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ABSTRACT

We present a comprehensive description of electrically-driven vertical-external-cavity surface-emitting diode lasers
(VECSELs) at 980 nm, mode-locked by saturable absorber mirrors. A novel partially-integrated time-domain
model combines accuracy and flexibility, allowing for a semi-analytical stability analysis of the compound-
cavity modes, tracking the mode-locking onset and an optimization analysis. The linear stability analysis of
the compound-cavity modes indicates that single mode solutions exist and are stable only in a limited current
range around threshold. Increasing the current above this current level leads to a multimode solution through a
Hopf bifurcation. This bifurcation point is followed by a continuous transition leading from harmonic oscillations
to fully-developed pulses that correspond to the mode-locked solution. We obtain stable, fully-developed mode-
locked pulses of few tens of picoseconds at 15 GHz repetition rate in good agreement with reported experimental
results. We discuss the dependence of the mode-locking regimes on the reflectivity of the distributed Bragg
reflectors, spot area of the spatial mode, and number of quantum wells in the emitter and absorber cavities. The
optimization analysis reveals that, in order to favor the mode-locking onset, the effective coupling between the
emitter and saturable absorber cavities has to be optimized through the standing wave pattern in the composite
cavity and spot-area of the spatial modes.
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1. INTRODUCTION

Vertical-cavity surface-emitting lasers (VCSELs) are optical sources that can potentially substitute edge-emitters
in many future applications. In particular, vertical-external-cavity surface-emitting lasers (VECSELs) are be-
coming important devices for high power generation, intracavity frequency conversion, gain-switching and mode-
locking applications. The external-cavity offers interesting features for mode-locking: good beam quality, the
possibility of controlling the transverse laser mode and multi-GHz repetition rates with low tendency to Q-
switching. The vertical-external-cavity concept has been applied in optically pumped devices [1–3] and, more
recently, to electrically-driven devices [4, 5]. Optically pumped VECSELs are suited to high power applications
because of the scalable output power with the size of the fundamental transverse mode [6]. Optically-pumped
VECSELs can be passively mode-locked by semiconductor saturable absorber mirrors (SESAM) [7–9]. They have
generated picosecond pulses with output powers larger than 200 mW and sub-picosecond pulses when operating
in the quasi-soliton mode-locking regime [2, 10]. On the other hand, electrically-driven VECSELs provide more
compact laser sources that, after integration of the external cavity, will enable ultrahigh repetition rates [11].
Several demonstrations of electrically-driven VECSELs lasing around 980 nm [4,5,12,13] have recently been re-
ported. Jasim and coworkers [5,13] considered two distant vertical cavities, an emitter and a saturable absorber,
coupled in a linear resonator. Figure 1(a) shows the scheme of the mode-locked VECSEL. The saturable absorber
cavity was reverse biased to provided fast recovery of the absorption down to few picoseconds [13]. Jasim et al.
found mode-locked pulses with pulse durations of few tens of picoseconds and repetition rates up to 15 GHz.
Thus far, results from electrically-driven devices suggest that an optimization analysis can be advantageous in
order to improve their performance, i.e., to facilitate the mode-locking onset and stability, shorten the pulsewidth
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Figure 1. Hierarchy of descriptions. (a) Sketch of the mode-locked VECSEL (not in scale). (b) Partially integrated
description: the DBRs are represented as plane mirrors with effective internal (external) reflectivities r (r′) and transmis-
sivities t (t′), beam splitter (BS) and micro-lens (µL). (c) Lumped element description: both active cavities are replaced
by effective nonlinear reflectivity mirrors ρa,p(ω, Da,p).

and enhance the output power. Moreover, VECSEL demonstrations showed that resonator adjustments are crit-
ical to achieve mode-locking [4, 5]. Self-starting is a problem inherent to fast saturable absorber systems since
dynamic gain saturation can stabilize the continuous wave (CW) solution, retarding the appearance of pulsed
operation [14]. These experimental results motivated us to develop a detailed theoretical description in view of
the optimization of the devices and the generalization of VECSEL concepts to longer wavelengths.

Figure 1 schematically shows three different approaches for modeling the mode-locked VECSEL. Figure
1(a) represents the multi-layer structure that is considered in fully-distributed descriptions of the device. Fully
distributed time-domain models of VECSELs provide an accurate description of the intracavity electric fields
and the interaction with the active quantum wells (QWs) for ultrafast operation [15,16]. Their major drawback,
however, is the heavy computational requirements associated with the spatial discretization along the cavity
axis, which prevents long integration times, jitter characterization [17], and extensive parametric studies. On
the other hand, Fig. 1(c) depicts the starting point of lumped-element models, such as, numerical pulse iterative
models [10,18] and Haus master equation [19]. The viewpoint is that of a pulse circulating in the resonator defined
by the two vertical cavities. In these models, the vertical cavities are effectively replaced by hard mirrors with non-
linear reflectivity ρ(ω,D). Therefore, when the pulse encounters a vertical-cavity, the regeneration simultaneously
involves amplification/absorption and filtering due to the high finesse of the Fabry-Perot cavities defined by the
distributed Bragg reflectors (DBRs). The main difficulty in this approach is the description of the dynamics of
the non-linear reflectivities, and two important simplifications are usually made: i) dispersion and nonlinearity
are treated separately and lumped into characteristic operators and ii) weak saturation is usually invoked in order
to linearize the effective reflectivity. Moreover, tracking the mode-locking onset requires describing a cw solution,
and this is a tricky matter in pulse-iterative models because of the finite time window considered around the
pulse. Fig. 1(b) depicts an intermediate approach developed by the authors in [20] which, in brief, lumps the DBR
layers into hard mirrors with known reflectivity and transmissivity spectra but maintains the detail of the spacers
and QWs. Hence, our description assumes that the optical propagation can be solved analytically everywhere
in the device except for several thin QW layers. This approach is justified in VCSELs since the the nonlinear



light-matter interaction solely occurs in the QWs. The benefits of this approach are obvious: it alleviates the
complexity of fully-distributed while improving the detail of lumped descriptions. Nonlinear saturation and
filtering are naturally accounted for by directly considering the evolution of the intracavity fields at the quantum
wells. In addition, no a priori assumptions on either the filtering function or dispersion are required since they
naturally arise from the user-defined optical structure. Finally, this partially-integrated approach offers a detailed
description of the mode-locking formation which can be tackled via numerical simulations and semi-analytical
techniques.

