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Convective Instability Induced by Nonlocality in Nonlinear Diffusive Systems
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We consider a large class of nonlinear diffusive systems with nonlocal coupling. By using a non-
perturbative analytical approach we are able to determine the convective and absolute instabilities of all
the uniform states of these systems. We find a huge window of convective instability that should provide a
great opportunity to study experimentally and theoretically noise sustained patterns.
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There has been a considerable interest in convective
instabilities and noise induced patterns recently [1]. A
convective instability happens when a state of a nonlinear
system becomes unstable and a localized perturbation
grows traveling in the system, but eventually decays at
any point in the laboratory frame. In this regime a state
different from the original one cannot be established unless
it is sustained by noise. Small regions of convective insta-
bilities have been predicted and observed in hydrodynam-
ics [2], plasma physics [3], and optics [4]. These are due to
spatial drift terms modeled by gradients in the direct space
or by the first few terms of the Taylor expansion of the
dispersion relation in the Fourier space [4].

In this Letter, instead, we study nonlinear systems with
nonlocal coupling. Nonlocality is fundamental in modeling
material response in the presence of transport effects [5].
Even for local material response, nonlocality is unavoid-
able whenever traveling waves emerging from a medium
are reflected back to it noncollinearly, therefore coupling
any spatial point x with the shifted point x� �x. Indeed
this kind of nonlocal coupling is induced by any small
misalignment in all feedback optical systems (see experi-
ments in Refs. [4,6,7]). We consider the most general case
in which the spatial shift cannot be approximated by a
gradient (drift) term in a very broad class of nonlinear
diffusion equations. Equations of this type arise in non-
linear systems with diffraction-free optical feedback [6]
and are an interesting generalization of more standard
nonlinear diffusion equations. We show that the stability
of all the uniform states of this class of systems is deter-
mined by a single dispersion relation with two parameters.
By using a nonperturbative analytical approach we are able
to analyze this dispersion relation. We find a huge con-
vective instability window where noise sustained patterns
and amplification of perturbations can be observed.

We consider equations of the type

�@t � @2x���x; t� � f1���x; t�;��� f2���x��x; t�;��;

(1)

where � is a real variable, t is in units of the diffusion time,
x and the spatial shift �x are in units of the diffusion
length, and � is a control parameter independent on x.
f1, f2 are real functions that can be derived with respect to
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�. The uniform states �m of Eq. (1) are the solutions of
f1 � f2 � 0 and their domains of existence depend upon
� but not upon �x in the limit of infinitely extended
systems. The dispersion relation for perturbations
exp�!t� ikIx� of a uniform state of Eq. (1) is

! � �k2I � @�f1��m;�� � @�f2��m;��eikI�x: (2)

As a consequence of the term eikI�x, which is present in
all systems with shift, there are bands of kI for which
the real part of the dispersion relation !R can be positive.
For @�f1��m;��< 0, as in the experiments in Ref. [6],
these bands are within the regions where @�f2��m;�� �

coskI�x > 0. As a result the homogeneous solution �m is
unstable and plane wave perturbations are amplified. As
the imaginary part of ! (phase velocity) is in general non-
null, these waves move across the system. A peculiar effect
of the nonlocality is that for spatially localized perturba-
tions the sign of the group velocity and of the phase
velocity of the most unstable wave number are always
opposite.

When the group velocity is nonvanishing, we have to
consider whether localized perturbations produce absolute
or convective instability, that is, to find whether the Green
function,

