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Comment on “Periodic phase synchronization in coupled chaotic oscillators”
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Kye et al. [Phys. Rev. E 68, 025201 (2003)] have recently claimed that, before the onset of chaotic phase
synchronization in coupled phase coherent oscillators, there exists a temporally coherent state called periodic
phase synchronization (PPS). Here we give evidence that some of their numerical calculations are flawed,
while we provide theoretical arguments that indicate that PPS is not to be expected generically in this type of

systems.
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INTRODUCTION

In [1], Kye et al. claim that as a part of the route to
chaotic phase synchronization for unidirectionally and bidi-
rectionally coupled Rossler oscillators, there exists a tempo-
rally organized state, which they call periodic phase synchro-
nization (PPS), just before the onset of chaotic phase
synchronization (CPS). This state would be characterized by
a maximal coherence of the temporary phase locking (TPL)
time 7 (=the time between consecutive phase slips). They
also report that the Lyapunov exponents (LE’s) of the system
are an indicator allowing one to characterize PPS. Although
they only analyze the Rossler system, it is implied that the
phenomenon is generic and happens in the route to CPS in
coupled chaotic oscillators (at least if the oscillators are
phase coherent). We report serious numerical flaws in their
published results and also that one should not expect generi-
cally a temporally coherent state as a part of the transition to
CPS.

The authors of [1] claim, by calculating the coherence
measure P(g)=+var(7)/(7), that a minimum of P occurs be-
fore the onset of phase synchronization. We have recalcu-
lated this quantity for the two situations studied in [1]:
namely, unidirectional [2] and bidirectional coupling, Figs. 3
and 4(b) in Ref. [1]. We find quite different results, even in
qualitative terms.

Our results, Figs. 1 and 2, indicate that the dependence
of P on & is rather flat, until the threshold of CPS
is approached. Close to the critical coupling &— é&pg,
P approaches 1, because 7 is large and phase jumps become
uncorrelated, leading to an exponential distribution of 7
and, consequently, (7)=y/var(7). Surprisingly, in [1], P ap-
proaches 1 also for € — 0, which is strongly counterintuitive
(we are dealing with weakly nonisochronous oscillators) and
totally different from our numerical simulations, Figs. 1 and
2. We suspect that this discrepancy is due to the method of
detecting phase slips illustrated in Fig. 2 of [1]. In our com-
putations, we have directly measured the phases of the oscil-
lators to detect phase slips.
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To study generic features of the transition to CPS, one can
rely on a general model (the “special flow”) based on a
Poincaré map (at a fixed phase of the oscillator) [3]. It de-
scribes a weakly periodically forced chaotic oscillator. The
amplitude of the oscillator (x) and the phase of the external
force () can be modeled by a two-dimensional chaotic map:

Xn+l :f(xn)s (1)

¢n+l = lr/,n + T(xn) + q)((yl’m-xn)- (2)

The dynamical system (1) is assumed to exhibit chaotic be-
havior, and the function f can be considered (in first approxi-
mation) to depend only in x because at low coupling only the
phase, not the amplitude, is affected.

A particular example is [3]

. 3)

Xn+l1 = 1- 2|xn

P = thy + UTo + Ox,) + £ cos(¢,), (4)

where v accounts for the detuning between the forcing and
oscillator periods and ¢ is the coupling strength. The param-
eter 6 determines the nonisochronicity of the oscillator—i.e.,
the amplitude dependence of the period. More complicated
dependences on the amplitude, |dx,| and (dx,)?, were tested,
finding no qualitative difference.
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FIG. 1. Measure of P as a function of &, for a Rdssler oscillator
forced by another one. Equivalent to Fig. 3 in [1].
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FIG. 2. Measure of P as a function of &, for two coupled Rossler
oscillators. Equivalent to Fig. 4(b) in [1].

For typical values of the parameters (see Fig. 3), the be-
havior of the coherence factor P is always monotonically
increasing: Rather flat for small coupling and close to 1 near
the onset of CPS.