In this paper, we shall discuss the approach followed to derive the partially-integrated model and how it
can be used as a tool for optimization, i.e., to find relevant quantities such as mode-locking onset, evaluate the
stability, pulsewidth and phase noise.

2. LASER STRUCTURE

The mode-locked laser under study is sketched in Fig. 1(a). The structure of the VECSEL is similar to that
constructed by Jasim and coworkers in Ref. [5]. It consists of two similar vertical-cavities (emitter and absorber)
a distance Le apart. The repetition rate is selected by adjusting the external-cavity length Le. The emitter
contains InGaAs/GaAsP MQWs at 980 nm, embedded in a 3λ-cavity defined by two distributed Bragg reflectors.
The AlGaAs/GaAs DBRs have a refractive index contrast of 2.967/3.525. The bottom, p-type DBR has high
reflectivity (R1,2 ∼ 0.997) while the top, n-type DBR has only moderate reflectivity, Ra ∼ 0.7 − 0.8, and it
incorporates a ring-contact that allows for electrical injection (through the substrate). The moderate reflectivity
of the top DBR increases the optical losses in the emitter up to the point that it cannot lase by itself unless it
receives feedback from the external saturable absorber mirror. Thus, the emitter acts as a Fabry-Perot optical
amplifier where the larger the reflectivity the larger the amplified gain at the cost of reducing the available
bandwidth. The structure of the saturable absorber section is similar to that of the emitter except for the
reflectivity of the top mirror which is approximately that of a semiconductor-air interface (Rp ∼ 0.3). The cavity
is reverse biased in order to provide fast recovery of the absorption down to few picoseconds [13]. The emitter
and the absorber are optically coupled through a micro-lens and a beam splitter, with transmissivity tbs, which
is used as output coupler. They lie at conjugated planes through the micro-lens, so the spot-area of the spatial
beam can be adjusted in order to achieve tighter focusing on the absorber wA/wP > 1. The angled beam splitter
introduces different transmission for TE and TM modes, hence helping to select a linear polarization for the
electric field.

3. A PARTIALLY INTEGRATED MODEL

The partially integrated model assumes that the optical propagation can be solved analytically in most of the
layers composing the VECSEL except for the interaction with the quantum wells which is intrinsically non-linear.
The latter shall appear as a nonlinear boundary condition. In order to apply the transfer matrix formalism
for propagating fields in the linear layers, we start treating the optical problem in the frequency domain and,
thereafter, we invoke the slowly-varying approximation to finally arrive at the “partially-integrated” time-domain
model.

3.1. Optical model in the frequency domain

As depicted in Fig. 1(a), our system comprises two vertical cavities plus an external cavity. Within the vertical
cavities, the wave equation for a linearly-polarized electric field Eω(
r) in the frequency domain reads

∇2Eω(
r) + ω2

c2
n2
s(
r⊥, z)Eω(
r) = − ω2

c2ε0
Pqw(
r, ω) (1)

where n2
s(
r⊥, z) = 1 + χs stands for the distribution of the background refractive index, and Pqw(
r, ω) the

distribution of material polarization that is non-vanishing only at the QW layers. The transverse distribution of
ns(
r⊥, z) arises from thermal lensing and oxide apertures, whereas the z-coordinate defines a multilayer structure.

The profile of each transverse mode varies along the VECSEL. To determine the transverse profile, we assume
that the micro-lens has a stronger effect defining the spatial mode than the refractive index distribution inside



the vertical cavities. Therefore, we use as expansion basis the paraxial modes of the external resonator defined
by the micro-lens and two frequency selective hard mirrors which represent the two cold-vertical-cavities. The
paraxial modes of the VECSEL are determined by Huygen’s integral together with the ABCD ray matrices [21].
Following this procedure, we find the distribution of the fundamental Gaussian beam Φω(r⊥, z) everywhere in
the external cavity. Next, we assume that both the emitter and the absorber are much shorter than the Rayleigh
length of the Gaussian beam, so we can neglect diffraction in each of these sections and express the intracavity
fields as

Eω α(
r) = Eω α(z)Φω(
r⊥, zα) (2)

where α = A,P stands for the emitter and absorber cavities. Upon introducing (2) into the wave equation (1)
and projecting onto Φ∗

ω(
r⊥, zα), we arrive at

d2
zEω α(z) +

ω2

c2
n2
α(z)Eω α(z) = − ω2

c2ε0

∫∫
Pqw α(
r, ω)Φ

∗
ω(
r⊥, zα) d

2
r⊥ (3)

where nα(z) defines the effective index in every layer of the emitter and absorber cavities.

Once the transverse profile is determined for the VECSEL structure, the optical problem reduces to the
longitudinal propagation of the optical field given by Eq. (3). Each vertical cavity comprises two DBR layer
stacks, two homogeneous spacers and several QW layers. In order to describe these elements, we make the
following hypotheses:

1. In a general case, the QWs are distributed along a mλ/2 cavity. For simplicity, we assume all the wells
identical and in the same electronic state, so that the MQW structure is replaced by a SQW structure
with a relative confinement factor scaled by the number of wells. For thin QWs, W � λ, the distribution
of material polarization can be approximated by a Dirac’s delta

Pqw,α(
r, ω) = ε0∆χα(ω,Nα) Eω,α(
r⊥, zqw)Wαδ(z − zqw) (4)

∆χ ≡ χ(ω,N) + χqw − χs, χ(ω,N) the optical susceptibility of the active QW layer at a carrier density
N(
r⊥), χqw the background refractive index of QWs, W the QW thickness, and zqw the position of the
QW in the cavity.

