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ABSTRACT The universality of two mechanisms of motion of
patterns in nonlinear optics is demonstrated. In the first one,
two-dimensional disordered patterns are shown to scroll with
constant velocity after transients are discarded. In the second
case, pattern motion is induced by background modulations.
Spatially periodic patterns lock to maxima or minima of the
underlying modulation depending on its wavevector.

PACS 42.65.Sf; 05.65.+b; 45.70.Qj

1 Introduction

Pattern formation in nonlinear optics has been de-
scribed and observed in a variety of models and experimental
realisations [1]. The intrinsic mechanism leading to regular
spatial structures in the transverse plane of optical devices
is the coupling of the optical nonlinearity with imaginary
(diffraction) or real (diffusion) non-locality. Just above mod-
ulational instabilities of a homogeneous solution, patterns are
in general stationary and a variety of geometries has been ob-
served ranging from hexagons and rolls to honeycombs and
squares. Patterned states are often an essential ingredient for
the existence of localised structures that could find application
in optical memories and information technologies. Control of
size and geometry [2] of optical patterns is also possible, pro-
viding the operators with a variety of optical beams to tune to
the desired application [3].

Away from modulational instabilities optical patterns may
break up into dynamical structures of regular [4] or irregular
shapes [5]. The onset of dynamical behaviour corresponds to
instabilities of the stationary patterns often via Hopf or more
complicated bifurcations. Spatio-temporal oscillations of pat-
terns have recently been observed experimentally [6]. A large
body of experimental evidence for moving patterns has also
been reported in atomic [7] and photorefractive [8] media as
well as in liquid crystal light valves [9].

Regular optical patterns can also move spontaneously, e.g.
travelling waves in systems with phase invariance where the
real and imaginary part of the fields are modulated but the
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total intensity is homogeneous [10]. These solutions are typ-
ical of laser systems where the optical gain is balanced by
the cavity losses and have been observed recently in Verti-
cal Cavity Surface Emitting Lasers (VCSELs) [11]. Another
well-studied case of spontaneous uniform motion of a spatial
structure is that of a Bloch wall in a non-equilibrium Ising–
Bloch (NIB) transition [12, 13]. In this bifurcation a symmet-
ric (Ising) front between two equivalent states becomes unsta-
ble to an asymmetric (Bloch) front. In non-variational systems
the unstable mode of the Ising front is proportional to the neu-
tral (Goldstone) mode and the wall moves [13]. This move-
ment can be qualitatively understood as self-induced motion
where the spatial structure induces a modulation, which, in
turn, makes the spatial structure move. The neutral (gradient)
mode of the wall couples to the unstable mode and induces
a movement, which at the same time drags the unstable mode,
self-sustaining the motion. A similar transition has also been
noted in semiconductor devices, where thermal effects cause
spontaneous motion of cavity solitons [14].

In this paper we analyse two cases of spontaneous and
induced motion of optical patterns that have not yet been
studied in their own right. First of all, we describe in Sect. 2
the ‘scrolling’ motion of disordered patterns in two dimen-
sions (2D). This dynamical behaviour is similar to a travelling
wave but with no pre-assigned direction of motion. Scrolling
motion has been observed in numerical simulations since the
early 1990s and we demonstrate its universality in optics.
We also provide a numerical method for the prediction of
its (constant) velocity. The second case, analysed in Sect. 3,
corresponds to the motion of regular patterns induced by the
presence of a modulated background. As for cavity solitons
in the presence of modulated parameters [15], patterns may
move towards and remain locked to either maxima or minima
of the modulations depending on the magnitude of the back-
ground wavevector. Conclusions and future developments are
discussed in Sect. 4.

2 Spontaneous motion of 2D disordered patterns

In this section we present evidence of spontaneous
motion of disordered 2D patterns. In spite of the irregular
nature of the spatial structures, their velocity is constant in
magnitude and direction and the motion can intuitively be de-
scribed as ‘scrolling’. This movement is not associated with
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a ‘NIB-like’ transition and the asymmetry of the pattern is
not related to any bifurcation. This phenomenon was first
observed by Oppo et al. in a degenerate optical parametric os-
cillator (DOPO) [17], where the movement of a stripe pattern
with defects due to a zigzag instability was reported. Here we
show that such motion is universal and is present in disordered
patterns in several types of nonlinear optical systems.

