting with a time delay, we §esdtthe lasers to op-
erate in a highly symmetric configuration namely, within afeet free-running
frequency tuningfAw; = Aw, = Aws = 0) and a moderate and identical current
pumpl = I = I, = I3 = 27.5 mA. With this level of pumping the solitary
relaxation oscillation frequency of the three lasers amtwut.33 GHz.

Once coupled under standard conditions the three semictordiasers are
observed to enter into a fully chaotic regime known as CatmreéCollapse (CC).
Remarkably, after some transient the traces of the outerdase., SL1 and SL3,
start to become more and more alike up to the point that thdyuprbeing per-
fectly synchronized at zero-lag. The numerical resultssamvn in Figure 8.2. In
order to check the robustness of this synchronization phena we have simu-
lated Egs. (8.1)-(8.6) starting from various and non-igehitnitial conditions for
the lasers. All the simulations returned the same restiészéro-lag synchroniza-
tion of the lasers occupying the extreme positions in thayarAt this point it is
worth to remember that the symmetry under the exchange batlesers 1 and
3 only assures the existence of the synchronized solutibnditits stability. Of
course, in this zero-lag synchronization no superlumiffatceis taking place, but
this is another example of self-organizing dynamics whieeauhits composing the
system negotiate a complex and unexpected behavior.

Moreover, the computation of the cross-correlation fuongi between the
lasers reveals a high degree of similarity between any ofotiter laser traces
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Figure 8.2. Temporal traces of the open-end configuration with threertas; = 20 ns!
andr = 3.65 ns.

and the central one. In Figure 8.3 it is observed that oncpeaplp shifted a high
degree of correlation~ 0.8) appears between the traces of any of the extreme
lasers and the laser 2. In this case, however, the lag forvth&emaximum of the
cross-correlation function appears corresponds to thelicgutime. The asym-
metric cross-correlation function between SL1 (or SL3)] &h.2 signals that the
outer lasers are advancing the dynamics of the central ometibye delayr. Sur-
prisingly, the mediator element is lagging behind the symisized outer units for
which it is acting as a communicating bridge. This type ofaiwics excludes the

interpretation of the central element as a simple leadecthrforcing the extreme
lasers.
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Figure 8.3. Cross-correlation functions for the open-end configuratiith three laserss =
20 ns™! andr = 3.65 ns.

Interaction strength effect

How this synchronization scenario depends on the strerfgtiednteraction be-
tween lasers is investigated next. To this end, we adiaitimcrease the cou-
pling strength between the three SLs and record a time deriesich value of the
coupling rate. The common coupling strength= k12 = k21 = Koz = K32 IS
varied from 0 ns' to 30 ns''. The common coupling delay time is maintained
constant at- = 3.65 ns. For each time series, we compute the cross-correlation
function between pairs of lasers and the lag for which theimam of this func-
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tion appears. The correspoinding results are shown in €i§u. For most of the
coupling strength values the three lasers are operatectinhaotic CC regime.
Nevertheless, some windows of periodic behavior are alsergbd for small cou-
pling rates. Interestingly, regardless the dynamics étddlby the lasers, the per-
fect synchronization at zero-lag between the extreme emriends to all the cou-
pling values explored. No coupling threshold for the traasifrom unsynchro-
nized to synchronous motion can be observed for this paasatks which achieve
the sync state for arbitrarily small couplings. The centaér, on the other hand,
varies its correlation coefficient with the outer units frammalue ofl obtained for
small couplings and periodic dynamics to a value arown@8 attained for large
strengths where chaotic dynamics develops. From coupditess > 6 ns™! the
lag between SL2 and SL1 (or SL3) stabilizes around@he fluctuations in the lag
value for small coupling strengths can be associated toittedymmetry of the
cross-correlation functions that appear for regular dyinarstages.
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Figure 8.4. Cross-correlation and lag between pairs of SLs as a funaiidheir common
coupling strength.

Thetransition from the two-laser problem

To better understand the link from the two-coupled laseoblpm to our case
with three interacting lasers, we performed the followingnerical experiment.
Now, instead of symmetrically increasing the couplingragth between the three
lasers, we start from a configuration where only SL1 and Sk2raeracting with
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a constant coupling strengthp = x9; = 20 ns™!). Laser 3 is put into play by
continously increasing the coupling rates; = 3, from 0 ns™! to 30 ns’t. In
Figure 8.5 we can appreciate the cross-correlation andialysis.
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Figure 8.5. Cross-correlation and lag between the pairs of SLs as aifumof the coupling
strength between SL2 and SI3: = k32).

We observe that the cross-correlation function betweerotier lasers grows as
the coupling strength is varied up to the value whesg = k3, = 20 ns™!, for
which the degree of sync is maximum. The lag between SL1 al@dsSagain zero
for most of the coupling rates investigated. The synchation quality between
any of the extreme lasers and the central one continouslysgimexhibit a peak at
ko3 = k3o = 20 NS~ L. After that point, the correlation between SL1 and SL2 start
to decrease, while the sync between lasers2 and 3 is madtaimost constant at
a value around- 0.7. It is interesting to note that for exampleral; = k32 = 30
ns!, the interaction between lasers 2 an 3 is stronger than wieendupling is
set atkoz = K3z = 20 Ns~!, and nevertheless, the sync between these two lasers
is better in this last case due to symmetry reasons. Reggiftinlag analysis, we
observe that for moderate to large coupling valued 0 ns ') both extreme lasers
advance the dynamics of the central one by a time

So far we have only considered symmetric mutual interastioetween any
pair of lasers. This is, for any pair of lasefs, m) the coupling strength was
such that:,,,,, = k. Keeping this situation, it is clear that the central lasealt
ways receiving more optical injection than the outer onesbse it is the only one
linked to two lasers simultaneously. To check whether thclsgonization solu-
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tions we have observed until now are maintained when rengethis situation, i.e.,
SL2 receiving less optical injection than SL1 and SL3, wdagrer the following
numerical simulations. We fix the coupling strengths fron2 $ the outer lasers
atre1 = Keg = 20 ns~ !, and scan the input coupling of SL2 fromy = k32 = 0
ns~! up to30 ns~!. The correlation analysis is presented in Figure 8.6.
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Figure 8.6. Cross-correlation and lag between the pairs of SLs as aifumof the central
laser input strengthsio = K32).