2. Equation (3) becomes linear in the DBRs, so the fields can be analytically propagated in the stack of
layers using the transfer matrix formalism [22]. This defines the reflectivity rx(ω) and transmissivity tx(ω)
spectra of the DBRs. Symbols with prime, r′x(ω) and t′x(ω), will be used to denote external reflectivity
and transmissivity, i.e., when a field is injected from the external cavity to a vertical cavity.

3. The spacers at either side of the QW are assumed identical and homogeneous.

Thus far, the problem is solved everywhere in the optical cavity except for the interaction with the QW layers.
In the limit of thin QWs, these interaction terms appear as boundary conditions, since Dirac’s delta imposes the
continuity of the electric field Eω(z) with a discontinuity of its longitudinal derivative at each QW plane. Upon
introducing (4) into (3) and integrating over z, we find

dzEω α(z
+
qw)− dzEω α(z

−
qw) = −ω

2

c2
Wα∆χαEω α(zqw) (5)

where ∆χ stands for the modal optical susceptibility.

It is worth noting that, in this approach, the propagation in all layers is linear everywhere except in the QW,
which is treated as an additional boundary conditions by means of (5). This equation imposes a relationship
between the field at the QW layer Eω α(zqw) and at both spacers. Thus, we solve analytically the longitudinal
propagation by expressing the electric field as a set of counter-propagating waves in every section and imposing the



boundary conditions. See Fig. 1(b) for the notation and Ref. [20] for further details. After some straightforward
algebra, the boundary conditions at the emitter can be written in the form

(1− r1raei2qLa)EqwA = icAΓA∆χA(ω,NA)EqwA + YA , (6)

YA ≡ t′ae
iqLwa(1 + r̃1)C− (7)

which only involves the electric field at the QW layer and the externally injected field YA. The meaning of the
different parameters is cx = (ω/c)MxWx/nx, Mx the number of QWs, q = (ω/c)na(ω) and na the effective
index of the emitter spacers. The term on the left-hand-side of this equation is the usual Fabry-Perot function
that describes multiple pass regeneration and introduces bandwidth filtering. The different parameters are
r̃1 = r1 exp(i2q(La − Lwa)), r̃a = ra exp(i2qLwa), and the relative confinement factor ΓA = 1

2 (1 + r̃1)(1 + r̃a).

Similarly for the absorber, we arrive at

(1− r2rpei2kLp)EqwP = icPΓP∆χP (ω,NP )EqwP + YP , (8)

YP ≡ t′pe
ikLwp(1 + r̃2)ζei

ω
c LeC+ (9)

with k = (ω/c)np(ω) and np the effective index of the absorber spacers. For convenience, YP is defined as the
injection field referenced at the absorber QW plane. The other parameters read r̃2 = r2 exp(i2k(Lp − Lwp)),
r̃p = rp exp(i2kLwp) and ΓP = 1

2 (1 + r̃2)(1 + r̃p).

Equations (6)−(9) are the starting point of our optical model. They describe the fields in two Fabry-Perot
cavities which experience mutual optical injection. In our case, however, the injection fields are not independent
but connected through multipass propagation in the external cavity. The injected fields are expressible as

YA(ω) = tbsζe
iω

c Le [a1(ω)YP (ω) + a2(ω)EqwP (ω)] (10)

YP (ω) = tbsζe
iω

c Le [p1(ω)YA(ω) + p2(ω)EqwA(ω)] (11)

In the external cavity, we take into account localized loss at the position of the beam splitter with transmissivity
tbs and ζ accounts for other distributed losses. The functions a1,2(ω) and p1,2(ω) are given in Appendix A.
Equations (10)-(11) could be used to eliminate the YA,P fields in (6)-(8). However, we prefer not to do so since,
in the present form, there is a clear separation between internal and external time scales that solely appear in
the exp(iωc Le) terms of Eqs. (10)–(11). This will be a key point when deriving the time-domain equations.

3.2. Optical model in the time domain

In this section, a time-domain version of the frequency-domain model is derived in order to access the mode-
locking dynamics. A widely used approach is the modal expansion in terms of compound-cavity modes, as
performed in frequency-domain theories of mode-locking [23, 24]. However, this expansion may become un-
practical when the number of modes is large, as in the present case. Instead, we shall look for an analytical
approximation of the Fourier integrals to time-domain. This approach is justified because of the different time
scales —the roundtrip times in the vertical cavities and the repetition rate of the external resonator— are clearly
separated.

We define the slowly-varying envelope (SVE) of the electric fields with respect to the carrier frequency ω0,
E(t) = Ê(t) exp(−iω0t). We consider ω0 to be the lasing frequency at threshold [20]. The evolution of the
electric fields at the QW layers, Eqs. (6)-(9), admits a formal solution in the time-domain that is obtained by
replacing ω → ω0 + i∂t, thus accounting for dispersion at all orders. For sufficiently long optical pulses (� 1 ps),
the Fabry-Perot functions [ 1 − r1(ω)ra(ω)ei2q(ω)La ] and the optical susceptibility can be expanded in Taylor
series around ω0. After Fourier transforming back to time-domain, the SVE of the electric fields ÊqwA,P at the
QW layers evolve according

κA τrt,A ∂tÊqwA(t) = −(1− κA)ÊqwA(t) + icAΓA∆χA(ω0,DA(t))ÊqwA(t) + ŶA(t) + FA(t) (12)

κP τrt,P ∂tÊqwP (t) = −(1− κP )ÊqwP (t) + icPΓP∆χP (ω0,DP (t))ÊqwP (t) + ŶP (t) (13)



with κA = r10ra0e
i2qLa , and κP = r20rp0e

i2kLp . The label “0” means that the quantity is computed at the SVE
frequency ω0. A Langevin noise source FA(t) has been phenomenologically added to (12) in order to account for
spontaneous emission in the emitter. The (complex) internal roundtrip delays are defined by

τrt,A ≡ (τr1 + τra
+

2La

vga
) +

cA
κA

∂

∂ω
[ΓA∆χA]ω0

, τrt,P ≡ (τr2 + τrp
+

2Lp

vgp
) +

cP
κP

∂

∂ω
[ΓP∆χP ]ω0

(14)

vgx being the group velocity in the spacers, and τrx the reflection delays of the DBRs. It is worth noting that
the last terms in the rhs of the above expressions describe, up to first order, gain and carrier-induced refractive
index dispersion. In this way τrt,x retain their dependence with the carrier densities, hence describing small
timing adjustments through carrier-density fluctuations.