In addition to the coherence measure P, in Ref. [1] it is
also argued that one of the vanishing LE’s becomes negative
in a short interval (a “dip” following the terminology in [1])
at around the same value of & at which P is supposed to have
a minimum. It may be seen in Fig. 3 that the model in Eqs.
(3) and (4) exhibits a monotonically decreasing Lyapunov
exponent \ (associated with the dynamics of ). This behav-
ior can be expected to be typical [4].

The model in Egs. (1) and (2) is intended as a zeroth-
order approximation. A more realistic implementation would
include an additional term depending on the phase in Eq. (1);
i.e., the amplitude is not totally insensitive to the phase (see
[5]). Further, most chaotic attractors are not hyperbolic, and
thus the Rossler system exhibits crises, under parameter
variation, that give rise to periodic windows and banded at-
tractors. The logistic map is therefore more suited than the
tent map in Eq. (1) to study the effect of nonhyperbolicity.
Hence, these effects could be taken into account substituting
Eq. (3) by x,,;=ax,(1-x,)+ep sin(y,). The result of this
implementation is that for some parameter values, particu-
larly when a is chosen close to a periodic window (and pro-
vided that p is large enough), the second LE may become
negative in a short interval. But it is noteworthy that param-
eter P is rather insensitive to the fluctuation of the LE.

In accordance with the special flow model, we emphasize
that although a dip is observed for the system of coupled
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FIG. 3. Coherence factor and Lyapunov exponent for the forced
map, Eq. (4), with v=0.98, §=0.1, and Ty=2.

oscillators [1,6] around £=0.023, P remains monotonically
increasing (Fig. 2). When the coupling is unidirectional,
there is a stronger distortion in the topology of the driven
oscillator, which can be seen, e.g., in the fact that a large
value of € is needed in order to achieve phase synchroniza-
tion. A somewhat unusual set of parameters has been chosen
in [1]; in addition to the detuning in the parameters  , that
control the natural frequencies, the coefficient of the linear y
term in y is different in the two oscillators: 0.15 and 0.165,
respectively. Nonetheless, P continues to exhibit quite a flat
dependence on ¢ until CPS is approached, Fig. 1.

In summary, we have given reasons to support the con-
clusion that there is no evidence that the reported periodic
phase synchronization behavior occurs before the onset of
phase synchronization in coupled phase-coherent chaotic os-
cillators, as reported in Ref. [1]. Recently, PPS has been
reported in an experiment with a periodically forced laser
[7]. In this system, P presents a minimum, but with a value
not far from 1:0.7. As long as lasers exhibit chaotic attractors
of Shilnikov type, which are known to be strongly noncoher-
ent, values of P near 1 are not surprising. We are of the
opinion that the results of this experiment [7] (obtained with
a noncoherent attractor) cannot be extrapolated to coherent
attractors, contrary to what is argued by the authors of [1].
Conversely, the results with coherent attractors cannot be
claimed in support of PPS for homoclinic attractors.

This work was supported by MEC (Spain) and FEDER
under Grant Nos. BFM2001-0341-C02-02, FIS2004-00953
(CONOCE2), and FIS2004-05073-C04-03.

[1] W.-H. Kye, D.-S. Lee, S. Rim, C.-M. Kim, and Y.-J. Park,
Phys. Rev. E 68, 025201(R) (2003).

[2] W.-H. Kye, D.-S. Lee, S. Rim, C.-M. Kim, and Y.-J. Park,
Phys. Rev. E 71, 019903(E) (2005).

[3] A. Pikovsky, M. Zaks, M. Rosenblum, G. Osipov, and J.
Kurths, Chaos 7, 680 (1997).

[4] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.

Lett. 78, 4193 (1997).

[5] A. Pikovsky, G. Osipov, M. Rosenblum, M. Zaks, and J.
Kurths, Phys. Rev. Lett. 79, 47 (1997).

[6] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.
Lett. 76, 1804 (1996).

[7] S. Boccaletti, E. Allaria, R. Meucci, and F. T. Arecchi, Phys.
Rev. Lett. 89, 194101 (2002).

038201-2