Under these conditions the synchronization between therext lasers at zero-
lag is still a compatible state of the system Eqs. (8.1))(86d it appears to be
stable in all the range of coupling strengths investigatBggarding the leader-
laggard role between any of the extreme lasers and the tengathere is a clear
change of tendency occurring at, = k32 ~ 10 ns™'. We first analyze the
case for coupling strengths below such a critical rate. &htie cross-correlation
function between any of the extreme lasers and SL2 typichlbws two peaks at
+7. However, in such functions the peak associated to thetigituan which the

central laser advances the extreme ones is only a littledien than the other peak
which is related to the opposite situation. Since the diffiee between the two
peaks is very small, it is difficult then to speak about a ledalggard dynamics.
On the contrary, for coupling strengths aboevel0 ns™!, the difference between
peaks is now much larger than in the previous case, and hedimates a clearly
defined leader-laggard dynamics. For this large coupliggwe, the dynamics of

the extreme lasers is always found to advance the centrdiyoar injection delay
time r.
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8.2.2 Robustness of the synchronization solution
Natural detuning

The ability exhibited by a set oscillators to synchronizestiongly dependent
on how far their natural frequencies are. This characteristurally leads to

the concept of Arnold tongue, which has been already stuidigchapter 6 for

optoelectronically-interacting lasers. Moreover, théerof a moderate detun-
ing between the free-running optical frequencies of twoecehtly-coupled edge-
emitting lasers has been found to establish a leader-ldggée, with the high-

frequency laser advancing the dynamics of its counterdéxtl2]. Since a small
detuning is almost unavoidable in real experiments, we Bre@g motivations to
investigate here what the effects of a small detuning bettlee different lasers in
our open-end scheme are.

We first recover the standard coupling conditions by setsithdhe coupling
constants at = ks = kg = ko3 = k32 = 20 ns~!, and the delay times at
T = Tig = T91 = Tog = T32 = 3.65 NS.

We start with the case where the outer lasers share a comnlitarysére-
quency Aw; = Aws = 0) and we only allow for a detuning with respect to the
central laser Awy # 0). The central laser frequency detuning is scanned from
—22.5 GHz up t022.5 GHz in Figure 8.7. The graphics show that the zero-lag
synchronization between SL1 and SL3 is perfectly mainthineall the range of
values considered for the detuning. In most cases, botlkragtiasers advance
the dynamics of the central one and only for very high positietunings this lag
changes its sign. However, looking in more detail at thisdtlgptical reversal
of the leader-laggard role we must notice that it occurs fealae of the detun-
ing where the synchronization between the central and retriasers is almost
lost (at Awe = 18 GHz the maximum of correlation is' 0.2). In fact, around
+7 the cross-correlation function also presents two neggidaks reaching the
value of~ —0.5, and hence, indicating that actually an anticorrelatedadyins
between the central and the outer lasers is taking place.ob$ervation of this
antisynchronization regime can be related to the proedia laser injected by a
field largely detuned from its cavity resonance. The key fp@ithat this type of
injection produces an incoherent interaction where thectinjg field suppresses
the gain function of the laser by consuming carriers thahoabe devoted to its
own lasing action. Thus, a fluctuation in the amplitude of itijecting field is
associated with a variation of the laser power with an oggpasgn.

If a detuning occurs between the extreme uniiso{ — Aws # 0), we have
numerically checked that the qualitative features of tHatgm obtained for the
perfectly symmetric case are preserved to some extend. dthestness of the
isochronal sync between SL1 and SL3 is observed to amounfew &igahertz
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Figure 8.7. Cross-correlation and lag between the pairs of SLs as ai@umof the central
laser frequency deviatiom\wo.

(see Figure 8.8). The relative dynamics, i.e., the leaalggdrd role, between the
three lasers outside the zero-detuning point becomesutifinterpret since the
correlation coefficient drops very fast down to zero.
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Pumping mismatch

Even if the electrical current injected into the active lapé a semiconductor
laser can be very well controlled at the experimental lekak still very inter-
esting to check the stability of the synchronization soltupon current mis-
matches between the coupled lasers. Moreover, differemrdical regimes and
synchronization characteristics only appear at certgaciion current rates. For
this reasons in this section we evaluate the effect of cenisig different pump-
ing levels for each laser and we check the robustness of tiehsynization so-
lution. As in the previous study of the detuning effect, tlmming strengths
are fixed atkis = ko1 = ko3 = k32 = 20 ns !, and the delay times at
Tlg = T9] = T93 = T32 = 3.65 NS.

We first proceed by varying the bias current of the centradrlas from 17.5
mA to 37.5 mA, while keeping the extreme laser pumps consttlhit = I3 =
27.5 mA. As we observe from Figure 8.9 the only effect of incregsip is to
monotonically decrease the synchronization level betwkerextreme lasers and
the central one. However, the degradation of the sync gualitot severe and the
correlation coefficient only decreases from almbsgibwn to~ 0.7 when varying
the pump current of the central laser by more than 20 mA. Itaghvnoting that
the maximum of the correlation between SL2 and SL1 or SL3ptsattained in
the symmetric configuration where all three lasers are tipgrat 27.5 mA but
at pump levels of the central laser close to the thresholdes@&hesults together
Figure 8.4 are indicative of the very low optical power tleaheeded to bring the
outer elements SL1 and SL3 into synchrony.

Regarding the timing of the synchronized solutions it isaptaed that the lags
at which the maxima of the cross-correlation functions appe not shift with the
pump level.

One can also consider pump mismatches between the lasargyoug the
extreme positions, i.e., SL1 and SL3. We observe how thetsftan the synchro-
nization are much more severe now. The results are sumrddrizZeigure 8.10
where the bias current of SL3 is scanned from 17.5 mA to 37.5 T levels of
SL1 and SL2 are fixed to 27.5 mA. In this case the sync betwezatlter lasers is
only maintained for a range a few miliamperes wide. For smathp deviations,
series of bursts of desynchronization perturb the gemedlsynchronization so-
lution between SL1 and SL3.

Pulse propagation

In the former subsections we have demonstrated that thdsymization between
the extreme lasers is only moderately robust against a nasrbatween them. On
the other hand, the effect of mismatches between the céase and the extreme
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units turned out to be hardly significant and the synchrdimnebetween SL1 and
SL3 was found to be extremely robust upon changes in the mdeasnof central
laser.