R
�1
�1 eikIx�!�kI�tdkI, of the linearized equation

diverges or vanishes for t ! �1 [8]. To evaluate the
integral, it is convenient to extend analytically ! in the
complex plane k � kR � ikI and apply the saddle-point
method. An even number (at least four) of paths with !I
constant start from each saddle point with d!=dk � 0, as
shown in Fig. 1. On half of these equiphase paths, the
steepest descent, !R decreases fastest; on the remaining
half, the steepest ascents, !R increases fastest. If one can
form a closed integration contour with the imaginary axis
and steepest descents, then the asymptotic value of the
integral is given by the values of ! at the saddle points
on the integration contour [9]. This method has been
extensively used to find the threshold between convective
and absolute instabilities in systems with drift, where the
dispersion has, in general, few saddle points. However for
nonlocal systems the exponential term in the dispersion
originates always a countable infinity of saddle points.
Moreover, the saddles and their steepest descents move
and can suddenly collide and disappear as the control
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FIG. 1 (color online). Equiphase paths in the complex plane,
wI�qR; qI� � constant, with w � !�x2 and q � k�x, for 3 val-
ues of the control parameter @�f2��m;���x2 � 4 (a), �0:5 (b),
�1 (c). The saddles points si are at the intersections between
equiphase paths. The symbols show the steepest descent paths
closing the integration contour.
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FIG. 2 (color online). Instabilities diagram: Stable (S), con-
vectively unstable (C), and absolutely unstable (A) regions for
� < 0. The dashed lines indicate where different bands become
unstable. The insert shows the well-known diagram [13] ob-
tained when, instead of a nonlocal coupling, a walk-off term (v)
is considered. In this case there are no instabilities at all in the
lower diagram region.
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parameters change. It is therefore essential to study very
carefully how the global geometrical organization of the
saddles and of the equiphase paths change with the control
parameters in order to close correctly the integration
contour.

In order to simplify the calculations, we define the
parameters � � @�f1��m;��, � � @�f2��m;��. The
analytic extension of the dispersion relation is w �
��x2 � q2 � ��x2eq, with w � !�x2 and q � k�x,
and we consider only the semiplane qI 	 0 because
w�q� � w
�q
�. Note that the dispersion relation and the
stability depend only upon the effective parameters ��x2

and �0 � ��x2. For all values of �0 there is at least a
saddle and at most two saddles in the interval qI 2 �0; ��.
We call the leftmost of these saddles s0 (see Fig. 1). For all
n > 0, there are also saddles sn in the nth interval qI 2
�2n�; �2n� 1��� for �0 < 0 [Figs. 1(b) and 1(c)] or in the
nth interval qI 2 ��2n� 1��; 2n�� for �0 > 0 [Fig. 1(a)].
In order to close the integration contour entirely with
steepest descents, we need a steepest descent path that
ends on or is asymptotic to the real axis (qR) and another
asymptotic to the imaginary axis (qI). These steepest de-
scents must either come from the same saddle or be con-
nected by other steepest descents.

From the equation of the equiphase paths that originate
at the saddle s, 2qIqR � �0eqR sinqI � wI�s�, we can show
that the possible asymptotes of the steepest descents are the
imaginary axis for qI ! �1 and the lines qI � �2n� 1��
for �0 > 0 and n 	 0 (or the lines qI � 2n� for �0 < 0)
and qR ! �1. We determine the geometrical organization
of the steepest descents by using this information, together
with the exact determination of the interception of the
steepest descents with the lines qI � n� and with the
imaginary axis and the fact that, in this problem, two
steepest descents with different phases can intersect only
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at infinity [10]. We find analytically that the saddle with the
smallest phase wI [s1 in Fig. 1(a) and s0 in Figs. 1(b) and
1(c)] has always the upper steepest descent to the left of all
the other steepest descents and asymptotic to the imaginary
axis. Indeed this saddle is always necessary to close the
integration contour. If s0 happens to be the saddle with the
smallest phase, then the steepest descents of s0 close the
integration contour [Figs. 1(b) and 1(c)] because s0 either
lies on the real axis or has another steepest descent asymp-
totic to the real axis. If instead there is another saddle sn1
with wI�sn1� � wI�s0� [for instance the saddle s1 in
Fig. 1(a)], then the upper steepest descent from s0 remains
below sn1 and is connected to the steepest descent from sn1
[in Fig. 1(a) these two steepest descents are asymptotically
connected at qI � �]. In this case we use a steepest
descent from sn1 to reach values of qI above sn1 itself,
and a steepest descent from s0 to reach the real axis. If sn1
is the saddle with the smallest phase, then the steepest
descents of s0 and sn1 close the integration contour [symbol
lines in Fig. 1(a)], otherwise we will have to include also
the first saddle, sn2 , with n2 > n1 and wI�sn2� � wI�sn1�. In
order to find the saddles to be used to close the integration
contour, we repeat this process, including all the saddles
whose phase is the minimum of the phases of the saddles
below them. For each finite �0, this procedure gives a finite
set of saddles P�0 [11]. Examples of different integration
contour are shown in Fig. 1 as symbol lines.

