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deeply indebted. I especially appreciate his hospitality during my stage at the Univer-
sity of Cantabria in Santander. In addition, the results on the dynamical mechanism of
anticipated synchronization in excitable systems were the fruit of the interaction with
Francesco Marino and Salvador Balle. I owe special thanks to them for the interest they
put in the subject of my studies and for very stimulating discussions we had. I also
want to thank Emilio Hernández-Garcia for his insightful comments and helpful advice
related to delayed and spatiotemporal systems.

Durante los últimos cinco años de mi estancia en la Universidad de las Islas Baleares
he tenido la oportunidad de conocer a muchas personas, quienes pasaron por la EFE, GE
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Resumen

En esta tesis estudiamos el fenómeno de sincronización entre dos o más sistemas acopla-
dos unidireccionalmente. El acoplamiento esta diseñado de tal manera que permite
que ocurra sincronización ácrona, más especı́ficamente la sincronización anticipada. La
sincronización anticipada se refiere a la situación en que un sistema sincroniza con la
dinámica futura de otro sistema.

El marco de esta tesis toca muchos problemas relacionados con la sincronización an-
ticipada, poniendo particular interés en los sistemas excitables y espaciotemporales. En
este estudio se proporciona una descripción teórica del fenómeno, en su mayor parte
a través de simulaciones numéricas, pero también, en un caso particular de sistemas
exitables, a través de resultados experimentales. Además, modelamos la sincronización
anticipada en reacciones quı́micas consistentes en la oxidación de CO sobre una super-
ficie de platino. El estudio se realiza desde el punto de vista de los requisitos experi-
mentales y sus limitaciones.

Mostramos además que células excitables separadase spacialmente y acopladas, con
el esquema de la sincronización anticipada y bajo las condiciones particulares, pueden
contribuir a la sincronización a tiempo cero. Relacionamos este resultado con las ob-
servaciones experimentales de la sincronización a tiempo cero entre áreas cerebrales
separadas espacialmente.

Considerando la dinámica espaciotemporal, a través de un ejemplo de los autómatas
celulares acoplados, demostramos la equivalencia entre el acoplamiento basado en las
variables retrasadas en el tiempo y aquellas retrasadas en el espacio. Relacionamos este
resultado con los estudios anteriores sobre las propiedades espaciales de los sistemas
con retraso.

Revelamos el mecanismo dinámico de la sincronización anticipada en los sistemas
excitables mostrando que la anticipación aparece debido a una reducción del umbral
de excitabilidad en el esclavo inducido por el término de acoplamiento con retraso.
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También intentamos responder al problema del mecanismo dinámico de la sincronización
anticipada en los sistemas caóticos, utilizando el enfoque de los sistemas modificados.

Finalmente estimamos el uso práctico de la sincronización anticipada. Presentamos
un nuevo método de control, al que llamamos método de control de predecir-prevenir para
sistemas excitables. Además comparamos la capacidad de predicción del esquema de la
sincronización anticipada implementado en redes neuronales con los métodos estándar
de predicción a través de las redes neuronales.



Abstract

In this thesis we study the phenomena of synchronization between two or more con-
stituents coupled in an unidirectional way. The coupling is designed in a way which
permits the occurrence of achronal synchronization, more specifically anticipated syn-
chronization. Anticipated synchronization refers to the situation in which one system
synchronizes to the future dynamics of other system.

The framework of this thesis touches many problems related to dynamical systems,
for which we characterize the occurrence of anticipated synchronization with a special
interest in excitable and spatiotemporal ones. We provide a theoretical description of the
phenomenon, mostly through numerical simulations, but also in the particular case of
excitable systems, through experimental results. Moreover we model the anticipation of
the chemical reaction consisting on the oxidation of the CO on the platinum surface and
provide the study from a point of view of the experimental requisites and limitations.

We show that spatially separated and coupled excitable cells with the anticipated
synchronization scheme under particular conditions may contribute to zero-lag syn-
chronization. We relate this result to the experimental observation of zero-lag synchro-
nization between spatially separated brain areas. Considering further spatiotemporal
dynamics we demonstrate on the example of coupled cellular automata the equivalence
between the coupling based on time-delayed and on space-delayed variables. We relate
this finding to the previous study on the spatial properties of time-delayed systems.

We uncover the dynamical mechanism of anticipated synchronization in excitable
systems showing that the anticipation is due to the lowering of the excitability threshold
of the slave by the delayed coupling term. Also we try to answer the question about the
dynamical mechanism of anticipated synchronization in chaotic systems in terms of a
modified system approach.

Finally we estimate the practical usage of anticipated synchronization. We present
a new control method which we call predict-prevent control method for excitable systems.
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We also compare the prediction capacity of the anticipated synchronization scheme im-
plemented in neural networks modules with the standard prediction methods given by
neural networks.



Chapter 1

Introduction

Synchronization processes were intensively studied by Wiener [1]. He was the first
one to argue that frequency adjustment was a universal mechanism for self - orga-

nization operating everywhere in Nature. Later studies, including some of the human
body, revealed that many processes, specially the self-organized ones, work thanks to
the mutual cooperation of many constituents. In biology, at the biochemical level, such
cooperation is a wonderful fruit of evolution, which encountered a way to accomplish
the sophisticated tasks of maintaining life. It was also noticed by Blekhman in Ref. [2]
that many phenomena in nature tend to oscillate. The coherent behaviour between in-
teracting, oscillating systems is called synchronization.

There is a hope that a profound study of synchronization phenomena will lead to
understand the occurrence of many biological self-organized processes, and could con-
tribute to reveal the mystery of life, how it appeared and how it can continue in such
a perpetual way. When people became conscious of the existence of cooperative pro-
cesses in nature based on mutual interactions, they started to analyze them intensively,
building step by step the theory of synchronization with the study of its physical and
mathematical basis, its effects in biology and even its use in practical applications.

In this thesis we study the phenomena of synchronization between two or more con-
stituents coupled in an unidirectional way. The coupling is designed in a way which
permits the occurrence of achronal synchronization, more specifically anticipated syn-
chronization. We pretend to contribute to the synchronization theory through an ex-
tensive study of this phenomenon from different points of view. After providing ex-
haustive characterization of the phenomenon, an important goal is to understand the
dynamical mechanism underlying the anticipated synchronization. When understood,
a wide branch of potential applications, in nature as well as in technology, come out in
a natural way.

In the next Chapter we present numerical and theoretical results on the anticipated
synchronization, which refers to the situation in which one system (the slave) synchro-
nizes to the future dynamics of other (the master). The framework of this thesis touches
many problems related to dynamical systems, for which we provide a short review in
Chapter 2. In Section 2.1 we briefly describe mathematical models for excitable sys-
tems. In Section 2.2 we discuss the predictability of chaotic systems dynamics and the
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roots of the limitations imposed, not by the methods’ inefficiencies, but by the dynami-
cal properties of chaotic systems themselves. Moreover we describe two approaches to
control chaotic systems, namely the Ott-Grebogi-York and Delayed Feedback Control
methods. Further in Sections 2.3 and 2.4 spatiotemporal systems and delayed differ-
ential equations are described. In Section 2.5 we provide a short overview on neural
networks. Finally, in Section 2.6 we review the problems related to synchronization and
anticipated synchronization phenomena.

Our work is divided in three main parts which are consequently described in the
following three Chapters of the thesis, Chapters 3, 4 and 5. Chapter 3 is related to
the characterization of anticipated synchronization in different dynamical systems with
a special interest in excitable (Section 3.1) and spatiotemporal (Section 3.2) ones. We
provide a qualitative description of the phenomenon, mostly through numerical simu-
lations, but also in the particular case of excitable systems, through experimental results
(Section 3.1.4). The stage of the studies described in Chapter 3 is the journey through
many physical systems, which are very different from the dynamical point of view. This
allows us to make a more deep insight into the physical realities which they model,
mostly through numerical simulations which occurred to be an indispensable tool dur-
ing this work.

In this thesis we put special attention in excitable systems subject to an external sin-
gular or random perturbation. Why excitable systems? Excitable systems often model
real neurons which involve a large number of variables. Nevertheless, the essential fea-
tures of their excitable behavior can be captured with a suitably reduced description. In
particular we deal with the Adler and the FitzHugh-Nagumo equations which provide
arguably the simplest representation of excitable dynamics, although in both systems
different types of bifurcation lead to the excitability (in Adler system a saddle-node bi-
furcation on an invariant circle and in FitzHugh-Nagumo system a Hopf bifurcation).
Since the central nervous system environment, in which the neurons process electrical
signals, is noisy we direct our study to coupled excitable units driven by noise.

In Section 3.2 we study anticipated synchronization in spatiotemporal systems, start-
ing with the complex Ginzburg-Landau equations in Section 3.2.1, since these equations
have general properties which are representative of many physical systems. In Sec-
tion 3.2.2 we model the anticipation of the chemical reaction consisting on the oxidation
of CO on a platinum surface. We provide the study from a point of view of the experi-
mental requisites and limitations.

Further in Section 3.2.3 we study spatially isolated and coupled excitable cells show-
ing that under particular conditions anticipated synchronization may contribute to zero-
lag or no delay synchronization. We relate this result to the experimental observation
that distinct brain areas can synchronize without time lag despite of the spatial sepa-
ration between them. Such a synchronization gives rise to the phenomenon known as
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feature binding, which is a recently posed brain theory for the mechanism of perception.
The last part of the Chapter 3, Section 3.2.4, deals with coupled cellular automata

demonstrating the equivalence between the coupling based on time-delayed and on
space-delayed variables. We relate this finding to the previous study on the spatial
properties of time-delayed systems.

After the characterization of the anticipated synchronization in the different dynam-
ical systems mentioned above we concentrate in Chapter 4 on the mechanism underly-
ing this synchronization. We uncover the dynamical mechanism of anticipated synchro-
nization in excitable systems showing that the anticipation is due to the lowering of the
excitability threshold of the slave by the delayed coupling term (Section 4.1). It is clear
that an excitable dynamics is different from that of chaotic systems. We tried to answer
the question about the dynamical mechanism of anticipated synchronization in chaotic
systems. The results of these considerations are presented in terms of a modified system
approach in Section 4.2 as well as in Section 4.3 where the similarity between anticipated
synchronization and delayed feedback control is revealed. Such a resemblance allows
us to make a more deep insight into the phenomenon of anticipated synchronization
and to consider it from a general point of view of control theory.

Finally in Chapter 5 we estimate the practical usage of anticipated synchronization.
In Section 5.1 we present a new control method which we call predict-prevent control
method for excitable systems. This method allows us to control the perturbed excitable
systems by first predicting the response of this perturbed system and then by suppress-
ing its response before it happens. In the last Section 5.2 we compare the prediction
capacity of the anticipated synchronization scheme implemented in neural networks
modules with the standard prediction methods given by neural networks. The main
results of this thesis, as well as some open problems, are summarized in Chapter 6.





Chapter 2

Background

2.1 Modelling excitability

The human brain consists of about 1011 neurons with an average of more than 104 synap-
tic connections each. Neurons are slow and unreliable when considered separately, but
together they form a highly sophisticated computational system. Three types of neu-
rons exist: multipolar, motor and sensory neurons. Multipolar interneurons (Fig. 2.1a)
posses profusely branched dendrites, which receive synaptic signals from several hun-
dreds of other neurons, and a single long axon that branches laterally at its terminus.
They are found only in the central nervous system where they connect neurons to neu-
rons. Motor neurons (Fig. 2.1b) innervate muscle cells and typically have a single long
axon extending from the cell body to the effector cell and short dendrites which trans-
mit messages from the central nervous system to the muscles (or to glands). Finally,
sensory neurons (Fig. 2.1c) typically have a long dendrite and a short axon, and carry
messages from sensory receptors to the central nervous system.

The changes in the electrical potential across a cell’s membrane (the action poten-
tial) play a crucial role in neuron communications. The creation of the action potential
requires the contribution of sodium Na+, calcium Ca2+ and potassium K+ ions. An in-
crease of the potential in a membrane opens Na+ and Ca2+ channels, inducing a rapid
inflow of ions, causing a further increase of the membrane potential. This activates
a slower process of closing Na+ and Ca2+ channels, but at the same time opening K+

channels, which reduces the membrane potential. A neuron is quiescent if the membrane
potential is in a rest state or exhibits small amplitude subthreshold oscillations.

From the dynamical point of view, neurons are classical prototypes of excitable sys-
tems: their response to an external electrical stimulus is highly non-linear and depends
on its magnitude and timing. If the stimulus is small the action potential evolves back to
the steady state; but if the stimulus exceeds a certain threshold, the neuron fires a pulse-
like spike and after that returns to the equilibrium. From this dynamical point of view,
neurons are excitable because they are near a bifurcation (transition) from quiescence
to repetitive firing [3]. Following the onset of the excitation, there is an interval, called
refractory period, during which another perturbation does not induce a new pulse.
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Figure 2.1: Structure of typical mammalian neurons. Arrows indicate the direction of con-
duction of action potentials in axons. (a) Multipolar interneurons, (b) a motor neuron that
innervates a muscle cell, (c) a sensory neuron. Picture by W. H. Freeman taken from URL
http://www.ncbi.nlm.nih.gov/.
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Figure 2.2: Photo of neurons in the Hippocampus taken from URL
http://faculty.washington.edu/chudler/ca1pyr.html.

Although real neurons (see photo in Fig. 2.2) are complicated non-linear systems in-
volving a large number of variables, the essential features of their excitable behaviour
can be captured with a much reduced description. A simple model of the nerve mem-
branes was introduced by the English physiologists Hodgkin and Huxley in 1952 [4],
for which they were awarded the Nobel prize. The model concerned originally the
axon of the giant squid. The axon is a long cylindrical tube, which extends from each
neuron, where electrical signals propagate along its outer membrane about 50 − 70Å

thick. The electrical pulses arise because the membrane is preferentially permeable to
various chemical ions with the permeabilities altered by the present currents and poten-
tials. The key elements in the system are potassium (K+) ions and sodium (Na+) ions.
In the rest state there is a transmembrane potential difference V of about−70 mV due to
the higher concentration of K+ ions within the axon as compared with the surrounding
medium. A basic model for a cell membrane takes the form:

CV̇ = −V − Veq

R
+ Ia (2.1)

where C is the membrane capacitance, R the resistance, Veq the rest potential, V the
potential across the inner and outer surfaces of the membrane, and Ia represents the
applied current. The membrane permeability properties change when subjected to a
stimulating electrical current Ia. Based on experiments, Hodgkin and Huxley devel-
oped the model equation:

CV̇ = −gKn4(V − VK)− gNam
3h(V − VNa)− gL(V − VL) + Ia (2.2)

where the contribution from the sodium, potassium and ’leakage’ currents have been
taken into account. The gK , gNa and gL are constant conductances and VNa, VK and VL

are constant equilibrium potentials. The m, n and h are called gating variables. They
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evolve according to the differential equations:

ω̇ = αω(V )(1− ω)− βω(V )ω, ω = n, m, h (2.3)

where αω(V ) and βω(V ) are functions of V describing the activation of sodium, potas-
sium and leakage channels, determined from experimental data. Equations 2.2 and 2.3
constitute the 4-variable model of Hudgkin-Huxley. If Ia = 0, the system is linearly
stable, but excitable. That is, if the perturbation from the steady state (at V ≈ −70mV

for the original set of parameter values used by Hodgkin and Huxley) is sufficiently
large there is a large excursion of the variables in their phase space before returning to
the steady state. If Ia 6= 0 there is a range of values where regular repetitive firing oc-
curs, which is the mechanism of limit cycle characteristics. A set of modified Hodgkin-
Huxley equations were used by Braun et. al [109] to model the electro-receptor neurons.
The equations are the following:

CM V̇ = −INa − IK − Isd − Isr − IL + Ia (2.4)

where CM is the capacitance of the membrane. INa and IK are fast sodium and potas-
sium currents that generate the action potential, Isd and Isr are slow depolarization and
repolarization currents and finally IL is the leakage current:

INa = ρgNaaNa(V − VNa) (2.5)

IK = ρgKaK(V − VK) (2.6)

Isd = ρgsdasd(V − Vsd) (2.7)

Isr = ρgsrasr(V − Vsr) (2.8)

IL = gL(V − VL) (2.9)

where the g’s are the conductances and the a’s contain the switching characteristics of
the channels.

Due to the complexity of the Hodgkin-Huxley system, various simpler mathematical
models, which still capture the key features of the full system, have been proposed. One
of the best known is the FitzHugh-Nagumo model [5, 6]. The time scales for m, n and
h in Eq. 2.3 are not all of the same order. The time scale for m is much faster than
that of n and h, so it is reasonable to assume that it relaxes immediately to its value
m∞ determined by setting dm

dt
= 0. Moreover, for the parameter values specified by

Hodgkin and Huxley, n + h remains constant and is approximately equal to 0.8. These
approximations lead to a two variable model, called the fast-slow phase plane model:

CV̇ = −gKn4(V − VK)− gNam
3
∞(0.8− n)(V − VNa)− gL(V − VL) + Ia

ṅ = αn(V )(1− n)− βn(V )n (2.10)
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where αn(V ) = A V
1−e−V and βn(V ) = Be−V with A, B constant. FitzHugh observed

that the V -null cline had the shape of a cubic function and the n-null cline could be
approximated by a straight line. Thus the resulting two variables model in V and n in
Eq. 2.10 can be qualitatively approximated by the dimensionless system:

ẋ1 = f(x1)− x2 + Ia

ẋ2 = bx1 − εx2 (2.11)

where f(x1) = x1(a−x1)(x1−1), 0 < a < 1 (for excitable regime) and ε and b are positive
constants. Here x1, proportional to the membrane potential V , is the fast variable, and
x2 represents the slow variable. For Ia = 0 there can be no periodic solutions. If Ia 6= 0

then the steady state can become unstable and limit cycle oscillations are possible. The
null clines for Eq. 2.11 are plotted in Fig. 2.3.

Figure 2.3: Null clines for the FitzHugh-Nagumo system for the parameters: b = 2.54, ε = 0.008
and a = 0.139.

After scaling the time variable to t′ =
√

bt, Eqs. 2.11 take the form:

ẍ1 = −k(x1 − q−)(x1 − q+)ẋ1 + I − x1 +
ε

b
f(x1)

with q± ≡ 1

3
[(a + 1)±

√
(a + 1)2 − 3(a + ε)], (2.12)

k ≡ 3√
b

and I = εIa

b
. The dynamics of the FitzHugh-Nagumo system is preserved quali-

tatively and quantitatively to a very close approximation, when the cubic function f(x1)

in the left hand side of Eq. 2.12 is neglected. The reason for this is that in the range
q− < x1 < q+ this function is very small compared to unity. Thus we obtain the follow-
ing reduced model [7]:

ẍ1 = −k(x1 − q−)(x1 − q+)ẋ1 + I − x1 (2.13)
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This is the equation of a van der Pol - like oscillator parameterized by positive dynam-
ical boundaries q− < x1 < q+ (without these boundaries, the system would not show a
refractory behaviour).

A further simplification of the reduced model in Eq. 2.13 is the weighted step model [7].
The smooth parabolic function k(x1 − q−)(x1 − q+) is approximated by a step function
k′σ where k′ = k

4
(q− − q+)2:

ẍ1 = −σk′ẋ1 − x1 + I

σ =

{
−1 for q− < x1 < q+,
+1 otherwise

(2.14)

The above model represents the so-called all-or-nothing mechanism featuring either mono-
tonic decay to a steady state below the barrier q− or relaxation oscillation of asymptoti-
cally long period just above the threshold barrier.

As mentioned before, excitable behaviour appears near a bifurcation from a stable
fixed point to a stable limit cycle. Two examples are the saddle-node bifurcation on an
invariant circle (or Andronov bifurcation) [8, 9] and the Hopf bifurcation (or Andronov-
Hopf bifurcation) [10].

Figure 2.4: Schematic presentation of the dynamics during the saddle-node bifurcation in one
and two dimensional system.

A saddle-node bifurcation can appear in any dimension and its mechanism consists
in the creation and destruction of fixed points. As a parameter of the system is var-
ied two fixed points, one stable and one unstable, move toward each other, collide and
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Figure 2.5: Schematic presentation of the heteroclinic and homoclinic orbits.

mutually annihilate. An example of a one dimensional system in which a saddle-node
bifurcation occurs is ẋ = µ − x2 (see Fig. 2.4). If µ > 0 there are two fixed points, when
µ = 0 the two fixed points coalesce and a half-stable fixed point appears. Finally for
µ < 0 the fixed points disappear. In two dimensions the mechanism is the same and
also consists in the creation and annihilation of fixed points. In this case the behaviour
of the trajectories near the fixed points are modelled with the so-called normal form equa-
tions1: (ẋ, ẏ) = (µ− x2,−y), where the additional y direction in the state space is added.
If µ > 0 there are two fixed points, a stable node and an unstable saddle which are con-
nected by a so-called heteroclinic connection (see Fig. 2.5) (there exist also other types
of connections, e.g. the homoclinic connection which connects a saddle point to itself).
At µ = 0 a bifurcation occurs with two fixed points annihilating each other and finally
for µ < 0 there are no fixed points. .

A saddle-node bifurcation on an invariant circle appears for example in a model of
an overdamped pendulum. The equation for a damped pendulum with a torque is the
following:

mL2θ̈ + bθ̇ + mgL sin θ = Γ (2.15)

where m is the mass of the pendulum, L its length, b is a viscous damping constant, Γ

is a constant applied torque and θ is an angular variable. In the overdamped limit bθ̇

is assumed to be much larger than mL2θ̈ and we get the following equation which we
write in a dimensionless form:

θ̇ = µ− sin θ (2.16)

where t → tmgL
b

and µ = Γ
mgL

. The parameter µ is the ratio of the applied torque to the
maximum gravitational torque. Since viscosity is assumed to be very large, the oscilla-
tions are only possible because of the applied torque. If µ > 1 then the applied torque

1The term normal form is used for a representative element, which is in the simplest and most man-
ageable form.
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Figure 2.6: Schematic presentation of the dynamics during the saddle-node bifurcation in Adler
system.

can never be balanced by the gravitational torque and the pendulum always makes an
excursion over the unstable fixed point. If µ < 1 the pendulum is not able to reach an
unstable fixed point and it always returns to the stable fixed point. Note also that the
rotation is nonuniform since gravity helps the applied torque on one side and opposes
it on the other. Equation 2.16 appears not only in mechanics in the form of overdamped
pendulum with a constant torque, but it also appears in condensed-matter physics to
model the dynamics of the Josephson junction, as well as in biology to model oscillating
neurons, firefly flashing rhythm and human sleep-wake cycle. Usually this prototype
equation wears the name of Adler’s equation. This equation preserves all features if the
sine function is replaced by a cosine function:

θ̇ = µ− cos θ (2.17)

where θ is an angular dimensionless variable (modulus 2π) and µ is the so-called con-
trol parameter. For |µ| < 1, there are two fixed points at x± = ± arccos µ, one being
a stable focus (x−) and the other an unstable saddle point (x+). If |µ| > 1, there are
no fixed points, and the flow consists of an oscillation of the variable x. This limit cy-
cle develops through a saddle node on an invariant circle (Andronov) bifurcation at
µ = ±1 (see Fig. 2.6), where the two fixed points collide and annihilate. For |µ| < 1,
the system displays excitable behaviour: if we kick the system out of its stable state
with a large enough perturbation, the trajectory returns to the initial state (modulo 2π)
through a deterministic orbit that closely follows the heteroclinic connection of the sad-
dle and the node. During this orbit (refractory period), the system is barely sensitive
to external perturbations of moderate amplitude. It is worth noting that in a system
with a saddle-node bifurcation the key element to obtain excitability is a heteroclinic
connection between the manifolds of the fixed points.



2.1. Modelling excitability 17

Figure 2.7: Schematic presentation of the possible dynamics during the Hopf bifurcations.

At variance with a saddle-node bifurcation, the Hopf bifurcation can occur only in
two or more dimensions. The Hopf bifurcation can be either supercritical or subcritical.
In terms of the flow in phase space, a supercritical Hopf bifurcation appears when a
stable spiral changes into an unstable spiral surrounded by a limit cycle. The simplest
example in which this type of bifurcation occurs is: (ṙ, θ̇) = (µ r − r3, ω) (see Fig. 2.7),
where the parameter µ controls the stability of the fixed point r = 0 and ω gives the
frequency of oscillations. For µ < 0, there exists a stable spiral, meanwhile for µ > 0

there exists a stable limit cycle.

One possible scenario for a subcritical Hopf bifurcation appears in a system: (ṙ, θ̇) =

(µ r + r3 − r5, ω) (see Fig. 2.7). For µ < 0 the system has two attractors: a stable limit
cycle and a stable fixed point at the origin. Between these two attractors lies an unstable
limit cycle. At µ = 0 the unstable limit cycle shrinks to the origin, which becomes
unstable, and the stable limit cycle remains but with larger amplitude of oscillations.
Subcritical Hopf bifurcations occur when modelling the dynamics of nerve cells, but
also in aeroelastic flutter and other vibrations of airplane wings and in instabilities of
fluid flows.

A definition of the Hopf bifurcation is formulated in the Hopf bifurcation theo-
rem [11], which states that, in a given system, the Hopf bifurcation appears if when
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changing some parameter of the system we observe that the real part of both eigenval-
ues (in two-dimensional case) changes from negative to positive. The parameter value
for which the eigenvalues are purely imaginary (the real part vanishes meanwhile imag-
inary ones are non-zero) corresponds to the bifurcation point.

Figure 2.8: Schematic presentation of the thresholds in Class 1 (a) and Class 2 (b) excitable
neurons.

Neurons were categorized by Hodgkin in 1948 [12] into two classes according to the
bifurcation type: class 1 excitable systems are the ones with a saddle-node bifurcation
on invariant circle (for example Adler system, Morris-Lecar, Connor [13] and Wilson-
Cowan [14] models). Class 2 excitable systems are characterized by the appearance of
the Hopf bifurcation, as in the Hodgkin-Huxley and FitzHugh-Nagumo models. The
type of bifurcation determines the neuro-computational properties of the cells, which
are briefly described below.

When the rest state is near a saddle-node bifurcation (Class 1 excitability) the cell has
a well-defined threshold determined by the stable manifold of the saddle (see Fig. 2.8a),
often referred to as separatrix since it separates two regions of the phase space having
different qualitative behaviour (attracting and repelling). Thus, only the perturbation
which is larger than the distance between the saddle and the node can induce a spike
in the system and for that reason the response of such a system is often called all-or
none. It can fire spikes with an arbitrary low frequency which increases with increasing
of the applied current (see Fig. 2.9a). Moreover, the system under consideration acts as
an integrator, i.e. the higher the frequency of the incoming pulses, the sooner it fires.
It was shown numerically in [15] and analytically in [13] that Class 1 excitable neurons
with saddle-node bifurcation are difficult to synchronize.

In contrast, when the rest state is near a Hopf bifurcation (Class 2 excitability), the
cell does not have a well-defined threshold manifold and one can talk about threshold
set rather than one threshold value (see Fig. 2.8b). Such a system fires in a certain fre-
quency range which is relatively insensitive to the changes of the applied current (see
Fig. 2.9b). Moreover it acts as a resonator, i.e. it responds preferentially to a certain
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Figure 2.9: Response to the external stimulus of (a) Adler system (Class 1 excitable system) and
(b) FitzHugh-Nagumo system (Class 2 excitable system).

(resonant) frequency of the input. An increase of the input frequency can delay or ter-
minate its firing. In particular the resonator responds to a pair of stimuli whose timing
corresponds to the period of the small amplitude damped oscillations existing at the
equilibrium. Thus such a system acts as a bandpass filter extracting the component of
the external input that corresponds to the resonant frequency and neglects the rest of the
spectrum. This characteristics is an important information processing capability, since
it can enable the selective communication between neurons.

Since real excitable cells in the brain or heart occupy a finite volume, then more
realistic models for these cells should contain spatial variables. The spatiotemporal
model for FitzHugh-Nagumo system can be obtained by simply adding diffusive terms:

ẋ1 = x1(a− x1)(x1 − 1)− x2 + Ia + D1∇2x1

ẋ2 = ε(x1 − bx2) + D2∇2x2 (2.18)

where D1,2 are diffusion constants. The inclusion of spatial dimensions in the system
allows one to observe travelling waves (in all dimensions), spiral waves (in two dimen-
sions) and scroll waves (in three dimensions). The study of spatiotemporal excitable
systems attracted a lot of attention because they can be used to model arrhythmias as
atrial flutter and fibrillation in the heart tissue [16] or reverberating cortical depression
waves in the brain cortex [17]. An excitable behaviour of spatiotemporal dynamics
was also observed in chemical reactions, for instance in Belousov-Zhabotinskii reac-
tion [18, 19] and in the reaction of catalytic oxidation of carbon monoxide on a platinum
(110) surface [20].
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2.2 Chaotic systems

Chaotic behaviour can appear not just in complex systems, but also in simple ones with
only few active degrees of freedom. Its main characteristic is an aperiodic behaviour
which looks random, despite of the fact that we know the deterministic equations de-
scribing the time-evolution of the system. The long-time prediction in a chaotic sys-
tem is impossible. This is because of the sensitive dependence to the initial conditions:
nearby trajectories of a given variable separate exponentially fast; in other words, the
system has a positive Lyapunov exponent (see Section 2.2.1). Nevertheless, a chaotic
system is deterministic: if we knew ”exactly” (with arbitrary accuracy) the values of the
initial conditions, we could predict the time evolution of the trajectory. However, know-
ing the initial conditions with the highest precision is in principle impossible. Dripping
water from a faucet is a well-known example of chaotic dynamical systems easily seen
in daily life. In 1984 Shaw [21] investigated this problem and showed that when increas-
ing the velocity of the water flow from the faucet, the time intervals between the drops
change from regular to chaotic ones.

Figure 2.10: The Poincaré map: a carefully chosen (curved) plane in the phase space that is
crossed by almost all orbits of the system.

Deterministic chaos was discovered by Henri Poincaré at the end of the 19th century.
He studied extensively the problem of the motion of three objects with mutual gravita-
tional attraction, the so-called three-body problem. Poincaré found that there can exist
non-periodic orbits which never approach a fixed point, nevertheless stay bounded in
the phase space. He developed a very useful tool for the visualization of periodic, quasi-
periodic and chaotic flows in a phase space of more than two dimensions, the so-called
Poincaré map. The Poincaré map P is a curved plane in the phase space that is crossed
by almost all orbits. The map relates two consecutive intersection points that come
from the same side of the plane. If xk ∈ S (see Fig. 2.10) denotes the kth intersection
with the surface S, then the discrete representation of a continuous dynamical system,
the Poincaré map, is defined by:

xk+1 = P(xk) (2.19)
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The trajectory starting at x∗ returns to x∗ after some time T , and is therefore a closed
orbit for the original system ẋ = f(x). On the other hand the point x∗ is a fixed point of
the Poincaré map P if P(x∗) = x∗. Thus the map P has one dimension less than the phase
space.