These results have been obtained under the conditions wbrstey mis-
matches, i.e., once the differences in the natural fredasrar pumping levels
were set they were kept constant along the temporal evaolofithe lasers. Here,
we investigate the effects of a dynamical perturbation emsiynchronization pat-
tern that we have previously reported. In particular, weegate a pulse of current
in one of the lasers and study how this perturbation progsgatthe system and
affects the synchronization solutions.

Within the standard and symmetrical coupling conditions, start by gener-
ating in the central laser a current pulse of Gaussian prafifle amplitude 10
mA and full width at half maximum (FWHM) of 1.2 ns. The time &= of the
three lasers, the pulse profile, and the synchronizatiar and sync plot for SL1
and SL3 are all collected in Figure 8.11. The synchronipatiolution between
the extreme lasers is perfectly maintained, even at the mbmaevhich the per-
turbation reaches the lasers SL1 and SL3, one coupling tftaethe pulse was
generated. We see then that the perturbation remains catyplenoticed from
the synchronization point of view.
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Figure 8.11 Top: temporal traces of the optical power of the three lasB@ttom: pulse
waveform, sync error and sync plot between lasers 1 and 3.

If the same pulse is now generated in one of the lasers ocuyiplye extreme
positions, Figure 8.12 clearly shows that the sync errowéen lasers 1 and 3
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becomes different from zero only during the pulse genematidhis means that
immediately after the perturbation on SL1 ends, even s#llgling through the
system, it has no more effects on the synchronization soluihis result strongly
suggests that once the perturbation reaches the centeal tas symmetrically
distributed toward SL1 and SL3. Otherwise, replicas of thgimal disturbance in

the synchronization error would be expected for titmeand multiples of it, after
the pulse generation.
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Figure 8.12 Top: temporal traces of the optical power of the three lasB@ttom: pulse
waveform, sync error and sync plot between lasers 1 and 3.

In cases where the amplitude of the pulses was increased & oA (note
that this value is almost double than the bias current lewekhe width of the
pulse enlarged up to 12 ns (a value much larger than the cgugklay time),
the same phenomena were found. Hence, the sync betwees iag@oven to
be quite stable under dynamical perturbations pushing dla&agolution from the
synchronization manifold.

8.2.3 Synchronization for asymmetric coupling times

So far, we have taken both branches of the network modulegar€&i8.1 to be
identical and to give rise to the same coupling times. Bul, syinchronization
exist and be stable if different lengths for the paths betwasers are considered?

To test this interesting scenario we set the coupling delaed in both
branches to be very different. We choogse = 719 = ™1 = 12 ns and
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T, = Tog3 = T32 = 3 NS. For moderate coupling strengths, now the synchro-
nization between SL1 and SL3 appears when compaPirig) with Ps(t + A7),
whereAr = 7, — 7. This is, the outer laser of the shortest branch (in this case
SL3) is able to advance the behavior of the other one (SL1ixwik more than 15
ns apart, by the difference of coupling times.

As we have done before the stability of this solution can lezkéd by subject-
ing the central laser to a given perturbation. A Gaussiaegoaf current is again
chosen to test the robustness of the solution. Figure 8d8ssthe temporal traces
of the three lasers, the pulse generated in SL2, and the symzation error and
sync plot between SL1 and SL3 once the corresponding gkift=£ 7, — 7,) has
been compensated for. The temporal traces already deratngie timing of the
synchronization solutions, where SL3 clearly advances#ievior of SL1. The
synchronization plots show that within our numerical psem the lagged syn-
chronization here attained is a perfect solution, not e¥iectad by a perturbation
in the element mediating the synchronization.
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Figure 8.13 Top: temporal traces of the optical power of the three lasB@ttom: pulse
waveform, sync error and sync plot between lasers 1 and, 3= 72 = 721 = 12 ns and
Tp = To3 = 732 = 3 ns. The coupling strength is fixed o= 20 ns™*.

Other sets of values for the coupling times have been testeth(asr, =
Tio = T91 = b NS andr, = 73 = 730 = 0.2 ns) and in all cases a synchronization
solution with lagr, — 7, have been obtained between SL1 and SL3. Note that in
the later case, without the presence of a third laser the pimutually-coupled
lasers(1,2) and(2, 3) would exhibit very different dynamics due to the disparity
in the coupling times. Nevertheless, when all three areledujpsers 1 and 3 are
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able to perfectly synchronize.

In general, the cross-correlation function between pditasers shows several
peaks related to the delay times and their differences. r&i§ul4 contains the
cross-correlation function for the three pairs of lagér2), (2, 3), and(3, 1) when
7o = 1.5 ns andr, = 3.6 ns. Different delay values have been simulated and in
all cases the main peaks of the cross-correlation functigppeared at the lags:
(Tay —Ta, 21 — 74) for the pair of lasers1,2), (r,, —m,, 7, — 27,) for the lasers
(2,3), and ¢ — 7,) for the pair composed of the extreme lasers 3 and 1.
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Figure 8.14. Cross-correlation functions between pairs of lasers wiffar@nt coupling times.
7, = 1.5 ns andr, = 3.6 ns. The coupling strength is fixed ko= 20 ns™*.

8.2.4 Synchronization of semiconductor lasers with feedlzk

In the previous sections we have approached the study ofrineirement prop-
erties of three mutually-coupled semiconductor laserslinear array. We must
notice that before coupling them the stand-alone lasers@wWiioptical power. To
see whether synchronization occurs when each laser deviddopwn dynamics,
we consider in this section the situation where at least tiierdasers in the array
produce their own instabilities before being coupled.