The structure of (12)-(13) resembles to the equations of two semiconductor lasers with mutual optical in-
jection. The terms ŶA(t) and ŶP (t) represent the effective injection terms acting onto the QW layers. Their
evolution is governed by the iterative equations

ŶA(t) = ξ[a1(ω0)ŶP (t− τe) + a2(ω0)ÊqwP (t− τe)] (15)

ŶP (t) = ξ[p1(ω0)ŶA(t− τe) + p2(ω0)ÊqwA(t− τe)] (16)

obtained after Fourier transforming Eqs. (10)-(11). As usual, hat denotes a slowly-varying amplitude, ξ =
tbsζ exp(iω0Le/c) is the one-way field attenuation, and τe the one-way delay time. The functions a1,2(ω), p1,2(ω)
are specified in Appendix A. Equations (15)–(16) define an iteration for the injection fields as a function of
the delayed memory of the system valid for arbitrarily strong coupling. This effect can be easily numerically
implemented by defining vectors that allocate the electric fields at the QWs and the injection fields. In this
way, multiple reflections in the external cavity are naturally described. In this sense, the approach presented in
this paper is generalizable to other external-cavity configurations involving optical injection and strong optical
feedback. Mathematically, the time-domain model is defined as a system of nonlinear ordinary differential
equations coupled to an algebraic map for the injection fields.

3.3. Material model

We use analytical expressions for the full optical susceptibility (gain and refractive index) given in [25]

χA(ω,DA, |EqwA|) =
ΛA + 1
2ΛA

fA +
ΛA − 1
2ΛA

f∗A , (17)

fA = −χ0A

[
2 ln

(
1− DA

uA + iΛA

)
− ln

(
1− bA

uA + iΛA

)]
,

with ΛA =
√
1 + εA|EqwA|2, εA the gain compression coefficient due to spectral-hole burning, and the normalized

frequency uA = (ω − EgA/�)/γ2A + σ(DA)1/3. σ phenomenologically describes bandgap renormalization with
the carrier density which has been normalized to the transparency value DA ≡ NA/NtA. Finally, γ2A stands for
the material polarization dephasing-rate. The value of χ0A is taken as a free parameter to achieve a material
gain of 1500 cm−1 per well at DA ≈ 2. The full optical susceptibility allows for an efficient description of the
nonlinear gain saturation and self-phase modulation effects at time scales above one picosecond.

In the saturable absorber, the expressions for the optical susceptibility are equivalent to Eq. (17) except for
uP = (ω − EgP /�)/γ2P . Due to the quantum confined Stark effect in InGaAs/GaAsP QWs, the bandgap EgP

experiences a redshift of ∼ 5 meV per applied volt in reverse bias [26].

A final point consists in determining the carrier densities populating the wells. In order to find a simple
and efficient description, the transverse spatial dependence is eliminated by assuming homogeneous saturation
energies in regions defined by the mode areas. As already mentioned, this approximation is justified when the
transverse profiles are mainly defined by the micro-lens and the influence of Kerr and thermal lensing effects is
negligible. The evolution equations for the spatially-averaged carrier densities, Dx = N̄x/Ntx read [27]

γ−1
e ∂tDA = µ−D2

A +
1
2i
[PA(t)E

∗
qwA(t)− c.c.] , (18)

γ−1
e ∂tDP = −γ

abs
DP + s

1
2i
[PP (t)E

∗
qwP (t)− c.c.] , (19)



where the material polarization after a first-order expansion around ω0 reads [27]

Pα(t) =
1
2π

∫ +∞

−∞
dω χα(ω,Dα)Eqw α(ω)e

−iωt ≈ χα (ω0,Dα(t)) Êqw α(t) + i∂ωχα (ω0,Dα(t)) ∂tÊqw α(t) . (20)

Note that the electric fields and carrier densities are expressed in dimensionless units and that non-radiative
recombination at 980 nm has been neglected. The meaning of the different parameters is γe ≡ BeffNtA,
Beff is the effective spontaneous recombination constant [28], and γabs ≡ 1/(γeτabs). τabs is the absorber
recovery time obtained from fitting of the experimental data [13], τabs(Vabs) = 21 ps · exp(Vabs/2.125V) for
Vabs ∈ [−4, 0] V. The factor s that multiplies the stimulated recombination term in the absorber equation reads
s ≡ (naNtA w

2
A)/(npNtP w

2
P ), with wx the 1/e-beam waists of the modes in the each cavity. The scaled current

injected into the emitter is µ ≡ I/(eMqwWAA⊥BradN
2
tA), e the elemental charge, MqwWA the total thickness

of QWs, and I the total injected current. The details of the current distribution, that should be obtained by
solving the electrical conduction equation, only define the effective active area in the emitter A⊥, thus the current
density and heating.