Chaos appears only in nonlinear systems. A nonlinear system can be defined as one
in which the response is not proportional to the stimulus. Significant qualitative and
quantitative changes, when some parameters of the system are varied, can happen only
in the presence of nonlinearity, which is the crucial component that induces irregular-
ity. Such sudden changes in the behaviour of the system are called bifurcations and a
cascade of bifurcations lead to the so-called route to chaos. It is important to mention
that the nonlinearity is crucial for a system to be chaotic, but not the opposite: not all
nonlinear systems are necessarily chaotic. It is because an essential characteristic of a
system to be chaotic is also its dimensionality: it was shown that chaos in a system de-
scribed by a differential equation can appear only when the dimension of the system is
larger than two. It is a result of the Poincaré-Bendixson theorem [22], which shows that
in two-dimensional systems, only fixed points, stable periodic orbits and heteroclinic
cycles can exist (see section 2.1).

There exist two famous chaotic systems which are cited whenever the chaotic dy-
namics is discussed, namely, the Rössler and the Lorenz systems. In 1976 Otto Rössler
found the inspiration from a taffy-pulling machine for the derivation of his dynamical
system [23]. The taffy-pulling machine is a machine to make taffy candies. With each
successive cycle of the machine, the taffy is stretched and kneaded, and the points move
progressively farther away from each other. Thus, after only a few number of cycles, the
points can be separated by large distances, and it would be impossible to predict where
they are. Rössler system has one nonlinearity xz and it is three-dimensional:

ẋ = −y − z

ẏ = x + a y

ż = b + z (x− c) (2.20)

where a, b and c are constant parameters. To observe the route to chaos in this system
usually a = b = 0.2 are fixed meanwhile the parameter c is varied. When c is approx-
imately 5 the chaotic attractor can be observed. In the Rössler system the stretching
and folding processes take place, being the reason for the long-term unpredictability of
this chaotic system. The working mechanism of the taffy-pulling machine is also de-
scribed by other mathematical models, such as the so-called horseshoe map developed
by Stephen Smale [24].

The Lorenz system was derived in the early 1960’s by Edward Lorenz. He described
the phenomenon of ”sensitivity to initial conditions” using a simple system [25] being
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Figure 2.11: A projection of the three-dimensional Lorenz attractor into x − z phase space. The
typical parameters has been used in Eq. 2.21: σ = 10, b = 8/3 and r = 28.

a simplified version of a mathematical model of the convection in the atmosphere:

ẋ = σ(y − x)

ẏ = −x z + r x− y

ż = x y − b z (2.21)

where σ, r and b are constant parameters. Equations 2.21 describe the motion of an
incompressible fluid contained in a cell which has a higher temperature at the bottom
and lower temperature at the top. He sketched the outlines of one of the first recog-
nized chaotic attractors (see Fig. 2.11). In Lorenz’s meteorological computer modelling,
he found the underlying mechanism of deterministic chaos: simply-formulated sys-
tems with only a few variables can display a highly complicated behavior that is un-
predictable. He plotted the time series for slightly different input numbers and saw
that tiny differences in one variable had strong effects on the outcome of the whole sys-
tem. He discovered that a simple-looking deterministic system could have extremely
erratic dynamics over a wide range of parameters where the solutions oscillate irregu-
larly never exactly repeating but always remaining in a bounded region of phase space.
This was one of the first clear demonstrations of sensitive dependence to the initial con-
ditions and of its occurrence in a simple, but physically relevant model. In a 1972 meet-
ing [26], Lorenz gave a talk entitled ”Predictability: Does the Flap of a Butterfly’s Wings
in Brazil set off a Tornado in Texas?”. This sensitivity is now known as the butterfly effect.

While two-dimensional motions give rise to very simple attractors, such as fixed
points and limit cycles, three-dimensional motion can be chaotic and give rise to what
are known as strange attractors, i.e. attractors that can have very complex structure.
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Figure 2.12: From left to right: Mandelbrot set and broccoli.

The attractor is called strange if it has a fractal dimension. A fractal is a geometrical
object that is irregular on all length scales. As an example, the coastlines have fractal
structure since its length depends on the scale at which the measurement is done. Apart
of the coastlines, fractal structures are very common in nature in micro and macro scales
and can be found for instance in the snowflakes, blood vessels and nervous systems of
animals, in the broccoli and trees, and even in the stellar constellations. In 1975 Benoit
Mandelbrot highlighted the common properties of these objects such as self-similarity,
scale invariance and non-integer dimension [27]. He generated on his computer for the
first time the fractal structure, called the Mandelbrot set (see Fig. 2.12). Other famous
mathematical fractals are the Koch curve, Sierpiński triangle and Cantor set.

However, most real systems are composed of a huge number of particles and in-
fluenced by uncontrolled external effects exhibiting a random behaviour instead of
chaotic. Such non-chaotic systems with irregular dynamics are called stochastic sys-
tems. Stochastic models include additive or multiplicative (parametric) noise [28] which
is an explicit function of time. Thus stochastic systems are non-autonomous; in au-
tonomous systems the (independent) time variable does not appear explicitly [29]. Con-
trary to the chaotic systems, the stochastic ones exhibit unpredictable dynamics even for
short times. Many biological systems display stochastic behaviours, for example neu-
rons in the brain [30], cardiorespiratory systems [31] or population systems [32]. For
this reason a great deal of interest has been given to the synchronization properties of
stochastic systems [33].
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2.2.1 Lyapunov exponents

The Lyapunov exponents of a dynamical system ẋ = F(x, t) is a set of numbers that
characterize the rate of separation of infinitesimally close trajectories evaluated from
slightly different initial conditions. To obtain the Lyapunov spectra, an infinitesimal
small ball with radius dr set at the initial state of a trajectory is used (see Fig. 2.13). After
a finite time t all orbits which have started in that ball will be deformed into an ellipsoid.
Following this description, the ith Lyapunov exponent is defined as follows:

λi = lim
t→∞

1

t
ln

∣∣∣∣dli(t)

dr

∣∣∣∣ (2.22)

where N is the dimension of the system ẋ = F(x, t), i = 1, . . . , N and dli(t) is the radius
of the ellipsoid along the ith direction. For N-dimensional dissipative system there
are N Lyapunov exponents since the divergence of the trajectories can occur for any
variable of the given system. The largest Lyapunov exponent represents the largest rate
of exponential divergence.

Figure 2.13: Schematic illustration of the trajectory divergence.

The initial N -dimensional volume in the phase space can be described by the for-
mula:

V (t) = V0e
(λ1+λ2+...+λN )t (2.23)

For Hamiltonian systems which are conservative, the Lyapunov exponents exist in op-
posite signed pairs ±λi, such that they add up to 0 (

∑
i λi = 0) and thus conserve the

volume V (t). For a one-dimensional harmonic oscillator (with a two-dimensional phase
space), the two Lyapunov exponents are λ1 = λ2 = 0 and the motion in this case is
not chaotic. For autonomous and continuous systems, one Lyapunov exponent must
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always be equal to 0, since a perturbation along the path does not give divergence.
Reversely to the conservative systems, in dissipative ones the existing Lyapunov expo-
nents satisfy the following condition

∑
i λi < 0. It is because the phase space of dis-

sipative systems does not conserve its volume during the time evolution (the volume
collapses). Therefore, for a two-dimensional phase space of a dissipative system, λ1 = 0

and λ2 < 0. For a three-dimensional phase space, there are three possibilities:

1. λ1 = 0, λ2 = 0 and λ3 < 0

2. λ1 = 0, λ2 < and λ3 < 0

3. λ1 = 0, λ2 > 0 and λ3 < −λ2 < 0

Condition 3 is valid for three-dimensional chaotic system, in which at least one Lya-
punov exponent is positive and its absolute value has to be larger than the absolute
value of the negative Lyapunov exponent. For N -dimensional system it is common to
just refer to the largest Lyapunov exponent, because it determines the predictability of
a dynamical system.

One of the interests of physics, as well as of other sciences, is to predict the future
states of the systems under interest. The simplest method for prediction of chaotic sys-
tems was introduced by Lorenz [25]. It is based on the idea that short sequences of
points in the chaotic series repeat in all series. In particular the short sequence from
the end of some measured time series has a similar appearance at the beginning of that
series. Thus taking into account the past, we can predict the future. This method can be
useful when the dimension of an attractor is not too high, and the time series contain
many points. Let us assume that the system is characterized by a positive Lyapunov
exponent λ and the initial state is known with an accuracy ε. Then, after time T , the
uncertainty of that coordinate grows as:

L ∼ εeλT (2.24)

where T is the prediction time for the system. Thus the limit for the predictability of
a chaotic systems is related to the largest positive Lyapunov exponent. The prediction
time is proportional to the inverse of the Lyapunov exponent: T ∼ λ−1. For large λ’s
the prediction time decreases, meanwhile for smaller λ’s it increases. Also the quality
of prediction depends significantly on the initial conditions.
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2.2.2 Reconstruction of an attractor

Chaotic states exist in the world around us although it is very difficult to construct
proper mathematical models for them. The problem lays in the judgement of whether
the observed phenomena, which are the sources of our experimental data, are chaotic
or not. Sometimes the periodic oscillations seem to be chaotic due to fluctuations of
some parameter of the system and the use of filters to eliminate these fluctuations is
dangerous because it can destroy information about the dynamics. The first step to
overcome this problem is to reconstruct the chaotic attractor, if it exists. Usually we
have no information about all the degrees of freedom of the observed system, but we
very often have only the time series of one observable to extract useful information. The
method to extract information from the time series of a single variable was developed
by Packard [34] with mathematical background given by Takens [35] and Mané [36].
Reconstruction of the chaotic attractor from a single time series requires the creation of
additional variables. These variables, displayed in the low-dimensional phase space,
will reveal the geometrical structure of the dynamical system. Such a geometrical struc-
ture is called reconstructed attractor and it is treated as a topological equivalence of an
attractor which would be obtained by solving numerically the differential equations de-
scribing the given system, if they could be known. In particular, the dimension and the
Lyapunov exponents are ideally the same for the real and reconstructed attractor. The
method for the reconstruction of the attractor is called embedding method. Having a time
series x(t) (the stroboscopic points) measured with the sampling time ∆t, we construct
the following embedding vectors:

y1(t) = x(t),

y2(t) = x(t + T ),

y3(t) = x(t + 2T ),
...

yd(t) = x(t + (d− 1)T ) (2.25)

where d is the dimension of the embedding vector and T is the delay time defined as
an integer multiplication of ∆t. For example, to reconstruct the chaotic attractor of the
three dimensional Lorenz system {x(t), y(t), z(t)} defined in Eq. 2.21, we take x(t) as the
measured variable and construct from it the embedding vector with d = 3. We obtain
the new set of variables {x(t), x(t + T ), x(t + 2T )}. In Fig. 2.14b it is seen that indeed the
reconstructed Lorenz attractor is similar to the original one for {x(t), y(t), z(t)} plotted
in Fig. 2.11, but only if the appropriate delay time T is chosen. The choice of the proper
delay time T is far from trivial. If it is too small the coordinates x(t), x(t + T ), x(t +

2T ), . . . are almost equal to each other (Fig. 2.14a). On the other hand we know that the
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(a) (b) (c)

Figure 2.14: The projection of the Lorenz attractor obtained from the embedding of x(t) variable
into the new system {x(t), x(t+T ), x(t+2T )}with the delay time: (a) T = 10∆t, (b) T = 1000∆t

and (c) T = 10000∆t, where ∆t = 10−4.

correlations between dynamical states of a chaotic system last during quite a short time,
which depends on the values of the positive Lyapunov exponents (see Section 2.2.1).
Thus if T is too long, the coordinates become uncorrelated (Fig. 2.14c). The magnitude of
T depends also on the magnitude of the sampling time ∆t which is determined during
the experiment.

There are some methods to properly estimate the delay time T . If some approxi-
mate periodicity exists in the system, then we choose the value slightly smaller than the
period. If there is no dominant period in the system then we calculate the correlation
between a pair of points as a function of their separation in time:

C(s) =
1
N

∑
t x(t)x(t + s)− 1

N

∑
t x(t) 1

N

∑
t x(t + s)

1
N

∑
t x(t)2 − [ 1

N

∑
t x(t)]2

(2.26)

where the sums are taken over all points in the time series. Next we define s0 as the
time at which C(s) crosses zero for the first time and we take T = s0.

Another method [37] to estimate the delay time T is based on the calculation of
the mutual information. Mutual information is a measure of the probability that the
neighboring points x(t) and x(t + s) are not statistically independent. If P (x(t)) and
P (x(t + s)) are the probability distributions of neighboring points and P (x(t), x(t + s))

is the joint probability distribution, the mutual information is defined as:

I(s) =
∑

t

P (x(t), x(t + s)) ln
P (x(t), x(t + s))

P (x(t)) · P (x(t + s))
(2.27)

Then, the delay time is defined as T = smin, where smin is the first value of s for which
the mutual information is minimum.

There are some cases where the criterion for the delay time estimation does not work.
Then the best method used by scientists is to adjust the delay time by trail and error.
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2.2.3 Control of chaos

The control of dynamical systems is a classical problem of engineering science. One
method for stabilizing unstable periodic orbits is the Ott-Grebogi-Yorke control method [39].
This method uses small perturbations in a certain parameter to control the trajectory of
the system. First the unstable low-periodic orbits that are embedded in the chaotic at-
tractor are determined. After examination of these orbits, the one which guarantees the
improved system performance is chosen. Then, small time-dependent parameter per-
turbations are applied to stabilize the already existing, but unstable, periodic orbit. Let
us consider the system:

ẋ = f(x, p, t) (2.28)

where x is the vector variable and p is a scalar parameter available for an external ad-
justment. Let us assume that the parameter p can be modified within a small interval
around its nominal value p0 such that p ∈ [p0 − δp, p0 + δp], where δp is the maximum
admissible change in the parameter p. Then a two-dimensional Poincaré surface S is
chosen defining a Poincaré map P. The trajectory of the system 2.28 is represented by
the point x on the surface S through which it crosses for the first time. If we want to
stabilize a period-1 orbit (an unstable fixed point xF of the map P) existing at the pa-
rameter p = p0, we make the first-order approximation of P in the neighbourhood of
(xF , p0):

P(x, p) ≈ P(xF , p0) + A · (x− xF ) + w · (p− p0) (2.29)

where A is a Jacobian matrix of P at xF and w = ∂P
∂p

(xF , p0) is the derivative of P with
respect to the parameter p. Stabilization of the fixed point is achieved by realizing feed-
back of the form:

p(x) = cT (x− xF ) (2.30)

where c is computed using the expression:

c = − λA

fT
A ·w

fT
A (2.31)

where λA is the unstable eigenvalue and fA is the unstable eigenvector of A.
The Ott-Grebogi-Yorke control method relies on the fact that chaotic systems are

extremely sensitive to initial conditions and that there are typically an infinite number
of unstable periodic orbits that co-exist with chaotic motion. For instance, in the case
of the so-called transient chaos [40], this method fails, because the time evolution of
the system temporarily stops being chaotic. From the point of view of this method, the
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existence of chaos in a real system can be beneficiary since the system would have the
possibility to choose the best periodic orbit for which the performance is optimal.

The authors of the Ott-Grebogi-Yorke method suggested that such a flexibility of
chaotic system control can be essential for higher life forms, in particular that chaos can
be a necessary ingredient in the brain functioning. However, in real applications, a con-
tinuous analysis of the state of the system is required. The changes in parameters can
only be discrete since the Ott-Grebogi-Yorke method uses the Poincaré map of the sys-
tem. Thus the method can be used only to stabilize those orbits whose largest Lyapunov
exponent is small compared to the reciprocal of the time interval between parameter
changes [41]. The Ott-Grebogi-Yorke control method was for the first time successfully
applied to control a parametrically driven magnetoelastic ribbon [42]. Other successful
experimental realizations of this method concerned many other different systems, e.g.
in a chaotic Duffing’s oscillator [43] and a neural tissue [44].

Another control method was introduced by Pyragas, the Delayed Feedback Control
method [45]. This method uses a delayed feedback to stabilize the system. The Delayed
Feedback Control method consists in applying to the system a term which is the dif-
ference between the current state of the system and its state one period in the past so
that the control signal vanishes when the stabilization of the desired orbit is attained.
We consider the system of the form given by Eq. 2.28. The control is achieved via the
modification of the parameter p in the following way:

p(t) = K(y(t− τ)− y(t)) (2.32)

being τ the period of the oscillations we want to stabilize from the chaotic ones. The
Delayed Feedback Control method has been experimentally implemented in many sys-
tems, e.g. in chaotic flows, cardiac systems and others. This method is efficient for
stabilizing unstable periodic orbits of chaotic systems. The Delayed Feedback Control
method applies a feedback proportional to the deviation of the current state of the sys-
tem with respect to its state one period in the past. For this reason the method is also
called time-delay auto-synchronization, since the stabilization of the desired orbit oc-
curs due to the synchronization between the current state of the system with its delayed
one.

Chaotic signals are composed of many unstable orbits with different periods. Pe-
riodic dynamics, with a period T , in the chaotic system can be stabilized by using the
Delayed Feedback Control method: for this purpose it is necessary to apply the delayed
signal with a delay time τ which corresponds to the desired period T , i.e. τ = T . The
fundamental property of a chaotic attractor is that it contains a countable but infinite
number of unstable periodic orbits. The trajectories of the chaotic attractor are dense
because if we choose in an arbitrary way a point within the attractor and a small sphere
of radius ε around it, the trajectory will eventually pass through this sphere after a finite
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time (which can be very long). The fact that the chaotic system is sensitive to small per-
turbations helps in controlling it. Thus by applying a perturbative, small control terms
one can obtain the desired effect. The advantage of this method is that it only requires
a priori the knowledge of the period of the system, and does not require any previous
computation.

Since the control method requires the use of delayed variable, the modified system
becomes hard to treat analytically even through linear stability analysis. Nevertheless
there are some general analytical result on stability of this method [46, 47, 48, 49]. It
was shown that Delayed Feedback Control method works only for low dimensional
systems whose unstable periodic orbits are originated from a period doubling bifurca-
tion (T-periodic orbits). It was also proven that the steady state can never be stabilized
if the system has an odd number of real positive eigenvalues [50]. This limitation was
overcome by introducing into a feedback loop an additional unstable degree of free-
dom [51]. Such a feedback loop with an additional unstable degree of freedom serves
to construct an adaptive controller for stabilizing unknown states of the dynamical sys-
tem [52]. As an example for two dimensional systems, the limitation states that only
an unstable focus and node can be stabilized, meanwhile a saddle-type steady states
require an additional unstable degree of freedom [50].
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2.3 Reaction-diffusion systems

As the name reveals, the reaction-diffusion models require two ingredients : reaction
and diffusion. Fick’s law of diffusion establishes that the flux J of some matter is pro-
portional to the gradient of concentration of the matter:

J = −D
∂c

∂x
(2.33)

where c(x, t) is the concentration of the matter and D its diffusivity. The minus sign
indicates that diffusion transports matter from high to low concentration. The conser-
vation law establishes that the rate of change in the amount of matter in a given region
is equal to the rate of flow across the boundary plus any matter that is created within
the boundary. The general conservation equation establishes that the rate of change of
the amount of matter in the volume V is equal to the rate of flow of matter across the
surface S enclosing V plus the matter created in V :

∂

∂t

∫
V

c(x, t)dv = −
∫

S

J · ds +

∫
V

fdv (2.34)

where J is the flux of matter and f represents the source of matter and may depend on
c, x and t. We apply the divergence theorem to the surface integral assuming that c(x, t)

is continuous: ∫
V

[
∂c

∂t
+∇ · J− f(c,x, t)

]
dv = 0 (2.35)

Thus we get:

∂c

∂t
+∇ · J = f(c,x, t) (2.36)

Introducing J = −D∇c into Eq. 2.36 we get:

∂c

∂t
= f +∇ · (D∇c) (2.37)

where D can be function of x and c. When considering many interacting species or
chemical components Eq. 2.37 becomes:

∂u

∂t
= f +∇ · (D∇u) (2.38)

where D is now a matrix (diagonal if there is no cross diffusion among the species or
chemicals) and u is a complex vector. Equation 2.38 is called reaction-diffusion or in-
teracting population diffusion system. This equation was proposed as a model for the
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chemical basis of morphogenesis by Turing [53]. If f = 0 then the diffusion process will
lead to the homogenous solution in which all particles will be distributed uniformly in
space as t → ∞. To observe an unstable solutions and spatiotemporal chaos is neces-
sary to choose the function f to be nonlinear, and for simplicity, of the lowest possi-
ble order. The simplest example of a bifurcation leading to an oscillatory behavior in
two-dimensional system is a supercritical Hopf bifurcation during which a stable focus
becomes unstable upon change of an appropriate control parameter, and a stable limit
cycle appears. Close to the bifurcation point the oscillations are harmonic and their
amplitudes show a square dependence with the distance to the bifurcation point. The
dynamics of the system undergoing the Hopf bifurcation, in a small neighborhood of
the rest state is described by the normal form [3]:

ż = (a + ib)z ± z|z|2 (2.39)

where z is a complex variable and a and b are constant parameters. The functional form
of the right hand side in Eq. 2.39 was used by Landau to describe phase transitions, like
the transition between liquids and solids, or the transition between a magnetic and a
normal matter. To describe a phase transition, he introduced a function or order param-
eter that is zero in one phase (liquid) and different from zero in the other phase (solid).
In this case it is assumed that the parameter that drives the transition is the temperature.

Adding the spatial dimension and assuming the assymetric coupling we get:

∂z

∂t
= (a + ib)z ± z|z|2 + D

∂2z

∂x2
(2.40)

Equation 2.40 displays a rich variety of spatiotemporal dynamics. It has monostable,
bistable, excitable, oscillatory stable or unstable (chaotic) solutions, depending on the
values of the constant parameters a, b and D. Rescaling z and redefining the parameters
we arrive to the complex Ginzburg-Landau (CGL) equation:

Ȧ = εA− (1 + ic2)|A|2A + (1 + ic1)
∂2A

∂x2
(2.41)

where A(x, t) ≡ ρ(x, t)eiφ(x,t) is a complex field of amplitude ρ and phase φ. The space
variable x is defined over 0 ≤ x ≤ L where L is the system length. ε is a control param-
eter inducing instability if it is positive, c2 is a measure of the nonlinear dispersion and
finally c1 is the linear dispersion parameter. This model was initially phenomenological
but it appeared later that a rigorous microscopic derivation is possible in some cases.
Eq. 2.41 is also used in particle physics to describe the appearance of massive particles
like Higgs bosons. For c1 = c2 = 0 Eq. 2.41 reduces to the so-called real Ginzburg-
Landau equation which is used to describe superconductivity in the absence of a mag-
netic field. In the limit c1, c2 → ∞ the equation reduces to the nonlinear Schrödinger
equation with the well-known soliton solutions.
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Equation 2.41 admits a plane wave solutions of the form:

Aq =
√

ε− q2ei(qx+ω′t) (2.42)

where q is the wave number in a Fourier space bounded by −
√

ε ≤ q ≤
√

ε and
ω′ = −c2− (c1− c2)q

2 is the dispersion relation. All plane waves become unstable when
crossing the so-called Benjamin-Feir or Newell line (valid for ε = 1) c1c2 = −1 [54].
Above this line different regimes are identified: defect turbulence, phase turbulence,
bichaos and spatio-temporal intermittency (see Fig. 2.15). Defect turbulence is a strongly
disordered region, in which defects as well as other localized structures appear, display-
ing a rich dynamics. Phase turbulence is a state which is weakly disordered in ampli-
tude and strongly disordered in phase. Bichaos is an alternating mixture of phase and
defect turbulence states. In the spatio-temporal intermittency region stable travelling
waves interrupted by turbulent bursts exist. The Ginzburg-Landau equation is a uni-
versal model describing the evolution of an order parameter (as is often called model
A in analogy with phase transitions) during which the homogeneous state loses stabil-
ity through an oscillatory Hopf bifurcation. As an example, it can be derived from the

Figure 2.15: Regions of the parameter space for the one dimensional complex Ginzburg-Landau
equations in different dynamical regimes, regular and chaotic. The figure was taken from
Ref. [148].

model of symmetrically coupled FitzHugh-Nagumo cells, where the membrane poten-
tial v(t) is taken to be v(t) = A(t) exp (iω|A|2t) [55]. In this case the chaotic behavior is
possible because of the additional degrees of freedom introduced by the spatially ex-
tended excitable cells. Such an analogy to coupled FitzHugh-Nagumo cells can be done
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because the diffusion term in the reaction-diffusion equation of the general form:

u̇ = f(u, x) + D∇2u (2.43)

describes nearest-neighbours bidirectionally coupled cells, where each cell undergoes
the internal dynamics ruled by u̇ = f(u). In one spatial dimension the diffusion term in
Eq. 2.43 is defined in the following discrete form:

D∇2ui =
D

δx2
(ui−1 + ui+1 − 2ui) →

D

δx2
(ui−1 − ui)−

D

δx2
(ui − ui+1) (2.44)

where δx is the spatial integration step. The term D
δx2 plays the role of the coupling con-

stant which is closely related to the size of the spatial integration step. Thus the sponta-
neous emergence of patterns in extended systems far from thermodynamic equilibrium
can be interpreted as an effect of an interplay between local dynamics and coupling of
individual system elements. From the above considerations the stable oscillatory solu-
tions are related to the synchronized state of coupled elements. When the synchroniza-
tion is lost under the change of the system parameters and the diffusion constant, then
the turbulent behavior develops. Thus, chaos in reaction-diffusion systems corresponds
to desynchronization processes.

In Section 3.2.2 we will consider the model of the catalytic oxidation of the CO on
the platinum Pt(110) surface. This chemical reaction appears for example in the catalyst
in cars which is the most common heterogeneous catalyst and its function is to decrease
the concentration of carbon monoxide, CO, and nitrogen oxides. The role of the hetero-
geneous surface catalyst functions is to decrease the activation energy for the chemical
reaction. The chemical reaction of the CO oxidation on the platinum surface can be
exemplified by:

2CO + O2 → 2CO2

which is in fact much more complex and involves desorption2 of the reacting gases
on specific surface sites, dissociation3 of the desorbed molecules, surface diffusion and
reaction and desorption of the reaction products. Figure 2.16(1-4) shows the reaction be-
tween CO and O2 as they reach the platinum surface. An adsorbed4 O2 on the platinum

2Desorption occurs in a system being in the state of adsorption equilibrium between fluid (e.g. gas or
liquid solution) and adsorbing surface (solid, or boundary separating 2 fluids) and when the concentra-
tion of adsorbed substance in the fluid is lowered. The result is the decrease of the amount of adsorbed
substance.

3Dissociation is a process in which complexes of molecules split into smaller molecules, usually in a
reversible manner.

4Adsorption (a process opposite of desorption) is a process that takes place when a liquid or a gas
accumulates on the surface of a solid, forming a molecular or atomic film.
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Figure 2.16: Schematic view on the chemical reaction of the CO oxidation on the platinum sur-
face. See description in the text. Figure taken from the lecture presented by Gerhard Ertl.

surface dissociates in a pair of oxygen atoms which then occupy two sites at the sur-
face (Fig. 2.16-2). An adsorbed CO molecule can react with an adsorbed oxygen atom
from a neighboring lattice site to form a carbon dioxide (Fig. 2.16-3) which is immedi-
ately released into the gas phase (Fig. 2.16-4), leaving two vacant cells for adsorption of
new molecules. If both reactants are present in the gas phase they compete for empty
adsorption sites on the catalyst surface. CO is in a more favorable situation since the dis-
sociative adsorption of oxygen requires two adjacent free adsorption sites, meanwhile
single free adsorption site is sufficient for the CO molecule.

The equations describing the reaction of CO oxidation on platinum surface were de-
veloped by Krisher, Eiswirth and Ertl [56]. The model was further modified by different
authors. The final form we will consider here is that of reference [57]. The model in one
spatial dimension is the following:

u̇ = k1sCOpCO(1− u3)− k2u− k3uv + D∇2u

v̇ = k4pO2 [sO,1x1w + sO,1x2(1− w)](1− u− v)2 − k3uv

ẇ = k5

(
1

1 + exp(u0−u
δu

)
− w

)
(2.45)
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where variable u denotes the CO coverage, variable v the oxygen coverage, and variable
w the fraction of the reconstructed structure. The adsorption processes of CO and oxy-
gen are determined by the respective impingement (impact) rates k1 and k4, the sticking
coefficients sCO and sO, and the partial pressures pCO and pO2 of the two components,
respectively. k2 represents the rate constant for the CO desorption, k3 the rate constant
for the surface reaction, and k5 the rate constant for the surface reconstruction. sO,1x1

and sO,1x2 denote the initial sticking probabilities of CO and oxygen on the clean sur-
face, respectively. Finally, u0 determines the threshold above which the surface struc-
ture is significantly affected by the CO coverage and δu determines the steepness of this
threshold. In these equations only the desorption of CO is taken into account, mean-
while the desorption of oxygen is neglected. Moreover for the temperature used in the
model CO is more mobile than oxigen, thus it has bigger probability in finding the site
for adsorption. Typical spatiotemporal patterns observed during catalytic CO oxidation
on Pt(110) under low pressure conditions are solitary waves and pulses, rotating spiral
waves, target patterns, standing waves, and chemical turbulence [58].
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2.4 Delayed differential equations

Delay systems (also called systems with after-effects) are infinite-dimensional systems
used to describe propagation phenomena or population dynamics. The reaction of ”real
world” systems to external signals is never ”instantaneous” but it needs some time
which in mathematical language is described with delay terms. The characteristic of
such systems is that their time evolution is described by differential equations which
include information on the past history. The presence of delays may induce complex
behaviors in the systems, oscillations or instabilities, leading to bad performances in
real applications. For example, a chaotic behavior can appear in a system if the delayed
state is a nonlinear function, as it for instance happens in the Ikeda equation modelling
a nonlinear absorbing medium in lasers [59]:

ẋ(t) = −αx(t)− β sin x(t− τ) (2.46)

for some particular values of α, β and τ or in the Mackey-Glass equation [60, 61]:

ẋ(t) = −αx(t) + β
ax(t− τ)

1 + xb(t− τ)
(2.47)

for particular values of constant parameters α, β, a, b and τ . Systems with delayed feed-
back become very complex to study since the effective number of degrees of freedom is
infinity. This can be easily understood by noticing that the initial condition of a delayed
differential equation has to be given in the whole interval [x(t0 − τ), x(t0)] of function
values [62, 63].

The fact that the delay can induce irregular oscillations leads to the development of
models for some physiological diseases in which normally periodic behavior changes
into irregular one or non-oscillatory behavior changes into the oscillatory. An example
is the Cheyne-Stokes respiration which is characterized by an alteration in the regular
breathing [64]. The delay in the model is related to the time which needs the information
about the level of carbon dioxide (CO2) to reach the receptors situated in the brainstem.
Thus the control system responsible for the ventilation contains a delay line and when
such a line is distorted it can induce instabilities.