We first present the scrolling motion of a disordered roll
pattern in the singly resonant DOPO (SRDOPO). A phase-
matched SRDOPO, where there is no cavity for the pump
field, can be described in the mean-field approximation
by [16]

∂t A = −A − i∆A + E A∗ − |A|2 A + i∇2 A , (1)

where A(x, y, t) is the slowly varying amplitude of the signal,
∆ is the cavity detuning, E is the amplitude of the external
pump field, and ∇2 = ∂2

x +∂2
y is the transverse Laplacian. The

homogeneous solution A = 0 is stable for E < 1. At thresh-
old, a ring of unstable wavevectors with modulus kc = √−∆

becomes unstable. Above, but close to, threshold, nonlin-
ear competition leads to the selection of a perfect stationary
stripe pattern [18]. If one suddenly sets the system well above
threshold, however, disordered patterns consisting of portions
of stripe patterns of different orientations are obtained. After
a transient such patterns reach a frozen state and, typically,
a slow scrolling motion is observed (Fig. 1). The velocity of
the global motion is finite for all values of the parameters
where a particular pattern exists, and the direction of mo-
tion is constant. Figure 1 shows the modulus of the velocity
v =

√
v2

x +v2
y as a function of the control parameter for a par-

ticular disordered stripe pattern. This solution was obtained
from a numerical simulation of (1) starting from a random
initial condition 30% above threshold (E = 1.3). Then, we de-
termine the solution and its velocity for different values of the
control parameter by solving

−A − i∆A + E A∗− |A|2 A + i∇2 A −vx∂x A −vy∂y A = 0
(2)

using a Newton method. In addition to (2), two extra equations
to determine the two components of the velocity vx and vy are
needed. We use the integral phase conditions [19]
∫

A∂x A0 dx = 0 ,

∫
A∂y A0 dy = 0 , (3)

where A0(x, y) is a reference solution, which we take to be
the solution obtained at each previous value of the control pa-
rameter during continuation. Equations (3) fix the position of
the solution, which with periodic boundary conditions is un-
determined, imposing that the solution for the new value of the
parameter is at the same position as the reference solution A0.
This provides two extra equations independent of the other N2

given by (2), where N is the number of grid points (typically
N = 32).

The inset in Fig. 1 shows the actual motion of the struc-
ture from a numerical simulation for E = 1.3. The arrow on

FIGURE 1 Scrolling velocity of a disordered stripe pattern as a function
of the control parameter E in the SRDOPO for ∆ = −1. The inset shows
the scrolling motion of Re(A) from a numerical simulation for E = 1.3. We
integrate (1) using a pseudospectral method where linear terms are treated ex-
actly in Fourier space while a second order in time approximation is used for
the nonlinear terms. The integration in Fourier space automatically imposes
periodic boundary conditions. The size of the system is L = 32. The arrow
on the right indicates the direction of the scrolling motion

the right shows the direction of the motion. In the same param-
eter region, this solution co-exists with many other possible
disordered states as well as stationary regular patterns. Fig-
ure 2 shows an example of a perfect stripe pattern. Different
disordered patterns move, in general, in different directions
and at different speeds. Figures 3 and 4 show examples of
scrolling motion of other disordered patterns. The direction
and magnitude of the velocity depend on the specific features
of the profile of the disordered pattern. Such features change

FIGURE 2 Real part (Re(A(x, y))) of the electric field (left) and power
spectrum (|A(kx , ky)|2) (right) of a regular stripe pattern obtained in the
SRDOPO by increasing the pump adiabatically from below threshold up to
E = 1.3. All other parameters are as in Fig. 1. Darker colours indicate lower
values

FIGURE 3 The same as in Fig. 1 but for a different SRDOPO disordered
pattern obtained by changing the initial condition
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FIGURE 4 Scrolling disordered stripe pattern obtained from a numerical
simulation of (1) starting from a random initial condition in a larger system.
All the parameters are as in Fig. 1 and the size of the system has been dou-
bled. The arrow on the right indicates the direction of the motion. In this case
the modulus of the velocity is 1×10−4

in a non-trivial way with the control parameters and, for ex-
ample, the velocity shows a non-monotonic dependence on
the input pump E of the SRDOPO as shown in Figs. 1 and
3 for two co-existing disordered patterns. Secondary bifur-
cations of these patterned solutions also affect the scrolling
velocity, but this is left to a future investigation.