To this end, we add an optical feedback loop to SL1 and SL3 arttidifeed-
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back strength and delay times to values for which thesedasger into a chaotic
dynamics when uncoupled, known as Low Frequency Fluctusiti@ FF). We
reach this regime by setting the bias current very closeddhteshold/ = 17.5
mA, the feedback strength to 10Ts and the feedback delay time 3ot ns. Be-
fore switching on the coupling, both extreme lasers ogeiléhaotically in the LFF
regime, but their traces are completely uncorrelated.raitévating the mutual in-
teractions 12 = ko1 = ko3 = k32 = 20 ns! andriy = T = T93 = T32 = 3.65
ns), the LFF dynamics of both lasers exhibit a very good syorghation at zero-
lag. Figure 8.15 shows the temporal traces and the crosskation functions
between the three lasers after being coupled. The lags sjtieronization solu-
tions, and consequently the leader-laggard roles betweelasers, are in general
similar to those obtained without feedback. However, weukhmotice an im-
portant difference with the former case. In the presenceeadlback there exists a
finite coupling strength below which the dynamics of the exte laser cannot syn-
chronize. The value of this threshold is found to be very isigago the strength
of the feedback, the feedback round-trip time, and the hiaznt.
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Figure 8.15 Top: temporal traces. Middle: zoomed-in filtered temporatés. Bottom:
cross-correlation function of the three lasers scheme.ensas and 3 subject to moderate
feedbacks; = 10 ns™! andr; = 3.4 ns. The bias of all three lasers is seflte- 17.5 mA.
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8.3 The role of network on the synchronization properties

The profound gqualitative changes observed when compah@gynchronization
properties between two and three mutually-coupled las#nsngly suggest us to
proceed our investigation by including a larger number séfa in the array. The
main goal here is to answer the question of how the synchaidaiz characteristics
depend on the number of lasers and the network of connedticmsystem with

delayed interactions? Two different topologies are careid for such a study,
namely the open-end array and the ring configuration.

8.3.1 Open-end arrays

In the following, we present our results concerning the Byoigization patterns
across the elements of an open-end array composed of fayrafid six semicon-
ductor lasers. In all cases, the coupling strength betwegghbor lasers is fixed

t0 Knm = kmn = 20 NS~ except for the six lasers setup where the strength is in-
creased up to 40 n3. In this case, we observed that a higher coupling is required
in order to excite instabilities in the system and study &yogization phenomena.
The coupling times between adjacent lasers are adjusteg,to= 7,,, = 3.65

ns for all the configurations and the current bias is sef te 17.5 mA. Under
such conditions once coupled the lasers develop a chaoficdylRamics. Fig-
ures [8.16-8.18] contain the temporal traces and cros®letion analysis for all
pairs of lasers in the case of 4, 5, or 6 semiconductor lassspectively. For con-
ceptual convenience we discuss the results for differemiasu of units altogether.

The correlation functions clearly indicate that zero-lamchronization ap-
pears between second-neighbor lasers in the array, igvebe pairs of lasers
occupying positionsn-th andm + 2-th. Moreover, the cross-correlation analysis
also reveals that adjacent neighbors exhibit a high dedgrserularity once the
temporal series of one laser is shifted forward or backwardsupling timer.

Thus, in the open-end scheme we find that the lasers isoalslynsynchro-
nize within two clusters; one group is defined by the lasemsed in the odd posi-
tions of the linear array (SL,. SL3, SLs, - - - ) while the other assemble is composed
by the lasers located at even positions {SkL4, SLg, - - - ). Any pair of lasers be-
longing to different clusters exhibits achronal generalizynchronization and its
cross-correlation function displays two peakstat, as in the original two-laser
problem. It is also noticeable by the asymmetry of some etoslation func-
tions that the lasers occupying the outer positions of theyaadvance the dynam-
ics of their inner neighbors. Numerical simulations witfietient initial conditions
support the generality of these results for arrays of difietengths.
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Figure 8.16. Synchronization in a 4-lasers open-end array. Top: Lasarfsguration; Middle:
temporal traces; Bottom: Cross-correlation functions.
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Figure 8.18 Synchronization in a 6-lasers open-end array. Top: Laserfiguration; Middle:

temporal traces; Bottom: Cross-correlation functions.
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8.3.2 Ring networks

Another important network motif is the ring structure. Whte lasers are ar-
ranged in such a circular array configuration (for instantehie case of three
lasers by adding a new link between SL1 and SL3) the syncratian solutions
radically change. Hereafter, we establish the mutual ¢cogdtrengths between
neighbor lasers to be 20§ while coupling times are all equally set 365 ns.
Rings formed by 3, 4, 5 and 6 semiconductor lasers develdgifigdynamics are
explicitely investigated under this section.

Figure 8.19 shows that the interaction between three nmytoaupled units
in a ring can consistently lead to an isochronous synchatioiz state of all three
elements. Itis remarkable that even in the presence ofsléldkie communication
between the synchronizing units, the mutual interactiabls to self-organize the
dynamics into an isochronous state.

Figures [8.19-8.22] suggest that when the ring is compogexhlmdd number
of lasers, zero-lag synchronization appears between alklbments of the net-
work. However, for rings with an even number of lasers theasion is similar
to the open-end scheme, i.e., lasers isochronously symizkrovithin two clus-
ters formed by the lasers occupying alternating positionthe structure. In this
case, it is also noticed that any pair of lasers belongindfterdnt clusters exhibit
achronal synchronization.

In summary, these results strongly suggest that a kind efcantelation or
repulsive interaction (over a delay time temporal scaléyvben nearest neighbor
lasers can explain all the synchronization patterns fowmndss the network ele-
ments for both the open-end and ring configurations.

For the open-end arrays, this type of repulsive interactimuld naturally
lead to zero-lag synchronization between alternating $asethe array and conse-
guently, for arrays with an odd number of units to the the #agosync between
the extreme lasers.

On the other hand, for the ring network the lasers isochrsigagynchronize
within one or two different clusters depending on whetherniamber of units is
odd or even, respectively. Here, it seems that the repulsiegaction leads to
an achronal synchronization between nearest neighbaislaséess a frustration
phenomenon occurs (for an odd number of elements the adisolinéion cannot
be consistently fulfilled) and then an isochronous soluigsamaintained across the
ring.

8.3.3 The symmetry connection

In many examples the qualitative dynamics of systems witl dédferent origins
are found to be identical. The ubiquity of these model-irmhefent behaviors can
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Figure 8.19. Synchronization in a 3-lasers ring network. Top: Laserdiganation; Middle:
temporal traces; Bottom: Cross-correlation functions.

be often understood within a single framework provided leyshmmetries of the
system. This is also the case for our networks of lasers. Kuoalesimulations
of Ikeda oscillators or even realistic neuronal models hage reproduced the
synchronization solutions that we have just reported abawd thus they have
enhanced the importance of the network properties overdtaalsl of the oscillator
model. This section is developed to understand the pattd#rsgnchronization
solutions that we have presented before in terms of the syrasef the system.
The main novelty of this case compared to standard analysise equivariant
theory of systems (the study of bifurcations of dynamicakteymns possesing some
symmetry), is the addition of a new ingredient into the dyit@mthe delay time.

