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We demonstrate experimentally the regime of ghost stochastic resonance in the response of
a Monostable Schmit Trigger electronic circuit driven by noise and signals with N frequency
components: kf0 +∆f, (k +1)f0 +∆f, . . . , k +nf0 +∆f where k is an integer greater than one.
It is verified that stochastic resonance occurs at the frequency fr = f0 + (∆f/(k + (N − 1)/2)),
as predicted in the theory. At the frequency for which the resonance is maximum there is no
input energy, and thus this form is called “ghost” stochastic resonance.
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1. Introduction

The dynamics emerging from the cooperative effects
between noise, nonlinearity and weak periodic
forces have attracted broad interest recently. This
includes the celebrated case of stochastic reso-
nance (SR) [Wiesenfeld & Moss, 1995; Bulsara
& Gammaitoni, 1996; Gammaitoni et al., 1998;
Hanggi, 2002; Gammaitoni et al., 1995]. In the
regime of SR some quantifiable property of the
input signal (signal-to-noise ratio, degrees of coher-
ence, etc.) is optimally enhanced at the output
for some optimal noise level. For example, in neu-
rons SR is seen as a maximum coherence between
the intervals between neuronal firings and the fre-
quency of the signal driving the input. In contrast,
a new form of stochastic resonance was introduced
recently [Chialvo et al., 2002] whereby the frequency
which is enhanced is absent in the signals driving
the system. This type of phenomenon is not possi-
ble within the framework of linear signal processing
and deserves to be further explored experimentally.

In this Letter we analyze the response of an non-
linear electronic circuit which emulates the system
in [Chialvo et al., 2002] when it is driven by noise
and by weak signals composed of multiple periodic
tones.

2. Threshold Device Implemented
with an Electronic Schmit Trigger

The system considered here is a nondynamical
threshold device [Gingl et al., 1995] which compares
the signal x(t) with a fixed threshold, and emits a
“spike”, i.e. a rectangular pulse of relatively short
fixed duration, when it is crossed from below. This
emulates (as in [Chialvo et al., 2002]) in a very sim-
plified way the neuronal “firing”. The signals con-
sidered are:

x(t) =
A(sin f12πt + sin f22πt + · · · sin fn2πt)1

n + ξ(t)
(1)
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Fig. 1. Block diagram of the electronic circuit used (R1 =
3.2 kΩ, R2 = 64 kΩ, R3 = R4 = 3.3 kΩ, C1 = 95 nF, C2 =
4.2 nF).

where f1 = kf0, f2 = (k + 1)f0, . . . , fn = (k + n)f0

and k and n are integers greater than one. The num-
ber of frequencies used is denoted as N. The term
ξ(t) is a zero mean Gaussian distributed white noise.

The circuit (Fig. 1) implementing the thresh-
old device is comprised by two monostable Schmitt
Triggers, (74LS123 from Texas Instruments) U2 and
U3. The input signal (i.e. x(t) in Eq. 1.) is ampli-
fied by the operational amplifier U1 and fed to the
first monostable (input 1B) which will trigger or not
depending on the amplitude of x(t). When it trig-
gers, a pulse is generated in U2 during a period of
T1 (emulating a neuronal spike). The falling edge
of T1 triggers the second monostable (input 2B).
The complemented output of U3 (2Q) is used to
clear the first monostable inhibiting further trig-
gering until the expiration of T2 (this emulates the
neuronal refractory period). The circuit can be trig-
gered again after the completion of T1 and T2,
which are times fixed by the R and C values.

Signals [Eq. (1)] were generated on a personal
computer within a Matlab routine and sent to the
input of the circuit shown in Fig. 1 using the stan-
dard audio device of the computer. The Matlab
signal generation code was implemented as a loop
where Gaussian distributed noise was generated
using the Matlab function randn() and played at
the audio device with the Matlab function sound().
The noise intensity was increased in small steps, and
held at each step for a fixed time interval. The steps
were long enough to collect good statistics, even
for low noise intensity levels where rate of spikes
is lower. Up to four input frequency combinations
[i.e. “N” in Eq. (1)] were explored: two, three, four
and five frequencies.

The output of the circuit was digitized at
32 KHz using a National Instruments PCI data

acquisition (Model Daq 6025) board controlled by
LabView software and processed offline to com-
pute intervals of time between triggering, from
which inter-spike intervals (ISI) histogram (ISIH)
was calculated. The signal to noise ratio (SNR) is
computed as the ratio between two quantities: the
number of spikes with ISI equal to (or near within
±5%) the time scale of 1/f0, 1/f1 and 1/f2, and the
total number of ISI (i.e. at all other intervals). SNR
defined this way captures the temporal information
encoded in the spikes train, as in the cases often
described for some sensory neurons.

3. Experimental Results

3.1. Signal to noise ratio of ISI for
∆f equal to zero

Figure 2 shows the results from the experiments
using harmonic signals composed up to five peri-
odic terms (i.e. x(t) with N = 2, 3, 4, 5 and f0 =
200 Hz and ∆f = 0). The amplitude of the deter-
ministic terms are set at 90% triggering level, i.e.
without noise there is no triggering, which is the
case for classical SR. Depicted are the SNR of
spikes spaced by intervals close to the periods of
the terms comprising the driving signal as well
as with 1/f0 for increasing noise intensity. Each
of the three curves represent the probability of
observing an interspike interval equal or near to
1/f0, 1/f1 and 1/f2 respectively, computed as the
ratio between the number of spikes with intervals
within the time scale of interest and all other inter-
vals. Specifically, we count the number of spikes
spaced by periods equal to or near by 5% of 1/fn

for n = 1, 2, 3, 4, 5. SNR for n > 2 are vanish-
ingly small, thus are not plotted. The output is
rather uncoherent with any of the input frequencies
(empty circles and stars), however it is maximally
coherent, at some range of noise intensity, with the
period close to 1/f0 (filled circles). It is important
to remark that f0 is a frequency absent in the sig-
nals used to drive the system and for that reason
we call it “ghost stochastic resonance”. The system
has nonlinearly detected this “missing fundamen-
tal” as further discussed in [Chialvo et al., 2002;
Chialvo, 2003].