From Eq. (2) we identify the region wR�0; qI�< 0 in
which the homogeneous solutions are stable. This is the
region S in Fig. 2 and its contour is the convective thresh-
old. If wR�0; qI�> 0 for some qI and if at least one saddle
sn 2 P�0 has wR�sn�> 0, the instability is absolute.
However, we need to find only a small subset of saddles
in P�0 to determine the stability because wR�sn�> 0 only if
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FIG. 3 (color online). (a) �0��� and ����� for the NGL
equation. (b) Gaussian perturbation (continuous line) of the
vanishing state �0 and evolved state for � � 1:03 (dotted
line) and for � � 1:09 (dashed line). Shift �x � 0:48. The
instability for � � 1:03 is convective (local decay, even if the
maximum of the perturbation grows), while for � � 1:09 it is
absolute (the perturbation grows also locally). After a longer
transient the perturbation ends up colliding with the uniform
stable states �� or ��. Simulations with space discretization
0.12, 4096 grid points, and time step 0.001.

FIG. 4 (color online). (a) �0��� and ����� for the NSN
equation. (b) Noise sustained pattern for �0=j�j � � � �5
and �x � 1:92 in the NSN with an additive Gaussian white
noise of amplitude 0.01. Simulations with Dirichlet boundary
conditions and the same numerical discretization of Fig. 3.
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there is instability with wR�0; qI�> 0 for qI in the nth
interval [12]. Therefore, for each �, we can determine
the nature of the instability by finding the values of w at
the saddles in P�0 that are in bands with instability thresh-
old �0c

n below the threshold �0a
0 where wR�s0� � 0. The

absolute threshold �0a is then the value of �0 where

maxfwR�sn�jsn 2 P�0 ; �0c
n � �0a

0 g � 0: (3)

The importance of the determination of P�0 and of
Eq. (3) is twofold. On one hand they guarantee that we
can apply the method of steepest descents by properly
closing the integration contour; on the other hand, they
allow us to find the absolute threshold simply by inspection
of w at a finite number of saddles. This is remarkable in
view of the infinite number of saddles produced by the
shift. Moreover, P�0 is the same for all systems with the
same �0 in the class considered because the global geo-
metrical organization of the saddles and of their steepest
descents does not depend on �.

Applying this technique, we obtain the instabilities dia-
gram in Fig. 2 valid for any � � 0 (including the typical
case of a linear damping term � � �1). For �< 0 the
instability bands have qI � 0 and the lowest convective
threshold is very far from the absolute threshold. For �>
0, the instability with respect to perturbations with qI � 0
is absolute for � � 0 and convective for � � 0, with the
convective instability windows increasing as � decreases.
Comparing the instabilities diagram for diffusive problems
with finite shift and with walk-off [13] (Fig. 2), we note
that the whole modulation instability region for negative
values of � is a specific effect of a finite shift, as was
already recognized by [6]. What our analysis reveals by
direct calculation of the absolute threshold is that in this
parameter region the system is mainly convectively un-
stable and shows noise sustained modulated patterns.
Only for very negative values of �=j�j the absolute thresh-
old is crossed.