Next, we analyze the interplay between symmetries and dalapnform-
ing the catalogue of typical forms of behavior of our systard & particular the
synchronization solutions. Based on numerical simulatiand other arguments
we conjecture here a connection between the synchromzatitutions (possibly
chaotic) found across a delay-coupled network and therpati oscillation of
time-periodic solutions.

To illustrate these concepts we explicitely analyze hergidinectional and a
bidirectional ring of three semiconductor lasers. It is ortpnt to recall that the
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Figure 8.20. Synchronization in a 4-lasers ring network. Top: Laserdiganation; Middle:
temporal traces; Bottom: Cross-correlation functions.
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Figure 8.22 Synchronization in a 6-lasers ring network. Top: Laserdiganation; Middle:
temporal traces; Bottom: Cross-correlation functions.
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symmetry of a unidirectional ring with N elements is the aygroup of order N
Zn, i.e., the structure is preserved under rotations onlylerhbidirectional archi-
tecture is invariant under the dihedral grdig;, which has an order equal foV
and describes the preservation of a regular N-gon undeiicasaand reflections
in the plane.

Figure 8.23 and Figure 8.19 show the typical dynamics anelation analysis
under standard coupling conditions for the unidirecticaral the bidirectional ring
of lasers, respectively. As previously stated, the bidioaal network exhibits
a complete isochronous synchronization between all thasers, i.e..P;(t) =
Py(t) = Ps(t), Vt. Moreover, the time series and correlation diagrams of such
configuration indicate a very strong periodicity of the optipower of each laser
with a period~ 7.

The unidirectional arrangement of identical lasers, hamewffers another
sync solution. From the cross-correlation graphs it cannerred that in the
unidirectional case each laser $f)is advancing the dynamics of its neighbor
SL-(j + 1) (wherej is taken modulo 3). Thus, SL1 seems to advance the dy-
namics of SL2 by a coupling time, and SL2 advances SL3 by theesguan-
tity, as well as SL3 is also advancing its neighbor SL17/fyand so on. Of
course, such a circular process cannot continue indefiniteless such dynam-
ics is strictly periodic. What we observe is that even if tgaamics of the lasers
is clearly chaotic there is a marked periodicity amountm@d, i.e., the complete
round-trip time along the ring, in the temporal traces ofthtee lasers so that
Pl(t) %PQ(t-i-T) %P3(t+27') %Pl(t—l-?ﬂ'),---.

In general, the state variablet) of a delay-differential equation represent-
ing the coupling of several units shows a strong correlatidh its delayed value
x(t — mr), for some integern. If the coupling strength is large enough such a
high auto-correlation can make the solution to inherit sqmoperties of period-
icity even if the solution is still chaotic. Our main resulrk is that we find that
the chaotic synchronization motifs observed in our laséwoek and with other
type of oscillators can be always associated to a partipatern of time-periodic
solutions in the array.

In the same sense that the isotropy lattice of a symmetrypgisoa hierarchi-
cal tree of subgroups that order the possible symmetrykhmgs of steady-states,
there exists a similar arrangement that predicts the typpsrdic solutions that
can appear in a given network of coupled systems. In orderdoeed with our
analysis we must introduce here some concepts on the dpatjgeral symmetries
of periodic solutions.

The symmetries of a time-periodic solution({+ 7)) = z(t), Vt) of a system
of equations invariant under a symmetry grodp) ¢an be divided into spatial
symmetries K = {y € I' | yz(¢t) = =(t), Vt}) and spatio-temporal symmetries
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Figure 8.23 Synchronization in an unidirectional 3-lasers ring netwadrop: Lasers config-
uration; Middle: temporal traces; Bottom: Cross-coriielafunctions.

(H={y el |~{z=(t)} = {=(t)}}). Thisis, the spatial symmetries are those
operations that leave invariant the state of the systenllftimees, while the spatio-
temporal symmetries only preserve the trajectories. Refudm representation
group theory assure us that the only possible periodic isokitappearing in a
coupled system are basically those for which the quotieotigé /K is cyclic
[67].

Thus, we can now guarantee that the only possible perioditicos of our
unidirectional ring composed by three lasers (with symyngtoupZs) are given
by the patterns®; (t), P>(t), P5(t)) collected in Table 8.1, wher€ is the period
of the oscillations.

| H| K | Pattern of oscillation \
Z3 Z3 (P(t)>P(t)7P(t))
Zs | 1T | (PO),P(+T/3), Pt +2T/3))
I |1 (P@),Q(1), R(1))

Table 8.1 Patterns of oscillations in three laser unidirectionagsin
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For our standard coupling conditions, the observed chagtichronization solu-
tion (Figure 8.23) of three lasers corresponds to the sepattdrn of oscillation
whereT is assimilated t@r. Such a solution is also called a discrete rotating wave
since all three units oscillate with the same waveform b & phase shift and
consequently such an oscillation it is observed to progaglaing the ring.

The bidirectional coupling of three units in a ring configioa exhibits a sym-
metry groupD3 with possible oscillation patterns given by:

| H | K | Pattern of oscillation \
D3 | D3 (P(), P(t), P(1))
D | Dy (P(t), P(t),Q(1))
Zs | T | (P), P+ T/3), P(t + 217/3))
Dy | I (P(t),P(t+1T/2),5(t))
I I (P(1), Q(t), R(1))

Table 8.2 Patterns of oscillations in three laser bididirectionags.

whereS(t) = S(t + 1'/2), i.e., the third unit oscillates with at double frequency
than the others. In our laser case, the numerical simukfimntypical coupling
parameters show that the selected synchronization solatioesponds to the most
symmetric pattern where all three lasers oscillate in umidRings with a larger
number of units can be analyzed in similar fashion and thetsgmization so-
lutions can always be associated to one of the oscillatottenme forced by the
symmetry.

