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Spatial structures as a result of a modulational instability are studied in a nonlinear cavity with a
photonic crystal. The interaction of the modulated refractive index with the nonlinearity inhibits the
instability via the creation of a photonic band gap. A novel mechanism of light localization due to

defects and pattern inhibition is also described.
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The investigation of spontaneous spatial structures in
nonlinear systems is a fast expanding research area, not
just in physics but also across science and technology [1].
In particular, spatially extended dissipative nonlinear
optical systems display, through self-organization and
control, a large variety of outputs and structures with
potential applications in photonics, such as optical mem-
ories, multiplexing, optical processing, and imaging [2].

There has also been a lot of scientific interest in pho-
tonic crystals [3] since the existence of band gaps in such
structured materials was predicted by Yablonovitch and
John in 1987 [4]. Their unique way of controlling light
has provided the field of photonics with new applications,
mostly related to guided light modes [5].

More recently, nonlinear effects in photonic crystals
were shown to play an important role in achieving all-
optical operations in switching devices [6,7]. Transverse
effects have been mainly studied in propagation in fiber
Bragg gratings within the coupled-mode theory or in
infinite coupled arrays of waveguides within the tight-
binding approximation. Studies on grating devices focus
on the so-called gap (or Bragg) solitons [8], which are
pulses with frequencies in the forbidden gaps and ex-
tended over a large number of grating periods. In arrays
of waveguides, two remarkable features are the forma-
tion of the so-called discrete solitons and the fact
that the (discrete) diffraction can be engineered [7,9].
Finally, modulation instability shifts due to periodically
modulated media have been studied in conservative sys-
tems [8,10].

Despite the considerable potential of (nonlinear) pho-
tonic crystals for controlling light, only a few recent
works [11,12] have considered their role in the formation
of dissipative spatial structures. The study of spatial
structures in nonlinear periodic systems has important
implications not only in nonlinear optics but also in many
branches of science, such as biology [13], solid state
physics [14], and Bose-Einstein condensates [15].

In this Letter we study the effects of a photonic crystal
in the formation of a spontaneous pattern on a nonlinear
dissipative system driven out of equilibrium. In particu-
lar, we show how the linear phenomenon of photonic band
gap affects the selection of a nonlinear spatial structure,
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allowing for the complete inhibition of the off-axis emis-
sion associated with finite wavelength modulation insta-
bilities (MI).

We consider an optical cavity containing a self-
focusing Kerr medium and a linear medium with spa-
tially varying refractive index, i.e., a photonic crystal (see
Fig. 1). Both media are antireflection coated. In the mean
field approximation, the dynamics of the slowly varying
amplitude of the paraxial electric field E can be described
by [16,17]

9,E=—[1+i6+ fE+iVPE + Ey + ilEPE, (1)

where 6 is the average detuning between the frequency of
the pump and the frequency of the cavity, f accounts for
the weakly modulated refractive index in the transverse
direction of the photonic crystal, V2 is the transverse
Laplacian, and E, is the input field. All quantities are
scaled as in [17].

In model (1) both modulations introduced by sponta-
neous pattern formation and by the periodic variation of
the photonic crystal are described within the paraxial
approximation. At difference with the coupled-mode
theory, which is limited to spatial structures extended
over a large number of photonic crystal wavelengths,
Eq. (1) can properly describe transverse structures
even smaller than a single period of the photonic
crystal. Moreover, while in the tight-binding approxima-
tion (discrete) diffraction appears only through the eva-

3)

FIG. 1. Ring cavity containing a medium with a cubic non-
linearity (x'¥) and a photonic crystal (PC)slab. E, is the plane

wave input field partially transmitted into the cavity. The other
mirrors are assumed to be perfectly reflecting.
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nescent coupling between the strongly localized (guided)
modes in the photonic crystal, model (1) fully describes
diffraction.

In the absence of any modulation of the refractive
index, the intensity of the homogeneous steady-state so-
lution /; is implicitly given by

IO = Is[l + (Is - 0)2]’ (2)

where I, = |Ey|®. We consider § < +/3 to avoid homoge-
neous state bistability. In this case, above a certain thresh-
old (I = 1.0) a modulation instability takes place,
leading to off-axis emission with a critical transverse
wave number [18]:

g. =21, — 6. (3)

In 1D systems, the case considered here, a stripe pattern
arises. We study how this mechanism of pattern formation
is strongly influenced by the addition of a modulated
refractive index.