3.4. Compound-cavity modes

Continuous wave (cw) operation is the simplest solution of the time-domain model; the compound-cavity modes
(CCM) represent monochromatic solutions for the electric field and steady-state inversions. The CCM can be
expressed as follows

Êqw,x(t) = Es
qw xe

−iωst , Ŷx(t) = Y s
x e

−iωst , Dx(t) = Ds
x . (21)

Upon introducing these expressions into the time-domain model (12)-(13), (15)-(16) and eliminating the depen-
dence on injection fields Yx, we arrive at two equations for the fields at the QW planes coupled to equations
(18)-(19) for the stationary carrier densities. The field equations read

[
Ñ11(ωs)− iωsτsrtA − icAΓA∆χA(ω0,D

s
A)

]
Es
qwA = Ñ12(ωs)E

s
qwP (22)[

Ñ22(ωs)− iωsτsrtP − icPΓP∆χP (ω0,D
s
P )

]
Es
qwP = Ñ21(ωs)E

s
qwA (23)

where the notation τ srt x = τrt x(Ds
x) has been introduced. The coefficients of the Ñij matrix are defined in

Appendix B. A nontrivial solution for Es
qw x in (22)-(23) requires the condition of vanishing characteristic

determinant of the system. This provides a complex equation D(ωs,Ds
A,D

s
P ) = 0 with three real unknowns.

To solve this equation we consider two cases. CCM can be classified into on-state and off-state depending on
whether the saturable absorber is partially bleached or not, respectively.

3.4.1. OFF-CCMs

The off-state CCMs are obtained by neglecting the stimulated recombination terms in the carrier density equa-
tions. Moreover, Ds

P ≈ 0 since the absorber is unbleached. Therefore, the characteristic equation reduces to
D(ωs,Ds

A =
√
µs,D

s
P = 0) = 0 which can be solved for ωs and Ds

A. This leads to two real nonlinear equations
whose roots are located by contour plotting and numerically solved with a two-dimensional Newton-Raphson
scheme. The stability of these modes is simply determined by the threshold condition, being stable (unstable)
for µ < µs (µ > µs). The lowest µs defines the laser threshold current Ith and it also determines the emission
frequency of the laser at threshold.

3.4.2. ON-CCMs

Above the laser threshold, an additional equation is required in order to determine the bleaching level in the
absorber. The remaining condition is obtained from the carrier equations, which impose a ratio for the stimulated
recombination terms [29]

∣∣∣∣∣
Es
qwA

Es
qwP

∣∣∣∣∣
2

=
−(µ−Ds

A
2)

γabsDs
P

s
Im[χsP + χsP

′ ωs]
Im[χsA + χsA

′ ωs]
=

|Ñ12(ωs)|2
|Ñ11(ωs)− iωsτsrtA − icAΓAχsA|2

(24)



where χsx = χx(ω0,D
s
x) and χsx

′ = ∂χx(ω0,D
s
x)/∂ω. The procedure followed to solve these equations is the

following. First, a convenient way to locate the on-CCMs is by recalling that each off-mode will have an
associated on-CCM for currents beyond the laser threshold. In practice, ωs changes little with respect to the
associated off-CCM. Second, we consider D(ωs,Ds

A,D
s
P ) = 0 as an equation for ωs(DP ) and DA(DP ) which

have a parametric dependence on DP . Thereafter, Eq. (24) is solved for DP . An on-CCM is characterized by
the quantities {ωs,Ds

A,D
s
P , |Es

qwA|, |Es
qwP |,ΨAP }, i.e., emission frequency ωs (with respect to ω0), inversions,

the field amplitudes, and a relative phase between the fields.

3.4.3. Linear stability analysis of on-CCMs

In order to perform the linear stability analysis (LSA) of a given on-CCM, we add a small perturbation to
the monochromatic electric field and steady carrier densities that represents excitation of adjacent longitudinal
modes

Êqw,x(t) = Es
qw xe

−iωst + δEqw xe
−i(ωs+iλ)t (25)

Ŷx(t) = Y s
x e

−iωst + δYxe
−i(ωs+iλ)t (26)

Dx(t) = Ds
x +∆xe

λt. (27)

Upon introducing these expressions into the dynamical model and linearizing the perturbations, we find a 6× 6
homogeneous system for δEqwA, δE∗

qwA, δEqw P , δE∗
qw P , ∆A and ∆P . We arrive at a complex equation for

the eigenvalue λ = λR + iλI . A net growth rate of the perturbations, λR > 0, indicates that such on-mode is
unstable and, depending on the conditions, mode switching or multimode dynamics will develop. The resulting
transcendent equation has a large number of solutions associated with the multiple resonances of the system. For
mode-locking one is interested in looking for roots with imaginary part close to λI ≈ Ω · (0,±1,±2, · · · ), with Ω
the inter-mode spacing. In particular, fundamental mode-locking involves excitation of neighboring modes with
λI ≈ ±Ω.

3.5. Parameters

The different parameter values used in the model are taken to reproduce the experimental conditions in Ref. [5].
For both the emitter and the absorber, the reference Bragg wavelength is λB =980 nm, while the reflectivity of
bottom DBRs (23 pairs) is R2 = R1 = 0.998. The reflectivity of the top DBR in the emitter is Ra ∼ 60− 80%
(PA ∼ 3-5 pairs) while in the absorber we take Rp ∼ 30% (PP ∼ 1-2 pairs). The modal refractive indexes are
na = np = 3.52, and the group refractive index is ng = 4.5. The QW thickness is WA = WP = 9 nm, and the
number of quantum wells MqwA = 4 and MqwP = 1 – 4. The susceptibility pre-factor is χ0A = χ0P = 0.1, the
empty band contribution to the susceptibility in the emitter is bA = 104 and in the absorber bP = 2 · 104. The
gain suppression coefficient εA = εP = 10−23 m−3, the reference bandgap for the gain in the emitter EgA = 1.265
eV and in the absorber EgP,reff = 1.285 eV, the reverse bias in absorber Vabs = −3 V, the polarization dephasing
rate in the emitter γ2A = 2 · 1013 s−1 and in the absorber γ2P = 1013 s−1, the bandgap shrinkage coefficient
in the emitter σ = 0.2, the effective spontaneous recombination constant Beff = 1.5 · 10−16 m3/s, the carrier
density at transparency in the emitter NtA = 1.5 · 1024 m−3 and in the absorber NtP = 0.75 · 1024 m−3. Finally,
the effective active region area is A⊥ ∼ π · 752 µm2, and the beam waist ratio is wA/wP ∼ 2. In order to operate
close to the Bragg wavelength, the cavity lengths Lx fulfill the usual resonance condition in a 3λ-cavity [28].