Other example from physiology is the regulation of hematopoiesis. Hematopoiesis
is a process of the formation of blood elements in the body and was modelled by Glass
and Mackey (see Eq. 2.47). White and red blood cells, platelets etc. are produced in the
bone marrow from where they enter the blood. The decrease of the level of oxygen in
the blood causes a release of a substance which in turn causes an increase in a release of
the blood elements from the bone marrow. Thus there is a feedback from the blood to
the bone marrow. The flux of cells into the blood depends on the cell concentration in
the blood at some earlier time t− τ . One manifestation of leukemia is the appearance of
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aperiodic oscillations of white cells in blood. In this case the deficiency in bone marrow
cell production causes delays and could account for the erratic behaviour in the white
cell concentrations.

Delay times accounting for the time needed to reach maturity, the finite gestation
period etc. can be also incorporated in the description of the population dynamics.
Such models are of the form:

dN(t)

dt
= f(N(t), N(t− τ)) (2.48)

where τ > 0 is a delay time, N(t) is the population of the species at time t. The con-
servation equation for the population needed to be satisfied during modelling is the
following:

dN

dt
= births - deaths + migration (2.49)

One of such models describing the population is that proposed by Verhulst [65] (without
delays), but modified by a delayed variable:

dN(t)

dt
= rN(t)

[
1− N(t− τ)

K

]
(2.50)

where r, K and τ are positive constants. The above equation says that the actual state
of the population depends on its state at an earlier time t − τ . Such an equation is one-
dimensional, but it can exhibit a rich dynamics depending on the value of τ , including
oscillatory or chaotic behaviour.

Further example of delay lines in physiological systems concerns the nervous system
which monitors and controls almost every organ system through a series of positive
and negative feedback loops. Neurons receive excitatory feedback from local-circuit
neurons and stay in a state of persistent activity (”ON” state) after producing their first
spike, as suggested by physiological observations [66]. Neurons in the self-sustained
ON-state are silenced by inhibitory feedback from their target neurons in the next layer.
This feature ensures that neurons fire only during the minimum necessary time and
prevents the loss of information from one layer to the next. Similar feedback inhibition
schemes are used in models of speech production [67], olfactory recognition [68] and
visual search [69]. Inhibitory feedback is usually assumed to be a local process [66],
with a delay determined by the local circuitry.

The analytical study of the nonlinear delayed differential equations can be provided
through the linear stability analysis. The theory for an autonomous linear delay equa-
tions is well-developed and is based on the theory of Laplace transformation. The de-
tailed stability analysis for the linear delayed differential equations is provided in Ap-
pendix A.
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2.5 Artificial neural networks as a dynamical systems

The development of artificial neural networks has its roots in our attempts to under-
stand the human brain. Thus, the initial concepts were based on to mimic the brains’
way of processing information. These studies gave rise to various models of biological
neural network structures and learning algorithms. Further studies became directed to
the artificial neural networks as a tool for solving different types of problems on the
unknown data. In our work we treat with the latter approach to the neural networks.

Having data which come from a known or unknown source, a neural network may
be trained to perform classification, estimation, simulation, and prediction of the pro-
cesses which generate these data and relationships between variables measured. An
estimated relationship may be a mapping or a function. There are many types of neural
networks. The most popular and most widely used neural networks in practise are the
feedforward neural networks or multi-layer perceptrons. Feedforward neural networks
are composed of neurons, in which the input layer of neurons are connected through
the so-called hidden layers to the output layer of neurons. Every neuron in each layer is
connected to every neuron in the adjacent layers. Each interconnection is characterized
by a scalar weight which is adjusted during the training process. Each neuron performs
a weighted summation of the inputs, which then passes a nonlinear activation function
σ, also called the neuron function. The hidden layer nodes typically have sigmoidal
transfer functions. The number of input and output nodes is determined by the nature
of the modelling problem and its complexity.

The training process of feedforward neural networks is achieved by establishing the
weights in the way that a desired input-output relationship is realized. In the values of
weights of the hidden units are created internal representations of the input patterns.
It has been shown that with a simple feedfoward network with a sufficient number of
hidden units it is possible to approximate almost any continuous (one hidden layer) or
arbitrary (more than one hidden layer) functions [70]. This result has encouraged people
to use neural networks to solve many kinds of problems. Figure 2.17 illustrates a one-
hidden-layer feedforward network with three inputs x1, x2 and x3 and three outputs y1,
y2 and y3. Each arrow in the figure symbolizes a weight (parameter) in the network.
Thus the higher the number of neurons in the network, the more parameter values that
have to be established. The problem of determining the network parameters (weights) is
essentially a non-linear optimization task. Mathematically the functionality of a hidden
neuron is described by:

yi = f

(
N∑

j=1

ωijxj

)
(2.51)

If f is a sigmoidal function which is a continuous approximation of the unitary jump,
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Figure 2.17: Feed-forward neural network of type 3:a:3.

then the output signal of a neuron will depend on the sign of the expression
∑N

j=1 ωijxj .
Equation 2.51 is linear for the weights ωij . Let be di the values to be learnt by the net.
With the use of Euclidean metric we can define the destination function as:

E =
1

2

p∑
k=1

||y(k) − d(k)||2 =
1

2

p∑
k=1

M∑
i=1

(y
(k)
i − d

(k)
i )2 (2.52)

where M is the number of the output neurons and p is the number of teaching vectors
(x,d). Learning of the neural network consists on the minimization of a properly de-
fined destination function as that defined in Eq. 2.52. The minimization is performed in
the space {ωij} of the linear weights.

In recent years new approaches for nonlinear time series modelling have emerged
(local and global prediction [71], neural networks [72], delay embedding reconstruction
space [34], functional networks [73], etc.), providing more powerful methods and giving
new insight into the dynamics of complex systems (see [74, 75] and references therein
for an updated survey of this topic). Among these techniques, artificial neural networks
have been successfully applied in many practical situations [76, 77]. Moreover, it has
been shown that the neural approximate model and the original system exhibit similar
dynamical behavior (similar unstable periodic orbits [78], or even similar Lyapunov
exponents or fractal dimensions [79]).

Modelling and predicting the dynamics of nonlinear chaotic systems is a challeng-
ing problem with important real-world applications (stock market returns [80], weather
forecast [81], etc.). It is well known that chaotic behavior implies long-term unpre-
dictability, but the deterministic nature of chaotic systems allows the prediction of their
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dynamics to some extent (see Section 2.2). From a theoretical point of view, Lyapunov
theory provides a sound framework for this problem, and the inverse of the largest Lya-
punov exponent gives a theoretical limit for the prediction horizon attainable for a par-
ticular system (see section 2.2.1). However, in practice, the original system is unknown
and approximate models fitted to the available data are used to model and forecast its
nonlinear dynamics (e.g. neural networks [74]). In this situation, the attainable forecast
horizon depends not only on the dynamics of the original system, but also on the error
of the approximate model.

The functional structure of the deterministic and low-dimensional chaotic systems
can be reconstructed from a time series using appropriate nonlinear techniques. We
show it on an example of the Lorenz system defined in Eq. 2.21. Let us assume that
we have a time series un, obtained from a dynamical system u̇(t) = f(u(t)), sampled at
equally spaced intervals un = u(n ∆t), n = 0, 1, 2, . . . . We are interested in approximat-
ing the functional model which characterizes the short-term evolution of the time series,
un+p = F(un), where F is given in terms of f , the sampling time ∆t, and the prediction
step p. To this aim we consider simple feed-forward neural networks with sigmoidal
and linear activation functions for hidden and output layers, respectively. The training
process is carried out by considering input–output couples of the form (un,un+p), where
p is the prediction step.

We use time series consisting of 2000 sample points obtained from the Lorenz sys-
tem integrated using a fourth-order Runge-Kutta algorithm with a fixed time step ∆t =

10−2. This set was divided in two parts; the first one (1500 sample points) was used for
training purposes whereas the last 500 were reserved for testing the models. We have
used the feedforward neural networks of type 3 : a : 3 (what means 3 inputs, a hidden
layers and 3 outputs) since we wanted to train the neural network to be a three dimen-
sional system. We have considered different neural networks with a single hidden layer
a with a number of neurons ranging from one to twenty. For each of these network
structures, ten simulations were performed with different initial network weights, us-
ing the Levenberg-Marquardt method [82, 83] as training algorithm. The best solution
in each case was considered as the representative neural approximate model. The root-
mean-square (rms) error obtained for predicting the x variable of the Lorenz model with
the best neural network with 6 hidden neurons for the training process was 0.13 (less
than 0.5% the range of the corresponding variable), and 0.15 for the test data, indicating
no over-fitting5 of the model. However, although the above analysis indicates a good
accuracy in one-step ahead prediction using a six neuron network (3 : 6 : 3), it does
not mean necessarily that the obtained neural model can reproduce the dynamics of the

5The term over-fitting is used to describe a model which is generally correct in form, but that include
extra, unnecessary terms. The extra terms in the model make it more flexible than it should be, allowing
it to fit additional data not being included in the data under consideration.
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Figure 2.18: Phase space of two different 3 : 6 : 3 neural models trained with the same method,
but starting from different initial weight configurations (black colour). The original chaotic orbit
of the Lorenz system in the background is shown for illustrative purposes (grey colour).

Lorenz system when iterated in time [77]. Figure 2.18 shows the evolution of the above
network with a = 6 hidden neurons iterated from two different initial weight configu-
ration; in the first case, the neural system converges to a periodic trajectory (Fig. 2.18a),
whereas in the second case it converges to a fixed point (Fig. 2.18b), neither of them
resembling the chaotic behavior of the Lorenz model. When increasing the number of
hidden neurons above a = 10, the error decreases and the dynamical behaviour of the
obtained neural models resembles the original chaotic system. For instance, the training
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and test rms errors obtained for a = 10 hidden neurons were 2.2× 10−2 and 2.4× 10−2,
respectively, indicating that no over-fitting occurs. In this case, the dynamical behavior
of the neural model resembles that of the original system. Thus, the neural model can be
considered as an approximate replica of the Lorenz model. If we increase the number of
hidden neurons above a = 20, the training error decreases even further but the neural
models start over-fitting the data. We could see that changing the number of hidden
neurons is like changing the parameter values of the system.
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2.6 Coupled dynamical systems

2.6.1 Synchronization

Under particular conditions coupled systems exhibit coherent behaviour characterized
by a situation in which one system follows the dynamics of the other. Such a phe-
nomenon is called synchronization. Typical examples of synchronized behavior in the
animal kingdom are the coincident pulses of light produced by male fireflies (see photo
in Fig. 2.19) or the synchronized sounds of crickets [84]. In these examples, the interac-
tions between insects are mainly through the mutual perception but they are also deter-
mined by environmental external stimuli. There were some experiments which showed
that an external periodic stimulus can influence the degree and quality of the synchro-
nization in fireflies [85]. Another biological example is that of cardiac cells whose global
synchronized activity results in a regular heart beating. In this case the synchronization
is due to entrainment by an external signal which provides a rhythm. It was suggested
that the intensive growth of a cancerous tumor is due to synchronous oscillatory pro-
cesses [2]. The mutual synchronization is also observed in the behavior of human or an-
imal groups. As an example, the applause in an auditorium may change from random
to synchronized. Other examples from the animal world include the synchronous mo-
tion of the wings in flocks of birds and the synchronous motion of the tails in schools of
fish. In fact synchronization phenomena can be encountered almost everywhere where
vibrations exist. Apart of living nature there are many correlated motions in the solar

Figure 2.19: Flashing fireflies.
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system. For instance the motions of the Earth, Venus and Mercury seem to be correlated.
It is based on the Molchanov hypothesis which says that the average motions of the nine
planets in the solar system are approximately correlated by nine linear homogeneous
expressions with integer coefficients, thus exhibiting a resonance (synchronous) charac-
ter. It is not an accident that the rotational period of the Moon and the orbital period of
the Earth-Moon system are of the same length. Over billions of years the gravitational
coupling between the Earth and the Moon has led to such a synchronization. However
this synchronization is not yet complete, but billions of years from now the Earth and
Moon will have exactly the same rotational period, and these will also exactly equal to
the orbital period. Such phase correlations are typical for the synchronization phenom-
ena.

Coupled interacting systems have been the subject of a deep observation since the
17th century. In 1656, Christiaan Huygens (Fig. 2.20) built the world’s first pendulum
clock to measure the time. He published the classic work Horologium Oscillatorium, in
which he gave a complete mathematical description of the pendulum and a description
of his improved pendulum clock. In early 1665, Huygens discovered “..an odd kind
of sympathy perceived by him in these watches [two pendulum clocks] suspended by
the side of each other.” The pendulum clocks moved with exactly the same frequency
and 180 degrees out of phase. When the pendula were disturbed, the anti-phase state
was restored within a half-hour and persisted indefinitely. Huygens deduced that the
crucial interaction for this effect came from “imperceptible movements” of the com-
mon frame supporting the two clocks. Thus if the platform was prevented to move,
there was no synchronization at all. Also he noted that the pendula were always at-
tracted to the anti-phase state, never the in-phase state. He thought this synchroniza-
tion could be used in maritime navigation and spent many years developing and testing
designs for pendulum clocks that could work in boats. A version of Huygens original
system was provided in a nice demonstration of how systems synchronize [86]. The
system in [86] consisted of two pendulum metronomes resting on a light wooden board
which sit on two empty soda cans (see photo in Fig. 2.21). However these two pendu-
lum metronomes could be synchronized in-phase which is different from the Huygens
experiment and the recent reproduction of Huygens original system reported in [87].
Nevertheless in Ref. [86] it was found that the anti-phase synchronization state could
be made stable in the metronome system when the cans were placed on a wet table i.e.
enhancing the damping associated with the base motion.

Huygens’ synchronization observations have inspired modern studies of ”sympa-
thetic” oscillations in many areas of nonlinear science. This interest led to mathemat-
ical theories which enable us to understand (at least partially) the behavior of many
coupled systems, including very complex ones, in wide areas of natural and technical
sciences. Few advances were made in the next two centuries, until the study of syn-
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Figure 2.20: Left: Christiaan Huygens. Right: Huygens’ clocks.

Figure 2.21: Synchronization of metronomes.

chronization was developed by Edward Appleton [88] and Balthasar van der Pol [89].
They demonstrated the existence of synchronization between the frequency of a triode
generator and a weak external signal with slightly different frequency (these genera-
tors were later used in radio communication devices). Further contributions of other
researchers (see review in [90]) concerned synchronization in many nonlinear systems.
In the late 1980s researchers turned their attention to the synchronization properties
of chaotic systems. The interest was motivated by the potential applications in secure
communication systems through the possibility of hiding a message in a chaotic signal
during transmission. Pioneering work on synchronous of coupled chaotic systems was
made by Yamada and Fujisaka in 1983 [91, 92], Afraimovich, Verichev and Rabinovich
in 1986 [93] and by Pecora and Carroll in 1990 [94]. The exhaustive studies on secure
communication were initiated in 1992 by Cuomo and Oppenheim [95] who proved ex-
perimentally, using electronic circuits that it is possible to mask a message by using a
chaotic signal coming from an electronic device. Remarkably, one can then use a copy
of the original electronic device to recover the original message. Such subtraction was
possible because the two electronic devices were synchronized and hence exhibited the
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same dynamics. The advantage of this type of transmission lays in the difficulty of the
separation of the message from the chaotic signal. If an observer does not know nei-
ther the equations of motion which originated the chaotic signal carrying the message
nor the initial conditions, then it will be difficult to extract the hidden message. Thus
the interest in synchronizing chaotic systems arises from their complex, unpredictable
dynamics (see section 2.2). Nevertheless, it is worth mentioning that there have been
some suggestions of methods to decrypt the information and the usefulness of such an
encryption method is still under investigation [96].

Interactions between the constituents of physical or biological systems occur due
to the existence of different types of connections: global, local, unidirectional or mul-
tidirectional. Besides of synchronization due to a direct coupling the systems may be
synchronized by interaction via a common medium where the cells interact through
the exchange of some substances. Individual cells, cell communities, and also individ-
ual organisms could be such objects. One example is the synchronization between the
malignant tumor cells immersed in a solution [2].

Different types of coupling are presented on Fig. 2.22. The graphics presented there
may be described by the mathematical language. The bidirectionally (symmetrically)

Figure 2.22: Different types of coupling leading to synchronization.

coupled systems in one dimension can be defined as follows:

ẏi = f(yi) + K(yi−1 + yi+1 − 2yi) (2.53)

while the unidirectionally (asymmetrically) coupled systems also in one-dimensional
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array can be defined in the following way:

ẏi = f(yi) + K(yi−1 − yi) (2.54)

In both cases described in Eqs. 2.53 and 2.54, the periodic or no-flux (open) boundary
conditions can be used.

The synchronization in the systems described in Eqs. 2.53 and 2.54 can occur for
particular values of coupling parameters in matrix K when the difference variables
∆ij = yi − yj vanish. The difference variable multiplied by coefficient matrix K plays
a role of a corrective signal which pushes the systems to the desired state of synchro-
nization. Bidirectionally coupled systems can be also described by means of the spatial
derivatives:

ẏ = f(y) + K
∂2y
∂x2

(2.55)

where ∂2

∂x2 is a second-order spatial derivative. In the case of unidirectionally coupled
systems the following description can be used:

ẏ = f(y) + K
∂y
∂x

(2.56)

where ∂
∂x

is a first-order spatial derivative.
Apart of the diffusive coupling schemes described before there exists also other

schemes leading to synchronization, e.g. the complete replacement, which may be de-
fined as follows:

ẏ1 = f(y1, y1)

ẏ2 = f(y2, y1) (2.57)

where in the response system its variable is replaced by that coming from the driver.
Dissipative forces have a dual influence on the synchronization in many systems.

On the one hand, they ensure asymptotic stability along the corresponding coordinates,
but on the other hand, they could cause violation of the conditions of existence of syn-
chronous motions, i.e. the suppression of the tendency toward synchronization. At
some conditions, the dissipative forces may cause a loss of motion stability.
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2.6.2 Anticipated synchronization

This Thesis was developed as a consequence of the publication of H. Voss [97] dealing
with a new type of synchronization, namely, the anticipated synchronization occurring
in unidirectionally coupled systems. He observed that dissipative chaotic systems with
time-delayed feedback can drive near-identical systems in such a way that the driven
system y anticipates the driver system x by synchronizing with future states. The driver
system we call a master and the driven system we call a slave. Voss showed that antici-
pated synchronization can occur in the following replacement scheme:

ẋ = −αx + f(x(t− τ)) (2.58)

ẏ = −αy + f(x) (2.59)

where in the function f the delayed variable y(t − τ) has been replaced by the variable
x. The solution of this system is y(t) = x(t + τ), what means that the slave system
at time t will synchronize with the master at time t + τ , thus anticipating the latter
ahead in time, by the time interval τ . From the time evolution for the difference variable
∆ = x(t)− y(t− τ):

∆̇ = −α∆ (2.60)

we obtain that a sufficient condition for synchronization is that α > 0. The transient dy-
namics depends only on the system parameter α and does not include the dependence
on the delay time τ . For that reason there is no restriction on the value of the delay time
and anticipation may be observed for any τ , but with the limitation that the anticipa-
tion time is equal to the delay existing in the master system. Then the synchronization
manifold x = yτ is globally attracting and asymptotically stable. Thus the slave (re-
sponse system) at time t synchronizes with the future state of a master (driver) at time
t + τ and anticipates its dynamics. The anticipation does not depend on the form of the
function f and can be obtained for arbitrary delay τ , thus indicating that it is valid for
high-dimensional systems. This is so because a high-dimensionality is induced by the
delay, and is higher as the delay increases.

The other coupling scheme leading to anticipated synchronization proposed by Voss
is a dissipative coupling between the master and the slave:

ẋ(t) = f(x(t))

ẏ(t) = f(y(t)) +K(x(t)− y(t− τ)) (2.61)

where x and y are dynamical variables (three or more dimensional to obtain chaotic
dynamics), f is a vector function, K is a matrix representing a coupling parameter and τ

is a constant delay time. In this case a delayed term appears only in the equation for the
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slave system. The above scheme permits to obtain anticipation times equal to the delay
time we include in the coupling term. The solution of Eq. 2.61 can be read directly from
the form of the dissipative term and is y(t) = x(t + τ), thus leading to the anticipated
synchronization. The delay time τ can be manipulated in the response system without
influencing the master and may be selected from a range restricted by the stability con-
ditions. The stability conditions are obtained from the delayed differential equations for
the difference variable ∆ = x(t)− y(t− τ):

∆̇ = A∆−K∆τ (2.62)

where A is the Jacobian matrix of the linearized system equations in Eq. 2.61. In the
case of the delayed coupling between systems without memory, the stability conditions
will depend on the value of delay time τ and the coupling constant K. It was shown in
Ref. [98] that the systems of Eq. 2.61 coupled in a chain of N > 1 slave units can strongly
enhance the anticipation time, exceeding typical time scales of the chaotic dynamics.

Since it discovery by Voss, anticipated synchronization was treated as a counterin-
tuitive phenomenon with potential applications. From the practical point of view it
could enable simultaneous prediction of the chaotic signal without involving any pre-
vious calculation. Moreover, anticipated synchronization has been observed in a wide
variety of systems, starting from the simplest linear systems [99] and ending on the
complex chaotic ones, suggesting that this synchronization can occur in many classes
of systems. Besides the systems described by differential equations, chaotic maps with
delayed diffusive coupling have also been studied [100]. The phenomenon has been
found in chaotic Rössler and Lorenz systems [98], in chaotic lasers [101] with the diffu-
sive coupling scheme as well as in chaotic Ikeda systems [97] with the complete replace-
ment scheme. Anticipated synchronization has been also demonstrated experimentally
in electronic circuits [102] as well an in semiconductor lasers [103].



Chapter 3

Anticipated synchronization: characterization

3.1 Anticipated synchronization in excitable systems driven
by noise

In this Section we present numerical and analytical results (published in Refs. [104]
and [105]) on anticipated synchronization in excitable systems, in particular in coupled
FitzHugh-Nagumo systems driven by different type of noises (section 3.1.1). So far
the occurrence of this synchronization was studied in chaotic systems ([97], [100]) in
which the unpredictability comes from the intrinsic noise related to existence of unsta-
ble periodic orbits. Here we study non-autonomous systems with an external forcing
which introduces an element of randomness. In section 3.1.2 we estimate the range
of parameters for which the phenomenon can be observed, and we try to provide the
analytical description for it. Later in Section 3.1.3 we show that anticipation may be
enhanced by arranging coupled systems in a chain (results published in Ref. [106]). We
study the influence of noise on the quality of the anticipation in that case and compare
it with the anticipated synchronization in non-chaotic autonomous systems. In the last
Section 3.1.4 we show through an experiment that this synchronization is robust even
when the coupled systems are driven by different realizations of noises (as it is also
shown numerically in Section 3.1.1).

3.1.1 Numerical characterization of stability

Let us consider the following coupled system:

ẋ(t) = f(x(t)) + I(t)

ẏ(t) = f(y(t)) + I(t) +K[x(t)− y(t− τ)],
(3.1)

where x and y are dynamical variables, K is a positive defined matrix and I(t) rep-
resents a common external forcing. Notice that y(t) = x(t + τ) is not an exact solu-
tion of the equations, except in the particular case of I(t) constant or periodic forcing
I(t + τ) = I(t). We will show that under appropriate coupling conditions generalized
synchronization between y(t) and x(t + τ) occurs and a high correlation between them
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Figure 3.1: Schematic diagram of two model neurons coupled in a unidirectional configuration,
subjected to the same external forcing and with a feedback loop (with a delay time τ ) in the slave
neuron.

is observed. This result is even more remarkable when the external forcing is a random
signal. Specifically, we have considered models of sensory neurons. In general, sensory

Figure 3.2: Cobweb diagram for I(t) versus I(t − 1) where I(t) is the (a)white (b) colored and
(c-d) telegraph-like noise. Diagrams (c-d) for telegraph-like noise show that it remains constant
during the particular period, which in our case is T = 200.

neurons work in a noisy environment. As a consequence, the time intervals between
spikes contain a significant random component. The topics of synchronous oscillations
and noise have received much attention (see, e.g., [107]), since it has been suggested that
synchronous firing activity of sensory neurons might be a part of the higher brain func-
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Figure 3.3: Anticipated synchronization from a numerical integration of the FitzHugh-Nagumo
set of Eqs.(3.2-3.3). The parameters are: a = 0.139, b = 2.54, ε = 0.008, K = 0.15. The external
forcing I(t) (displayed in the lower panel) is a random amplitude noise of period T = 2, mean
value I0 = 0.03 and amplitude D = 0.01. Notice (upper panel) that the pulse of the slave
system y1(t) (dashed line) anticipates the pulse of the master system x1(t) (solid line) by a time
approximately equal to the time delay τ = 4.

tions and a method for integrating distributed information into a global picture [108].

We study anticipated synchronization in the FitzHugh-Nagumo and Hodgkin-Huxley
neuron models (see Section 2.1). By coupling two of such systems in an unidirectional
configuration as in the scheme shown in Fig. 3.1, we find that when both systems are
subjected to the same external random forcing, the slave system fires almost the same
train of spikes as the master system does, but at a certain amount of time earlier, i.e., the
slave predicts the response of the master.
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First we show results based on the FitzHugh-Nagumo model (see Section 2.1). The
equations for the master x = (x1, x2) and the slave y = (y1, y2) systems, under unidirec-
tional coupling (see Section 2.6.2) are, respectively:

ẋ1 = −x1(x1 − a)(x1 − 1)− x2 + I(t)

ẋ2 = ε(x1 − bx2)
(3.2)

and
ẏ1 = −y1(y1 − a)(y1 − 1)− y2 + I(t) + K[x1(t)− y1(t− τ)]

ẏ2 = ε(y1 − by2)
(3.3)

where a, b, and ε are constants, K is the positive coupling strength and τ is a delay
time (associated to an inhibitory feedback loop in the slave neuron). Note that only the
fast variables of the two systems are coupled. When the common external forcing, I(t),
is constant in time, the synchronization manifold x1(t + τ) = y1(t), x2(t + τ) = y2(t)

is an exact solution of Eqs. 3.2 and 3.3. If the external forcing is above threshold and
for appropriate values of K and τ , the master system fires pulses periodically and the
coupling induces a constant time shift τ between master and slave spikes.

We consider different types of random external forcing I(t), telegraph-like, coloured
and white noise (see Fig. 3.2). The first one ”telegraph-like noise” corresponds to a
random process whose amplitude remains constant for a time T and then it switches
to a new random value chosen uniformly in [I0 − D,I0 + D], where D is the noise in-
tensity and I0 is a bias. This noise is different than the telegraph (dichotomic) noise,
which is defined as a signal of constant amplitude and a period that varies randomly.
We chose I0 very close to (but below) the firing threshold of the excitable system. It
would appear at first thought that with this type of external forcing the behaviour of
the master system can be easily predicted. However, there are two main factors that
make the system response unpredictable: if the effect of the perturbation is not strong
enough the system does not fire a pulse; moreover, the system has a refractory time
(after firing a pulse) during which, another firing is not possible. Figure 3.3 shows that
anticipation occurs with this type of random external forcing for an appropriate value
of the coupling strength K: after an initial transient time the two systems synchronize
such that the slave system anticipates the fires of the master system by a time interval
τ . The firings in the master and the slave systems start at about the same time, and
the anticipation phenomenon grows during the rising of the pulse. When the master
system noisily evolves near the stable point, the anticipation vanishes. In other words,
anticipation is a local process, during firings (this observation will be studied deeper in
Section 4.1). The same qualitative results are found with other types of external forcing
such as colored or even white noise. Figures 3.4(a-b) display the spikes of the master
and slave systems when I(t) is a Gaussian white noise.
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Figure 3.4: Trains of spikes obtained from numerical simulations of models of unidirectionally
coupled neurons subjected to the same external forcing, which is a Gaussian white noise with
mean I0 and correlations 〈[I(t) − I0][I(t′) − I0]〉 = 2Dδ(t − t′). (a) Simulation of two FitzHugh-
Nagumo neurons, Eqs. (3.2-3.3). The parameters are a = 0.139, b = 2.54, ε = 0.008, I0 = 0.03,
K = 0.03, τ = 10, D = 2.45 × 10−5. (b) Simulation of two Hodgkin-Huxley neurons, Eq. 3.4
with K = 0.03 ms−1, τ=50 ms, and D=0.5 mV2/ms; all other parameters as in [109] (T = 6 C,
Vl = −75 mA in our notation). Left panels show typical spike trains; right panels show with
detail a single spike. The solid (dashed) line represents the output of the master (slave) system.

Sometimes the slave system makes an error in anticipating the master firings. While
the slave system always fires a pulse when the master system fires a pulse, it can also fire
an “extra” pulse, which has no corresponding pulse in the train of pulses fired by the
master. Notice that in Fig. 3.4a an error at about t = 1900 occurs. Not surprisingly, we
find that the longer the anticipation time τ , the larger the number of errors. However,
for a given anticipation time, the number of errors can be reduced considerably if a
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chain of an adequate number of slave neurons is considered.
Next we show simulations based on a more realistic neuron’s model, namely the

model of electro-receptor neurons (for details see Section 2.1). We extend the model to
account for two unidirectionally coupled neurons, with a delayed feedback loop in the
slave neuron, and subject to a common external forcing I(t), in the same way as in the
FitzHugh-Nagumo model. The equations for the master, x, and for the slave, y, neurons
are:

CM ẋ = −Ix
Na − Ix

K − Ix
sd − Ix

sr − Ix
L + I(t)

CM ẏ = −Iy
Na − Iy

K − Iy
sd − Iy

sr − Iy
L + I(t) + K[x(t)− y(t− τ)]

(3.4)

Figures 3.4(c-d) display the results when the common external forcing I(t) is a Gaussian
white noise. We chose parameters such that the systems are excitable. The behaviour
observed is qualitatively the same as in the FitzHugh-Nagumo model (the slave neuron
anticipates the fires of the master neuron).

We characterize the synchronization in the parameter space (coupling strength, an-
ticipation time) by introducing several quantities to measure the degree of synchroniza-
tion. To quantify the anticipation time, we compute the mean value 〈t〉 and the standard
deviation σ of the time difference t = tmi − tsi , where tmi are the times at which the master
neuron fires a pulse, and tsi are the times at which the slave neuron fires the correspond-
ing pulse (hence the extra pulses fired by the slave are not taken into account). The
variance of the anticipation time for corresponding pulses in the master and slave sys-
tems, is defined by:

σ =
√

η − µ2, where: η =
1

Nx

Nx∑
n=1

τ 2
n and µ =

1

Nx

Nx∑
n=1

τn. (3.5)

where Nx is the number of firings in the master system and τn is the time separation be-
tween master and slave outputs measured at the threshold value xth. In our simulations
we have taken xth = 0.65.