We recall first the behavior of a simple device consist-
ing of a linear cavity with totally reflecting mirrors. In
this case, Eq. (1) reduces to

9,E = —i[6 + f(x)]JE + iV2E. @)

This equation is formally equivalent to the Gross-
Pitaevskii equation with a periodic lattice potential in
the limit of noninteracting Bose-Einstein condensate
[19]. For f(x) = 0, the modes e?* of the cavity are such
that g = +/—@ compensates for the cavity detuning
[Fig. 2(a)]. However, when the cavity is filled with a
photonic crystal, a band gap may appear; i.e., for a given
modulation amplitude, there may be detuning values for
which no field can propagate in the cavity [see the band
gap in Fig. 2(b)].
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FIG. 2 (color online). (a) Dispersion relation of a perfect
linear cavity without photonic crystal [f(x) = 0], and (b) with
a photonic crystal [we assume f(x) to be a step function
between —0.75 and 0.75 of wave number gpc = 4.0]. The
band gap appears for detuning values —4.47 <6 < —3.51.
For a better comparison, in both cases the calculations have
been performed on the basis of Bloch waves in order to reduce
the wave number ¢ to the first Brillouin zone. In (a) this results
in a reflection of the dispersion relation at g = 0.5. g is given in
units of gpc.
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Comparing the modes g of the linear cavity and the
nonlinear critical wave number ¢, of Eq. (3), one can see
that in both cases off-axis emission compensates for the
effective detuning. In particular, the term 2/, in the
square root of Eq. (3) accounts for the contribution of
the nonlinearity to the detuning. Above the MI threshold,
off-axis emission in the nonlinear case may take place not
only at the critical wave number but also within a whole
band of unstable transverse modes. Figure 3(a) shows the
unstable wave numbers ¢ of a nonlinear cavity without
photonic crystals for each value of the detuning 6 and
I, = 1.12.

In the presence of the photonic crystal, the linear
calculation leading to Fig. 2(b) cannot describe the be-
havior of the nonlinear cavity. The appearance of a pho-
tonic band gap, however, has important consequences for
the MI leading to off-axis emissions.

We first find the fundamental solution of the problem
with the modulated refractive index (see Fig. 4). This
solution is now modulated at the frequency of the pho-
tonic crystal. Then, we proceed with a numerical stability
analysis [20] of this solution for a pump intensity 12%
above the MI (I, = 1.12), just in the same way as Fig. 3(a)
was obtained in the case without photonic crystal. Note,
however, that the linear stability analysis of the funda-
mental solution now requires solving the eigenvalue prob-
lem associated to a linear differential operator with
periodic coefficients. Then, from the Bloch-Floquet theo-
rem, the eigenmodes can be written in the form of Bloch
waves iy = M(x)e'?*, M(x) being a function with the same
periodicity as the photonic crystal. The wave number g of
the Bloch functions takes values within the first Brillouin
zone of the lattice defined by the wave vectors of the
photonic crystal 0 < g < 0.5¢pc. The results are shown in
Fig. 3(b) [21]. The presence of the photonic crystal in-
hibits the pattern forming instability for detuning values
—3.35 < 6 < —2.39. This can be interpreted as follows.
For detuning values within this band, the overall effect of
the photonic crystal and nonlinearity is to create a pho-
tonic band gap for which no extra off-axis emission can
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FIG. 3 (color online). (a) The shadowed region indicates the
unstable wave numbers of a homogeneous nonlinear Kerr
cavity at 12% above MI threshold (I, = 1.12). (b) The same
as in (a) in the presence of the same photonic crystal as
Fig. 2(b). For this value of I, the band gap appears for —2.35 <
0 < —1.75.
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FIG. 4. (a) Intensity of the fundamental (thin black line) and
pattern (thick black line) solutions for I, = 0.99 and I, = 1.12,
respectively (@ = 0). The grey line is the total detuning given
by the cavity and the photonic crystal. (b) Far field of the
pattern solution. The main wave number of the pattern g, ~
q. is within the band of unstable modes of the fundamental
solution [Fig. 3(b)]. g is given in units of gpc. The large peak in
g = 1.0 corresponds to the spatial frequency of the photonic
crystal. The simulations have been performed on a 2048 grid
with Ax = 0.0122 and At = 0.002 starting from random initial
conditions.

take place. Inside the band gap, the fundamental solution
regains stability. Outside the band gap, the fundamental
solution is unstable, leading to the formation of a high
amplitude pattern at the most unstable wave number
predicted by the stability analysis [see the thick line
curve in Fig. 4(a)]. The final spatial structure has a
combined periodicity of the pattern that would appear
without photonic crystal (¢,,,x = 1.5) and of the photonic
crystal (gpc = 4.0). The other spatial frequencies are the
result of nonlinear interactions and resonances.