Another example of scrolling motion can be observed in
labyrinthine patterns. This kind of structure is formed when
a front between two equivalent states becomes modulation-
ally unstable [20]. A prototypical model to study this phe-
nomenon is the parametrically driven complex Ginzburg–
Landau (PCGL) equation, which is the generic amplitude
equation for an oscillatory system parametrically forced at
twice its natural frequency:

∂t A = (1 + iα)∇2 A + (µ+ iν)A − (1 + iβ)|A|2A + pA∗ ,

(4)

where α is the ratio between diffraction and diffusion, µ mea-
sures the distance from the oscillatory instability threshold,
ν is the detuning, and p > 0 is the forcing amplitude. For
p > ph large enough, (4) presents two equivalent homoge-
neous solutions, and for ph < p < pc a front connecting these
two solutions is modulationally unstable leading to the for-
mation of labyrinthine patterns. Figure 5 shows the scrolling
velocity for such a pattern obtained as explained above. The
symbols show, for comparison, the results obtained by eval-
uating the velocity from numerical simulations of (4), in
very good agreement with the exact results obtained from the
Newton method. We note that these results are obtained in
a parameter region far away from any NIB transition where

FIGURE 5 Velocity of the scrolling motion of a labyrinthine pattern as
a function of the control parameter γ in the PCGL. Here α = 2, β = 0, ν = 2,
and µ = 0. For these values of the parameters ph = 2.06 and pc = 2.57. The
solid line shows the value of the velocity obtained with a Newton method,
while the symbols show the results obtained from numerical simulations. The
inset shows Re(A) from a numerical simulation for γ = 2.31. The arrow on
the right shows the direction of the scrolling motion

only symmetric Ising walls exist, and therefore the motion
cannot be associated with the motion of asymmetric Bloch
walls, but it is an intrinsic property of such disordered struc-
tures. We observe scrolling motion for any parameter values
where the labyrinthine pattern exists and expect similar be-
haviour for any system where such disordered patterns are
formed.

The modulus and direction of the velocity depend on the
specific features of the spatial profile of the disordered pat-
terns. The velocity does not depend explicitly on the size
of the system but, in general, disordered solutions tend to
scroll more slowly in systems with broad transverse section.
The reason is that in broad-area systems, an irregular pattern
can be interpreted as formed by different sub-regions that in
a smaller system would move in different directions and that
average out the total scrolling motion of the pattern. The de-
tailed scaling properties of the velocity as a function of the
system size will be analysed elsewhere.

3 Induced motion of optical patterns

In this section we consider dissipative nonlinear
systems which are translationally invariant, and which pos-
sess a spatially varying, time-independent solution E0(x).
A small perturbation ∆P which breaks the translational in-
variance generally induces motion of the solution, with a vel-
ocity given by [21]

v(x) = −〈ψ0|∆P〉
〈ψ0|φ0〉 . (5)

Here φ0 and ψ0 are, respectively, the null eigenfunctions of the
Jacobian of the system and its adjoint, evaluated at E0 when
∆P = 0.

Cosinusoidal modulations (∆P ∝ cos(Kx)) form an inter-
esting and fundamentally important class of perturbations. In
that case, if the spatial structure is an even function of x, the
velocity can be written in the form [15]

v(x) = A(K) sin(Kx) . (6)

The function A(K) is odd, and depends on the structure of E0

and on the nature of the coupling between the perturbation
and the fields (e.g. amplitude or phase modulation). Previ-
ously [15] we have shown that for spatial soliton solutions,
A(K) generally undergoes changes of sign as K is varied.
This means that a soliton can ascend or descend a modula-
tion gradient, depending on the wavevector of the modulation.
Zeros of A(K) imply no motion of the soliton at any point in
space, despite the existence of the modulation. In the remain-
der of this section we extend the analysis to cover periodic
patterns.