Numerical simulations with Ikeda and Hodgkin-Huxley madatsembled in
different structures have been also undertaken. By chgrmgmameters such as
the coupling strength or delay time we have observed hovergifft symmetry-
breakings lead to different synchronization solutionsthi@ bidirectional linking
of three lkeda oscillators we have observed complete icrgiynchronization of
all three units, the identical sync of two oscillators while third unit is syn-
chronized in a generalized manner with the other two, discretating waves,
and non-synchronized solutions. In all cases, such synatation behaviors and
their cross-correlation properties can always be mappe&ohéoof the oscillatory
patterns collected in Table 8.2, once the identificafion 37 has been performed.

8.4 Bidirectional chaos-based communications with semi-

conductor lasers

In this section we take advantage of the synchronizatiopgrt@s of the open-
end configuration of three semiconductor lasers to dematestine feasibility of a
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chaotic communication scheme allowing for simultaneouwsréctional message
transmission over the same communication channel.

The simultaneous exchange of information between two notlacommuni-
cation network is a highly desirable property which is hoarawt always compat-
ible with other technical requirements. In particular,icgtchaos-based commu-
nication, which has been largely benefitted from a betteetstednding of the laser
dynamics and synchronization, has been limited to unitioeal transmission so
far, due to the synchronization properties of the schemed s these purposes.

While unidirectional transmitter-receiver configurasoof chaotic lasers have
been successfully demonstrated to send and recover meseadgos-based real
communication schemes [107], their use in bidirectiorethi$mission applications
would require the duplication of most of the system comptsenhis solution is
clearly inconvenient and advanced bidirectionally codehemes are requested.

Two mutually delayed-coupled lasers have also been thoagtda possible
scheme to overcome the directionality of the message trigasgm. However,
this type of system inherently suffers from a symmetry-kirgg that can result
in a switching leader-laggard behavior between the lasenss effect ultimately
prevents the simultaneous transmission of informationinByducing a detuning
between the free-running optical frequencies of the laggrsrmanent control of
the leader-laggard role is possible [10]. Lamentably, niety also induces asym-
metric chaos pass filtering properties. Therefore, evemafition of the detuning
allows for a possible mechanism to switch the direction efitiformation flow,
information cannot be simultaneously transmitted fromhlsitles of the commu-
nication link.

A scheme that could overcome all the former drawbacks is dnéiguration
in Figure 8.1. As we have seen in precedents sections, a kegipy of this con-
figuration is the identical synchronization with symmefioperties achieved by
the extreme lasers of the array. We will see below how exaleityproperty is the
one that allows for an efficient bidirectional transmissadrinformation between
the outer lasers.

At this point, one could ask for the role played by the cen&ser in a potential
communication based on this scheme. In principle, it is fustediator element
assuring the maintenance of the isochronous synchromizbg&tween lasers 1 and
3. Moreover, in previous sections we have demonstratedatibantral laser with
very different characteristics still allows for a robusthskironization between the
extreme ones. The natural question that arise in this coigeixen: do we really
need the central element to be a laser at all?

In the following, we demonstrate that if the central lasereiglaced by a lin-
ear element, whose function will be to linearly redistrétite dynamics between
SL1 and SL3, the resulting scheme still maintains the oleskesynchronization
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properties. Moreover, it is expected that such a setup worddide an excellent
configuration for the bidirectional transmission of infation between two distant
points over a single communication channel since it willggssthe capability to
recover messages by local measurements.

The proposed setup for such a bidirectional communicasahketched in Fig-
ure 8.24. Two free-running semiconductor lasers (renamnsedld and SL2) are
bidirectionally coupled through a semi-transparent mithd) placed in the path-
way connecting both lasers. Due to the mirror the total ligiiected in each
laser is partially received from its own reflection at the nmirand partially by
the light originated at the active region of its countergaser. With the configura-
tion shown in Figure 8.24, identical synchronization betwéhe dynamics of both
lasers can be obtained for arbitrary distances betweeasked. It is worth to men-
tion that in the following we will show that the position oftmirror is not relevant
for the synchronization quality but only shifts the lag beem the laser dynamics.
Zero-lag synchronization is, for instance, only obtaindtewthe mirror is placed
at the middle of the pathway. The reflection and transmissi@macteristics of the
mirror are not important either, provided that the transimis coefficient is above
a threshold value that guarantees synchronization to occur

Figure 8.24. Scheme for the simultaneous recovery of bidirectional agss composed by
two semiconductor lasers coupled through a semi-transparieror.

Numerical simulations of the system are performed using difired version
of the modeling Egs. (8.1-8.6). The coupling and feedbasingths are those
corresponding to a 50% transparent miriory = ko1 = Ky = Ky = 20 nst.
Regarding the coupling delay times we take; = 1.4 ns andr,,» = 2.4 ns. The
propagation phases in both branches are sef to= ¢21 = ¢m,1 = P2 =0
rad.

In the absence of any external perturbation both laserdajeeechaotic be-
havior when coupled to each other through the semitranspariror, as shown
in Figure 8.25. From the time traces plotted in panel a) itlbamcclearly seen that
the lasers operate in the coherence collapse regime. Todeenasal as possible
we have placed the mirror closer to one of the lasers (SL2jderao induce an
asymmetry in the two branches of Figure 8.24. Consequddtwtical synchro-
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nization at zero-lag is not observed. In the inset we plotthss-correlation func-
tion between the output powef} and . It can be seen that the cross-correlation
function exhibits its maximum peak at a time lag that amotmtke difference be-
tween the coupling times of both lasers with the mitar= 7,, » — 7,1 = 1 ns,
with a correlation coefficient of 1. This fact signals an idesl synchronization
between their dynamics. When the mirror is moved to the céhéemaximum of
the cross correlation function moves towards zero.
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Figure 8.25 Temporal traces of the optical power of SL1 (solid) and SL&sfebd) under
the configuration of Figure 1. The inset shows the crossetattion function between the two
laser outputs.

Once identical synchronization has been proven betweelatiees we next
proceed to use such a scheme to simultaneously exchangeation between
SL1 and SL2 by using a single communication channel. We entwoelinforma-
tion by simultaneously modulating the bias currents of Basiers with two inde-
pendent pseudorandom digital messages of amplitude 2 mAGhitls. The two
transmitted messages:( andms) are shown in panels a) and b) of Figure 8.26.
Since the amplitude of the messages is kept small the infoyma well hidden
within the chaotic carriers. The procedure to decipher teegages starts by sub-
tracting the optical power of of both lasers. The synchratiin error between
the lasers’ powersK, (t) and P»(t + At)) allows to reproduce the difference be-
tween the messages that have been sent (panel d)) whicllvepsothe difference
between the original messages (panel c)) after the apptegag has been com-
pensated fori(t) — mao(t + At)). After digitalizing this difference only the
sender ofn, can completely recover the contentof and viceversa. As it can be
seen in panels e) and f) of Figure 8.26, by this proceduregbevered messages
are identical to the encoded ones.