Another type of errors occurs when the slave system produces additional firings
which are not present in the master system. For these errors we define the relative error
parameter:

Er =
Ny −Nx

Nx

(3.6)

where Nx and Ny are the numbers of firings in the master and slave system, respec-
tively. Although the two types of errors, non-constant anticipation time and additional
firings in the slave system are closely related, the changes in the anticipation times is
significantly more important and appear more often even in the absence of the relative
error Er. Figure 3.5 displays Er in a gray scale in the parameter space (K, τ ). The dark



3.1. Anticipated synchronization in excitable systems driven by noise 57

Figure 3.5: Relative number of errors Er in the parameter space (K, τ ). This has been computed
using time series which contain, at least, 1000 peaks in the master dynamics. The white region
represents a region where the relative number of errors is larger than Er = 0.1.

(white) region represents a region of high (low) synchronization quality. In order to not
to miss too much details, errors larger than Er = 0.1 have been uniformly plotted as
white, while black indicates Er = 0, and the gray levels run between these two values.
Two different synchronization mechanisms are present in Fig. 3.5. The first one appears

τ K

Figure 3.6: (a) Mean anticipation time as a function of the delay time τ for the following values
of the coupling strength: K = 0.15 (+), K = 0.25 (*) and K = 0.45 (3). (b) Mean anticipation
time as a function of K for τ = 1 (+), τ = 2 (*) and τ = 3 (3). The results come from numerical
integration of Eqs.(3.30-3.31).

for very low coupling intensity (the black region near the ordinate axis K = 0). This is
not a regime of anticipating synchronization, but it corresponds to the synchronization
of trajectories by common random forcing [110] which leads simply to x(t) = y(t). It is
worth to note that the results drawn in Fig. 3.5 resembles the anticipated synchroniza-
tion regimes obtained for two coupled linear systems, which were studied in detail in
Ref. [99].



58 3. Anticipated synchronization: characterization

Beyond this regime of synchronization by common random forcing, a finite value
of the coupling K is required to achieve anticipated synchronization. However, a very
large value of the coupling worsens the quality of the synchronization. The existence
of minimum and maximum values for the coupling in order to exhibit good anticipated
synchronization agrees with what was previously found in autonomous chaotic sys-
tems [97] and in linear maps [100]. The data shown in the next figures are the result of

τ K

Figure 3.7: Plot of the standard deviation of the anticipation time, σ, as a function of (a) the
delay time τ and (b) the coupling K in the same cases as in Fig. 3.6.

averaging over a few thousand of spike events. Figure 3.6(a) plots the mean anticipation
time 〈t〉 as a function of τ for different values of the coupling K. The results for large
K fall mainly on the line 〈t〉 = τ corresponding to the generalized anticipated solution
y(t) ≈ x(t + τ). Note that if K is small (’+’ in Fig. 3.6a) 〈t〉 could even be larger than τ .
However this result does not take into account that the quality of the synchronization is
poor in this case (it corresponds to the grey region near the vertical axis in Fig. 3.5) for
which the standard deviation σ is large (see Fig. 3.7) indicating a bad synchronization
quality. Note, finally, that for each value of K there is a maximum anticipation time, in
agreement with the rather sharp transition between synchronized and unsynchronized
regimes shown in Fig. 3.5. Figure 3.6(b) plots the mean anticipation time 〈t〉 as a func-
tion of K for different values of τ . The main result is that for each value of τ there is
a set of values of K, Kmin < K < Kmax, such that 〈t〉 ∼ τ (the plateaus in Fig. 3.6b).
For small values of the coupling, K < Kmin 〈t〉 ∼ 0, and this reflects that the two neu-
rons are synchronized (without anticipation) due to the common external forcing (this
parameter region corresponds to the dark region close to the vertical axis of Fig. 3.5). If
K > Kmax the anticipation is lost.

More information about the quality of the anticipated synchronization is obtained
by looking at the dispersion in the values of tmi − tsi . In Figs. 3.7a and 3.7b we plot the
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a.) b.) c.)

Figure 3.8: Stability regime for the coupling parameter K and for the delay time τ for one slave
where both systems master and slave are driven by different noises. Black colour represents: (a)
standard deviation σ < 0.16 and (b) relative error Er < 0.1. (c) The dependence of the mean
anticipation times measured at the threshold value xth = 0.65 for coupling value K = 1 vs. the
delay times used in the equations (cross signs). Vertical lines correspond to standard deviations
for which the longest one corresponds to σ = 0.75.

standard deviation, σ, in the same cases as in Figs. 3.6a and 3.6b. Certainly, the best
synchronization quality can be defined as the one with the small number of errors and
the small dispersion in the synchronization time. In this sense, one can see in Fig. 3.7a
that σ is an increasing function of τ , indicating that the dispersion (and the quality of
the synchronization) worsens for large τ . Note also in Fig. 3.7b that in the interval of
coupling strength where good synchronization occurs, Kmin < K < Kmax, σ decreases
significantly.

Numerical results shown in Fig. 3.8 and 3.9 reveal that anticipated synchronization
is also possible when both master and slave systems are driven by different white noise
sources. We obtain a smaller stability region with the maximum for the anticipation time
τ shifted in the direction of larger coupling constant values. This result, showing that
the anticipated synchronization can appear even if the different noises are considered,
is interesting from the practical point of view. In real systems, biological or man-made
ones, component units are usually subject to different noise sources, and the robustness
of the synchronization in this case is a useful feature.
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Figure 3.9: Time series for master (upper panel), uncoupled slave (middle panel) and coupled
slave (lower panel) with coupling parameters K = 0.3 and τ = 3. Both systems are driven by
different realizations of white noise.
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3.1.2 Linear stability analysis

Linearization of the FitzHugh-Nagumo system

In this Section we concentrate on the stability analysis of the anticipated synchroniza-
tion solution in coupled FitzHugh-Nagumo systems. We recall the anticipated synchro-
nization scheme for the coupled FitzHugh-Nagumo equations with the external forcing:

ẋ1 = −x1(x1 − a)(x1 − 1)− x2 + I0

ẋ2 = ε(x1 − bx2) (3.7)

ẏ1 = −y1(y1 − a)(y1 − 1)− y2 + I0 + K[x1(t)− y1(t− τ)]

ẏ2 = ε(y1 − by2) (3.8)

where a and b are constants and I0 is an external forcing assumed constant. We provide
the stability analysis for the FitzHugh-Nagumo system by using a piece-wise linear
approximation [65] of the cubic function f(x1) = −x1(x1 − a)(x1 − 1) + I0 in Eq. 3.7. For

Figure 3.10: Thin line represents the cubic function in the FitzHugh-Nagumo system, mean-
while the bold lines are the functions obtained after the piece-wise linearization of this cubic
function.

a = 0.139 taken in our study we obtain three linear functions representing f(x1) which
have the form: fi(x1) = aix1 + bi, where a1 = −0.067, a2 = 0.195, a3 = −0.383, b1 = I0,
b2 = −0.0176 + I0 and b3 = −0.383 + I0. We plot these functions in Fig. 3.10.

Considering the solution of the system in Eq. 3.7 which leads to the anticipated syn-
chronization: y1(t) = x1(t+ τ), we define the difference variable ∆(t) = x1(t)− y1(t− τ).
We neglect the contribution from the difference {x2(t)−y2(t−τ)} by assuming that ε ≈ 0
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(a) (b)

Figure 3.11: (a) Stability conditions for the master and the slave FitzHugh-Nagumo systems
being in the steady (however excitable) state and in the absence of the external forcing. Solid
line represents the boarder curve separating the region of the steady and non-steady solutions
for the slave. (b) The same as in (a) but obtained through the numerical simulations; black
(white) region corresponds to the steady (non-steady) solutions for the slave.

what means that the action potential x1 fires almost instantaneously if the perturbation
is applied. We write the following differential equation describing the dynamics of ∆(t):

∆̇(t) = a1∆(t)−K∆(t− τ) (3.9)

where a1 is the coefficient in the function f1(x1) which approximates the cubic function
in the FitzHugh-Nagumo equation in the vicinity of the fixed point (x1, x2) = (0, 0). If
the master and the slave are in an oscillatory or an excitable state and are driven by a
constant external forcing, then the following conditions for the anticipated synchroniza-
tion existence can be derived (detailed calculations are provided in Appendix A):

K > a1 and

τ <
arccos(a1

K
)√

K2 − a2
1

for K > |a1| (3.10)

In Fig. 3.11a we draw the curves given by Eq. 3.10. The numerical results for the
FitzHugh-Nagumo coupled neurons being in the steady excitable state and in the ab-
sence of an external forcing are shown in Fig. 3.11b.

FitzHugh-Nagumo systems driven by a white noise source

In the case of the FitzHugh-Nagumo systems driven by a Gaussian white noise I(t) =

ξ(t) with zero mean and auto-correlation 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), the differential equa-
tion for the difference variable ∆(t) will contain the white noise term of the form η(t) =
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ξ(t)− ξ(t− τ):

∆̇(t) = a1∆(t)−K∆(t− τ) + η(t) (3.11)

with the set of initial conditions ∆(t) = ∆0(t) at t ∈ (−τ, 0). It can be easily seen that if
the master is driven by the white noise which is retarded by time τ in comparison with
the noise injected to the slave then η(t) = ξ(t)− ξ(t+ τ − τ) = 0. This corresponds to the
case when the constant external forcing is applied to both systems. The cross-correlation
diagram for this case obtained through numerical simulations of the systems driven by
the noise sources ξ(t) (in the master) and ξ(t + τ) (in the slave) are shown in Fig. 3.12.

Figure 3.12: The cross-correlation diagram between the master and the slave outputs (x1(t) and
y1(t− τ)). Both systems are driven by the white noise sources: ξ(t) in the master and ξ(t + τ) in
the slave.

To solve Eq. 3.11 we proceed as in the case of the delayed differential equation
in the absence of noise (see Appendix A). Stability analysis for delayed differential
equations with noise was provided e.g. in Refs. [111, 112]. We define a new variable
h(t) = ∆(t)e−a1t and introduce it into the equation 3.11:

ḣ(t) = −Ke−a1τh(t− τ) + R(t) (3.12)

where R(t) = e−a1tη(t). Then we apply the Laplace transform getting the following
equality:

h̃(z) =
M(z)

z + Ke−a1τe−τz
(3.13)

where h̃(z) = L[∆(t)] and M(z):

M(z) = h(0)−Ke−a1τe−τz

∫ 0

−τ

h(t)e−ztdt + R̃(z) (3.14)
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To get the solution for variable ∆(t) first we need to find the solution for h(t) by applying
the inverse Laplace transform to Eq. 3.13:

∆(t) = h(t)ea1t =
n∑

i=1

µie
(a1+zi)t (3.15)

where zi are the zeros of the denominator in Eq. 3.13 and µi are the residua at these
points, which can be calculated by using the l’Hôpital’s rule:

µi = Resz=zi

M(z)

z + Ke−a1τe−τz
=

M(zi)

1−Kτe−(a1+zi)τ
(3.16)

From Eq. 3.15 we can see that ∆(t) vanishes for t → ∞ if a1 + Re[zi] < 0 and does
not depend on the presence of noise; the result is equivalent to the case in which the
external forcing is not a noise source.

The previous analysis shows that the stability of the solution of the linear system
does not depend on the presence of noise. However, the stability conditions obtained
from the numerical simulations of the FitzHugh-Nagumo system in the absence and in
the presence of noise are essentially different; in the linear case the stable region is wider.
This is due to the fact that the system becomes sensitive to the noise in the presence of
nonlinearities in the system. Let us examine qualitatively if the stability condition for
the coupling constant can be influenced by noise if the system contains nonlinearities.
Let us consider the following equation:

∆̇(t) = b∆(t) + c∆3(t)−K∆(t− τ) + η(t) (3.17)

where we add the cubic term c∆3(t). Let us assume that τ = 0. The stability of the
system requires that the nonlinear term is small with respect to the linear one, thus we
get:

|(b−K)∆| > |c∆3| → ∆2 <

∣∣∣∣b−K

c

∣∣∣∣ (3.18)

In the linear approximation we get the following solution for Eq. 3.17:

∆(t) = e(b−K)t

(∫ t

0

η(t′)e−(b−K)t′dt′
)

(3.19)

where we assume that ∆(0) = 1. Equation 3.17 is stochastic and its solution has to be
considered in terms of the mean quantities. This yields 〈∆(t)〉 = 0 since the mean of the
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noise variable is zero. From Eq. 3.19 we calculate the mean value of ∆2(t):

〈∆2(t)〉 =

〈(
e(b−K)t

∫ t

0

η(t′)e−(b−K)t′dt′
)(

e(b−K)t

∫ t

0

η(t′′)e−(b−K)t′′dt′′
)〉

= e2(b−K)t

∫ t

0

∫ t

0

〈η(t′)η(t′′)〉e−(b−K)(t′+t′′)dt′dt′′

= e2(b−K)t

∫ t

0

∫ t

0

2Dδ(t′ − t′′)e−(b−K)(t′+t′′dt′dt′′

= 2De2(b−K)t 1− e−2(b−K)t

2(b−K)
=

D

b−K
(e2(b−K)t − 1) (3.20)

In the limit t →∞, assuming that b−K < 0, we get:

lim
t→∞

〈∆2(t)〉 =
D

K − b
(3.21)

Using Eq. 3.18 we obtain the following condition for the stability:

∆2 <

∣∣∣∣b−K

c

∣∣∣∣→ D

K − b
<

∣∣∣∣b−K

c

∣∣∣∣→ K >
√

D|c|+ b (3.22)

The above condition for the coupling parameter K in the coupled systems driven by
noise is shifted into the direction of the larger K values and depends on the noise inten-
sity D. It means that the interplay between the nonlinearities and the noise can influence
the quality of the anticipated synchronization (as well as the synchronization), making
it worse if the intensity of the noise is large and the nonlinearities are strong.
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3.1.3 Coupled neurons in a chain

As mentioned in the introductory Section 2.6.2, systems coupled in a chain with many
slave units can enhance the anticipation time. In this Section we apply this idea to the
coupled FitzHugh-Nagumo systems driven by white noise in order to check whether in
this case such an enhancement of anticipation is possible. For this purpose we assume
that we have an array of slave systems connected unidirectionally, as shown in Fig. 3.13,
which are described by the set of equations:

ẋ = f(x) + I(t)

ẏ1 = f(y1) + I(t) + K(x(t)− y1(t− τ1))
...

ẏN = f(yN) + I(t) + K(yN−1(t)− yN(t− τN))

(3.23)

where N is the number of slave systems. The desired solution for this system is:

yN
1 (t− τ) = yN

1 (t−
N∑

n=1

τn) = x1(t) (3.24)

In Fig. 3.14a we show the time series of the master and slave systems coupled by the
delayed coupling scheme with a delay time τ = 6. Two errors appear during anticipa-
tion: the deformation of the second peak and an extra spike in the slave occurring at the
end of the time series. Next step is to take three slaves coupled in a chain with the delay
times τ1 = τ2 = τ3 = 2, what gives at the third slave the anticipation of master by time
τ =

∑3
i=1 τi = 6. In Fig. 3.14b we show time series for the master and the third slave

Figure 3.13: An array consisting of master system (n = 0) and N slave systems which are feeded
back with a delay time τ and coupled unidirectionally each other with a coupling parameter K.

systems which anticipates the master by the time τ = 6. The use of a chain enables us to
correct the two errors seen in Fig. 3.14a and to achieve an anticipation of order of τ = 6

which in one slave configuration cannot be obtained without errors. In Fig. 3.14c it is
shown the successive anticipation of the master by the first slave by time τ = 2, the first
slave by the second slave by time τ = 2 and finally the second slave by a third slave,
also by time τ = 2. Thus giving in sum a global anticipation time τ = 6.
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a.) b.)

c.)

Figure 3.14: (a) Time series of master (solid line) and slave (dashed line) for τ = 6 and K = 0.25.
(b) Time series of master (solid line) and third slave (dashed line) for τi = 2 (where i = 1, 2, 3)
and K = 0.25. (c) Time series of one pick for master system (solid line), first slave (dotted line),
second slave (dashed line) and third slave (dashed-dotted line).

The calculation of an average anticipation time with its standard deviation for the
long time series and beyond any initial transient revealed that indeed the anticipation
is enhanced as the number of slaves increases. The error bars attached to the points in
Fig. 3.15 represent the standard deviation values which remain smaller for larger delay
times in the case the chain is used. The standard deviation σ of the mean anticipation

Figure 3.15: Dependence of the mean anticipation time measured at the threshold value xth =
0.65 for coupling value K = 0.5 on delay time used in equations for the case with one slave (left
plot) and three slaves with equal delays in each of them (right plot). The standard deviations
are plotted in form of vertical lines.

time for the system composed of the master and three slave FitzHugh-Nagumo systems
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driven by noise, with delay times τ1 = τ2 = τ3 = 2 has been calculated in the parameters
space τ and K and is shown in Fig. 3.16a. We observe changes when delay times in all
three slaves differ in such a way that τ1 = 1, τ2 = 2 and τ3 = 3 (see Fig. 3.16b). In this case
the black region of high cross-correlations is slightly shifted in the direction of smaller
coupling constants K in comparison with the case where τ1 = τ2 = τ3 = 2. However
for the case in which the delay times are τ1 = 3, τ2 = 2 and τ3 = 1 (see Fig. 3.16c) the
maximum τ is shifted in the direction of larger coupling constants K in comparison
with the uniform case τ1 = τ2 = τ3 = 2. From Figs. 3.16a, b and c it can be seen
that the maximum anticipation time obtained with these three type of configurations is
approximately the same i.e. cannot be enhanced significantly.

In the case of relative error (the rate of appearance of additional spikes) a larger
enhancement is observed (see Fig. 3.17). The best configuration here is the one with
equal delays in all slaves τ1 = τ2 = τ3 = 2, and it can be seen that other configurations
with different delays give smaller regions of stability.

a.) b.) c.) d.)

Figure 3.16: Stability region estimated numerically and determined by dependence of the cou-
pling parameters τ and K for one slave (a) and for three slaves with the following configuration
of time delays: (b) τ1 = τ2 = τ3 = 2, (c) τ1 = 1, τ2 = 2 and τ3 = 3, (d) τ1 = 3, τ2 >= 2 and τ3 = 1.
Dark regions correspond to the standard deviation value σ < 0.15.

Considering the anticipated synchronization manifold for FitzHugh-Nagumo cou-
pled neurons (Eq. 3.7) in a chain and assuming that τn = τ in each subsystem, we can
write the following set of N equations:

∆̇n = β∆n −K∆n,τn + K∆n−1 (3.25)

which in the vector notation take the form:

∆̇ = Ω∆−K∆τ (3.26)
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a.) b.) c.) d.)

Figure 3.17: Stability region vs. the relative error Er for one slave (a) and a cascade of three
slaves with τ1 = τ2 = τ3 = 2 (b), τ1 = 1, τ2 = 2 and τ3 = 3 (c) and τ1 >= 3, τ2 = 2 and τ3 = 1 (d).
Black region corresponds to Er < 0.1.

where:

∆ =

 ∆1

...
∆N

 , Ω̄ =



β 0 · · · · · · · · · 0

K β 0 · · · · · · 0

0 K β 0 · · · 0
... . . . . . . ...
0 · · · 0 K β 0

0 · · · · · · 0 K β


, ∆τ =

 ∆1,τ

...
∆N,τ

 (3.27)

Assuming the solution of this equation as ∆ = C(t)eλt for N = 3 slaves we get: ∆1

∆2

∆3

 = e(β−Ke−λτ )t

 1

AKt

A2
(

(kt)2

2
− AKe−λτ (Kτ)2

2
t
)
 (3.28)

where A = (1−Kτe−λτ )−1. The expressions in Eq. 3.28 tend to zero if Re[λ] < 0 thus we
get the following conditions:

τ < N
1

K

arccos(−β
K

)√
1−

(
β
K

)2 (3.29)

which is valid for the case in which all slaves in the chain has the same delay time τ in
the delayed coupling term.

In the case of the coupled FitzHugh-Nagumo systems operating in the oscillatory
regime we also get that the stability region for the standard deviation of the observed
anticipation time decreases when the slaves have different delay times (see Fig. 3.18).
Note that in this case the relative error (defined in Eq. 3.6) is always zero. The results
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obtained for the FitzHugh-Nagumo systems driven by noise as well as operating in
the oscillatory state suggest that the phenomenon of the stability breaking when using
different delays in each slave appears in forced as well as in unforced systems.

a.) b.) c.)

Figure 3.18: Stability region obtained numerically for three slaves with (a) τ1 = τ2 = τ3, (b)
τ1 < τ2 < τ3 and (c) τ1 > τ2 > τ3. Homogenously black region correspond to the standard
deviation σ < 0.1.
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3.1.4 Experiments

To assess the robustness of the anticipated synchronization observed in the numeri-
cal simulations, we implement the FitzHugh-Nagumo model in analog hardware and
construct two coupled electronic neurons (a simplified version of the circuit is shown
in Fig. 3.19). The electronic neurons are built using operational amplifiers and the cu-
bic non-linearity described by x(x− a)(x− 1) is implemented using analog multipliers
(AD633). The resistor RC controls the strength of the unidirectional coupling between

Figure 3.19: Circuit implementation of two coupled neurons. R1 = 125 kΩ, R2=50 kΩ, R3=10 kΩ,
RC = RD=100 kΩ, RF =10 kΩ, RN =10 kΩ, RO= 10 kΩ, C1=100 nF, C2=1 µF.

the master and the slave neurons. The resistor RD (RD = RC in our case) controls
the strength of the delayed feedback into the slave neuron. The coupling and the de-
layed feedback have opposite signs: while the master signal is obtained at point B of
Fig. 3.19, where the voltage is −Vm, the slave signal that goes into the delay line is ob-
tained at point C, where the voltage is +Vs. The different signs are due to the inverters
that are located in between points A and B and C and D. The threshold on both neu-
rons is controlled by a potentiometer represented by its equivalent circuit: offset and
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Figure 3.20: (a) Experimental train of spikes that shows anticipation in the spikes fired by the
slave neuron (upper trace) with respect to the spikes fired by the master neuron (lower trace).
(b) Detail of a spike fired by the master neuron and anticipated spike fired by the slave neuron.
The anticipation time is 14 ms approximately.

R0. The analog delay line for the delayed feedback in the slave neuron is built us-
ing bucket brigade circuits (MN3004). A function generator with white noise output
capabilities (HP33120A) is used to excite both electronic neurons. The signals are ac-
quired using LabView and National Instruments DAQ 6025E data acquisition board.
Similar electronic neurons have been implemented in [113], where it was shown that
their behaviour is very similar to that of biological neurons: when interfaced to biolog-
ical neurons, hybrid circuits, with the electronic neurons taking the place of missing or
damaged biological neurons, could function normally. Our electronic coupled neurons
behave very similar as in the numerical simulations. For an appropriate value of the
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coupling resistance RC , we observe that, after a transient, the master and slave elec-
tronic neurons synchronize in such a way that the slave neuron anticipates the fires of
the master neuron by a time interval approximately equal to the delay time τ of the
feedback mechanism. Figure 3.20a shows a typical spike train, and Fig. 3.20b displays
in detail a single spike. We observe that, as in the numerical simulations, the firings of

Figure 3.21: Experimentally obtained cross-correlation diagram between the signal in the pa-
rameter space of delay time τ and coupling constant K. Black (white) colour represents high
(low) correlations.

the master and the slave neurons start at about the same time: anticipation begins dur-
ing the rising of the peak and it vanishes when the neurons are in the unexcited state.
Without coupling and feedback (RC = RD = 0) the neurons fire pulses which are, in
general, unsynchronized (due to the small mismatch between the circuits). From the
experimental data we construct the cross-correlation diagram between the master and
slave time series in the parameter space τ and K (see Fig. 3.21) which is similar to that
obtained through the numerical simulations in Section 3.1.
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3.2 Anticipated synchronization in spatiotemporal systems

In this Section we turn our attention to the spatiotemporal systems, in particular the
complex Ginzburg-Landau equations (section 3.2.1) and the model for chemical reac-
tion of CO oxidation on a platinum surface (section 3.2.2). We characterize numerically
and analytically (in the case of complex Ginzburg-Landau equations) the ranges of pa-
rameters for which anticipated synchronization can be obtained and study the coupling
architecture which could be realized in an experimental setup. In Section 3.2.3 we show
that the interplay between the anticipated synchronization and conduction delays can
lead to zero-lag synchronization. We show its appearance in coupled spatiotemporal
FitzHugh-Nagumo systems and propose the hypothesis on its relevance in real bio-
logical systems which process the information through intercellular communication.
Finally (section 3.2.4) we analyze the appearance of anticipated synchronization in cel-
lular automata models. The interest in these systems was motivated by their spatial
cooperation characteristics leading to self-organization processes. In a particular class
of cellular automata we analyze the spatial properties of equations with delayed feed-
back.

3.2.1 Coupled complex Ginzburg-Landau equations

A well-known model equation which displays a rich variety of spatiotemporal dynam-
ics is the 1-dimensional complex Ginzburg-Landau equation (see Section 2.3):

Ȧ = εA + (1 + ic1)Axx − (1 + ic2)|A|2A (3.30)

where A(x, t) ≡ ρ(x, t)eiφ(x,t) is a complex field of amplitude ρ and phase φ, the dot
denotes a temporal derivative and Axx = ∂2A

∂x2 is the second order derivative with respect
to the space variable, 0 ≤ x ≤ L, where L is the system length. ε is a control parameter
inducing instability if it is positive, c2 is a measure of the nonlinear dispersion and,
finally, c1 is the linear dispersion parameter.

We define master and slave Ginzburg-Landau’s systems coupled with delayed cou-
pling in the following way:

Ȧ = εA + (1 + ic1)Axx − (1 + ic2)|A|2A (3.31)

Ḃ = εB + (1 + ic1)Bxx − (1 + ic2)|B|2B + κ(A−Bτ ) (3.32)

with a general complex coupling constant κ = Keiθ. As usual Bτ stands for B(t−τ) and
τ is a constant delay time. The use of a complex coupling is motivated by its relevance
in coupled laser systems (see for instance ref. [114]). In numerical simulations we keep
ε = 1. We integrate numerically Eq. 3.31 and 3.32 by using the two-step method to
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(a) (b)

master slave master slave

(c) (d)

Figure 3.22: Spatiotemporal dynamics of (a) amplitude and (b) phase. Parameters: τ = 0.6,
θ = π

4 , |K| = 0.6, N = 64, δx = 0.2, δt = 0.002, c1 = 3, c2 = −2.5 (in a range of defect
turbulence). Spatiotemporal dynamics of (c) amplitude and (d) phase. Parameters: τ = 0.5,
θ = 0, |K| = 0.75, N = 64, δx = 0.2, δt = 0.002, c1 = 3, c2 = −2.5.

integrate the Fourier modes, assuming periodic boundary conditions (for details see
Appendix B). We use random initial conditions, different in master and slave, in order
to obtain distinct initial dynamics in both systems. We take the parameters for our
systems from the previous work [54] where larger system sizes were studied in order
to identify regions of the parameter space (for details see Section 2.3). The integration
time step is δt = 2 ·10−4. The size of the system is taken to be L = Nδx with N = 64, and
δx = 0.2 in the defect turbulence regime, δx = 1.6 in the bichaos regime and δx = 2 in
the phase turbulence regime. We will show that the largest anticipation time is related
to the linear autocorrelation time estimated from the long time series. Since all types of
dynamics exhibited by the complex Ginzburg-Landau equations have different linear
autocorrelation times, we expect that the maximum anticipation time will decrease as
we move from the spatiotemporal intermittency into the defect turbulence regime. The
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(a)

(b)

Figure 3.23: (a) Time series of master (dotted line) and slave (dashed line) complex Ginzburg-
Landau equations in the defect turbulence regime. Horizontal arrows mark the anticipation
times, no-horizontal arrows mark the parts of the trajectories which are linear and the horizontal
solid lines mark the largest linear autocorrelation times distributed along the time series. (b)
Autocorrelation function versus time for the three chaotic regimes: defect turbulence, bichaos
and phase turbulence.

spatiotemporal series of amplitude (Fig. 3.22a) and phase (Fig. 3.22b) for the master and
slave systems reveal that indeed the slave anticipates the time evolution of the master.
Anticipation occurs in the amplitude of the oscillations as well as in the phase. In the
case of defect turbulence the maximum anticipation time is τmax ≈ 0.6 meanwhile for
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(a) (b)

(c)

Figure 3.24: (a) Analytically calculated dependence of maximum anticipation time versus θ

representing stable solutions for all possible values of K. We used c1 = 3 and q2 = 0.45. (b) Nu-
merically obtained diagram for the occurrence of anticipated synchronization in the parameter
space τ −θ representing stable solutions for all possible values of K. Parameters used in numer-
ical simulations: N = 64, δx = 0.2, δt = 0.002, c1 = 3 and c2 = −2.5. (c) Numerically obtained
diagram for the occurrence of anticipated synchronization in the parameter space K − θ. Each
plotted point corresponds to several values of τ from the range [0, 0.6]. Solid line represents the
analytically calculated curve above which anticipation is possible.

systems in the regime of bichaos this time increases to τmax ≈ 1.6, and in the regime of
phase turbulence to τmax ≈ 1.9. Fig. 3.23a shows time series for the master and slave
systems modelled by the complex Ginzburg-Landau equations operating in the defect
turbulence regime. In this figure it can be clearly seen that the slave synchronizes and
anticipates the output of the master. In the time series we can also notice that the values
of the largest anticipation times correspond to the largest linear autocorrelation times.
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To prove this we calculate the autocorrelation function:

C(t) =
1

T

T∑
i=0

|A(ti)||A(t + ti)| (3.33)

where T is the time along which we calculate the autocorrelations. Assuming that the
correlations decay exponentially C(t) ∼ e−

t
tc we get the linear autocorrelation time:

tc ∼ −

[
1

T

T∑
i=0

ln (C(ti+1)/C(ti))

ti+1 − ti

]−1

(3.34)

In Fig. 3.23b we plot the autocorrelation functions vs time for the complex Ginzburg-

(a) (b)

Figure 3.25: Analytically calculated stability regions in the parameter space τ and K for (a)
θ = −2π

5 and (b) θ = π
6 .

Landau equation in the defect turbulence, bichaos and phase turbulence regimes. Tak-
ing the value of T in Eq. 3.34 as the one at which the first zero is reached by C(t), we
get the following linear autocorrelation times: tc = 0.55 in defect turbulence regime,
tc = 1.654 in bichaos regime and tc = 1.76 in phase turbulence regime; these values
correspond approximately to the largest anticipation times obtained numerically.