To show the general applicability of the stability analysis
presented in this Letter we consider in the following two
examples: the Ginzburg-Landau and the saturable nonlin-
ear equations, both with nonlocal nonlinear terms. A non-
local Ginzburg-Landau (NGL) equation is obtained by
Eq. (1) when

f1 � ��; f2 � ����3: (4)

The three uniform states �0 � 0 (for any �) and �� �
�

�������������
�� 1

p
(for �> 1) are associated to the parameters

�0 � �� � �1 and �0 � �, �� � 3� 2� [Fig. 3(a)].
Given the relation between �0;� and �, Fig. 2 provides
the linear stability diagram of each state of the NGL
equation. In particular, �� is always less than 1 so that
only the lower part of the diagram in Fig. 2 describes ��

instabilities, while for the state �0 � 0 all the instabilities
shown in the diagram arise by varying � and the shift �x.
Without shift the state �0 becomes unstable for �> 1
where the system evolves to the homogeneous states ��
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and ��(connected by fronts). With a finite shift for �> 1
a region of convective instability arises before the absolute
threshold. Simulations of the NGL equation with small
values of � show instabilities of the states �0;�, in good
agreement with our theoretical analysis. Figure 3(b) is an
illustrative example of the typical evolution of an initial
perturbation of the unstable state �0, below and above the
predicted absolute threshold.

We now consider the nonlocal saturable nonlinear
(NSN) equation obtained by Eq. (1) when

f1 � ��; f2 � �
�

1��2 : (5)

We find the same three uniform states �0 � 0, �� �

�
�������������
�� 1

p
as before, but now �0 � �, �� � 2��

�

[Fig. 4(a)]. Again, knowing �0;���� and � � �1, Fig. 2
gives the thresholds of the NSN in terms of the specific
parameters � and �x. We have seen before that for nega-
tive values of � (here �0 � �< 0) new modulation insta-
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FIG. 5 (color online). Temporal evolution of an initial Gaussian in x � 0 perturbing the vanishing state �0. (a) For � � �14 the
perturbation evolves toward a modulated wave packet that eventually leaves the system (convective instability). (b) For � � �18 the
right front moves to the positive x space region, and finally the modulated solution occupies the whole system (absolute instability).
Simulation of the deterministic NSN equation with the same parameters as in Fig. 4(b).

PRL 94, 243903 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
24 JUNE 2005
bilities are predicted (both convective and absolute), exist-
ing only for nonvanishing shifts and not observed in sys-
tems with drift. In Fig. 4(b) we show an example of a noise
sustained stripe pattern, as predicted by our theoretical
analysis.

The NSN equation has the advantage of not developing
divergences even for large values of the control parameter
due to the saturable nonlinearity. Therefore it was possible
to check the instability diagram even for large negative
values of �0, decreasing � from �14 to �18 (Fig. 5).
Because of the modulational character of the instability an
initial Gaussian perturbation does not evolve in the simple
way shown in Fig. 3(b). Nevertheless, from the temporal
evolution of the fronts it is still possible to distinguish
without ambiguity between convective [Fig. 5(a)] and
absolute [Fig. 5(b)] instabilities. It is also interesting to
note that the wave packet shows a clear asymmetry be-
tween the left and the right edges, with the wave numbers
with lower phase velocity in the leading edge and those
with higher phase velocity in the trailing edge. This effect
results from the symmetry breaking caused by the shift and
the opposite sign of the group velocity and the phase
velocities of most wave numbers.

In conclusion we have identified nonlocality as a new
mechanism leading to convective instabilities in a large
class of systems. We have shown how to determine the
absolute threshold by finding the values of w at a finite
number of saddles which are selected out of an infinite
number by the procedure described here. Our nonpertur-
bative approach allows us to analyze situations in which
there are several bands of unstable wave numbers and the
absolute instability is very far from the lowest convective
threshold. Theoretical predictions have been confirmed by
numerical simulation of the dynamics of two prototype
models. We expect that experiments in nonlocal systems
will exhibit a dynamics dominated by noise and boundary
effects in a very large region of control parameters. This
opens the possibility of new and exciting research in the
fundamental properties of extended nonlinear systems.
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