At this point it is worth to discuss the security aspects af wovel config-
uration scheme. Since both output powefs and P,) are accessible from the
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Figure 8.26. lllustration of the message decryption process. Panelsthpshow the original
messages encoded by SL1 and SL2, respectively. Graphieprjduces the substraction of
messagesnti (t) — m1(t + At)) with a given time lag, which is analogically reconstructed
by the synchronization erroiX (t) — P2(t + At)) in panel d). Finally, the recovery of the
message sent by the partner laser (i.e., SL1) is performadding to the messages difference
the message sent by the own laser (SL2).

same communication channel (a simple beam-splitter eakbilws for separating
the signals coming from SL1 and SL2) an eavesdropper coultlyeaonitor the
difference, — P, and consequently, the difference in the messages beirng tran
mitted. Thus, a level of 1 in the message difference wouldrtlandicate that at
the proper time the bit associated to SL1 was “1” while thesbitt by SL2 was
a “0”. Similar argument holds when the message differeneg.i©nly when the
message difference is zero (i.e., both lasers are codithi@game bit), the eaves-
dropper has no clue about which are the bits that are beirtg Hence, this type
of mutually-synchronized configurations could be used tauianeously negoti-
ate a key in a similar fashion than in some quantum cryptdyr&ey distribution
protocols. Both sides of the link can agree to discard thdsdhat are different to
each other while accepting that the key is formed by the Nrdtits that coincide
with each other. In this way a key is encrypted with the samel lef security than
in the unidirectional chaos schemes. The main advantaggesem the fact that
both sender and receiver now can negotiate a key throughliz ghlnnel.

Small mismatches between the coupling coefficients or feddirates have
been simulated to confirm the robustness of the scheme. Menebe position-
ing of the mirror in the geometrical center between the tvgeia has been also
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perturbed without compromising the efficiency of the messagovery. Simulta-
neous message extraction in schemes presenting mismatt¢hesoupling times
as high as 75t have been successfully obtained.

8.5 Conclusions

Here, we have proposed a simple network motif in which disedements in-
teracting with a time delay are nevertheless able to readhta ef zero-lag or
isochronous synchronization. In particular, we have fedusn studying the syn-
chronization properties of three optically-coupled semauctor lasers arranged
in a open chain configuration.

Numerical results as well as experiments conducted by MidRail and Ingo
Fischer at the Technical University of Darmstadt, and Ja®idda, Jordi Garcia-
Ojalvo and Mari Carme Torrent from the Universitat Politiea de Catalunya,
have demonstrated that the zero-lag synchronization lestiveo distant lasers can
be obtained by relaying their dynamics via a third laser,clvtgurprisingly lags
behind the outer synchronized elements. Experimentaihgrosynchronization
solutions where the central element leads the dynamicseobtiter lasers have
been also observed when a moderate detuning is presentdvetinelasers.

In this chapter we have also checked the robustness of tlebhisymzed solu-
tions against natural detuning, different pump levels, @rhmical perturbations.
The numerical simulations and the fact that the zero-lagtsywmization was ob-
served in the laboratory indicate the persistence and andarof the synchro-
nizing mechanism under the presence of mismatches. Adifterin the coupling
times of the two branches of the chain was observed to sill te synchronization
between the outer lasers once the proper lag was comperisated

When studying the effect of increasing the number of laseithe open-end
array configuration a zero-lag synchronization betweersdialternating neigh-
bors was found. In ring architectures, two types of solitiappear; for an odd
number of elements all lasers were observed to synchronizera lag, while
for an even cardinal only alternating neighbors were ismabusly correlated. A
phase-repulsive interaction between neighbor lasersstebe able to explain all
the synchronization patterns found across the differetwtaorés elements.

Finally, in the last section of this chapter we have propa@estnple scheme
that allows for bidirectional and simultaneous transmissif information encoded
within chaotic carriers. By coupling two semiconductorelas bidirectionally
through a semi-transparent mirror we obtain identical bymization which has
been proven to be very robust. The scheme can be used to gecaarencrypted
key through a public channel.



Chapter 9

Concluding remarks

N this dissertation we have investigated the instabilities @ the mutual inter-
Iaction between two or more semiconductor lasers. The woskimvigally moti-
vated by the willing to know the role of a delay, naturallysamg as a consequence
of the finite distance separating the lasers, on the synidaton properties of
coupled systems. Three different schemes were studied:nutaally-coupled
semiconductor lasers interacting optoelectronicallyy WCSELs in a face-to-face
configuration, and three semiconductor lasers arrangedchmi with bidirec-
tional interactions between nearest neighbors.

The results presented in this thesis are mainly based optmadicalculations
and numerical simulations of appropriate models (modifedd equations) for in-
teracting semiconductor lasers. However, most of the ptiegedescribed in the
former chapters are expected to be model-independent asdtthappear in other
types of oscillators.

Here the most important conclusions obtained during thezeden of this
work are highlighted .

Two mutually-coupled semiconductor lasers:

e A delay in the interaction between two mutually-coupled memductor
lasers is needed for the emergence of instabilities in te&esy. Instanta-
neously face-to-face coupled lasers cannot develop argmnaigs.

e The route to chaos followed by optoelectronically coupkskls as a func-
tion of the delay is identified in Chapter 6 to be a quasipéciodute with
crisis events.

e Coupling and feedback delay times are found to play verylaimnoles in

167
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Concluding remarks

destabilizing bidirectionally coupled lasers.

The death by delay effect is predicted and experimentalhficned to oc-

cur in the setup introduced in Chapter 6. In particular, westdemonstrated
that the addition of delayed feedback loops removes thessggaf a delay
in the coupling line between two oscillators in order to aledhis quench-
ing effect.

A delay in the coupling between two interacting semicondutdsers has
also been found to be responsible of a series symmetryibgeavents
which can eventually lead to a localized synchronizatiomvben the lasers.