Interesting feature is that the largest anticipation time occurs for a complex value
of the coupling constant, namely for θ ≈ π

3
(see Fig. 3.24a,b). For this value of θ, the

real part of κ is larger than its imaginary part. From the numerical results, and in other
regimes as bichaos and phase turbulence, we observed that the stability curve in the
parameter space τ − θ is always bent over to the direction of positive values of θ with
θ ≈ π

3
at maximum.

In the defect turbulence regime anticipated synchronization occurs for coupling val-
ues in a range approximately K > 0.3 (see Fig. 3.24c) meanwhile in bichaos and phase
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turbulence regimes smaller couplings values are enough. These values can be com-
pared with the magnitudes of the coupling parameter K necessary to observe phase
synchronization in unidirectionally coupled complex Ginzburg-Landau equations stud-
ied in [115]. In the latter K increases starting from 0.1 and up when going from the phase
to strong defect turbulence regimes.

From the linearized Eqs. 3.31 and 3.32, we can rewrite a differential equation in the
Fourier space for the difference variable ∆q = Aq −Bq,τ :

∆̇q = [−(1 + ic1)q
2 + ε]∆q − κ∆q,τ (3.35)

Assuming that the solution is of the form ∆q = eλt, where λ = α+iω, after introducing it

(a) (b)

(c) (d)

Figure 3.26: (a) Amplitude and (b) phase correlations between master A and slave Bτ spa-
tiotemporal series for θ = −2π

5 , N = 64, dx = 0.2, dt = 0.002, c1 = 3, c2 = −2.5. (c) Amplitude
and (d) phase correlations between master A and slave Bτ spatiotemporal series for θ = π

6 ,
N = 64, dx = 0.2, dt = 0.002, c1 = 3, c2 = −2.5. Black color corresponds to high correlations
(C > 0.99), meanwhile grey and white correspond to low correlations (C < 0.99).



80 3. Anticipated synchronization: characterization

into Eq. 3.35 and separating into real and imaginary parts we get the following relations:

α = −q2 + ε− e−ατK(cos θ cos ωτ + sin θ sin ωτ) (3.36)

ω = −q2c1 + e−ατK(cos θ sin ωτ − sin θ cos ωτ) (3.37)

We are interested in the bifurcation points in the parameter space of coupling parame-
ters K, θ and τ . The Hopf bifurcation (i.e. the transition from the steady fixed point state
into the oscillatory one) appears at Re[λ] = 0, when the real part of λ changes its sign
from negative to positive. Thus for α = 0 we obtain the following relation for the de-
pendence of τ on K and θ as a condition for stability of the anticipated synchronization
manifold:

τ(K, θ) < Ω−1 arccos[K−1(Ω′ sin θ + (ε− q2) cos θ)] (3.38)

where Ω′ = −(K2 − (ε − q2)2)
1
2 and Ω = −Ω′ + q2c1. From Eq. 3.38 we can calculate the

condition for coupling constant K:

K ≥ |ε− q2|
cos θ

(3.39)

where cos θ ≥ 0 always since |θ| ≤ π
2
. Curves in Eqs. 3.38 and 3.39 separate the stability

and instability regions in the coupling parameters space. In Fig. 3.24a,b the stability
regions in the parameter space τ(θ) obtained analytically and numerically are shown.
Both results reveal a bending over in the direction of positive values of θ. In Fig. 3.24c
we show the stability regions in the parameter space K(θ), where the shaded region is
obtained though numerical simulations meanwhile the curve is calculated analytically.
Finally in Fig. 3.25 we plot the analytical curves τ(K) for two different θ values: θ =

−2π
5

in Fig. 3.25a and θ = π
6

in Fig. 3.25b. In Fig. 3.26a and b are the diagrams for the
amplitude and for the phase, respectively, for θ = −2π

5
, meanwhile in Fig. 3.26c and d

the diagrams are for the amplitude and for the phase, respectively, but for θ = π
6
.

All analytical curves were calculated for q = 0.67, which has been estimated with the
use of the results presented in Refs. [116] and [117]. The authors in above mentioned
references provide the linear stability analysis for the complex Ginzburg-Landau equa-
tion in the presence of the delayed feedback which is used to stabilize the travelling
wave solutions of the complex Ginzburg-Landau equation.

Finally in Fig. 3.27 we show the spatiotemporal time series obtained for 2-dimensional
locally coupled complex Ginzburg-Landau equations. We observe that the additional
dimension makes the system more chaotic and thus, as expected, the maximum antici-
pation time decreases in comparison with the one-dimensional case. This is due to the
fact that the second spatial dimension introduces further instabilities to the systems.
Moreover we have also observed that the bending of the τ − θ curve changes its direc-
tion, in this case it is bent over the negative values of θ.
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The above results on anticipated synchronization in generic model for spatiotempo-
ral systems opens the possibilities for practical use of this phenomenon in prediction of,
for example, the time evolution of the chemical reactions. We discuss this problem in
the next Section.

Figure 3.27: Amplitude evolution of 2-dimensional coupled Ginzburg-Landau equations master
(upper row) and slave (lower row) for coupling parameters τ = 0.37, K = 1.35 and θ = −π

4 .
Snapshots are shown at times separated by a time unit τ . System size is N ×N = 64 × 64 with
dx = 0.3 and periodic boundary conditions.
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3.2.2 Modelling prediction of chemical reactions

In this Section we turn our attention to the realistic and specific model for a chemical
reaction, namely the catalytic oxidation of the CO on the platinum Pt(110) surface (see
Section 2.3 for details). The idea is to find the conditions under which anticipated syn-
chronization in extended systems could be observed in a laboratory experiment. The
local coupling considered so far in this thesis is an ideal case, which would be very dif-
ficult to attain in a real experiment. Thus we consider the possibility of using global
coupling or at least ”partially” global, instead of local coupling. An interesting attempt
to control and synchronize spatiotemporal chaos in a non local way has already been
presented in [118] where the finite number of local controllers were used. It was shown
there that a sufficient condition for a robust control is that the number of controllers is
equal or even smaller than the number of correlation domains. We expect also in our
case that the size of domain which permits anticipated synchronization will be related
to spatial autocorrelations, as it was shown for a control method in [118]. We define
as the master system for the variables (u1, v1, w1) the model in one spatial dimension
described in Section 2.3:

u̇1 = k1sCOpCO(1− u3
1)− k2u1 − k3u1v1 + D∇2u1

v̇1 = k4pO2 [sO,1x1w1 + sO,1x2(1− w1)](1− u1 − v1)
2 − k3u1v1

ẇ1 = k5

(
1

1 + exp(u0−u1

δu1
)
− w1

)
(3.40)

We couple a slave system to the master in Eq. 3.40 by using three types of coupling:

1. Diffusive local coupling. In this case we try the simplest diffusive coupling in the
equation for variable u2. Therefore, we consider a slave system defined by the
variables (u2, v2, w2) in the following way:

u̇2 = k1sCOpCO(1− u3
2)− k2u2 − k3u2v2 + D∇2u2 + K(u1 − u2(t− τ))

v̇2 = k4pO2 [sO,1x1w2 + sO,1x2(1− w2)](1− u2 − v2)
2 − k3u2v2

ẇ2 = k5

(
1

1 + exp(u0−u2

δu2
)
− w2

)
(3.41)

being K the intensity of the coupling between the two systems.

2. Local coupling in parameter pCO. It seemed that an easy way of coupling the
two systems would be by the influence on the pCO parameter. So we take as the
equations for the slave system the following ones:

u̇2 = k1sCO[p0
CO −K(u1 − u2(t− τ))](1− u3

2)− k2u2 − k3u2v2 + D∇2u2 (3.42)
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(a)
master slave

(b)

(c)

Figure 3.28: Spatiotemporal dynamics of master (left panels) and slave (right panels) for (a) local
diffusive coupling with K = −0.45 and τ = 1, (b) local coupling in parameter pCO with K = 0.1
and τ = 1, (c) digital diffusive local coupling with K = −0.15 and τ = 1.

with equations for variables v2 and w2 as in Eq. 3.41. K, again, is the parameter
measuring the intensity of the interaction between master and slave systems.
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3. Digital diffusive local coupling. This case is included for simplicity, since we think
that it might be convenient to consider a scheme in which the coupling depends
not on the exact magnitude of the difference between master and slave at each
point in time, but just on the difference measured at some particular time step.
The digital coupling was used successfully in synchronizing chaotic systems as
reported in Ref. [119]. Digital coupling also allows us to observe anticipated syn-
chronization in many systems, not only in the system considered in this Section.
The slave system with the digital coupling is defined in the following way:

u̇2 = k1sCOpCO(1− u3
2)− k2u2 − k3u2v2 + D∇2u2

+ K(sgn(u1)− sgn(u2(t− τ))) (3.43)

with equations for variables v2 and w2 as in Eq. 3.41; sgn(z) is the sign function;
if z > uref then sgn(z) = 1, otherwise if z < uref then sgn(z) = −1 where uref =

0.3358.

In each of these three coupling schemes, we obtain a region of parameters (τ,K) in
which anticipated synchronization is found. As an example we plot in Fig. 3.28 for each
of the three previous schemes a typical result of the numerical simulations. In each fig-
ure the time runs vertically from bottom to top and the space is the horizontal direction.
The master system is depicted in the left frame, whereas the slave is depicted in the
right frame. Note that we have set the simulations such that the master evolution is the
same in each of the three cases. It is clearly visual that there is indeed an anticipation of
the dynamics of the master by the slave. In Fig. 3.29 we plot in a gray scale the value of
the correlation coefficient ρ between the variables u1(x, t) and u2(x, t− τ) (this is further
averaged with respect to x and t) as a function of the system parameters (τ,K). Black
level indicate a correlation coefficient close to 1 (good correlation and, hence, antici-
pated synchronization) while the white region is that of poor correlation and a lack of
synchronization between the two systems.

The above schemes are for diffusive local coupling. A more realistic approach would
require the replacement of the local coupling by the global or partially global one. We
consider partially global coupling, being a modification of the schemes introduced in
Eqs. 3.42 and 3.43, which we define in the following way:

K

(
1

∆

∆∑
n=1

u1(n, t)− 1

∆

∆∑
n=1

u2(n, t− τ)

)
(3.44)

where ∆ is a region over which the amplitudes ui for i = 1, 2 are averaged. The
schematic representation of this coupling is shown in Fig. 3.30. In Fig. 3.31 we show
the stability regions in the parameter space τ(K) for the coupling defined in Eq. 3.44.
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(a) (b)

(c)

Figure 3.29: Stability diagram in coupling parameter space K and τ . White regions correspond
to the low correlation between signals u1(t) and u2(t − τ), meanwhile black regions to the high
correlation (close to 1). Panel (a) corresponds to the simple diffusive coupling, panel (b) is for
the coupling in the parameter pCO and panel (c) for the ”digital diffusive local coupling”.

The intensity drawn in a grey scale corresponds to the correlations between the signals
u1(t) and u2(t − τ) at each point in space. The correlation for the possible maximum
anticipation time decreases as the number of averaged grids ∆ increases (see Fig. 3.32).
For ∆ = 16 the anticipated synchronization is still good, but for ∆ = 20 becomes de-
structed (see Fig. 3.33). For larger values of ∆ the stability is lost. We have observed
that the global coupling does not allow anticipation. However it is possible to imple-
ment partially global coupling which we estimated for one-dimensional system to be
not larger than 0.016mm.
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Figure 3.30: Schematic representation of the partially global diffusive coupling.

In the experiment the coupling is partially global with a Gaussian form of the aver-
aged region instead of a uniform one:

K

(
1

∆

∆∑
n=1

u1(n, t)f(n, ∆)− 1

∆

∆∑
n=1

u2(n, t− τ)f(n, ∆)

)
(3.45)

where ∆ is a number of grids in which the amplitudes ui for i = 1, 2 are averaged and
the function f is a Gaussian function defined as:

f(x, ∆) = exp

(
−(x−∆/2)2

∆2/(4 ln 2)

)
(3.46)

The function f(x, ∆) used in the simulations is plotted in Fig. 3.34. Numerical simula-
tions are done for the case ∆ = 16. In this case we observe that anticipated synchro-
nization is still possible when the Gaussian function is used when averaging (Fig. 3.35
upper panel). The cross-correlation diagrams for the case of ∆ = 16 with the uniform
and the Gaussian forms of the averaged regions are shown in Fig. 3.36.

We have also checked the robustness of the system under parameter mismatches.
We observed that the anticipated synchronization is still preserved when the parameter
sCO in the slave is larger about 0.3% than that of the master (see Fig. 3.35 lower panel).
Further increasing of this parameter prevents anticipated synchronization to occur. It is
interesting that if we change the parameter sCO in the slave system to be smaller than
in the master, the anticipated synchronization vanishes for smaller mismatches and is
acceptably conserved for a mismatch of 0.001%. During the above study we kept the
parameter sCO of the master system unchanged.

The global coupling is easier to implement experimentally. Nevertheless, and in
order to obtained the best results on anticipation, the experimental setup should be
designed for local or partially global coupling, what is more difficult in practise, but
not impossible1. The other fact which we find interesting is the different shape of the

1The realization of the local coupling can be done by using a laser light.
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Figure 3.31: From left to right in down direction – number of averaged grids: 2, 4, 5, 8, 10, 16, 20,
25. Size of the system is 0.4mm with N = 400 and step δx = 0.001mm. Black colour correspond
to the maximum correlation between u1(t) and u2(t− τ).

cross-correlation diagrams in the coupling parameter space τ and K, which have always
qualitatively similar shapes for all the studied systems, being bounded up by the curve
τ < 1

K
, for positive values of K. In the system considered in this Section, the cross-

correlation diagram has a different shape and appears for negative coupling values thus
being some kind of exception from the observations made so far.
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Figure 3.32: Correlation value of the maximum possible anticipation time τ ≈ 1 as a function
of the number of averaged grids ∆. The size of the studied system is 0.4mm with N = 400 and
δx = 0.001mm.
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(a)
master slave

(b)

(c)

Figure 3.33: Time series for delay time τ = 0.96 and: (a) K = −1.6 and ∆ = 10, (b) K = −1.08
and ∆ = 16, (c) K = −1.24 and ∆ = 20. The horizontal axis represents space and the vertical
one time, which goes forward in the up direction.
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Figure 3.34: Gaussian form used in numerical simulations for the averaged region ∆ = 16.

master slave

Figure 3.35: Time series for delay time τ = 0.96, K = −1.24 and ∆ = 16. Upper panel for
smaster
CO = sslave

CO , and lower one for sslave
CO = 1.003smaster

CO – 0.3% difference in parameters.
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Figure 3.36: Number of averaged grids: 16. Size of the system is 0.4mm with N = 400 and
step δx = 0.001mm. Black colour corresponds to the maximum correlation between u1(t) and
u2(t− τ). Averaging with step function (left panel) and Gaussian function (right panel).
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3.2.3 Zero-lag synchronization in excitable systems

Experiments on the brain activity revealed the existence of simultaneous oscillations
in the activity of cortical areas separated by millimeter distances [120], despite of the
axonal transmission times that are expected to cause phase shifts between these oscilla-
tions. Several authors have pointed out that the simultaneous firing of selective neurons
in the brain, the so-called feature binding, plays a crucial role in visual processing [121]
as well as in conscious experience [122]. Experimental observations of synchronized sig-
nal firings at zero lag brought us to the speculation that in real biological systems syn-
chronization between neurons with different excitability thresholds may appear. The

Figure 3.37: Schematic presentation of the interaction between the external perturbation, master
and slave. Delayed feedback in the slave can enable the detection of zero-lag synchronization in
spite of the spatial distance L which exists between two areas in the brain.

synchronization in the brain appears in response to the external stimuli detected by the
sensory receptors. We consider the master as a sensory receptor which is fed with an
external stimulus (see Fig. 3.37). As shown in section 5.1.1 anticipation of the master’s
pulse by the slave may be observed even if the perturbation is applied only to the mas-
ter. Thus, if both systems are spatially separated by distance L, the compensation of the
time tL needed for an electric pulse to travel through the axon from the master to the
slave neuron could be achieved if the anticipation mechanism is present with a delay
term τ = tL.

We demonstrate the occurrence of the zero-lag synchronization in the simple ex-
ample of two Adler equations coupled unidirectionally in the following way. Let us
consider the equations:

ẋ = µ− cos x + I(t)

ẏ = µ− cos y + K(x(t− tL)− y(t− τ)) (3.47)

where the eternal singular perturbation I(t) is applied only to the master. In Fig. 3.38
we see that the zero-lag synchronization between the master and the slave can occur
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when the delay time τ is equal to the conduction delay tL and for a particular coupling
strength value.

Figure 3.38: Zero-lag synchronization between Adler systems. Master (solid line) and slave
(dashed line) are coupled with the delayed coupling scheme. The anticipation is seen in (a). In
(c) is shown the slave, which gets the delayed in time by tL = τ due to conduction delays signal
from the master.

However, in order to simulate the connection between two distinct areas in the brain
it is convenient to consider spatially extended systems exhibiting the prototype model
for neuron dynamics. To assess this problem we use the following set of spatially ex-
tended FitzHugh-Nagumo equations for the master:

u̇0 = u0 + v0 −
u3

0

3
+ D∇2u0

v̇0 = ε(−u0 + a) + D∇2v0 + I(t) (3.48)

and for the slaves:

u̇i = ui + vi −
(ui)

3

3
+ D∇2ui + K(ui−1(t− tL)− ui(t− τi))

v̇i = ε(−ui + a) + D∇2vi (3.49)

where index i for i = 1, ..., N stands for the i-th slave in a cascade, ∇2 = ∂2

∂z2 is a spa-
tial derivative operator, D is a diffusion constant, ε and a are constant parameters, tL
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(a)

(b)

Figure 3.39: The travelling waves of two coupled FitzHugh-Nagumo spatially extended systems
(master and one slave) of size 80 × 80 with dx = 1 for parameters τ = 15, K = 0.25, a = −1.08,
D = 0.1, ε = 0.02, p = 0.2948 and ∆t = 1. Two cases are considered: (a) tL = 0 and (b) tL = 15.

is the time it takes the signal to travel from the master to the slave and I(t) is an exter-
nal stimulus of amplitude p and duration ∆t applied to the master. Here the coupling
parameter K is considered as crucial in the communication between master and slave,
since it transmits to the slave the information about the external perturbation. In sim-
ulations of Eqs. 3.48 and 3.49 we could observe synchronization i.e. u1(t) = u0(t) for
tL 6= 0 if the anticipation time τ corresponded exactly to the time tL. Then the time
it takes the pulse to travel through the axon could be compensated, giving rise to the
simultaneous firing of neurons.

In Fig. 3.39 we show results of the numerical simulations of two coupled FitzHugh-
Nagumo systems given by Eqs. 3.48 and 3.49. In Fig. 3.39a we present the situation in
which the slave emits the travelling wave faster then the master does even if the local
perturbation I(t) is applied only to the master. We consider tL = 0 (no spatial distance
between two brain areas) and we observe the anticipation. On the other hand if we take
tL = τ then, for particular value of the coupling strength, we observe that the master
and slave emit travelling waves simultaneously in time as it is seen in Fig. 3.39b.

The interaction of many distant cortical areas could be modelled by considering ad-
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ditional slave units (slave areas). It was shown that cascade of slave units enables the
anticipated synchronization between the unit i and i + 1 in the way that the total antic-
ipation time between the master and the last slave is the sum of all anticipation times
existing in the cascade τN =

∑N
i=1 τi [97]. The interesting feature of the coupled ar-

rays of excitable systems is that the perturbation applied in one place is able to propa-
gate through the cascade (this phenomenon was already studied in bidirectionally cou-
pled oscillators undergoing a homoclinic chaotic dynamics [123]). The anticipation phe-
nomenon moreover permits such a propagation without time loses due to conduction
delays.
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3.2.4 Cellular automata

Cellular automata were introduced by mathematician J. von Neumann [124] who tried
to develop an abstract model of self-reproduction in biology. The theory of cellular au-
tomata was completed after suggestions of S. Ułam [125]. Cellular automaton is a set of
self-operating machines with a available set of logical operations which are performed
in discrete space and discrete time. Many cellular automata models are examples of
simple dynamical systems which produce ordered patterns such as those observed in
nature. A cellular automaton consists of an array of N nodes characterized by one of
two possible binary states 0 or 1. Each node performs locally logical operations by
means of Boolean functions which are known as rules (for details see [126] and [127]).
The 1-dimensional cellular automaton has 28 = 256 possible rules, which have been
cataloged by S. Wolfram [128]. The value of each node is updated due to a particular
rule in discrete time steps and all nodes are updated simultaneously at the same time
step. We consider the rule ”90” in the Wolfram notation which consists on updating
each node by performing XOR operation of only two neighbouring nodes. Let consider
M + 1 – unidirectionally coupled cellular automata:

x
(n+1)
0 (i) = x

(n)
0 (i− 1)⊕ x

(n)
0 (i + 1)

x
(n+1)
1 (i) = x

(n)
1 (i− 1)⊕ x

(n)
1 (i + 1)⊕ x

(n)
0 (i)⊕ x

(n)
1 (i− d)

...

x
(n+1)
M (i) = x

(n)
M (i− 1)⊕ x

(n)
M (i + 1)⊕ x

(n)
M−1(i)⊕ x

(n)
M (i− d) (3.50)

where coupling is based on the information flow from one cellular automaton to the
other at time n. The first cellular automaton is a master, meanwhile the others are
slaves. Variable x

(n)
m (i) for i = 1, . . . , N represents the state of the ith node in the N -

length array at time n. For particular values of the initial conditions, taken here as
all 0’s with the only 1 at the middle of the array (see Fig. 3.40a), the state of N nodes
of each cellular automaton after iteration in time becomes the well-known Sierpiński
triangle [129]. We consider the master and M = 5 slave systems defined in Eq. 3.50
(graphical representation of equations for master and slaves is shown in Figs. 3.40a,b).
Spatiotemporal series in Figs. 3.41a,b show that the same pattern shifted in time can be
produced by slaves for d = 1. The 5th slave cellular automaton is shifted in time by
M ·d = 5 steps in comparison with the master. Above results show that anticipated syn-
chronization in cellular automata may be obtained when the feedback variable in the
coupling term is delayed in space and not in time. This similarity between both delayed
coupling schemes; time delay and space delay, suggests the space-like properties of the
systems with time-delayed feedback. It was already reported in [130] that the system
with time-delayed feedback may be represented by N -dimensional spatially extended
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(a)

(b)

(c)

Figure 3.40: (a) Initial state of master and slave cellular automata with number of nodes Nm =
Ns. The state of both systems consist of one state ’1’ and Nm − 1 states ’0’. (b) Schematic nodes
of master and slave cellular automata for n 6= 0. The arrows show the spatial couplings of
nodes. (c) Schematic nodes of slave cellular automaton for n′ 6= 0 and master and slave cellular
automata for n 6= 0 where n > n′. The arrows show the couplings with time-delayed feedbacks.

system because it has the similar spatial properties (for instance defects). The same con-
siderations may be applied to the slave system which contains in the coupling term the
time-delayed variable.

The standard delayed coupling scheme leading to anticipated synchronization con-
tains the delayed in time variable and for M+1 – unidirectionally coupled cellular au-
tomata is the following:

x
(n+1)
0 (i) = x

(n)
0 (i− 1)⊕ x

(n)
0 (i + 1)

x
(n+1)
1 (i) = x

(n)
1 (i− 1)⊕ x

(n)
1 (i + 1)⊕ x

(n)
0 (i)⊕ x

(n−τ1)
1 (i)

...

x
(n+1)
M (i) = x

(n)
M (i− 1)⊕ x

(n)
M (i + 1)⊕ x

(n)
M−1(i)⊕ x

(n−τM )
M (i) (3.51)

where τm for m = 1, . . . ,M are delay times of the slave systems. The chain of cellu-
lar automata with time delayed feedback in the coupling term is presented graphically
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(a) (b)

(c)

Figure 3.41: (a) Output of the master cellular automaton. (b) Output of the 5th slave cellular
automaton x5 with spatial coupling, which anticipates the master’s sequence in time by τ ′ = 5.
(c) Output of the 5th slave cellular automaton x5 with time delayed feedback, which anticipates
the master’s sequence in time by τ ′ = 5.

in Figs. 3.40a,c. Numerical results shown in Figs. 3.41a,c reveal that the same pattern
shifted in time can be produced by slaves with delays of magnitude τm = 1. Then the
5th slave cellular automaton is shifted in time by τ ′ = M ·τm = 5 following the summing
rule for which the variable x

(n)
M (i) anticipates x

(n)
0 (i) by a time τ ′ =

∑M
m=1 τm. Anticipa-

tion of the future patterns of the master cellular automaton could enable synchronous
behaviour of a set of real-working units (for instance cellular automata implemented
electronically) which are coupled and separated by distance s from each other. When
the anticipation time corresponds to the time needed by a signal to go from one unit
to the other through the distance s, then such cellule would be able to perform parallel
operations, for instance during image processing [131].

An interesting phenomenon appears in the slave outputs for the delay times τ > τc

where τc is a critical delay time. For such delay times the patterns remain stable for any
τ and have a form different than Sierpiński triangle. In Fig. 3.42 the pattern produced



3.2. Anticipated synchronization in spatiotemporal systems 99

by the i = 4 slave cellular automaton zooms in the pattern produced by the i = 2 slave
cellular automaton. On the other hand, the pattern produced by the i = 3 and i = 5

slave cellular automata have different form than that produced by the i = 2 and i = 4

slave cellular automata. Nevertheless, the same occurs, the i = 5 slave cellular automata
zooms in the pattern produced by the i = 3 slave cellular automata. The only difference
between the patterns of i = 2 and 4 as well as between i = 3 and i = 5 slave cellular
automata consists in the scales of the patterns. These two different types of triangles
appear in an oscillatory way during the time evolution of the cellular automata with
the scale increasing.

Figure 3.42: From the upper left to the lower right: the spatiotemporal pattern produced by the
second, third, fourth and fifth slave cellular automata.



100 3. Anticipated synchronization: characterization

3.3 Conclusions

In this Chapter we presented analytical and numerical stability analysis for the antici-
pated synchronization in FitzHugh-Nagumo neurons driven by noise. Analytical sta-
bility analysis revealed that the typical shape of the cross-correlation diagram in the
parameter space K and τ in chaotic systems as well as in the case of FitzHugh-Nagumo
systems driven by noise may be related, and be due to internal or external noise sources.
In numerical simulations, the lack of synchronization was characterized by two types
of errors, additional firings in the slave system and the standard deviation of anticipa-
tion times between master and slave. Numerical simulations, as well as an experimental
implementation of FitzHugh-Nagumo equations, showed that anticipated synchroniza-
tion is robust even when different realization of noises are injected into the master and
the slave. Finally, coupling of many systems in a chain enabled us to obtained larger
anticipation times and allowed to eliminate errors occurring during synchronization.

Further we studied the occurrence of anticipated synchronization in spatiotempo-
ral systems, in particular in complex Ginzburg-Landau equations and in the model for
chemical reaction of CO oxidation on the platinum surface. The ranges of parame-
ters obtained through numerical simulations, as well as those calculated analytically,
revealed a new features. It appeared that the best coupling in the coupled complex
Ginzburg-Landau equations for obtaining the largest anticipation times is a complex
one, maintaining however the positive real part of the coupling constant K with the
standard shape of cross-correlation diagram in the parameter space τ and K observed
so far in many systems. We introduced the phase factor to the coupling constant and
showed that it causes an increase in the largest anticipation time in comparison with
commonly used real coupling constant. However, in the case of the model for chemical
reaction of CO oxidation on the platinum surface the coupling constant had to be taken
negative in order to obtain anticipated synchronization. Moreover the shape in the pa-
rameter space τ and negative K appeared to be different than it is usually observed in
other systems. On the example of Ginzburg-Landau system we showed that the mag-
nitude of the largest anticipation time is related to the linear autocorrelation time of the
system. As a consequence, the largest anticipation time varies when system parame-
ters are varied. Thus the maximum anticipation time in the defect turbulence regime
was the smallest one in comparison with the one achieved in the bichaos and the phase
turbulence regimes. Finally, the decreasing of linear autocorrelation times induced by
adding of new spatial dimensions leads to a decrease of the maximum anticipation time,
as was shown in the two dimensional case.

Since experimental requirement are rather for non local coupling, we searched for
other possibilities for coupling the systems. Numerical simulations revealed that in the
realistic model for chemical reaction of CO oxidation on the platinum surface the antic-
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ipated synchronization is possible for partially global coupling, through averaging the
domains (however of limited sizes) of the master and couple them with the correspond-
ing domains in the slave.

Finally, we demonstrated that the delayed feedback enables zero-lag synchroniza-
tion between spatially separated neural tissues. We considered the master system as
the sensory receptor which receive the stimulus and send the information to the distant
areas of the brain which we considered as a slave. Since the experimental observation
show that some cortical areas in the brain synchronizes without time lags, we think that
our hypothesis may be relevant to this problem.

In the last part of the Chapter we have discussed unidirectionally coupled cellular
automata and also in this case, we have showed that the slave cellular automaton may
anticipate the future pattern of the master cellular automaton. The fact that the cascade
of slave systems enables larger anticipation times could be useful in performing fast
data processing or other tasks with use of cellular automata. An array of real-working
cellular automata with particular couplings (with spatial or time delay), could perform
calculations in parallel and synchronously with zero time lag between their output sig-
nals. Finally, the possibility of obtaining the anticipated synchronization with the de-
layed coupling term containing the delayed in space variable instead of delayed in time,
is the proof that the slave system with the delayed coupling may be considered as a spa-
tially extended N dimensional system.





Chapter 4

Dynamical mechanisms of anticipated
synchronization

Anticipated synchronization has been often described as a rather counterintuitive phe-
nomenon due to the possibility of the slave system to anticipate the unpredictable evo-
lution of the master [97, 99, 102]. In Section 4.1 we provide a simple explanation for
the physical mechanism behind the anticipated synchronization using delayed coupled
excitable systems subject to a common forcing (published in Ref. [134]). In Section 4.2
we study in detail the anticipated synchronization in chaotic systems. The use of the
modified system approach allows us to understand many features of the phenomenon.
Finally in section 4.3 we compare the anticipated synchronization method with the de-
layed feedback control method.

4.1 Mechanism of anticipated synchronization in excitable
systems

4.1.1 Characterization of the response time

In order to deepen into the actual mechanism responsible for the anticipated synchro-
nization, we consider two unidirectionally-coupled identical Adler’s systems (see Sec-
tion 2.1 and Ref. [135]) with delayed coupling subject to a common external perturbation
I(t),

ẋ = µ− cos(x) + I(t) (4.1)

ẏ = µ− cos(y) + K(x− yτ ) + I(t) (4.2)

When I(t) = ξ(t) is a zero-mean Gaussian noise, anticipated synchronization occurs
as shown in Fig. 4.1, where we plot the master and slave outputs for a particular value
of K > 0 and τ . Note that the slave system anticipates the firing of a pulse in the master
by a time interval approximately equal to τ . If we increase the coupling constant K or
the delay time τ beyond some values, anticipated synchronization is degraded, i.e., the
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Figure 4.1: Time series of the master system x (solid line) and slave system y (dashed line)
subjected to white Gaussian noise of zero mean and correlations 〈ξ(t)ξ(t′)〉 = Dδ(t−t′), obtained
by numerical simulation of Eqs. 4.1 and 4.2. Other parameters are: µ = 0.95, K = 0.01 τ = 1.
The noise intensity is D = 0.017.

slave system can emit pulses which do not have a corresponding pulse in the master’s
output, although the reverse case never occurs. Upon further increasing K or τ , the
anticipation phenomenon disappears. The results are analogous to those obtained for
the FitzHugh-Nagumo model (see Section 3.1).