We have verified that for signals composed
of harmonic components, the frequency of the
strongest resonance always correspond to the dif-
ference fn + 1 − fn, (independently of the rela-
tive phases of the components). However, we are
about to see that the resonance at the different
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Fig. 2. Signal-to-noise ratios versus noise intensity for signals with two to five frequencies (panels A to D respectively). It is
computed as the probability of observing an inter-spike interval close to the time scales (with a 5% tolerance) of the frequencies
fo ( ), f1 ( ) and f2 ( ). Notice that the largest resonance is always for the “ghost” f0, while the others are negligible.

frequency is just a singular case of a more gen-
eral phenomenon. Signals are often comprised of
individual components (sometimes called partials)
that are not integer multiples of a unique funda-
mental resulting in this case on a waveform which
is aperiodic. This type of driving signal is dubbed
“inharmonic” in music jargon and “anharmonic”
in the physics literature. We can construct such
a signal by shifting all components of an origi-
nally harmonic complex by the same amount ∆f .
In agreement with the theory in [Chialvo et al.,
2002], we find that the frequency of the main res-
onance shifts linearly despite the fact that that
the frequency difference between successive partials
remains constant. Specifically: the periodic terms
are shifted multiples of f0 (the absent fundamen-
tal) and partials are labeled: f1 = kf0 + ∆f ,
f2 = (k + 1)f0 + ∆f, . . . , fn = (k + n)f0 + ∆f .

3.2. Resonance for nonzero ∆f

Figure 3 shows the experimental results with ∆f
different from zero. Selecting the optimum noise
intensity as revealed by the experiments shown in
Fig. 2. (i.e. 0.04), ∆f was increased in steps of
40 Hz, spanning values of f1 from 300 to 1300 Hz.
For each case, intervals between triggering were
computed. For ease of presentation, the figure
depicts the inverse of inter-spike intervals (dots)

collected at each step of frequency, plotted as a func-
tion of f1. It is immediately apparent that despite
the fact that the spacing between the terms remains
constant (at 200 Hz) since [(k + n + 1)f0 + ∆f ] −
[(k+n)f0 +∆f ] = f0, the results show a linear shift
of the frequency maximally enhanced by the noise
(i.e. the ghost SR) as a function of ∆f . The quan-
titative aspects of this shift is fully accounted by
the prediction in [Chialvo et al., 2002] which are
over-imposed (lines) in the figure. The argument
described in [Chialvo et al., 2002] shows that for
inputs composed of N sinusoidal signals, the ghost
resonances are expected at a frequency:

fr = f0 +
∆f

k + (N − 1)
2

(2)

In summary, we have verified experimentally
two of the most important quantitative features of
this type of new resonance described in previous
work. First, for the case of harmonic signals there
is a robust resonance for f0 regardless of the num-
ber of terms composing the signals (Fig. 2). Sec-
ond, for the case of inharmonic signals, the general
expression derived previously predicts precisely the
location of the resonances observed experimentally
(Fig. 3). Given that the robustness of the phenom-
ena is expected, the main findings reported here
and in [Chialvo et al., 2002] can be observed in a
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Fig. 3. Main resonances for signals with two to five frequencies (panels A to D respectively). In each panel, the intervals(plotted as its inverse fr ) between triggered pulses 1/T are plotted as a function of f1 , which was varied in steps of 40 Hz. Fam-ily of over-imposed lines are the theoretical expectation (i.e. Eq. (2) with N = 2, 3, 4 or 5 in panels A through D respectively)for increasing k = 2 − 7.diversity of nonlinear systems such as semiconduc-tors lasers with optical feedback in the excitableregime [Buldú et al., 2003], propagating neural dis-charges [Chapeau-Blondeau et al., 1996], musclereceptors [Fallon et al., 2004], spinal and corticalfield potentials evoked to tactile stimuli [Manjarrezet al., 2003], and vision [Kingdom & Simmons, 1998;Fujii et al., 2000], areas which deserve to be furtherinvestigated.AcknowledgmentsThanks to Sebastian Calvo and Pascual Lopezfor technical assistance. Work supported by grantsof the MCyT of Spain (Projects CONOCE2,BFM2002-12792-E and FIS2004-05073-C04-03) andNIH of USA (Grants 42660 and 35115). D. R.Chialvo is grateful for the hospitality and supportof the Departamento de F́ısica, Universitat de lesIlles Balears, Palma de Mallorca.ReferencesBuldú, J. M., Chialvo, D. R., Mirasso, C. R., Torrent,M. C. & Garćıa-Ojalvo, J. [2003] “Ghost resonancein a semiconductor laser with optical feedback,” Euro-phys. Lett. 64, 178–184.Bulsara, A. R. & Gammaitoni, L. [1996] “Tuning in tonoise,” Phys. Today 49, 39–45.
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