4. RESULTS

4.1. General considerations

In the emitter, the detuning between the Bragg and bandgap frequencies is set to ∆ = (ωB −EgA/�)/γ2A ≈ 1 in
order to operate close to the peak of maximum gain at typical carrier densities DA ≈ 2− 3. In the absorber, the
nominal bandgap and the reverse bias are adjusted in order to obtain similar saturation fluences in the emitter
and absorber. Hence, the operation in the absorber occurs around the absorption edge although not too far from
the bandgap, yielding moderate absorption and positive linewidth enhancement factors. The typical values we
obtain are αA ≈ 2− 3 in the emitter and αP ≈ 0− 1 in the absorber.
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Figure 2. (Left panel): Pulse train for different injection currents normalized to the laser threshold I = 1.2 Ith (α),
I = 1.3 Ith (β) and I = 1.5 Ith (γ). We go from oscillations, stable pulses to incomplete mode-locking. (Right panel):
Optical spectra for the same conditions. The plots have been vertically shifted for the sake of clarity. Parameters are in
Sec. 3.5 except for: tbs = 0.9, s = 8, PA=4 and PP = 1, MqwA = 4 and MqwP = 1.

The (differential) saturation energy of the active media can be expressed as Esat,x(ω0, Nx) = πw2
xFsat,x,

Fsat,x being the saturation fluence or saturation per unit area. The ratio of saturation energies Esat,A/Esat,P

can be controlled by adjusting the aspect of mode beam waists wx with the micro-lens. We will show that a
crucial condition to achieve mode-locking is the prior adjustment of the mode sizes. In particular, the mode
has to be more tightly focused on the absorber facet. In addition, the relative intensities of the standing-wave
patterns within each vertical-cavity plays an important role in defining the mode-locking onset.

4.2. Scenario upon increasing the injection current

Figure 2 shows three simulated pulse trains for different injection levels in the emitter. The repetition rate is
set to 15 GHz as in the experiments reported in Ref. [5]. The initial transients that appear after each change in
bias current have been removed. The general scenario is the following. When setting the bias current sufficiently
close to the laser threshold, the VECSEL emits cw in a single longitudinal mode. Increasing the bias current,
the output intensity undergoes harmonic oscillations at a frequency near the inverse of the cavity roundtrip
time. This fact is associated with the activation of longitudinal side modes. The optical spectrum [Fig. 2(α)]
shows several longitudinal modes. This stage is followed by a rapid onset of multi-longitudinal mode emission.
A frequency comb, characteristic of mode-locking, develops in the different optical spectra. In the time-domain,
the harmonic oscillations reshape into pulses when the current is increased. For certain injection currents beyond
threshold, mode-locking may enter into an irregular region as shown in Fig. 2 (γ). In simulations, this instability
leads to pulse splitting and a slow (∼100 ns) modulation of the pulse train. Experimentally, there is evidence that
the laser can display a similar unstable self-pulsating behavior [5]. At this stage, the quantities characterizing the
pulse, such as the pulse energy, become time dependent. The instability point can be moved to higher currents
by increasing the reverse bias applied to the absorber up to a maximum value around −4 V.

4.3. Tracking the mode-locking onset

In order to better understand the scenario presented in the preceding section, we track the onset of the mode-
locked state by means numerical simulations of the time-domain model and semi-analytical techniques based on
the stability analysis of compound-cavity modes (CCMs).

The numerical simulations in the previous section indicate that the mode-locked state develops in a continuous
way soon after the monochromatic solutions lose stability. Thus, the onset of mode-locking can be characterized
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Figure 3. (a) Open circles depict off-CCMs inversion and frequency with respect to the Bragg resonance. (b) Stable (•)
and unstable (×) on-modes. The on-modes are calculated for injection levels ranging from 1.02 Ith to 1.38 Ith at 0.04 Ith

steps (from top to bottom). (c) Optical spectra for three different currents. Same conditions as in Fig. 2.

by analyzing the linear stability of the CCMs, which are the monochromatic solutions of the electric field and
steady-state inversions. As discussed in Sec. 3.4, CCMs can be classified into on-state and off-state depending
on whether the saturable absorber is partially bleached or not, respectively. Empty circles in Fig. 3(a) show the
inversion level in the emitter required for the different off-CCMs to become unstable, ordered according to the
modal frequency in these working condition. The separation between nearest modes Ω (15 GHz) is determined by
the external cavity length (Le ≈ 1 cm). The lowest inversion off-CCM defines the laser threshold. The inversion
needed for an off-CCM become unstable increases when its frequency deviates from the threshold mode, thus
limiting the available bandwidth. This effect stems from the multiple-pass regeneration in vertical cavities,
where the larger the amplified gain the lower the optical bandwidth. The optical bandwidth can be enhanced
by reducing the number of pairs of the top DBRs, thus supporting shorter pulses at the expense of increasing
the threshold current. For injection currents above the laser threshold, the on-CCMs have optical power that
partially bleaches the saturable absorber, reducing the overall cavity losses. Therefore, their inversion condition
is below that of the associated off-CCM and, the larger the injection level in the emitter the larger the inversion
reduction [Fig. 3(b)]. In order to facilitate the bleaching of the absorber, low finesse in the emitter and moderate
finesse in the absorber cavities are recommended.