We examine the response of one-dimensional roll patterns
to a cosinusoidal modulation in one of the system parameters.
As a concrete example, we consider the mean-field model of
a two-level medium in an optical cavity [22]:

∂t E = −(1 + iθ)E + P − 2C(1 − i∆)

1 +∆2 +|E|2 E + i∂xx E . (7)

The terms on the right-hand side represent, in order, reflec-
tion losses at the mirrors, cavity detuning, the external driving
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field, the absorptive and dispersive effects of the two-level
medium, and diffraction. The parameter θ is the detuning
between the intra-cavity field E and the nearest cavity reson-
ance, ∆ is the difference between the frequency of the driving
field and the resonant frequency of the atomic transition, and
2C is the coupling constant between the material and the intra-
cavity field. The time has been scaled to the cavity lifetime.

Equation (7) can form a pattern (roll) solution E0,
with wavevector K0, when a spatially homogeneous pump
field P drives the system above its modulational instability
threshold [22]:

E0 =
∞∑

n=0

an cos(nK0x) . (8)

Here, instead, we consider pump fields of the form

P = P0(1 +µR sin(Kx +φ))eiµI sin(Kx+φ)

� P0(1 +µ sin(Kx +φ))

= P0 +∆P , (9)

where K = mK0, µ ≡ µR + iµI, and |µ| 
 1. Without loss of
generality, P0 is assumed to be real. We only consider cases
where m is rational, so that K and K0 are commensurate. In
fact, initially we consider m to be an integer so that the mod-
ulation frequency is already present in the pattern.

The modulation induces motion and, to lowest order in
|µ|, the velocity is given by (5). From (8), the functions φ0 and
ψ0 have the form

φ0 =
∞∑

n=1

fn sin(nK0x) , ψ0 =
∞∑

n=1

gn sin(nK0x) (10)

or, using 1 and i as a basis,

φ0 =
[∑∞

n=1 Re( fn) sin(nK0x)∑∞
n=1 Im( fn) sin(nK0x)

]
,

ψ0 =
[∑∞

n=1 Re(gn) sin(nK0x)∑∞
n=1 Im(gn) sin(nK0x)

]
. (11)

In this basis

∆P =
[
µR P0 sin(mK0x +φ)

µI P0 sin(mK0x +φ)

]
, (12)

FIGURE 6 Section of Fourier spectrum of ψ0
for a roll pattern in the two-level system. ∆ = 0,
θ = −1, C = 5, P0 = 6.3 (and µ = 0)

FIGURE 7 Time sequence of a pattern ascending the gradient of a phase-
modulated pump. The modulation wavevector matches that of the pattern. (a)
t = 0, (b) t = 10, and (c) t = 50 cavity lifetimes. µ = 0.05i; other parameters
as in Fig. 6. The dashed line shows the phase of the pump

so that

v(x) ∝ P0 cos(φ(x))(µR Re(gm)+µI Im(gm)) , (13)

where (cf. (9)) φ(x) denotes the relative phase of the mod-
ulation and the pattern. If, for example, the pump is phase
modulated (µR = 0), and Im(gm1) and Im(gm2) have different
signs, then a peak of the pattern should move up the phase gra-
dient for one value of m, and move down it for the other: the
motion will reverse.

Figure 6 shows the real and imaginary parts of a section
of the spectrum of ψ0 for a typical pattern. Changes of sign
are apparent (more so in the real part) between the second
and third, and third and fourth, harmonics, indicating rever-
sal of motion. Figures 7 and 8 show time sequences for m = 2
and m = 3 demonstrating that in the former case a peak of the
pattern ascends the phase gradient, while in the latter case it
descends, confirming the analysis. The simulations also in-
dicate no reversal of motion between m = 1 and m = 2, and
another reversal between m = 3 and m = 4, all in agreement
with Fig. 6.