In order to understand the mechanism of the observed phenomenon, we first ana-
lyze the behavior of the master system alone under the effect of a single perturbation
I(t) = p0δ(t− t0) acting at a certain time t0. The effect of this perturbation appears only
as a discontinuity of the x(t) variable at time t0 as x(t+0 ) = x(t−0 ) + p0. The condition for
the perturbation to be larger than the excitability threshold, is that x(t+0 ) > x+, where
x+ is the unstable fixed point of Eq. 4.1. From now on, we set the initial condition to
be in the rest state, x(t−0 ) = x−, where x− is the stable fixed point of Eq. 4.1, such that
the minimum value for the amplitude in order to excite a pulse is p0 > 2 arccos µ and
the system develops a pulse after a certain response time tr. This time can be precisely
defined as the time it takes x(t) to reach a given reference value, e.g. xr = π/2. From
Eq. 4.1 we have tr =

∫ π/2

x(t+0 )
dx

µ−cos x
which yields

tr =
1√

1− µ2
ln

[
(1− b)(b−1 tan

x(t+0 )

2
+ 1)

(1 + b)(b−1 tan
x(t+0 )

2
− 1)

]
(4.3)

where b =
√

1−µ
1+µ

. In Fig. 4.2 (upper panel) we plot the response time as a function
of the parameter µ for a given value of the perturbation amplitude p0. Note that be-
low the excitability threshold, p0 < 2 arccos(µ) (equivalently µ < cos(p0/2)), tr does
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Figure 4.2: Upper panel: Response time tr versus µ for the Adler system x perturbed by p0δ(t)
with p0 = 2 from Eq. 4.3. Lower panel: time series for x(t) for µ = 0.95 (solid line) and µ = 0.97
(dashed line). Both systems have been perturbed at t0 = 10 by a pulse of constant amplitude
p = 1.7 and duration ∆t = 0.4. Note that, in agreement with the left panel, the system with the
larger value of µ pulses before the one with the smaller value.

not exist. For µ > cos(p0/2) the response time tr is a decreasing function of µ which
approaches zero as µ → 1. This shows that the response time to an above-threshold ex-
ternal perturbation progressively decreases as the Andronov bifurcation point (|µ| = 1)
is approached, in agreement with the numerical result shown in Fig. 4.2 (lower panel).
The fact that the response time decreases with lower excitability threshold, and that in
the coupled system the slave can emit pulses that are not followed by a pulse in the
master, suggests that the mechanism for anticipation in the master-slave configuration
is that the slave has a lower excitability threshold than the master. This is supported
by the following qualitative argument: Let us assume that at t = t0 both systems,
master and slave, are in the rest state x(t−0 ) = y(t−0 ) = x−. The effect of the pertur-
bation changes both values to x(t+0 ) = x(t−0 ) + p0, y(t+0 ) = y(t−0 ) + p0. Due to the cou-
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pling, the slave can be considered to have, at this time, an effective system parameter
µeff(t0) = µ + K[x(t+0 ) − y(t+0 − τ)] = µ + Kp0. Since µeff(t) > µ also for all times t such
that t0 ≤ t < t0 + τ , the excitability threshold of the slave has been reduced and the
response time decreases.

4.1.2 Effect of the delayed coupling term on the excitable system

To give a more rigorous evidence for this explanation, we consider now two coupled
systems, Eqs. (4.1-4.2), in the presence of a single perturbation which we choose to be a
pulse of constant amplitude p and duration ∆t acting at time t0 in which both systems
are in the rest state x(t−0 ) = y(t−0 ) = x−. The results are reported in Fig. 4.3. For a suffi-
ciently large perturbation, the master and the slave respond with an excitable spike and
the slave pulse anticipates the master pulse (Fig. 4.3a). For small perturbation ampli-
tude no pulses are generated and both systems respond proportionally to the applied
stimulus (Fig. 4.3c). However, an intermediate amplitude of the perturbation triggers
the emission of an excitable pulse by the slave system while the master responds lin-
early (Fig. 4.3b). This confirms a lowering of the excitability threshold of the slave as
compared to the master (see Fig. 4.4), which is systematically found for all coupling
parameters that yield anticipated synchronization. The process of decreasing of the ex-
citability threshold of the slave stops for the coupling value K ≈ 0.1 and it is because for
larger coupling values the slave system starts to oscillate with an amplitude that goes
to infinity. This is due to the presence of a time delay which makes the system infinite
dimensional and thus may induce periodic oscillations and even chaos (see Section 2.4).
Therefore the effect of this particular coupling scheme on the slave system is to lower
its excitability threshold in such way that the difference between the response time of
the master and the slave to an external perturbation equals approximately the delay in
the coupling term, τ . It is worth noting that when K or τ tend to zero, not surprisingly
the thresholds for the slave and the master tend to be equal, while for large values of τ

the difference between the two thresholds is very large.
The same reasoning followed during the explanation of the anticipated synchro-

nization in excitable systems can be used if the perturbation applied to both systems
is a white noise source. This allows us to explain why the erroneous synchronization
events correspond to the slave system firing a pulse that is not followed by a pulse in
the master: for a particular noise level the master response is proportional to the per-
turbation while the slave emits an excitable pulse. By increasing the noise level both
master and slave emit excitable pulses, each pulse of the slave being anticipated respect
to that of the master.

Since, as we have already shown, master and slave systems respond to external per-
turbations with different response times, a question which arises is whether it is possible



4.1. Mechanism of anticipated synchronization in excitable systems 107

Figure 4.3: Response of the master (solid line) and slave (dashed line) for three different ampli-
tudes of the singular perturbation of duration ∆t = 0.4 at time t0 = 10: (a) p = 1.7, (b) p = 1.65
and (c) p = 1.61. Other parameters are µ = 0.95, τ = 5 and K = 0.01.

to chose the parameters such that the anticipation time is arbitrarily large or not. In par-
ticular, if the anticipation time can be larger than the master response time, τ > tr, a
result that would violate the causality principle. In order to answer this question, we
plot in Fig. 4.5 the results of integrating Eqs. 4.1 and 4.2 under the effects of a single
perturbation for three different values of the parameter τ . When τ < tr (Fig. 4.5a) the
anticipation time is approximately equal to τ . However, when τ � tr, the anticipation
time strongly differs from the delay time, such that the slave anticipates the master by
a time interval always lower than tr (Fig. 4.5b,c). This is a reasonable limit for the an-
ticipation time: the pulse cannot anticipate the perturbation which created it. In other
words, master and slave are both ”slaves” of the external perturbation.

In order to assess the generality of our hypothesis, we have also considered two
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Figure 4.4: The ratio for Adler’s system between the slave and the master excitability threshold
as a function of K for τ1 = 0.05, τ2 = 0.2, τ3 = 0.35 and τ4 = 0.5. Considered system have
parameter µ = 0.95. Perturbation is applied at time t0 = 10 with magnitude p = 1.635 and
duration ∆t = 0.4. The dashed line corresponds to the constant excitability threshold of the
master.

delayed coupled FitzHugh-Nagumo systems:

ẋ1 = x2 + x1 −
x3

1

3
ẋ2 = ε(a− x1) (4.4)

ẏ1 = y2 + y1 −
y3

1

3
+ K(x1 − y1,τ )

ẏ2 = ε(a− y1) (4.5)

In the excitable regime, which occurs when |a| > 1, the system possesses a single steady
state. As the critical value |ac| = 1 is approached, the excitability threshold is low-
ered [136]. In this sense, the control parameter a plays the same role as the parameter µ

in Adler’s equation. In fact, we have checked that also in this case the response time of
the system to an external perturbation decreases as the critical value ac is approached
(see Fig. 4.6). The response time in FitzHugh-Nagumo system in Eq. 4.4 may be cal-
culated by integrating the following equation: dt =

x2
1−1

ε(a−x1)
dx1. Then, we define the re-

sponse time as the time needed for the system to go from x0
1 = a+η (where−|a| < η < 0

if a > 0 or |a| > η > 0 if a < 0) to the reference point which we take as x1
1 = 0. Then the
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Figure 4.5: Two coupled Adler systems (master and slave) with a coupling parameter K = 0.01
and delay time (a) τ = 1, (b) τ = 5 and (c) τ = 50. Both systems have µ = 0.95 and are perturbed
at time t0 = 60 with a pulse of magnitude p = 1.7 and duration ∆t = 0.4.

equation for the response time tr = ∆t = t1 − t0 is the following:

tr =
1

ε

[
(1− a2) ln

(
a

η

)
+ (a + η)2

]
(4.6)

where the dependence on parameters ε and a is evident. As ε increases the response time
decreases and as ε → 0 the response time becomes very fast, almost instantaneous. This
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Figure 4.6: Time series of the variable x1 of the FitzHugh-Nagumo system for a = −1.01 (dashed
line) and a = −1.08 (solid line). In both cases it is ε = 0.09. As indicated by the vertical dotted
line, the system is perturbed at a time t0 = 200 by a pulse of amplitude p = 0.4 and duration
∆t = 1. Note that the response time decreases with increasing a.

analytical result is in agreement with the well known characteristics of the parameter ε.
On the other hand as the absolute value of the parameter a increases, the distance from
the steady fixed point, to the reference point x1

1 = 0 increases and is equal to |a|, thus
making a contribution to longer response times. For the unidirectionally delayed cou-
pled system we find, as before, that the excitability threshold for the slave is lower than
that of the master (see Fig. 4.7) and that the maximum anticipation time is limited by
the response time of the master. We have also calculated numerically the ratio between
the slave and the master excitability thresholds as a function of K for different values
of delay time τ (see Fig. 4.8), which exhibits the same behaviour as the Adler’s system:
for a particular range of coupling parameter K the excitability threshold of the slave de-
creases, and this process becomes stronger as the delay time τ increases. However, the
process of decreasing of the excitability threshold stops at some particular delay time
values, as in the previously discussed case of the Adler’s system, because the difference
variable ∆ = x− yτ becomes non-zero for τ > tr.

Finally, it is worth mentioning that we have also found the same phenomenology for
two delayed coupled Hodgkin-Huxley systems. The ubiquity of this effect is an indi-
cation that the lowering of the excitability threshold of the slave in a delayed coupling
scheme is a general mechanism for the anticipated synchronization in excitable systems.
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Figure 4.7: Response of the master (x1, solid line) and slave (y1, dashed line) for two coupled
FitzHugh-Nagumo systems with a = 1.01, ε = 0.09, τ = 4, K = 0.1, after perturbation at
t0 = 200 by a pulse of amplitude p and duration ∆t = 1. For large amplitude, p = 0.4, case (a),
both systems pulse whereas for the smaller amplitude, p = 0.3, case (b), there is only a pulse in
the slave variable.

4.1.3 Analysis of the delayed coupling term

Let us look at the delayed coupling term K(x − yτ ) as a particular case of the more
general form: α(x − y) − β(yτ − y). For α = β = K the general form reduces to the
form of the delayed coupling scheme. The first term α(x− y) is a synchronization term
which for particular values of the coupling constant α pushes systems to synchronize.
The term β(yτ − y) is the one used in the delayed feedback control method proposed
by Pyragas [45] to control the dynamics of the system, i.e. to induce a transition from
chaos to the stable periodic orbits or stable fixed points, or vice versa. In other words,
the delayed feedback control term changes the parameters of the system, what can be
easily seen when looking at the bifurcation diagrams of the master and the slave. In
figure 4.9 we see that the Hopf bifurcation in the master and the slave occurs at different
values of the parameter a. This difference is determined by parameters K and τ .
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Figure 4.8: The ratio for FitzHugh-Nagumo system between the slave and the master excitabil-
ity threshold as a function of K for τ1 = 0.05, τ2 = 0.08, τ3 = 0.1 and τ4 = 0.12. The dashed line
corresponds to the constant excitability threshold of the master.

Figure 4.9: Bifurcation diagrams for two coupled FitzHugh-Nagumo systems master x and
slave y. Delayed coupling term has the following parameter values: K = 0.15 and τ = 3.
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Figure 4.10: An anticipation time tant observed between a master and a slave responses depend-
ing on the difference δµ of the parameters µslave of master and µmaster of slave. Both systems
are coupled unidirectionally with a constant parameter K and fixed zero delay time τ = 0. The
control parameter in this case is µslave of the slave system, meanwhile µmaster of master is left
constant.

A further confirmation of this mechanism is that, for τ = 0, the slave can still antici-
pate the master, whenever the parameters in both systems are different. We study in de-
tails the relation between tant and δµ, where tant is the difference time between masters’
and slaves’ responses and δµ = µslave − µmaster. Numerical results for Adlers’ system
(see Fig. 4.10) show that the anticipated synchronization appears when µslave > µmaster.
When µslave < µmaster the synchronization also occurs but is retarded (then tant < 0).

In the case of the FitzHugh-Nagumo systems driven by noise we observe the same
phenomenology. First we couple with the synchronization scheme K(x− y), the master
being in the excitable regime with the slave being in the oscillatory regime. The effect
of this way of coupling (see Fig. 4.11) is that for the particular value of the coupling
strength K, the slave synchronizes to the master with retardation. On the other hand,
when we reverse the configuration and consider the master in the oscillatory regime and
the slave in the excitable regime, we observe that the slave synchronizes and anticipates
with the master (see Fig. 4.12).
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Figure 4.11: Upper and middle panels: uncoupled master and slave FitzHugh-Nagumo systems
with parameters, respectively, a = 0.97 and a = 1.01. Lower panel: coupled master (solid line)
and slave (dashed line) with the synchronization scheme K(x− y) for K = 0.1.
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Figure 4.12: Upper and middle panels: uncoupled master and slave FitzHugh-Nagumo systems
with parameters, respectively, a = 1.01 and a = 0.97. Lower panel: coupled master (solid line)
and slave (dashed line) with the synchronization scheme K(x− y) for K = 0.35.
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4.2 Modified-system approach to chaotic systems

Recently a new modified-system approach has been proposed in order to understand
the reasons for the occurrence of synchronization [137]. The authors in [137] show that
synchronization of the slave ẏ = f(y) + K(x-y) with the output of the master ẋ = f(x) is
possible for such parameters at which the uncoupled slave doty = f(y) − Ky is in the
period-one oscillatory or in the steady-state regimes.

The system of differential equations for y with K can be considered as the result of
two processes taking place simultaneously. The first term, Ky, is proportional to the
slaves’ variable and the second one, Kx, is the amplitude of the external signal. Both
processes are correlated with each other by means of the parameter value K, never-
theless can be considered separately in order to understand better the mechanisms of
synchronization.

In this Section we apply this modified system approach to clarify the occurrence of
anticipated synchronization in chaotic systems.

4.2.1 Diffusive delayed coupling scheme

We consider two unidirectionally coupled systems in the master-slave configuration:

ẋ = f(x)

ẏ = f(y) + K(x− yτ ) (4.7)

where the slave is coupled to the master only through one variable. We treat separately
the effects of the coupling term K(x−yτ ) → K1x−K2yτ , one part of which is an external
forcing of magnitude K1, coming from the master system, while the second part is the
delayed feedback term of magnitude K2. Let us first look at the behavior of the modified
slave system:

ẏ = f(y)−K2yτ (4.8)

which is free from any influence of the master.
In particular, we consider two Rössler systems (see Section 2.2), the master:

ẋ1 = −x2 − x3

ẋ2 = x1 + a x2

ẋ3 = b + x3(x1 − c) (4.9)

and the modified slave:

ẏ1 = −y2 − y3 −K2y1,τ

ẏ2 = y1 + a y2

ẏ3 = b + y3(y1 − c) (4.10)
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where K2 is the coupling constant which will serve us as the control parameter. The
regime where anticipated synchronization occurs between these systems, in the case
when K = K1 = K2 is plotted in Fig. 4.13.

Figure 4.13: The cross-correlation diagram between signals of the master x1(t) and the slave
y1(t− τ) Rössler coupled system in the parameter space K − τ . Black (white) color means high
(low) correlations.

The effect of delayed feedback on the chaotic system is well known and exhaus-
tively studied since the publication of Pyragas in 1992 [45]. A delayed feedback loop
adequately applied to a system leads to the stabilization of the chaotic trajectories of the
system, changing them to periodic oscillations or even fixed points solutions. We are
interested however, in how the delay time and the coupling constant are related during
the delayed feedback control process. To assess this problem we consider the coupling
constant as the control parameter and look at the bifurcation diagrams for different val-
ues of the delay time.

In Fig. 4.14 we plot the bifurcation diagrams of the master Rössler system (Eq. 4.9)
and the modified slave Rössler system (Eq. 4.10). We can see that while the master un-
dergoes the route to chaos, the modified slave with non-zero delay time τ and coupling
constant K2 is in the fixed point state for a wide range of parameter c. In view of this
observation, anticipated synchronization is induced by the external forcing K1x1 in the
slave being in the fixed point state. To clarify this observation we analyze in more detail
the effects of the delay feedback on the slave system.
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Figure 4.14: Bifurcation diagram for the master Rössler system with the change of the control
parameter c. The line below the bifurcation diagram shows that the slave, with K1 = 0 (uncou-
pled from the master), K2 = 2 (with delayed feedback term) and τ = 0.1, remains in the steady
fixed point state whenever c is changed. Maxima of the time series are plotted.

(a) (b)

Figure 4.15: Bifurcation diagrams for the uncoupled slave system K1 = 0 driven by the delayed
feedback term K2y(t− τ). Bifurcation diagrams are provided for the delay times: (a) τ = 0 and
τ = 0.6, (b) τ = 0.1 and τ = 1.05. Maxima of the time series are plotted.

In Fig. 4.15a we plot the bifurcation diagrams for the modified slave, Eq. 4.10, for
two delay values τ = 0 and τ = 0.6 vs. K2. The slave system undergoes a transition
from chaotic to periodic oscillations and finally to the fix point state through an inverse
cascade of period doubling. This transition depends on the value of delay time τ . For



4.2. Modified-system approach to chaotic systems 119

Figure 4.16: Bifurcation diagrams for the uncoupled slave system K1 = 0 driven by the delayed
feedback term K2y(t − τ). Bifurcation diagrams are provided for different delay times τ = 0.6,
τ = 0.7, τ = 1.1 and τ = 1.2. Maxima of the time series are plotted.

small delays the system reaches the fix point state at smaller coupling values, while for
larger delays it requires larger values of the coupling constant. The bifurcation diagram
for τ = 0.6 is shifted to the right (in the direction of larger values of K2) in comparison
with the diagram for τ = 0. This shift is responsible for the synchronization being antic-
ipated. Large delays in the slave yields chaotic state for particular values of K2 whereas
small delays yields steady or oscillatory regular states for the same coupling strength
K2. It seems that the bifurcation diagram for the larger delay shown in the lower panel
of Fig. 4.15b, has the same form but it is somehow stretched horizontally in compar-
ison with the bifurcation diagram for the smaller delay presented in the upper panel
of Fig. 4.15b. If the coupling constant K2 in the lower panel is rescaled by multiplying
it, approximately, by a factor 2 we observe in both panels exactly the same bifurcation
diagrams.

Furthermore, when comparing the bifurcation diagrams of Fig. 4.16 with the cross-
correlation diagram in Fig. 4.13 it is seen that the stability of the anticipated synchro-
nization manifold depends on the stability of the modified system: if the modified sys-
tem is in its steady state, then anticipated synchronization is possible. Otherwise, if
the modified slave is oscillatory or chaotic, anticipated synchronization cannot occur.
Thus the form of the cross-correlation diagram is strictly determined by the form of the
inverse bifurcation diagrams for the modified slave system. The white region represent-
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ing small cross-correlations for small couplings at any time delay, is caused by the fact
that the modified slave has still some internal oscillatory, regular or irregular, dynamics
for such couplings. As the system goes into the steady state at some critical coupling
value, the anticipated synchronization can be observed, otherwise if the system never
reaches the steady state, anticipation is never observed (it occurs for large delays). It is
worth noting that with increasing coupling the instability of the modified slave (see bi-
furcation diagrams in Fig. 4.16) is due to the appearance of oscillations whose amplitude
grows to infinity.

Now, let us look at the effect of the external forcing coming from the master. An
external signal can excite chaotic dynamics in a system initially being in the steady state.
It shifts again the system back through the inverse cascade of the period doubling. Since
the inverse bifurcation diagrams for different delays differ in form, the external forcing,
which for all delays is the same K1x1, will induce different changes in the slave system.
The external force eliminates the distance between the fixed point and the region where
the unstable orbits exist. Since the dynamics of a chaotic system consists, in principle,
of an infinite number of unstable periodic orbits then the slave may be pushed to visit
the unstable periodic orbits of the master. The term K1x1 can be considered in fact as a
force, since when it is switched off the slave returns to its steady fixed point.

(a) τ = 0 (b) τ = 1

Figure 4.17: Time series for coupled master (dashed line) and slave (solid line) harmonic oscil-
lators with the coupling strength K = 0.1 and delay times (a) τ = 0 and (b) τ = 1. The slave first
is stabilized by delayed feedback signal into the steady fixed point and then at time t = 210 the
external forcing from the master is applied.

The above considerations show that the anticipation phenomenon is related only to
the form of the modified system and thus depends only on the delayed feedback term.
As the delayed feedback term K2y1,τ is responsible for the frequency and the phase shifts
of the oscillations, the external force K1x1 is responsible for the amplitude of oscillations
of the slave. In fact, when changing the value of the constant coupling to K1 = 0.5K2,
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(a) (b)

Figure 4.18: Amplitude and period of oscillations of the slave system during the transient time
for coupling strength K = 0.1 and delay time (a) τ = 0 and (b) τ = 1.

we observed that the slave synchronizes with the master with the anticipation but with
a half amplitude than that in the master. The anticipation is observed unchanged since
during the transient time the delayed variable induces the changes in frequencies in the
slave what leads to the anticipation phenomenon. We prove this statement by showing
that an ”extra” time, giving the contribution to anticipation, accumulates during the
transient, and is due to the squeezing in frequency of oscillations in the slave. This
squeezing is accompanied by an increase of amplitude. We show it on the example of
two coupled harmonic oscillators:

Master:
{

ẋ1 = − k
m

x2

ẋ2 = x1
Slave:

{
ẏ1 = − k

m
y2 + K1x1 −K2y1,τ

ẏ2 = y1

with the frequency ω0 =
√

k
m

. In Fig. 4.17a and 4.17b the transitions to synchroniza-
tion are shown, for the slave with the following coupling terms: K1x1 − K2y1 and
K1x1 − K2y1,τ . When the external force K1x1 is switched-on (at time t0 = 200) we ob-
serve the response of the slaves during the transient time, i.e., the time which is needed
to establish the synchronization. For the case where the synchronization with no antici-
pation establishes, the slave starts to oscillate with the constant frequency equal to that
of the master (Fig. 4.17a). However in the case of anticipated synchronization, during
the transient, the slave oscillates with different frequencies than that in the master until
the anticipated synchronization establishes (Fig. 4.17b), i.e. the frequency of the slave
adjusts to the frequency of the master. These changes in frequencies contribute to the
occurrence of anticipation and are strictly related to the existence of delay in the equa-
tions. The effects of two terms K1x1 and K2y1,τ may be estimated analytically through
the linear stability analysis, where only the term K2y1,τ contributes to the change of fre-
quency of the harmonic oscillator, taking the form ω =

√
k

m(1−K2τ)
. It is seen that this
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Figure 4.19: Two coupled Rössler systems with parameter mismatches and coupling scheme
K(x − y). Parameter values are: d = 0.55 and K2 = 1.35 (upper panel); d = 1.35 and K2 = 0.9
(lower panel).

frequency is larger than ω0 (ω > ω0), where ω0 is a frequency of the master and for τ = 0

reduces to ω = ω0.

Figure 4.20: Bifurcation diagrams for Rössler slave systems with feedback K2y2 of intensity K2

being the control parameter. The following values of parameter d are considered: d = 0.55, d = 1
and d = 1.35. Maxima of the time series are plotted.
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The delayed feedback in the anticipated synchronization scheme changes the sys-
tem dynamics, i.e. changes the parameters of the slave system. Thus, in principle, the
anticipated synchronization could appear between two chaotic systems coupled with
the diffusive scheme without delay, but with some parameter mismatches. This prob-
lem has been already studied in [138], where it is shown that indeed coupling of chaotic
systems with parameter mismatches can give anticipated or retarded synchronization.
We have demonstrated in Section 4.1, in an example of non-chaotic excitable systems,
that anticipated or retarded synchronization can be induced by coupling two systems
with different excitability thresholds (which are determined by the system parameters).
Let us now consider as a master the system {x1, y1, z1} described by Eq. 4.9 and as a
modified slave the following one:

ẋ2 = −dy2 − z2 −K2x2

ẏ2 = x2 + a y2

ż2 = b + z2(x2 − c) (4.11)

where we introduced a new parameter d; d = 1 when the two coupled systems are
identical. In Fig. 4.19 we show the time series for the systems of Eqs. 4.9 and 4.11 for
different values of the parameter d. In Fig. 4.19 (upper panel) the retarded synchroniza-
tion, meanwhile in Fig. 4.19 (lower panel) the anticipated synchronization are observed.

The bifurcation diagrams presented in Fig. 4.20 show that for the slave, which an-
ticipates the master (for d = 1.35), the first bifurcation leading to the disappearance of
the period-1 oscillations occurs faster for larger coupling strength than in the case of
zero-lag synchronization (for d = 1). Also for the zero-lag synchronization, the same bi-
furcation appears faster than in the case of retarded synchronization (d = 0.55). Accord-
ing to the presented analysis of the bifurcation diagrams, we conclude that the mecha-
nism of the appearance of anticipated synchronization in the above case is similar to the
case where delayed feedback is included in the coupling term. However, the quality of
the anticipated synchronization obtained by coupling the systems with parameter mis-
matches is worst than in the case for delayed coupling scheme. We suspect that it is due
to the differences in the bifurcation diagrams shown for different values of parameter
d in Fig. 4.20. In this case we cannot make any rescaling in order to obtain exactly the
same diagrams as it could be done in the case with the delayed coupling scheme (see
Fig. 4.15b).

4.2.2 Complete replacement scheme

So far we have considered systems without memory coupled by diffusive coupling.
However, anticipated synchronization can also be observed between systems contain-
ing internal delays and coupled through replacement scheme, for example in the Ikeda
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equations (studied in [97]):

ẋ = −αx− β sin xτ (4.12)

ẏ = −αy − β sin x (4.13)

where α, β > 0. In Eq. 4.13 the delayed variable yτ of slave is replaced by variable x

coming from the master. Time series for the above set of equations in the chaotic regime
are presented in Fig. 4.21. The bifurcation diagrams in Fig. 4.22 show that Eq. 4.12
exhibits chaos for particular ranges of parameter values. Starting from β = 0 (Fig. 4.22a)
or from τ = 0 (Fig. 4.22b) and increasing them, one can observe the period doubling
transition into chaos.

In the previous Section, we considered the delayed coupling scheme as a separate
actions of the two terms K1x and K2yτ , where the first one was the external forcing

Figure 4.21: Time series for master (solid line) and slave (dashed line) Ikeda equations. Param-
eters are: α = 5, β = 18 and τ = 3.

coming from the master meanwhile the latter was a delayed variable of the slave. In
the case of the replacement scheme of Eqs. 4.12 and 4.13, the two actions reduce to one,
namely to switch on the external forcing coming from the master. This is because the
slave system before switching-on the external forcing is already in the steady state. The
same result of anticipated synchronization would be obtained if we first consider the
slave as ẏ = −αy to which we add the external force of the form of −β sin x. We prove
this hypothesis by showing that the anticipated synchronization is still possible in the
system equations 4.12 and 4.13 when the slave system contains the term β1 sin yτ , with
the constant β1 such that the slave remains in the stable fixed point state. We use the
master from Eq. 4.12 and the following equation for the slave:

ẏ = −αy − β1 sin yτ1 −K sin x (4.14)
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(a) (b)

Figure 4.22: (a) Bifurcation diagram for Ikeda equation in function of β as a control parameter.
The parameters of the system are: α = 5 and τ = 300. (b) Bifurcation diagram for Ikeda equation
in function of delay time τ as a control parameter. The parameters of the system are: α = 5 and
β = 18. Maxima of the time series are plotted.

with the condition obtained through linear stability analysis: β = β1 + K. Numerical
simulations revealed that the condition for the occurrence of anticipated synchroniza-
tion is that the slave system at K = 0 has to be in a stable fixed point or in oscillatory
(period one) state. We suspect that during the successful anticipated synchronization
the slave at K = 0 can be in an oscillatory period one state, because the external forcing
from the master enters to the slave in the function sin x. Nevertheless, if the slave ex-
ceeds the period one oscillation, anticipated synchronization cannot occur. This result
is similar to that for the occurrence of generalized synchronization published in [137].

Following the previous analysis and according to the bifurcation diagram shown
in Fig. 4.22a we see that anticipation should occur for parameter β1 in the range β1 ∈
〈0, 11〉. Indeed, we observed through numerical simulations of Eqs. 4.12 and 4.14 that
the anticipated synchronization can be obtained only when parameter β1 is in the range
mentioned above and for particular values of constant K = β−β1. The anticipation time
is always equal to the delay τ existing in the master system and there is no restriction
for its magnitude. Moreover, the cross-correlation diagram in Fig. 4.23 shows that high
correlations between x(t) and y(t− τ) correspond exactly to the steady fixed point and
oscillatory, period one states. Thus, in order to obtain anticipated synchronization in the
considered systems it is necessary to have the master and the slave with equal internal
delays or very small delay in the slave.