The modes of the linear cavity represented in Fig. 2(b)
and the unstable transverse modes of the nonlinear cavity
shown in Fig. 3(b) have a very different nature. In the first
case they are the only allowed modes of emission, while
in the second case they are the result of a MI due to the
presence of the nonlinearity, diffraction, and dissipation.
In particular, while in the first case the band gap means no
field inside the cavity, in the driven dissipative cavity the
field is always different from zero, but the transverse
emission due to the modulation instability is forbidden.
In the latter case, nonlinearity may completely modify
the band structure when changing the intensity of the
input field. For example, the band gap is broader for lower
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FIG. 5 (color online). The same as Fig. 3(b) for (a) I, = 1.05
and (b) I, = 1.25. Note the absence of photonic band gap in (b).
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FIG. 6. Instability diagram of the fundamental solution for
I, = 1.05. The fundamental solution is unstable in the shad-
owed region. The dashed line shows the boundary of the stable
region for I; = 1.12.

values of the input intensity and smaller for larger values,
eventually disappearing for high enough input intensities
(Fig. 5). In Fig. 6 we also show the band-gap width versus
the amplitude o of the modulation. The presence of the
modulated medium opens a gap, i.e., an entirely new
stable region, in the #-« plane.

The inhibition of MI due to photonic crystals can then
be used to control the transverse properties of light in
nonlinear optical cavities in a way analogous to light
control in holey waveguides. For example, we consider
a profile of the refractive index represented by the grey
line in Fig. 7 and formed by a plateau surrounded by
regions of modulation. We see how the large amplitude
pattern is inhibited in the modulated regions where the
system is anchored to the fundamental solution, while a
strong stripe pattern is observed in the plateau (Fig. 7).
The wave number of the pattern corresponds to the most
unstable wave number of a homogeneous nonlinear cav-
ity. The size of the defect can be reduced down to one and
a half wavelengths of the photonic crystal, thus creating a
localized mode in the transverse plane (see Fig. 8). Note
that in Fig. 8, where a larger amplitude of the modulation
of the photonic crystal has been introduced, the inhibi-
tion of the MI takes place also for very large intracavity
intensity (e.g., 80% above the MI threshold). A single
peak of the large amplitude pattern towers over the
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FIG. 7. Pattern formed in a 72 photonic crystal wavelengths
long defect for parameter values inside the band gap of Fig. 3(b)
(I, = 1.12, 0 = —2). Here we take 8192 grid points. The pat-
tern formed into the defect has a wave number close to the most
unstable wave number of a homogeneous nonlinear cavity.
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FIG. 8. Localized structure formed inside a defect 1.5 pho-
tonic crystal wavelengths long. In this figure, f(x) is a step
function between —2.0 and 2.0, § = —1.75 and I, = 1.8. For
these parameter values the band gap is found for detuning
values —2.0 < 6 < —0.38.

fundamental solution in the inhibited zone and signals
the presence of the photonic crystal defect. At difference
with localization of light in normal photonic crystals,
these effects are intrinsically nonlinear since light can
propagate outside the defect while nonlinear pattern for-
mation is confined to the defect region. High contrast
between the localized peak and the background can be
used to diagnose small defects present in a photonic
crystal structure.

We have demonstrated that a photonic crystal in a
nonlinear cavity can inhibit a pattern formation insta-
bility on a scale close to, but different from, that of the
modulated refractive index. An important application of
this effect is in the case of subcritical patterns where the
delaying of the MI may dramatically increase the region
of coexistence between the fundamental and patterned
solutions. The immediate benefit is to increase the region
of existence of cavity solitons [2], thus simplifying their
utilization in information processing. We have also char-
acterized a novel localization of light due to defects in
the photonic crystal structure and MI inhibition and
suggested it as a diagnostic tool of photonic crystals.
This light localization can also be used to obtain peculiar
output intensity structures by engineering defects in a
photonic crystal. Further investigations in these direc-
tions and in the two transverse dimensional case are in
progress.

Finally, we would like to mention that the phenomenon
described here, namely, the inhibition of a modulation
instability by a transverse photonic band gap, is not con-
fined to dissipative systems but can be of interest in
conservative systems, such as Bose-Einstein conden-
sates—where a modulation instability [22] might be
controlled by the addition of an optical lattice—or in
light propagation through nonlinear periodic media
[10,23].
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