The stability of the different CCMs above threshold is determined performing the linear stability analysis
(LSA) described in Sec. 3.4.3. Operation in a given on-mode is perturbed with respect to excitation of neighboring
modes, arriving at a transcendent equation for the eigenvalue λ. A sufficient condition for multimode emission
occurs when no on-state mode is stable against excitation of adjacent longitudinal modes. Figure 3(b) zooms into
a region near the threshold mode. It shows an example of mode-locking onset calculated for PA = 4 (PP = 1)
pairs in the top DBR of the emitter (absorber) cavity. We simultaneously follow the CCMs, LSA, temporal and
spectral properties [Fig. 3(c)] upon increasing the injection level in the emitter. The stable (unstable) on-CCM
are marked with circle (cross) symbols. When setting the bias current sufficiently close to the laser threshold
Ith, the VECSEL emits cw in the stable on-CCM associated with the threshold mode. The optical spectrum
in Fig. 3(c) labeled as (α) shows this single mode active. For certain current intervals, CCMs placed to the
red of the threshold mode are also stable leading to multi-stability. Nonetheless, numerical simulations indicate
that the system keeps operating on the on-threshold mode. This on-mode loses stability at I ≈ 1.15Ith where
no other CCM is stable. This point sets the locus for multi-longitudinal-mode emission which reflects itself as
the excitation of side modes in the optical spectrum [Fig. 3(c) label (β)] and harmonic intensity oscillations in
the time-domain [Fig. 2(α)]. Hence, LSA correctly determines the onset of multimode emission according to the
results from numerical simulations. It is also clear that these oscillations are because of multimode dynamics since
they appear at the external cavity frequency. According to the frequency-domain theories of mode-locking [23],
mode-locking is likely to occur when a multimode solution sets in. Since, conventional continuation methods
are out of the scope for our dynamical system, we use numerical simulations to verify the stability of the pulsed
solution. Numerical simulations demonstrate that fully-developed mode-locked pulses appear when the injection



current in the emitter is further increased beyond the multimode onset. This is a characteristic feature of the
bandwidth limitation introduced by the vertical cavities. For larger injection levels in the emitter, many modes
participate in the dynamics yielding a frequency comb in the optical spectra, and the harmonic oscillations
rapidly reshape into pulses.

4.4. Optimization analysis

In order to complete the characterization of the mode-locking onset, we have undertaken extensive numerical
simulations of the time-domain model. In this way, the effects of the spot-area ratio, finesse of the cavities and
number of quantum wells on the mode-locking onset are investigated.

The diagrams of Fig. 4 demonstrate the appearance of different regimes of operation when the abovementioned
parameters are varied. At fixed spot-area ratio, the mode-locking onset with current is similar to the one discussed
in Fig. 2: we go from cw operation to fully-developed pulses through intensity oscillations. Circle symbols in the
figure show the locus for multimode onset determined from LSA which agrees with the appearance of oscillations
in simulations. These oscillations can be regarded as mode-locking of a small number of modes. However,
the harmonic regime may be unappropriate for applications. Therefore, we use a criterium for fully-developed
mode-locked (FDML) pulses occurring when the suppression between the first and second harmonic peaks in the
power spectrum is less than 3 dB, providing sufficiently nonharmonic oscillations. Regions of FDML, indicated in
Fig. 4, appear beyond the multimode onset. Another salient feature is that the mode-locking onset is favored by
more tightly focusing the spatial mode on the absorber facet. In fact, there exists a critical value of the spot-area
ratio to obtain FDML close-to-threshold where the fundamental transverse mode performance is maintained. In
devices with integrated absorbers, the spot areas in the emitter and absorber cavities are essentially equal, thus
the contrast in saturation energies must be obtained by designing absorbers with low saturation fluences. This
can be accomplished with quantum dot saturable absorbers [11].
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Figure 4. Mode-locking regimes with the spot-area ratio and injection current: continuous wave (cw), oscillations (OSC),
and fully-developed mode-locked pulses (ML). Circle symbols are the analytical predictions from LSA. All panels are for
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The finesse of the vertical cavities has a strong effect defining the stability of the modes and, in turn, the
mode-locking onset. We find that when the absorber is more effectively bleached, the stability range of the
on-modes is narrower and the multimode onset appears earlier. Panels in Fig. 4 correspond to different finesse
of the vertical cavities and number of QWs. The coupler transmissivity has been adjusted to compensate for
inversion variations, thus keeping constant the saturation fluences. In vertical cavities, the saturation energies
can also be controlled through their finesse which defines the standing-wave pattern in the composite cavity.
We define the coupling efficiency as the ratio of the standing-wave pattern intensities at the QW layers of the
absorber and emitter, ηκ ≡ |EqwP /EqwA|2, computed at threshold conditions for the inversion and frequency.
Fig. 5(a) shows that the coupling efficiency slightly increases with tbs. A figure of merit, controlling the coupling
strength, is the difference in number of pairs of top DBRs ∆P = PA − PP between the emitter and absorber.
The lower (higher) the finesse of the emitter (absorber) the larger the coupling, approaching 100% for symmetric
cavities. Hence, the mode-locking onset is favored in Fig. 4(a) and (b) where ηκ ≈ 0.5 (∆P = 2) compared with
the panel (c) that only has ηκ ≈ 0.35 (∆P = 3).

In the last example [Fig. 4(d)], the onset is favored by increasing the number of QWs in the absorber owing
to the larger modulation depth of the nonlinear absorber reflectivity. However, in this case, the system has to be
operated at higher tbs to maintain the threshold current which reduces the output power. The output efficiency
provides the ratio between the output power and the intracavity optical power in the emitter ηo ≡ |Eout/EqwA|2.
Therefore, there exists a trade-off between threshold current and output power since higher tbs results into smaller
output efficiency [Fig. 5(b)].

4.5. Pulsewidth and Phase noise

The dependence of the pulsewidth on the injection current is shown in Fig. 6(a). For well developed pulses, the
pulsewidth is of the order of 10 ps in agreement with experimental findings [5]. The pulses slightly shorten when
the injection current increases. In practice, there exists a maximum injection current accessible for fundamental
transverse mode operation. Fig. 6(a) demonstrates that the pulsewidth can be shortened by reducing the
reflectivity of the top DBR in the emitter or increasing the number of quantum wells in the absorber, the fact
that also facilitates the mode-locking onset. However, there is a trade-off between gain and bandwidth that has
to be optimized in order to maintain the threshold characteristics of the device. The pulses are slightly chirped
due to the combined effect of self-phase modulation effects and cavity dispersion, leading to a spectral broadening
of the pulses. The typical time-bandwidth product computed for these pulses is ∼ 0.5.