Finally, the above analysis is also valid for the anticipated synchronization mecha-
nism in systems with many delay lines, studied for instance in [139]. Considering the
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Figure 4.23: Cross correlation diagram between master and slave outputs for Ikeda equations
in the parameters space of the slave β1 and τ1. Other parameters are α = 5, β = 18 and τ = 3 and
K = β−β1. Magnitude of correlations are described by colors: C < 0.9 (white), 0.9 < C < 0.999
(grey) and C > 0.999 (black).

system:

ẋ = −αx− β1 sin xτ1 − β2 sin xτ2 (4.15)

ẏ = −αy − β3 sin yτ1 − β4 sin yτ2 −K sin xτ3 (4.16)

the synchronization occurs in coupled systems only when delays τ1 and τ2 are equal in
both systems. Delay τ3 in a slave is in fact the conduction delay, which gives a trivial
solution for anticipation, zero-lag or retardation times equal to τ̄ = τ1 − τ3 or to τ̄ =

τ2 − τ3, depending on the choice of parameters βi for i = 1, ..., 4 and K. If K = β1 − β3

and β2 = β4 then we get the lag time τ̄ = τ1 − τ3, otherwise if K = β2 − β4 and β1 = β3

then we get τ̄ = τ2 − τ3. The choice between conditions: K = β1 − β3 and K = β2 − β4

determines the control parameters, in the first case it will be β3 and in the latter β4. In
order to observe anticipated synchronization in this case, the slave system (with K = 0)
has to be in a stable fixed point or oscillatory (period one) state as well.
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4.3 Anticipated synchronization as a delayed feedback con-
trol

In Section 2.2.3 we described the methods which enable us to control unstable orbits
in chaotic flows. One of such method is a delayed feedback control (DFC) which is
achieved via the modification of some system parameter p in the following way:

p(t) = K(y(t− τ)− y(t)) (4.17)

where τ is a positive constant time delay, being the period of the oscillations we want
to stabilize. The delayed feedback control in Eq. 4.17 may be interpreted in terms of
the coupled systems theory as the self synchronization since the current state y(t) of the
system tends to synchronize with its past state y(t − τ). It occurs when the control is
efficient leading to p(t) → 0, for some particular values of the parameter K and τ . On
the other hand, the anticipated synchronization operates with the following term:

q(t) = −K(y(t− τ)− x(t)) (4.18)

where in place of the current state of the system being controlled (y(t)), the variable
at current state of the other system (master x(t)) is injected. Thus the anticipated syn-
chronization may be interpreted as a process in which the slave system is controlled
to obtain the set of unstable periodic orbits which visits the master (if it is chaotic). A
delayed feedback control in this case consists on pushing the slave to have the output of
the master shifted ahead in time by τ , instead of the one periodic orbit usually desired
to obtain through delayed feedback control. In fact, in the delayed feedback control the
stabilization of the periodic orbit is obtained but without any reference periodic orbit.
The description of the delayed feedback control as self-synchronization is here an ad-
equate proof for the lack of the reference orbit: the system synchronizes with itself. In
the case of anticipated synchronization we know exactly the time series of the master
and thus we can estimate the phase shifts between the controlled slave system and the
master. The slave can be controlled because its equations have the same form of the
master and thus the attractors of both systems are the same. The slave has the same
infinite set of unstable periodic orbits, and for that reason it is possible to generate the
unstable periodic orbits of master in the slave.

The above fact indicates that in principle it might be possible to synchronize any two
systems such that the slave system contains all unstable (or stable) periodic orbits of the
master. This is the reason for which the chaotic system may be synchronized to the
simple oscillator frequency [140] or to the other chaotic system but with lower dimen-
sion [141, 142] and not vice versa. The slave should have dimension equal or higher than
that of the master. To show this we provide numerical simulations of two coupled sys-
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Figure 4.24: Anticipated synchronization between the harmonic oscillator of frequency ω0 =
0.85, period T ≈ 6.8 and amplitude A0 = 2 being the master (dashed line) and the Rössler
system being a slave (solid line) with chaotic period T ≈ 6. Delay time is τ = 0.8 and the
coupling parameter K = 0.55.

tems by a delayed coupling scheme: the harmonic oscillator (Eq. 4.11) and the Rössler
system (Eq. 2.20). The result is presented in Fig. 4.24, where the anticipated synchro-
nization is observed for particular coupling parameter K and delay time τ . The Rössler
system is forced by the delayed term Kyτ and after reaching the steady fixed point (see
Section 4.2), at time t = 410, the external forcing coming from the harmonic oscillator
is switched on. After the transient, the slave starts to synchronize with the master and
anticipates it by time τ . We checked that there exists a wide range of parameters for
which instead of the complete anticipated synchronization, the phase anticipated syn-
chronization occurs i.e. the slave has the frequency (with phase shift τ ) as that of the
master but the amplitude of these oscillations is different. The additional condition for
the successful entrainment of the slave is that the harmonic oscillator should have the
frequency near the frequency of the Rössler system. This is because the Rössler system
has the fixed chaotic period (for our set of parameters T = 6) i.e. the period is constant
but the amplitude changes chaotically. Then in order to control the Rössler system one
needs to choose the external forcing of the period Text ≈ 6. This can be clearly seen from
the cross-correlation diagrams in the parameter space τ and K obtained from numerical
simulations for different frequencies of external forcing (see Fig. 4.25).
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(a) (b)

(c)

Figure 4.25: Diagrams with cross-correlations between the outputs of the master harmonic os-
cillator and the slave Rössler system in the coupling parameters space τ and K for different
periods of the harmonic oscillator: (a) T = 5, (b) T = 6 and (c) T=6.8. Black colour corresponds
to correlations C > 0.99, grey to 0.9 < C < 0.99 and white to C < 0.9. The chaotic period of the
Rössler system in all cases was T = 6.
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4.4 Conclusions

In this Chapter we have provided a simple explanation of the physical mechanism be-
hind the anticipated synchronization in coupled excitable systems. Our conclusion is
that the anticipation in the slave is due to a reduction of its excitability threshold in-
duced by the delayed coupling term. As a consequence, the master and the slave re-
spond to the common external forcing with different response times. The proposed
dynamical picture allows us to explain all the general features of the phenomenon as
well as to determine in a natural way the maximum permitted anticipation time. This
mechanism allows to explain all the observations in the regime of anticipated synchro-
nization in such dynamical systems, in particular the erroneous firing of pulses in the
slave observed in FitzHugh-Nagumo systems driven by noise. In addition, it evidences
the causality of this phenomenon: the master and slave systems follow the applied ex-
ternal perturbations, although the response time of the slave system is shorter due to
the effects of the coupling.

Once the mechanism of anticipated synchronization in excitable systems is under-
stood, we turned our attention to chaotic systems. In particular, we studied in detail
anticipated synchronization using a modified system approach. The modified system
approach uses the uncoupled slave system but driven partially by the anticipated syn-
chronization scheme, namely, by the delayed feedback term. We observed that the de-
layed term in the coupling scheme pushes the slave system into the stable fixed point
state. Consequently, the external force coming from the master is injected into the sys-
tem being in the stable state. The external forcing pushes the stable slave into the chaotic
orbit regime, giving rise to the anticipated synchronization. Moreover, we noticed that
the cross correlation diagram which characterizes the stability of the anticipated syn-
chronization between the master and the slave in the parameter space K − τ , is fully
determined by the form of the bifurcation diagrams of the modified slave system. Antic-
ipated synchronization regimes correspond to the fixed point states on these bifurcation
diagrams. Lag synchronization and the same qualitative characteristics of bifurcation
diagrams are observed when coupled systems with parameter mismatches are stud-
ied. This result suggests that the delayed feedback in the anticipated synchronization
scheme acts on the system parameters, changing them in such a way that lag synchro-
nization can also be obtained.

Finally, we have revealed the similarity between the anticipated synchronization
phenomenon and the delayed feedback control. In view of the control theory, we in-
terpret the anticipated synchronization as a control of the slave which gives the set of
unstable periodic orbits occurring in the master, but shifted ahead in time. This simi-
larity is due to the resemblance of the coupling term used in delayed feedback control
as well as in the anticipated synchronization. The only difference between the delayed
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feedback control and the anticipated synchronization scheme is that in the former the
reference orbit does not exist (since the self-synchronization takes place), while in the
latter the master system serves as the reference and permits to estimate the phase shifts
of the slave induced by the delay time.





Chapter 5

Practical approach to predictability with
anticipated synchronization

In Section 5.1 we present a new control method for perturbed excitable systems based
on two steps: prediction and prevention. The method is applied to the Adler system.
For prediction we use the anticipated synchronization scheme, considering two uni-
directionally coupled excitable systems in a master-slave configuration. The master is
forced externally and its dynamics will be controlled, while the slave is an auxiliary
system which is used to predict the master’s behaviour. We demonstrate that efficient
control may be achieved for particular regimes of coupling parameters.

Predictability of chaotic systems is limited, besides the precision of the knowledge
of the initial conditions, by the error of the models used to extract the nonlinear dynam-
ics from the time series. In Section 5.2 we analyze the predictions obtained from the
anticipated synchronization scheme using a chain of slave neural network approximate
replicas of the master system. We compare the maximum prediction horizons obtained
with those attainable using standard prediction techniques with neural networks.

5.1 Predict-prevent control method for excitable systems

In this Section we propose a novel control method for perturbed excitable systems
which we call ”predict-prevent”. We consider two unidirectionally coupled systems
in the master-slave configuration, where only the master is subject to the external per-
turbation. The unperturbed slave is used to predict the response of the master system
to this perturbation. The slave is driven by a coupling with the master within the antici-
pated synchronization scheme. We consider two steps in the method, first the prediction
of the master’s response and then the prevention of the response by the master to that
perturbation.
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5.1.1 Prediction of the master response

To illustrate the method we consider two unidirectionally coupled Adler systems in a
configuration which allows to predict the response of the master:

ẋ = µ− cos x + pδ(t− tp) (5.1)

ẏ = µ− cos y + K(x− y(t− τ)) (5.2)

where µ is the constant parameter. If |µ| < 1 the system is excitable and otherwise it
is oscillatory (modulus 2π). At the critical point |µ| = 1 a saddle-node bifurcation on
invariant circle occurs. Other parameters are: K is the constant coupling parameter, τ

is the constant positive delay time and p is the magnitude of the perturbation applied
at time t = tp. Note that the perturbation is applied only to the master. For particular
coupling parameters τ and K the anticipation of the master by slave is possible (see
Fig. 5.1a,c).

The master will fire a spike when the external stimulus exceeds the value 2| arccos µ|.
We linearize Eq. 5.2 for the slave around τ ≈ 0 getting the following equation: ẏ =

µ/(1 − Kτ) − cos y/(1 − Kτ) + K(x − y)/(1 − Kτ). In order to excite the spike in the
slave, the following condition should be satisfied: K(x−y)/(1−Kτ) > 2| arccos µ|, since
the slave needs the same magnitude of perturbation as the master does in order to give
the non-linear response. Assuming that at the time t0 when the perturbation is applied
to the master, it has not given any pulse yet, thus we have x(t0) = − arccos µ + p. On
the other hand the slave is in its steady state y(t0) = − arccos µ. After introducing these
expressions to the above mentioned condition and rearranging terms, we are left with
the following conditions for the slave to anticipate the master:

τ <
1

K
and τ >

1

K
− p

2| arccos µ|
(5.3)

These conditions are plotted in Fig. 5.1b and reproduce qualitatively the numerically
obtained regions of anticipation presented in Fig. 5.1a.

5.1.2 Suppression of the master response

So far we have shown that we can predict the response of the master when it is subjected
to the external perturbation. Now we use this prediction to suppress the spike in the
master. We can suppress it by applying an the additional perturbation:

ẋ = µ− cos x + pδ(t− tp) + εδ(t− tε) (5.4)

ẏ = µ− cos y + K(x− yτ ) (5.5)
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(a) (b)

(c)

Figure 5.1: The difference between the response times of the master and slave with delayed
coupling term in the parameter space (τ,K). White region corresponds to the unstable or re-
tarded slave, other colors to the anticipation times 0 < tant < 1 (light grey), 1 < tant < 6 (dark
grey) and tant > 6 (black). The perturbation magnitudes are (a) p=1.635 and (c) p=2.8. (b) Ana-
lytically obtain region for anticipation in (K, τ) space bounded by the solid and dashed curves
(see Eq. 5.3).

where p is the magnitude of the perturbation applied at time tp with duration ∆t, ε is the
magnitude of the corrective perturbation which suppresses the response of master and
is taken to be ε = −p. Time tε is the time at which the corrective perturbation is applied
(tε > tp) such that it satisfies the condition cos(y(tε)) < cos(yth) for the threshold value
yth taken as the steady state of the slave y− = − arccos µ. In this case tε is estimated at the
time at which the slave starts to escape from its steady state. The threshold value may be
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Figure 5.2: (a) Prediction of the response of the master system by the slave with the parameters
τ = 3.84 and K = 0.24. (b) Suppression of one spike. Dashed line represents the slave and solid
line the master. The dotted line represents the perturbation in (a) and the corrective pulse in (b).

also taken as cos(y(tε)) < cos(y+) (where y+ = arccos µ is an unstable fixed point) what
would be the case in the practical implementation where the difficulty in distinguishing
between the escape from the steady state and fluctuations caused by noise could appear.
In Fig. 5.2 we demonstrate that the control is efficient and it enables the suppression of
the spike in the master. In other studies we have also applied our control method to
suppress two consecutive spikes appearing in the master (see Fig. 5.3). In this case if the
second perturbation appears when the master is still in the refractory time, then it can
occur that the slave responds to it meanwhile the master remains quite. Thus we face
with false alarms given by the slave.

False alarms appear for some range of coupling parameters τ and K which we have
estimated numerically. In Fig. 5.4 we present the results for the case for which the per-
turbation is too weak to excite a pulse in the master. The black region corresponds to the
situation in which the slave correctly predict the pulse of the master, meanwhile white
region corresponds to the situation in which the slave fires a spike. In the latter case the
delay time is too long and the lowering of the excitability threshold of the slave is too
strong. It is worth noting that the curve which separates the black and white regions is
the stability curve for the appearance of stable anticipated synchronization between two
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Figure 5.3: (a) Prediction of the responses of the master system by the slave with the parameters
τ = 3.84 and K = 0.24. (b) Suppression of two spikes. Dashed line represents the slave and
solid line the master. The dotted line represents the perturbation in (a) and the corrective pulse
in (b).

identical systems and is similar to the curves obtained in other systems. Our prediction
scheme considers the anticipated synchronization between two non-identical systems
because the perturbation is applied only to the master. However, if the master does
not fire and it responds to the perturbation linearly, then, in the approximation, we can
neglect the perturbation. This situation corresponds to the anticipated synchronization
scheme between two identical systems and hence we obtain the well-known stability
region.

The largest anticipation times can be achieved when the magnitude of the applied
perturbation is only slightly larger then the value of an excitability threshold of the mas-
ter (the excitability threshold is defined by the distance between the stable and unstable
fixed points of the system). It is a consequence of the fact that the maximum anticipa-
tion time that is possible to achieve is equal to the response time of the master. Since the
considered perturbation will only push the master slightly above the threshold, it will
start to follow the homoclinic connection exactly from the unstable fixed point and will
have a longer path to reach the stable fixed point. In the case in which the perturbation
is larger than the threshold value, the master starta its excursion much further from its
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Figure 5.4: The case when the perturbation is too weak to excite a pulse in the master. The black
region corresponds to the situation in which the slave correctly predict that the master will not
give a pulse, meanwhile white region corresponds to the situation in which the slave gives a
pulse (false alarm).

unstable fixed point, and will reach the steady state faster (see Fig. 5.5).
To get rid with the case when the perturbation exceeds significantly the threshold

value it is necessary to use stronger coupling values as it is seen on Fig. 5.1b. Thus, to
be sure that we can control all types of perturbations we need to choose quite strong
coupling K and not too large delay times τ . If we are able to estimate the range of mag-
nitudes of perturbations which disturb the master, then we can manipulate the coupling
parameters and choose the coupling K and delay time τ from the range which permits
larger anticipation times.

Figure 5.5: Schematic explanation of the excitation of the Adler system in polar coordinates. The
minimal perturbation pm needed to excite a pulse is defined as the distance between the stable
x− and unstable x+ fixed points which is pm = 2R = 2| arccos µ|. Such perturbation permits the
slowest response time of the master (from x+ to x−) and thus the largest anticipation time for
the slave. If the applied perturbation is p > pm then the response time of the master is faster
(from A to x−) and the maximum anticipation time decreases.
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5.1.3 Synchronization of systems with parameter mismatches

Anticipated synchronization can be also observed in the case in which the delayed cou-
pling term K(x− yτ ) is replaced by the synchronization coupling term K(x− y). How-
ever, in this case we need to introduce a mismatch between the parameters of the master
and the slave, which we define as δµ = µ′ − µ > 0, where µ is the parameter of the mas-
ter and µ′ is the parameter of the slave. We have observed that for particular values
of K and δµ, and when the perturbation is applied only to the master, anticipation be-
tween the master and the slave can occur. Numerical results for this case are presented
in Fig. 5.6.

Figure 5.6: Two Adler systems coupled with the synchronization scheme and with the param-
eter mismatch δµ. The perturbation magnitude is p=1.635. White region corresponds to the
retarded slave, other colors to the anticipation times 0 < tant < 0.1 (light grey), 0.1 < tant < 0.25
(dark grey) and tant > 0.25 (black).
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5.2 Neural networks and anticipated synchronization: a
comparison

Theoretically, an arbitrary large forecast horizon can be obtained using a chain of an-
ticipated synchronized exact replicas (slaves) of the original system [143] (see Fig. 5.7a).
However, it has been recently shown that this scheme is unstable to propagating pertur-
bations (the spatiotemporal character of the coupled chain introduces a convective-like
instability into the synchronization manifold [144]). Therefore, in a practical problem
where the slave systems are approximate replicas, there is no information about the
maximum attainable anticipation time.

In this Section, we analyze this problem using neural networks, one of the most
popular non-parametric statistical learning techniques, for approximating the nonlin-
ear dynamics from the available data (time series) [75]. The obtained neural models are
used as slaves in the anticipated synchronization scheme (see Fig. 5.7b) and the results
are compared with the exact-replicas case. Moreover, the practical forecast horizon ob-
tained is compared with an alternative standard forecasting method (forward iteration
of the neural model from the initial state, Fig. 5.7c). The results presented in this Section
were published in Ref. [145].

Figure 5.7: Scheme of the three different approaches to prediction studied. (a) anticipated syn-
chronization chain with identical slave copies, (b) anticipated synchronization chain with slave
neural networks, and (c) neural network forward iteration prediction.
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5.2.1 Theoretical limits for anticipation times in chaotic systems

We illustrate the delayed coupling scheme with two benchmark chaotic systems, the
Lorenz and Rössler models, with different strong and weak chaotic behaviors, respec-
tively. The Lorenz model is defined by the set of differential equations in Eq. 2.21 (see
Section 2.2), which we study for the parameter values σ = 10, b = 8/3, and r = 28,
with a corresponding largest Lyapunov exponent λ = 0.9 [132]. This gives a bound for
the prediction horizon t = 1/λ = 1.11. The Rössler model in Eq. 2.20 with a = 0.15,
b = 0.2 and c = 10 has a largest Lyapunov exponent λ = 0.09, giving a prediction hori-
zon t = 1/λ = 11.1. Note that the theoretical prediction horizons of both systems differ
by one order of magnitude.

We take two identical Lorenz and two identical Rössler systems, u0 for masters and
u1 for slaves, and couple them by using the scheme of Eq. 2.61 with coupling only in
the x variable, i.e. K (u0(t) − u1(t − τ)) = (K(x0(t) − x1(t − τ)), 0, 0). Fig. 5.8a shows
the stability region of the anticipated manifold u1(t) = u0(t + τ) for the Lorenz systems
by plotting in a grade scale the cross-correlation function between x1(t) and x0(t + τ).
From this figure, we estimate that the maximum anticipation time, τ = 0.13, is reached
for K = 19. In the case of coupled Rössler systems the maximum anticipation time is
τ = 0.91 for K = 0.5 (see Fig. 5.8c). In both cases, these maximum anticipation times are
shorter that the inverse of the largest Lyapunov exponents and, in fact, they are similar
to the linear prediction times of the original systems: 0.16 (Lorenz) and 0.95 (Rössler).
These values are obtained as the horizon where the error of a linear prediction is larger
than 5% of the system’s range, and agree with those values obtained from the auto-
correlation function. This suggests that the anticipated synchronization mechanisms is
limited to a neighborhood of t where u1(t− τ) can be linearly approximated in terms of
u1(t). We proof it analytically as follows: in order to eliminate the delay term u1(t − τ)

in Eq. 2.61 we consider the linear expansion, u1(t− τ) = u1(t)− τ u̇1(t). Substituting in
Eq. 2.61, we get the following equation:

u̇1(t) = f(u1(t)) +K (u0(t)− u1(t) + τ u̇1(t)) (5.6)

rearranging terms in the derivative, we get:

u̇1(t) =
I

I − K τ
f(u1(t)) +

K
I − K τ

(u0(t)− u1(t)). (5.7)

where K is a matrix composed on diagonal of the coupling constants K. Thus, us-
ing a first-order approximation, the anticipated synchronization scheme reduces to a
non-anticipated one but with different drive and response systems. Then the synchro-
nization manifold is not u1(t) = u0(t), but u1(t) = u0(t) + τ f(u0(t)) in the first-order ap-
proximation. This approach has been used to obtain anticipated synchronization in an
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array of chaotic RF (radio frequency) circuits [133]. The time evolution for the response
system given by Eq. 5.7 corresponds to that of the drive system but with a different time
scale t′ = t/(1−K τ). Anticipation requires t′ > t or, (at first order) 0 < 1−K τ < 1, giv-
ing the following two constraints for anticipated synchronization: K τ > 0 and K τ < 1.

This simple prediction has been compared with the numerical synchronization dia-
grams of the Lorenz and Rössler systems in the case when all variables are coupled us-
ing a diagonal coupling matrix K, (this has been chosen in order to improve the quality
of the approximation in Eq. 5.6). Figure 5.8a shows the stability region for the Lorenz
system together with the simple prediction curve K τ = 1. For comparison, we have
included in figure 5.8b the synchronization diagram coming directly from the approx-
imation scheme in Eq. 5.7. Note the similarity between the two figures so confirming
the validity of our simple approximation. The smaller correlation values for the case
with linear approximation (being C > 0.95 in Figs. 5.8b,d instead of C > 0.999 as in
Figs. 5.8a,c) are related to the fact that phase rather than complete synchronization is
achieved. The amplitude of oscillations in the slave is smaller in comparison to that in
the master.

The bound K > 0 is only a necessary condition for the anticipated synchronization,
but it turns out that a minimum coupling value is required in order to achieve synchro-
nization. Figures 5.8c and 5.8d show the equivalent results for the Rössler system. The
results shown in figure 5.8 show that in these chaotic systems anticipated synchroniza-
tion can be effectively considered as the standard synchronization scheme between two
non-identical systems, in which the slave runs at a different time scale than the master.

It might look deceiving that the anticipated synchronization scheme discussed here
can not forecast longer than the linear prediction time and much less than the inverse
of the largest Lyapunov exponent. We will show in the next Section that the situation
improves dramatically when we consider a chain of coupled chaotic slave systems. In
this case, the anticipation time can be made larger than any of those characteristic times
mentioned above.

5.2.2 Coupled systems in a chain

We illustrate the delayed coupling scheme with two benchmark chaotic systems, the
Rössler (Eq. 2.20) and Lorenz (Eq. 2.21) models, with different strong and weak chaotic
behaviors, respectively, indicating short and long theoretical forecast horizons (see sec-
tion 5.2.1).

To make anticipated synchronization longer it is necessary to consider a chain of
slave systems. Voss [143] already considered a chain of coupled systems and showed
that the stability of the system can be enhanced and larger anticipation times can be
obtained. The behavior of a chain of connected systems has been also studied for
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Figure 5.8: Cross-correlation intensity in the parameter space K and τ for anticipated synchro-
nization scheme with an identical copy of a Lorenz slave for (a) anticipated synchronization
scheme (Eq. 2.61) and (b) the first-order approximation scheme (Eq. 5.7). Panels (c-d) as in (a-b)
but for the Rössler system. The dashed lines in the top-right corners corresponds to the curves
K τ = 1. White(black) color corresponds to high(low) correlation.

FitzHugh-Nagumo neuron model subjected to noise (see Section 3.1.3), where it has
been shown that coupling of above systems in a chain decreases the number of errors in
the response neurons and makes anticipated synchronization more stable.
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Figure 5.9: Cross-correlation intensity in the parameter space K and τ for anticipated synchro-
nization scheme with identical copies of (a) one Lorenz slave, (b) ten slaves, (c) twenty slaves.
Panels (d-f) as in (a-c) but for the case of slave neural networks. Black(white) color corresponds
to high(low) correlations.
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Figure 5.10: Time series of the master Lorenz system (solid line) and (a) the first slave, (b) the
twentieth slave and (c) two hundredth slave. Time series for slave are drawn with dashed line.

A chain of identical N + 1 unidirectionally coupled systems is defined in the follow-
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ing way:

u̇0(t) = f(u0(t))

u̇1(t) = f(u1(t)) + K (u0(t)− u1(t− τ))

. . .

u̇N(t) = f(uN(t)) + K (uN−1(t)− uN(t− τ)) (5.8)

where subsystem u0 is the master and subsystems ui, i = 1, ..., N are slaves. In this
scheme, convective-like instabilities introduced by the spatiotemporal character of the
chain reduces the maximum delay time τ as compared to the case of a single slave [144].
However, since the anticipation time of the N -th slave as compared to the master is N τ ,
the total prediction time can be much larger than that of the single slave scheme. Fig-
ures 5.9b and c show the stability regions K vs τ for a chain of N = 10 and N = 20

coupled Lorenz systems, respectively. These figures illustrate how, although the de-
lay time τ decreases with N , the total anticipation time Nτ increases significantly with
N . The set of figures 5.10a-c show a typical time series obtained by coupling a single,
twenty, and two hundred slave systems. For the latter we have reached an anticipation
time of 4 time unit, much larger than the characteristic times of the Lorenz system for
which the inverse largest Lyapunov exponent is 1.1. Similar results were obtained for
the Rössler system. A word of caution is necessary here. The above results consider
that the slaves are perfect copies of the master. In other words, that we know exactly
the master’s equations of motion and parameters. In most practical situations it might
not be possible to know the functional form of the chaotic dynamics and only a time
series of the system dynamics is available. Then approximate models can be obtained
and used as slave systems [146]. Neural networks is one of the most popular learning
methods for this task.

5.2.3 Anticipated synchronization with neural network replicas

Once we have established that the neural network is a good copy of the dynamical
system (see Section 2.5), we use this copy as the slave in a synchronization scheme.
For instance, let us consider the synchronization scheme (Eq. 2.54) for two diffusively
coupled systems, where the master is the Lorenz system u0 and the slave is its neural
network copy u1 with a = 10 hidden neurons. Figure 5.11c shows the evolution of the
synchronization error, measured as the difference xn

1 − xn
0 between the x variables of

the master and the slave. Notice that after n = 500 steps, the two systems synchronize
rather well although there is a residual error. In the case that the slave is a perfect copy
the error vanishes after the transient time, as shown in figure 5.11a. The residual error
observed in the synchronization of the neural network copy can be assimilated to the
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slave being an imperfect copy of the master. To quantify this imperfection, we have used
as a slave a Lorenz system with mismatch parameters σ = 10.1, r = 27.5 and b = 8/3,
i.e. assuming a certain mismatch in two of the parameters. As shown in figure 5.11b
the resulting synchronization errors are similar to that of the neural network. From
these figures, we could state that the dynamical accuracy of the neural approximate
model is roughly equivalent to a 2% mismatch in the system’s parameters. In the case of

Figure 5.11: (a) Synchronization error with two identical systems; (b) synchronization error with
a slave system with mismatch parameters (σ = 10.1, r = 27.5, b = 8/3); and (c) synchronization
error with a neural approximate slave model.

the Rössler model we performed the same simulations obtaining a similar behavior. A
neural network with 12 hidden neurons was found to be appropriate for approximating
the system dynamics. In this case, the obtained rms errors were 2.4×10−4 and 3.2×10−4

for the training and test data.
Now we consider the general anticipated synchronization scheme in Eq. 5.8 using

as master the Lorenz system u0, and as a chain of slaves N identical neural network
models u1, . . . ,uN , as discussed previously. In our work we have used the package
Neural Networks of Mathematica which supports many techniques for function esti-
mation. Figure 5.9d shows the stability regions K vs τ obtained when coupling the
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Figure 5.12: Time series of variable x(t) of master Lorenz system and (a) first slave neural net-
work with τi = 0.08, K = 0.2 (b) tenth slave neural network with τi = 0.03, K = 0.4 and (c)
twentieth slave neural network with τi = 0.01, K = 0.7 for i = 1, ..., N , where N is a number of
slave neural networks in a chain (slaves are drawn with dotted line and master with solid line).

Lorenz system to N = 1 neural network with two hidden layers each containing four
neurons. Comparing figures (a) and (d) we observe the reduction of the stability re-
gion when the slave is a neural network with respect to the identical slaves case. In
fact, the performance of the chain of neural network slaves worsens as the number N

increases, see Figs. 5.9e-f. Therefore, we get a maximum anticipation time of 0.33 for
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N = 20, which has to be considered as the maximum prediction horizon for the Lorenz
system using the anticipated synchronization scheme with neural network slaves (see
Fig. 5.12). A similar analysis in the Rössler model using this technique yields a maxi-
mum anticipation time of 4.1 for N = 20. These prediction horizons are much shorter
than those obtained with anticipated synchronization when the slaves are perfect copies
of the master, as discussed in the previously.

5.2.4 Standard prediction with neural networks

We now compare the use of the anticipated synchronization scheme with neural net-
works as slave systems with the standard prediction technique consisting on iterating
forward in time the neural approximate model from an initial condition. Whereas in the
former method the maximum anticipation time does not depend on the initial point, it
turns out that in the latter case, the attainable forecast horizon depends on the precise
location of the initial condition within the attractor. The forecast horizon T is defined as
the time it takes for the absolute value of the difference between the neural network re-
constructed orbit and the actual orbit to be larger than 2%. As shown in figures 5.13a-b,
lower horizon values correspond to initial conditions in the unstable regions of the at-
tractor where transitions are more likely to occur. More detailed information is obtained
from the histogram of horizon times, as shown in Figs. 5.14a for the Lorenz and 5.14b
for the Rössler systems. The distributions are quite broad and the mean values are
〈T 〉 = 1.12, and 〈T 〉 = 11.8, respectively. These values are close to the inverse of the
largest Lyapunov exponent. In the same figures we have indicated the location of the
maximum prediction times using anticipated synchronization combined with neural
networks. It is worth mentioning that the anticipation times using perfect replicas of
the master system are beyond the shown scale for the x-axis. Note that the anticipating
horizon obtained using standard prediction with neural networks is larger (in average)
than the values obtained with anticipated synchronization (dashed lines in Fig. 5.14).
In the latter, the horizon is constant over the attractor whereas the standard prediction
approach only provides an average forecast value. Thus, depending on the type of ap-
plication, one method would be better than the other.
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Figure 5.13: Residuals xn − x̂n for two neural models with (a) Histogram produced by 10000
points on the attractor; (b) histogram of the averaged prediction horizon obtained with a neural
network.
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Figure 5.14: Histogram of the prediction horizon obtained from a sample of size 3000 for (a) the
Lorenz model (the horizon values range from 0 to 4, with a mean T = 1.12) and (b) the Rössler
system with the horizon values range from 0 to 50, with a mean T = 11.8. The vertical dashed
lines corresponds to the fixed forecast horizon obtained with neural networks connected with
anticipated synchronization scheme. The numerical results obtained with identical copies of
the systems coupled with the anticipated synchronization scheme show that the fixed forecast
horizon is very large in this case and is located outside of the range of this histogram.
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5.3 Conclusions

We have proposed a new predict-prevent control method for perturbed excitable sys-
tems, consisting in two steps: prediction made by slave with the use of the anticipated
synchronization scheme and correction applied to the master in order to suppress its
response. We have shown that a delayed coupling term which lowers the excitability
threshold of the slave, allows the slave to react faster to the perturbation than the mas-
ter does. The causality principle is not violated, since the response of the slave never
occurs before the perturbation to the master is applied; the slave responds before the
master does but after the perturbation appears. The information about the perturbation
is transmitted through the coupling with the master even though the master has not
fired a spike yet. Such anticipation is possible whenever the slave has the excitability
threshold sufficiently lower than that of the master and thus its response time to the
perturbation is faster in comparison with that of the master. The proposed method is
only valid for excitable systems, and it could be interesting to implement this method
to other systems, specially chaotic ones. Since many biological systems, as heart tissue
or neurons in the brain, exhibit excitable dynamics, we are convinced that the applica-
tion of this method could open new possibilities for controlling of arrhythmias or brain
diseases. The way to realize this would be to program the controller which neglects the
regular heart beating but predict and correct the unwanted ones.