The presence of a delay in the interaction between two atmif has been
observed to improve the capability to lock their oscillago

Polarization dynamics in coupled VCSELSs:

e A new scenario of polarization switchings has been ideutifiiea VCSEL

when the mutual coupling strength between two of such devicenhanced.
The periodicity in the appearance of such PS events has b&gad to the
emergence of new compound-cavity modes with higher gairogthdgonal

polarization. A hysteresis region is found to surround da8hwhich leads
to bistable PS interesting for fast optical switching agtdions.

Stable elliptic polarization states of light are found byating one VCSEL
with respect to other in a face-to-face configuration. Mgezpanother type
of bistable PS is found when the rotation angle is continuosanged.

The fully vectorial synchronization between the polaiizatstates of two
mutually coupled VCSELs has been numerically demonstrated

Synchronization of three and more semiconductor lasers:

e Zero-lag synchronization between the distant outer elésneiha chain of

three semiconductor lasers has been obtained via the relagiodynamics
on a central element. The robustness and stability of sucthsgnization
solution has been tested upon the most typical sources ohaites and
dynamical perturbations.
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e The role of the topology of the network linking the lasers #melnumber of
units are also analyzed. The ring structure with an odd numbelements
is shown to isochronously synchronize all its members, enifie open-end
array with an odd number of units allows for the zero-lag syhthe most
outer lasers.

e The different synchronization solutions in delay-coupleetworks have
been proposed to correspond to different spatio-tempa@tems of time-
periodic solutions allowed by the symmetry. In particuster the identifi-
cation of an effective period with a combination of the caugldelay times
in the network has been established, the timing or lags lestwee chaotic
waveforms of the synchronized elements can be predictedl tihe oscilla-
tory solutions.

e A new chaos-based scheme has been proposed in Chapter 8alibigh
the bidirectional exchange of messages in a single commatimicchannel
and provides the codification with a given level of security.

A variety of lines for continuing this work are opened depagdn the spirit
and the vision with which this thesis is viewed.

For optics and laser oriented research it would be veryastarg to refine
some of the predictions here established with more accaratiels and laboratory
experiments. In particular, a deeper study of the diffeR®iteported in Chapter 7
constitutes an attractive option with a view to possibleliappons. The bistable
nature of the PS events presented here calls for a betteaatberation of the
energy needed to induce such optical switchings as well @se$ponse times.
The origin of the polarization switching induced by the mezulal rotation of one
of the VCSELs and the stable elliptic polarization statelggbit possibly deserve a
more careful study than the provided in Chapter 7. Curresgtaech is also directed
to another synchronization issue in coupled VCSELs. Whalatisd, each VCSEL
can be operated in a bistable polarization regime, whegyrhictuations induce
jumps between two polarization states according to a Krartaev. The idea is
to follow the relation between jumps in two VCSELs once they mutually-
coupled. In a more general framework, we would like to stumydynchronization
of two mutually-coupled bistable systems focusing on the ob the delay in the
interaction.

The communication scheme proposed in Chapter 8, which alfonthe bidi-
rectional exchange and encryption of information usinghglsi channel, is also a
good starting point for growing a more rigorous study of gsfprmance and fea-
sibility as an engineering application. Neverthelessptihdased communication
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should face at some point the requirement of not only privadyother standard
information security demands such as data integrity, \eatithentication, or ac-
cess control. Of course, the idea of encrypting informatiothe physical layer
can be complemented by software techniques that can petf@se and others
tasks. In any case a good estimator of the security of mes$sag@mission using
chaos-based techniques is another more than attractive goa

Within the framework of the nonlinear dynamics the effecaadelay on the
dynamics and synchronization of coupled systems contibagg) an exciting in-
gredient to explore. More specifically, the role of the delaya symmetry-breaking
or symmetry-restoring parameter in the dynamics of coupkellators needs to
be systematically addressed. Our preliminary results inesmodels of coupled
oscillators have suggested the identification of the difierchaotic synchroniza-
tion solutions with the possible patterns of oscillatioesrpitted by the symmetry
of the network.

On the other hand, the generation of multirhythms solut{émsrth pattern in
Table 8.2) could be of interest for some engineering apjdioa (including op-
tical sciences) where systems oscillating at multiples fofrdamental frequency
are needed.

From a more interdisciplinary point of view, the experieacel insight gained
during the investigation of the simple network motifs of @tex 8 can be help-
ful in analyzing the role of the delay in complex networks g¥happear in many
different fields and contexts. Experiments regarding zagosynchronization be-
tween distant cortical areas of the brain have receivedd kittention since a long
time [108]. Such neuronal synchronization is believed twlhiifferent neuronal
responses when a subject is performing some cognitive s#tsmotivate fur-
ther studies of the synchronizing mechanisms in realigtioca networks. Current
research is going on in order to better understand how simpiehanisms could
allow for a stimulus-dependent zero-lag synchronizatietwieen pools of neurons
which connectivity belongs to the realm of the complex nekso

In conclusion, | consider that the spirit of this thesis haerbto contribute a
little bit to the problem of coupled oscillators from an irtisciplinary point of
view. The fact that the oscillator models used here are smdicctor lasers has
enhanced the possibility that the theoretical and numlepieaictions could find
a real test in the optical tables of different laboratorigkreover, the interesting
and complex dynamics of the real light-matter interactiontmuosly challenge
and motivate further theoretical studies that toy modetstaadly offer.

One of the advantages of this type of research from which €Hdmave been
benefitted is, as | said before, its interdisciplinary natufools and techniques
from different branches (bifurcation theory and nonlindganamics, optics, group
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theory, etc...) have been used along this thesis. Moreawetysis of theoretical,
numerical, and experimental nature have all been mixed amplemented each
other in order achieve our goals.

Regarding the future of the subjects studied here, | condid the topics of
synchronization and delay effects still cover a lot of siggs to basic nonlinear
dynamics research and engineering applications, but iedigeio the modeling
and analysis of the life sciences. The more and more popelar df biophysics
is offering an incredible large set of challenging situasigwhere could one find
more incredible examples of self-organization of complggtems than in real
life?) that are calling for an answer. From biological cledk central pattern
generators, | consider that there is a lot of room for moreit#et and physiological
meaningful synchronization studies that can help us tebettmprehend issues
like the organization and tendency to order of the living terabr the generation
and maintenance of our biological rhythms, a fundamengaldswith important
medical and pharmacological applications.
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