Figure 6(b) shows the phase-noise spectrum computed for three different injection currents using the tech-
niques outlined in Ref. [17]. The phase noise spectrum provides the noise skirts from 100 kHz (maximum
integration time) up to Nyquist. For passive mode-locking, there exists a 1/Ω2 noise decay typical of passive
mode-locking. Amplitude noise is strongly suppressed at GHz frequency range. Only in the frequency range
1-10 MHz, several peaks can be identified which are a signature of slow amplitude fluctuations. The amplitude of
these peaks increase when entering into the incomplete mode-locking region. The slow envelope of the pulse train



1.20 1.30 1.40 1.50

0

20

30

40
P

u
ls

e
w

id
th

[p
s
]

0.0

0.4

0.6

0.8

T
im

e
b
a
n
d
w

id
th

p
ro

d
u
c
t

100k 1M 10M 100M 1G 10G

Frequency offset [Hz]

-160

-140

-120

-100

-80

P
h

a
s
e

n
o

is
e

[d
B

c
/H

z
]

(a)

0.2

passive

hybrid

(b)

4(c)

4(a)

4(d)

10

1.5 Ith
1.3 Ith
1.2 Ith

1.3 Ith
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mode-locking, a sinusoidal modulation with amplitude of 1 V and frequency fm ≈ 15 GHz is added to the absorber
voltage.

corresponds to this frequency [Fig. 2(γ)]. Phase noise spectrum can be substantially reduced at low frequency
offsets by adding a sinusoidal modulation to the reverse bias in the absorber. In addition, hybrid mode-locking
is convenient since leads to shorter pulses and better extinction ratio of the pulses. Synchronization locking by
reverse voltage modulation is demonstrated which opens the possibility of using these devices as precise emitters
and for clock recovery applications.

5. DISCUSSION AND CONCLUSIONS

We have presented a novel time-domain description of passive mode-locking in electrically-driven vertical-
external-cavity surface-emitting lasers (VECSELs). The partially-integrated description analytically treats the
bidirectional traveling wave equations in all linear layers while the quantum wells reduces to a nonlinear bound-
ary condition. In the time-domain, the model is reduced to a set of differential equations coupled to an algebraic
map, physically representing the delayed injection from one vertical cavity into its counterpart. The effects
of dispersion and nonlinear saturation imposed by the vertical cavities are naturally accounted for by directly
describing the evolution of the intracavity electric fields. In this sense, the description fills the gap between
numerical iterative models and more sophisticated finite-difference theories.

Our model enables a thorough understanding of the mode-locking onset and the role played by the different
design parameters on the mode-locking performance: pulsewidth, time-bandwidth product, phase noise, etc.
Stable mode-locked pulses of ∼ 10 ps temporal duration are obtained at 15 GHz repetition rate. These results
are in good agreement with reported experiments. The linear stability analysis of the compound-cavity modes
correctly provides the first onset of instability characterized by multimode emission. Fully-developed mode-
locked pulses appear beyond this point. We find that mode-locking starts near the laser threshold when the
saturation energies in the emitter and absorber are adjusted through their saturation fluences, beam spot sizes,
and standing wave intensities in the cavities.

Finally, we would like to mention other potential applications and extensions of the model. Transverse effects
in the present model have been taken into account at a level that ensures accuracy and efficiency. The range of
single transverse mode operation could be determined by allowing the oscillation of several transverse modes in
the structure. For Gaussian mode operation, the influence of inhomogeneous gain saturation on the pulsewidth
and pulse stability could be investigated by including the spatial hole-burning effects. Temperature effects shifts
the main resonance towards the blue side of the gain spectrum, which causes thermal roll-over and provides
different resonant wavelengths in both cavities. Therefore, the structure must provide good current confinement
around the symmetry axis in order to reduce the effective active area and, in turn, the laser threshold current. Our



approach can be also generalized in order to investigate the conditions required for high-frequency mode-locking
in monolithically integrated devices and to export the concepts to the 1550 nm wavelength.

APPENDIX A. ITERATION FUNCTIONS FOR THE INJECTION FIELDS

The functions a1,2(ω) and p1,2(ω) define the iteration of the injection fields YA,P

a1(ω) =

(
r′p − tpt′p

ei2kLwp

1 + r̃p

)
t′ae

iqLwa(1 + r̃1)
t′peikLwp(1 + r̃2)

, a2(ω) = tpt
′
ae

i(qLwa+kLwp) (1 + r̃1)
(1 + r̃p)

, (28)

p1(ω) =

(
r′a − tat′a

ei2qLwa

1 + r̃a

)
t′pe

ikLwp(1 + r̃2)

t′aeiqLwa(1 + r̃1)
, p2(ω) = tat

′
pe

i(qLwa+kLwp) (1 + r̃2)
(1 + r̃a)

. (29)

The following notation is used: primed symbols stand for external reflectivity and transmissivity, r̃1 = r1 exp(i2q(La−
Lwa)), r̃a = ra exp(i2qLwa), r̃2 = r2 exp(i2k(Lp − Lwp)), and r̃p = rp exp(i2kLwp), q = ω

c na and k = ω
c np.

APPENDIX B. ÑIJ MATRIX

The coefficients of the matrix Ñij(Ω) are functions of the SVE frequency Ω = ω − ω0 that read

Ñ11(Ω) = 1− r1raei2q0L − ξ2ei2Ωτe

∆(Ω)
a1(ω0)p2(ω0) , Ñ12(Ω) =

ξeiΩτe

∆(Ω)
a2(ω0) (30)

Ñ21(Ω) =
ξeiΩτe

∆(Ω)
p2(ω0) , Ñ22(Ω) = 1− r2rpei2k0Lp − ξ2ei2Ωτe

∆(Ω)
a2(ω0)p1(ω0) (31)

with ∆(Ω) = 1− ξ2ei2Ωτea1(ω0)p1(ω0) and ξ = ζtbs exp (iω0τe).
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