We considered two alternative practical techniques to anticipate the dynamics of
chaotic systems. On the one hand, a neural network trained to the available data which
can be iterated forward in time reproducing the same orbit of the chaotic system up
to a given horizon. One shortcoming of this method is that the prediction horizon,
close to the inverse of the largest Lyapunov exponent, can be only given in probabilistic
terms. The second technique which we have considered is a chain of neural networks
replicas of the master system combined with the anticipated synchronization scheme.
In this case the horizon anticipation time adopts a fixed value. However, the numerical
simulations have shown that the maximum horizon is shorter than the one obtained by
iterating the neural network. These results are closely related to the differences between
the perfect knowledge of the chaotic system and its neural network reconstruction. The
mismatch is produced during the, necessarily imperfect, training of the neural network.
Thus the success of the technique combining anticipated synchronization and neural
networks depends on the successful training of the neural network itself.

The forecast horizon in the anticipated synchronization scheme with a single slave
is of the order of the linear correlation time of the system. A chain of slaves allows to
overcome this limitation and, when the slaves are perfect copies, we obtained anticipa-
tion times which are much longer than the prediction horizon obtained by iterating the
neural network. Thus for effective implementation of the combined scheme of neural
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networks with anticipated synchronization it is essential to have a more accurate re-
production of the dynamics of the master system. It would be interesting to continue
the study with such a network and we are convinced that it could exploit the predictive
power of the anticipated synchronization scheme applied to a chain of coupled systems.





Chapter 6

Summary and open problems

Anticipated synchronization is an intriguing phenomenon which so far has not been
observed in any biological or natural system. However, all the ingredients necessary
for the anticipated synchronization to occur, i.e. the interaction between two or more
dynamical systems and the existence of delay lines, can be easily found in biological
systems and they are in fact very common in Nature. Less common are the unidirec-
tional interactions, an example being the communication between the cells constituents
of the nervous system, where apart from the bidirectional coupling, the unidirectional
coupling was found. Could anticipated synchronization be a useful tool in the commu-
nication between neurons? Or maybe could it play a role in some prediction processes
taking place in the brain? By contributing to the understanding of this phenomenon
from the dynamical point of view, by revealing its limitations and its potential utility,
we have attempted to answer some of the questions.

In this thesis we have presented the results of some studies of anticipated synchro-
nization in different dynamical systems, demonstrating the general aspects of the phe-
nomenon. Anticipated synchronization was considered as counterintuitive effect due to
the possibility of anticipating the unpredictable dynamics of chaotic systems and even
stochastic ones. In the case of the delayed coupling scheme of the form K(x − yτ ) we
have shown that the anticipation cannot exceed the time corresponding to the linear
autocorrelation time of the system, thus being in agreement with our intuition. The
same concerns excitable systems for which we have shown that the anticipation time is
limited by the response time of the master system to the external stimulus and cannot
exceed it, thus preserving the causality principle.

We summarize all the results presented in this thesis as follows:

Summary of the results

• Characterization of the anticipated synchronization in dynamical systems.

1. We have studied the occurrence of anticipated synchronization in many sys-
tems, with the particular attention to the excitable ones driven by an exter-
nal random forcing. The detailed study, including an experimental approach



156 6. Summary and open problems

to the problem, was motivated by the existence of an excitable dynamics in
neurons. Since neurons in the brain are known to cooperate in a noisy en-
vironment, we considered the noisy activation of the spikes in the excitable
systems and we estimated the quality of the anticipated synchronization in
that cases.

We characterized the stability of the FitzHugh-Nagumo systems coupled with
the delayed coupling scheme. Numerical simulations of the equations for the
master and the slave systems revealed that the quality of the anticipation in
the presence of noise depends highly on the existence of the nonlinear terms
in the systems. We showed that the stronger the nonlinearities in the sys-
tem and the higher the intensity of the noise, the worst the quality of the
anticipated synchronization. We found that coupling the systems in a chain
enables us to achieve larger anticipation times and improves the quality of
the anticipated synchronization.

In order to estimate the robustness of this phenomenon, we designed elec-
tronic circuits exhibiting the dynamics of the FitzHgh-Nagumo equations.
Although noise sources were applied to the master and the slave, neverthe-
less anticipated synchronization was observed. The numerical simulations
and the linear stability analysis also revealed that the injection of different
realization of noises in the master and the slave does not limit the occurrence
of this phenomenon.

2. The next stage of our studies was to account for the spatiotemporal dynam-
ics. The prototype model for the spatiotemporal systems is the complex
Ginzburg-Landau equation. The coupling of two complex Ginzburg-Landau
equations has been achieved by using a complex coupling parameter. The
largest anticipation times were obtained for the non-zero imaginary part of
the complex coupling parameter. We found that the stability conditions ob-
tained from the linear stability analysis were in good agreement with the nu-
merical simulations.

The study of the anticipated synchronization in spatiotemporal systems has
been motivated by its potential use in the prediction of chemical reactions. In
particular we considered the model of CO oxidation on a platinum surface.
The study of the two coupled surfaces revealed that the coupling strength has
to be negative in order to observe anticipated synchronization. Moreover, we
have provided the study of different types of coupling configurations lead-
ing to the anticipated synchronization, in particular the local, partially global
and global coupling. The local coupling revealed to be the best configuration
yielding the highest quality of the anticipation. The partially global coupling
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consisted on the coupling between point-to-point sub-surfaces of the master
and sub-surfaces of the slave. Using partially global coupling we could ob-
serve the anticipation, but its quality was worse than in the case of the local
coupling. We found that there exists a limit for the size of the sub-surfaces for
which, when exceeded, the anticipated synchronization cannot be observed.
The maximum anticipation time τmax in the local and the partially global cou-
pling remains the same. What changes is the quality of the anticipation which
becomes worse for delay times starting from τ = 0 and ending at τ = τmax.
Finally, the global coupling did not enable us to observe the anticipated syn-
chronization.

Due to spatial separation the transmission of signals between neurons is not
instantaneous and needs some time to be accomplished. These transmission
times are called conduction delays. In order to model such a situation we con-
sidered the spatially separated FitzHugh-Nagumo equations. Furthermore
we connected two spatial areas of the FitzHugh-Nagumo cells in the master-
slave configuration using the delayed coupling scheme. The conduction de-
lays together with the internal delays of the delayed coupling scheme gave
rise to the zero-lag synchronization. Such a synchronization can occur even if
the external stimulus is applied only to the master system. The possibility of
the occurrence of zero-lag synchronization could be of importance in the fea-
ture binding processes which, according to the newest theories for the brain
functioning, allow to perceive the objects. The feature binding manifests itself
in the synchronous firing of groups of neurons situated in different regions
of the brain in response to some external stimulus. Such a synchronous fir-
ing occurs simultaneously despite the fact that the cooperating neurons are
spatially separated from each other.

Spatiotemporal systems can be represented by a discrete map as well. One
example of bidirectionally coupled discrete maps are cellular automata mod-
els. A cellular automata work in binary units and carry out logical opera-
tions. They can exhibit a complex dynamics and produce different types of
patterns, including fractal ones. We coupled two arrays of cellular automata
by using a local delayed coupling scheme. As a result we observed antici-
pated synchronization between the master and the slave cellular automata.
The limitation for the anticipation time was one time step (τ = ∆t → 1), but
larger anticipation times could be achieved by using a chain of slave cellu-
lar automata. Then the total anticipation time between the master and the
last slave in the chain was equal to the number of the slaves multiplied by
the time step (τ = N∆t → N ). We found that when the delayed coupling
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scheme is applied, but with spatial delay instead of a time delay, anticipated
synchronization in time can also be observed. This result shows that systems
with delay contain many characteristics of the spatially extended systems.

• Dynamical mechanism of the anticipated synchronization

1. The study of anticipated synchronization in excitable systems driven by noise
revealed that it cannot occur for arbitrary coupling strength and delay time
values. If the parameters were not appropriately chosen, the quality of the
synchronization is low. Two types of errors were found to occur in the slave
system: one corresponds to the dispersion of the anticipation time and the
other corresponds to additional spikes which appear only in the slave sys-
tem. The occurrence of additional spikes in the slave gave us the idea that it
could be related to the Delayed Feedback Control method of Pyragas. Firing
more often in response to the same external stimulus (the same noise was ap-
plied in the master as well as in the slave) would mean that the slave is more
excitable or, in other words, that its excitability threshold is lower. We nu-
merically proved this hypothesis in many examples showing that indeed the
anticipated synchronization appears due to the lowering of the excitability
threshold in the slave reduced by the delayed coupling term. As a conse-
quence its response time to an external stimulus is shorter than that of the
master. The calculated analytical expressions for the response times in the
Adler and FitzHugh-Nagumo systems turned out to strongly depend on the
system parameters. As a result anticipated or retarded synchronization can
occur in the two systems if the parameter mismatches are carefully chosen
and the systems are coupled with a synchronization scheme which does not
contain delay. Control of the excitability threshold by the delayed feedback
could be used in neural systems to control the responses to external stimuli.

2. Once the anticipated synchronization in excitable systems was understood,
we turned our attention to the study of this phenomenon in chaotic systems.
The modified system approach revealed that the occurrence of anticipated
synchronization is determined by the dynamical state of the slave system
under the effect of the delayed feedback term Kyτ . Only if the slave system
is in the steady state the external forcing Kx can induce synchronization and
anticipation. The differences between the bifurcation diagrams for different
values of delay times determine the magnitude of the phase shifts between
the master and the slave.

Similar mechanisms for the anticipated synchronization that occurs in ex-
citable systems, were found in chaotic systems. We found that anticipated or
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retarded synchronization can be achieved between coupled chaotic systems
when carefully choosing parameter mismatches.

3. The resemblance of the anticipated synchronization scheme and the delayed
feedback control method was analyzed in details. We found the same mech-
anisms underlying both schemes. The anticipation in the anticipated syn-
chronization scheme can be observed because we preserve the reference sys-
tem (the master) and the comparison between time series of the master and
the slave systems can be done. In the case of the delayed feedback control
method, referred to as the self synchronization, the reference system is per-
turbed since the system synchronizes with itself. This considerations led us
to the question why chaotic systems can be synchronized to simple oscillator
frequencies and not vice versa. The reason is that the synchronization be-
tween two any systems to occur requires that the attractor of the slave system
contains the periodic orbit(s) existing in the master (in the case of the coupled
chaotic systems, the slave should have a similar attractor structure to that of
the master). We proved this in the example of the harmonic oscillator taken
as the master and the Rössler system taken as the slave, showing that indeed
anticipated synchronization between these two systems can be achieved.

• Practical approach to predictability via anticipated synchronization

1. The understanding of the dynamical mechanism underlying the anticipated
synchronization in excitable systems led us, in a natural way, to the devel-
opment of a control method for perturbed excitable systems. The method
consists in two steps, the prediction and the prevention. First, by using of
the slave system coupled to the master with the anticipated synchronization
scheme, we predict the response of the master system. We design the system
in such a way that the external stimulus is applied only to the master, and the
information about its existence propagates to the slave through the coupling.
The firing of the slave provides us with the information that the perturbation
has been applied to the master (even though it is still quiescent). Then we ap-
ply the corrective pulse to the master system in order to prevent its response.
Such a control method has two significant advantages; it does not require any
previous calculations and the corrective pulse is applied to the master only if
it is necessary, i.e. if an undesired behaviour starts to develop.

2. The prediction of the dynamics of chaotic systems by using neural networks
is a strongly developing branch of applied science. We were interested in
comparing the predictive capacities of two approaches, one which uses the
standard neural networks and the other which uses the anticipated synchro-
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nization scheme. By coupling the slave systems in a chain, with the delayed
coupling scheme. However, the latter approach, although it can lead to very
large anticipation times, holds only for an ideal case, when all the slave sys-
tems in the chain are identical copies. In the case of parameter mismatches,
the quality of the anticipated synchronization degrades. In order to follow the
practical requirements for the data analysis, we considered as the master the
data obtained from the embedding procedure, and as the slave, the entrained
neural network. The crucial differences between the considered approaches
were that in the case of the standard neural networks, the prediction horizon
(anticipation) was attained in a probabilistic way, i.e. depending on the initial
conditions of the system. In the case of the anticipated synchronization the
prediction horizon was fixed and depended only on the successful training
of the slave to the data from which we wanted to make a forecast.

Open problems

There are many open problems which require further study. One of such a problem
is to provide a mathematical description of the anticipated synchronization in chaotic
systems as it was done for excitable systems. A definition of the maximum anticipation
time in terms of the response time of the master system is required. In this thesis only
intuitive and qualitative descriptions have been provided, based on some numerical
examples.

Another problem which needs additional study is the control and prediction us-
ing the anticipated synchronization scheme. So far only theoretical studies have been
provided and it would be interesting to check its functionality in real systems through
experiments. Also it would be interesting to test chemical synapse coupling in neuron’s
models in order to check the validity of our results. In our work we paid particular
attention to the prediction and control of excitable systems, referring to the dynamics of
the heart or the brain, as well as to chaotic systems, referring to the dynamics of chemi-
cal reactions. In both cases we considered the diffusive delayed coupling scheme, which
gave relatively small anticipation time, limited by the linear autocorrelation functions of
the system. This limitation can be overcame when considering a chain of coupled sys-
tems. However, the dynamics of a chain is very sensitive to the parameter mismatches
between the coupled systems, thus being a disadvantage in real applications.

On the other hand, the complete replacement scheme allows us to overcome this
limitation in a very significant way. Thus we think that it would be interesting to study
the replacement scheme in real world systems containing internal delays. In fact, there
are many of such systems in Nature. As an example, we mention models for weather
dynamics, which are much more complex than, e.g. the Lorenz model. Apart of being
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multi-variable, the additional complexity comes from the delay effects related to the
spatial distribution of elements such as air, humidity, temperature, pressure, etc. Thus
the interaction between the above mentioned elements can be modified by the delays,
and in consequence can contribute to the chaotic behaviour of the system. If the estima-
tion of the existing delays would be possible, then a particular coupling scheme could
be used, and an approximate anticipation of the chaotic dynamics of the weather could
be achieved.





Appendix A

Stability analysis for linear differential
equations with delay

In this Section we consider simple coupled linear systems and estimate analytically the
stability regimes for the occurrence of anticipated synchronization. Let us first consider
the following coupled systems:

ẋ(t) = a

ẏ(t) = a + K(x(t)− y(t− τ)) (A.1)

where τ ∈ R+. In order to study the stability of the anticipated synchronization mani-
fold we define the new variable ∆(t) = x(t)− y(t− τ) being the difference between the
variables of the master x(t) and the slave y(t− τ), where the latter is delayed in time by
τ . Since the anticipated synchronization solution is y(t) = x(t + τ), we want to know
for which coupling strength K and delay time τ the difference variable ∆(t) vanishes.
The anticipated synchronization manifold for the coupled systems in A.1 is described
by the following differential equation:

∆̇(t) = −K∆(t− τ) (A.2)

where ∆(t) = ∆0(t) for t ∈ (−τ, 0) (the initial conditions). This equation can be solved
with the use of the Laplace transform,

L[f(t)] = f̃(z) =

∫ ∞

0

e−ztf(t)dt (A.3)

We apply this transform to the differential equation for ∆(t) in Eq A.2 getting:

L[∆̇(t)] = −KL[∆(t− τ)] (A.4)

The Laplace transform of ∆(t− τ) is calculated in the following way:

L[∆(t− τ)] =

∫ ∞

0

e−zt∆(t− τ)dt =

∫ ∞

−τ

e−z(t′+τ)∆(t′)dt′

= e−zτ

[∫ 0

−τ

e−zt′∆(t′)dt′ +

∫ ∞

0

e−zt′∆(t′)dt′
]

= e−zτ

∫ 0

−τ

e−zt′∆0(t
′)dt′ + e−zτ∆̃(t) (A.5)
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where ∆̃(z) = L[∆(t)] and t′ = t− τ . After introducing the expression from Eq. A.5 into
Eq. A.4 we get:

z∆̃(z)−∆(0) = −K

[
e−zτ

∫ 0

−τ

e−zt′∆0(t
′)dt′ + e−τz∆̃(z)

]
(A.6)

After rearrangement of the terms in Eq. A.6 we obtain the following solution:

∆̃(z) =
M(z)

z + Ke−τz
(A.7)

where M(z) = ∆(0) − Ke−τz
∫ 0

−τ
e−zt′∆0(t

′)dt′. In order to obtain the solution for ∆(t),
the inverse Laplace transform should be applied to Eq. A.7. As long as the poles of ∆̃(z)

are simple1 we get the following solution for ∆(t):

∆(t) = L−1[∆̃(z)] =
1

2πi

∮
C

ezt∆̃(z)dz =
n∑

i=1

Resz=zi
ezt∆̃(z)

=
n∑

i=1

lim
z→zi

(z − zi)e
zt∆̃(z)

=
n∑

i=1

ezit lim
z→zi

(z − zi)∆̃(z)

=
n∑

i=1

µie
zit (A.8)

where zi are the zeros of the denominator in Eq. A.7 and µi are the residua2 of Eq. A.7
at these points:

µi = Resz=zi

M(z)

z + Ke−τz
=

M(zi)

1−Kτe−ziτ
(A.9)

From Eq. A.8 is seen that the vanishing of ∆(t) is determined by the sign of the real
parts of zi. Hence to estimate the stability conditions we need to find the roots of the
transcendental equation:

zi = −Ke−τzi (A.10)

1A pole of a function f(z) = g(z)
(z−a)n is a value of z at which the function has a singularity, i.e. at z = a.

If n is chosen as small as possible (of order 1), then it is called a simple pole.
2At a simple pole the residue is given by: Resz=af(z) = limz→a(z − a)f(z). In the case of the function

f(z) = g(z)
h(z) where g(z) and h(z) are analytic and g(a) 6= 0, h(a) = 0, h′(a) 6= 0, the l’Hôpital’s rule can be

used to calculate the residua: Resz=a
g(z)
h(z) = g(a)

h′(a) .
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where zi = α + iω. Separation of the real and imaginary parts in Eq. A.10 yields:

α = −Ke−ατ cos ωτ (A.11)

ω = Ke−ατ sin ωτ (A.12)

At α = 0, what corresponds to the point at which Hopf bifurcation occurs, Eq. A.11 is
satisfied when:

ω = ±
(

n +
1

2

)
π

τ
(A.13)

where n ∈ Z. The roots of Eq. A.10 can be also found by plotting the left and right hand

Figure A.1: The geometric conditions for possible solutions of the equation A.14 - roots of
the transcendental equation A.10 are located at the points where the plotted functions crosses.
Dashed line represents f(ωτ) = ωτ and the solid one f(ωτ) = Kτe

ωτ
tan ωτ sinωτ .

sides of the following equality (see Fig. A.1):

x = Kτe
x

tan x sin x (A.14)

where x = ωτ . From Eq. A.14 we can see that at x =
(
n + 1

2

)
π, tan x → ∞, thus giving

e
x

tan x → 1 what finally leads to the relation:

τ = ±
(

n +
1

2

)
π

K
(A.15)

In figure A.2 we plot the curves τ(K) from Eq. A.15 for different values of n. We can
notice that the stable region is bounded only by the curve calculated for n = 0, that is
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τ = ± π
2K

. Moreover, from Eq. A.11 we can read that cos ωτ ≥ 0 in the range 〈−π
2
, π

2
〉 and

e−ατ ≥ 0 always. Thus, since we are looking for the solutions when α is negative, we
need to consider only the positive part of the condition in Eq. A.15 (for n = 0), that is
τ = + π

2K
. Then we are left with the following relation:

0 < Kτ <
π

2
(A.16)

Since we assume that τ ∈ R+, thus the anticipated synchronization can not occur at
negative coupling strengths in the case of Eq. A.1.

Figure A.2: Curves obtained from Eq. A.15 for n = 0 (first root), n = 1 (second root) and n = 2
(third root). Stable region is located below the curve calculated for n = 0.

Now we consider the other coupled systems of the form:

ẋ = a + bx

ẏ = a + by + K(x− yτ ) (A.17)

where the dynamics of the difference variable ∆(t) = x(t)− y(t− τ) is described by the
following differential equation:

∆̇(t) = b∆(t)−K∆(t− τ) (A.18)
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Let us introduce the new variable h(t) = ∆(t)e−bt. Then Eq. A.18 becomes:

ḣ(t) = −Ke−bτh(t− τ) (A.19)

having the form of Eq. A.2 where the following replacement has been done K → Ke−bτ .
We can proceed in the same way as before, getting the following solution for h(t):

h(t) =
n∑

i=1

µie
zit (A.20)

where zi are the zeros of the characteristic equation

zi = −Ke−bτe−τzi (A.21)

Taking the first root z0 = α + iω we get the following relations:

α = −Ke−bτe−ατ cos ωτ (A.22)

ω = Ke−bτe−ατ sin ωτ (A.23)

Using the solution for h(t) in Eq. A.20 we get the solution for the difference variable
∆(t):

∆(t) = h(t)ebt =
n∑

i=1

µie
(b+zi)t (A.24)

from which we can read that ∆(t) vanishes if b + Re[zi] < 0. In order to estimate the
conditions at which Eq. A.24 vanishes as t → ∞, we assume that at the critical point
Re[z0] = α = −b. Then Eqs. A.22 and A.23 yield

− b = −K cos ωτ (A.25)

ω = K sin ωτ (A.26)

From Eq. A.25 we calculate ω = 1
τ

arccos( b
K

) and introduce it into the equation A.26:

τ =
arccos( b

K
)

√
K2 − b2

(A.27)

where |K| > |b|. It can be easily seen that the above relation at b = 0 reduces to that
obtained in Eq. A.16. Equation A.27 gives us the stability condition in the region K >

|b|. However, additional conditions can be read from Eq. A.25 giving us the following
relations, for b > 0:

−K cos ωτ < −|b| → K > |b| (A.28)
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b K Condition for stability
b = 0 K < 0 DOES NOT EXIST

K > 0 0 < Kτ < π
2

b > 0 K < 0 DOES NOT EXIST

K > 0 K > b and τ <
arccos( b

K
)√

K2−b2

b < 0 K < 0 K > b

K > 0 K > 0 and τ <
arccos( b

K
)√

K2−b2
for K > |b|

Table A.1: Stability conditions for the anticipated synchronization in coupled linear systems
given as the dependence on the coupling strength K, delay time τ and parameter of the system
b.

and for b < 0:

−K cos ωτ < |b| → K > −|b| (A.29)

Finally, the stability conditions are:

τ <
arccos( b

K
)

√
K2 − b2

for K > |b| and:

K > b (A.30)

To check the validity of the analytically obtained conditions, we provide numerical
simulations of the linear systems in Eq. A.17. The numerical results are presented in
Fig. A.3, where the parameter b was taken to be zero, positive or negative.
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(a) (b) (c)

(d) (e) (f)

Figure A.3: Upper panel: cross-correlation diagrams for the anticipated synchronization man-
ifold ∆(t) = x(t) − y(t − τ) for the coupled systems described by Eq. A.17. Black (white)
colour represents the regimes of parameters at which the difference ∆(t) exponentially vanishes
(grows) as t → ∞. Lower panel: analytically obtained conditions for stability. The parameter b

was: (a,d) b = 0, (b,e) b = 0.5 and (c,f) b = −0.5.





Appendix B

Numerical integration

Differential equations with delay

In simulations of the delayed differential equations we use the Euler integration method
or the predictor-corrector method called Adams-Bashforth-Moulton, which is known to
have good stability properties [147]. The first one is well known and for the differential
equation of the form ẋ = f(x) follows the iteration formula:

x1 = x0 + δt · f(x0) (B.1)

where xk = x(t + kδt) for k = 0, 1 and δt is an integration time step. The fourth or-
der Adams-Bashforth-Moulton method consists of the Adams-Bashforth part being a
predictor:

x1 = x0 +
δt

24
(55f(x0)− 59f(x−1) + 37f(x−2)− 9f(x−3) +O[(δt)5] (B.2)

where xk = x(t + kδt) for k = −3,−2,−1, 0, 1. In this algorithm the current point t,
together with the three previous points t − δt, t − 2δt and t − 3δt is used to predict the
value x at the next point t + δt. The Adams-Moulton part is a corrector:

x1 = x0 +
δt

24
(9f(x1) + 19f(x0)− 5f(x−1) + f(x−2) +O[(δt)5] (B.3)

If the function f consists of the additive white noise term ξ(t), i.e. f(x) → f(x, t) =

h(x) + ξ(t) then the Euler method for the equation ẋ = f(x, t) becomes:

x1 = x0 + δt · h(x0) +
√

δtg(t) (B.4)

where g(t) is a Gaussian random number.

Partial differential equations

Complex Ginzburg-Landau equation (CGLE) is integrated in the Fourier space. The
forward Fourier transform is defined as:

F (k) =

∫ ∞

−∞
f(x)e−ikxdx (B.5)
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and the inverse Fourier transform is:

f(x) =

∫ ∞

−∞
F (k)eikxdk (B.6)

After applying a forward Fourier transform to the CGLE, each Fourier mode Aq evolves
according to:

∂tAq(t) = −αqAq(t) + Φq(t) (B.7)

where αq = (1 + ic1)q
2 − 1 and Φq contains a non-linear term of the CGLE. At any time,

Φq is calculated in the real space, after taking the inverse Fourier transform of Aq and
then is Fourier transformed again. Equation B.7 is integrated by the method similar to
the two-step method [148, 149]. From Eq. B.7 we get:

Aq(t)

e−αqt
= Aq(t0) +

∫ t

t0

Φq(s)e
αqsds (B.8)

Writing Eq. B.7 at times t → t + δt and t → t− δt we get two expressions:

Aq(t + δt)

e−αq(t+δt)
= Aq(t0) +

∫ t+δt

t0

Φq(s)e
αqsds (B.9)

Aq(t− δt)

e−αq(t−δt)
= Aq(t0) +

∫ t−δt

t0

Φq(s)e
αqsds (B.10)

After substraction of Eq. B.10 from Eq. B.9 we get:

1

e−αqt

(
Aq(t + δt)

e−αqδt
− Aq(t− δt)

eαqδt

)
=

∫ t+δt

t0

Φq(s)e
αqsds−

∫ t−δt

t0

Φq(s)e
αqsds (B.11)

where the right hand side may be rearranged into one integral
∫ t+δt

t−δt
Φq(s)e

αqsds. Assum-
ing that δt is small we make Taylor expansion of Φ(s) getting Φ(s) = Φ(t+ δt) ∼= Φ(t), so
the integral in Eq. B.11 reduces to the calculation of the integral of an exponential func-
tion:

∫ t+δt

t−δt
eαqsds = eαq(t+δt)−eαq(t−δt)

αq
. Introducing it to the Eq. B.11 we get the following

expression:

Aq(t + δt) = e−2αqδtAq(t− δt) +
1− e−2αqδt

αq

Φq(t) +O((δt)3) (B.12)

which is called slaved leap frog [150]. To calculate Φq(t) in Eq. B.12 we use Aq(t) calcu-
lated from the expression:

Aq(t) = e−αqδtAq(t− δt) +
1− e−αqδt

αq

Φq(t− δt) +O((δt)2) (B.13)

which was derived in the similar way as was done for Aq(t + δt) in Eq. B.12, but con-
sidering the difference between the amplitudes Aq(t + δt) and Aq(t). Having defined all
integration steps, below is listed the order of actions which need to be performed:
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1. Calculation of Φq(t− δt) from Aq(t− δt) by going into the real space.

2. Calculation of Aq(t) from Eq. B.13.

3. Calculation of Φq(t) from Aq(t) by going into the real space.

4. Calculation of Aq(t + δt) from Eq. B.12 by using Aq(t− δt) and Φq(t).

At each iteration we calculate Aq(t + δt) from Aq(t − δt), thus the integration time step
is 2δt.

Integration of the model of CO oxidation on a Pt(110) surface [57] was performed
by using a finite difference scheme for partial differential equations. For one spatial
dimension the integrating algorithm is the following:

∇2
xf(t, x) ≈ 1

∆2
[f(t, x + ∆)− 2f(t, x) + f(t, x−∆)] (B.14)

where ∇2
x = ∂2

∂x2 is a Laplacian operator and ∆ denotes the spatial sampling interval.
For two spatial dimensions it takes the form:

∇2
xyf(t, x, y) ≈ 1

∆2
[f(t, x + ∆, y) + f(t, x−∆) + f(t, x, y + ∆) + f(t, x, y −∆)

− 4f(t, x, y)] (B.15)

where ∇2
xy = ∂2

∂x2 + ∂2

∂y2 . We have used periodic or open (no-flux) boundary conditions.
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[23] O. E. Rössler, Phys. Lett. A 57, 397 (1976).

[24] S. Smale, Differentiable dynamical systems, Bulletin of the American Mathematical
Society 73, 747-817 (1967).

[25] E. N. Lorenz, Journal of Atmospheric Sciences 20, 130 (1963).

[26] Meeting of the American Association for the Advancement of Science, December
1972, Washington.

[27] B. Mandelbrot, The Fractal Geometry of Nature, New York, NY: W. H. Freeman
and Company (1982).

[28] W. T. Coffey, Yu P. Kalmykov, J. T. Waldron, The Langevin Equation. With Applica-
tions in Physics, Chemistry and Electrical Engineeing, World Scientific (1996).

[29] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer-
Verlag (1990).

[30] R. Ritz, T. J. Sejnowski, Curr. Opin. Neurobiol. 7, 536 (1997).
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