In general the {gn} do not have the same phase. Never-
theless, in this case at least, a change of sign in Im(gn) is
accompanied by a change of sign in Re(gn). This implies that
reversal of motion will occur at the same modulation frequen-
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FIGURE 8 Time sequence of a pattern descending the gradient of a phase-
modulated pump. The modulation wavevector is three times that of the
pattern. (a) t = 0, (b) t = 25, and (c) t = 100 cavity lifetimes. µ = 0.05i; other
parameters as in Fig. 6. The dashed line shows the phase of the pump

cies regardless of the phase of µ. Simulations confirm that
reversals occur at the same frequencies for both amplitude-
and phase-modulated pumps.

If the modulation is not a harmonic of the pattern (m
still rational but not an integer), (5) would imply that the

FIGURE 9 Forcing of pattern by amplitude-
modulated pump (µ = 0.05). (a) m = 1/3,
(b) m = 2/3, (c) m = 1, (d) m = 4/3, (e) m =
5/3, (f) m = 2. In all cases the initial condi-
tion is the same pattern solution, computed at
µ = 0, whose period is one-third of the do-
main width. All other parameters as in Fig. 6.
The dashed line shows the amplitude of the
pump

FIGURE 10 Section of Fourier spectrum of ψ0
for a roll pattern in the Kerr cavity system. θ = 0,
P0 = 1.559 (and µ = 0). The spectrum is slightly
asymmetric because the centre of the pattern lies
between two grid points

velocity is zero, although this would only be true to low-
est order. By definition, some harmonic of the phase mod-
ulation will match another (possibly high) harmonic of the
pattern, so there will be some weak coupling between the
perturbation and the translational mode of the pattern. This
is a moot point, however, because a more significant effect
is that the pattern is forced at the modulation frequency,
resulting in minor or major distortions (see Fig. 9 for an
amplitude-modulated pump). The effect is more pronounced
for smaller modulation wavevectors, where the system re-
sponse is greater, and rapidly tails off as the modulation
wavevector increases.

We can replace the two-level medium in (7) with a self-
focussing Kerr medium

∂t E = −(1 + iθ)E + P + i|E|2E + i∂xx E . (14)

Equation (14) also possesses a modulational instability when
P is a plane wave [23]. For a typical roll pattern in this system,
we observe no changes of sign in the first few components
gn of ψ0 (Fig. 10) and no reversal of motion in the simula-
tions. Note that although (7) and (14) are quite similar, the
simulations presented in the previous figures are obtained for
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the two-level saturable absorber with ∆ = 0, corresponding to
a real nonlinearity, while the Kerr case has a purely imaginary
one. By expanding the nonlinear term of (7) for large |∆| and
small E, one recovers the Kerr nonlinearity from that of the
two-level saturable absorber. The disappearance of the rever-
sal of motion of the pattern can be observed on progressively
increasing the parameter |∆| in a way similar to the observed
disappearance of the reversal of motion of a cavity soliton in
a modulated DOPO on increasing the input pump parameter
(see Ref. [15] for details).

4 Conclusions and acknowledgements

Two examples of spontaneous and induced mo-
tion of patterns have been discussed. Spontaneous scrolling
motion of 2D disordered structures is a universal feature of
pattern-forming systems and is characterised by a constant
velocity after transients have been discarded. In the case of
induced motion, we showed that regular patterns may move
towards maxima or minima of a background modulation de-
pending on its wavevector.

The scrolling motion in 2D is due to the presence of
asymmetry of the disordered structure and periodic bound-
ary conditions. The scaling of the velocity and duration of the
transient under coarse-graining transformations is under in-
vestigation.

When the motion of patterns is induced by modulations of
the input pump at harmonics of the spatially periodic struc-
ture, the pattern moves rigidly in a direction determined by
the input wavevector. For non-harmonic modulations, pat-
terns deform locally to adjust their shape to the background.
Spectral analysis of the deformed pattern should reveal the
spatial modes that are preferred under these modifications and
is the subject of new investigations.
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acknowledge support from SGI. GLO thanks the Royal
Society–Leverhulme Trust and Centro Studi Dinamiche
Complesse, University of Florence, Sesto Fiorentino, Italy.
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structures.
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