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Abstract. In this work we present a detailed analysis using the Markov chain theory of some
versions of the truel game in which three players try to eliminate each other in a series of one-
to-one competitions, using the rules of the game. Besides reproducing some known expressions for
the winning probability of each player, including the equilibrium points, we give expressions for the
actual distribution of winners in a truel competition.

1. INTRODUCTION

A truel is a game in which three players aim to eliminate each other in a series of one-to-
one competitions. The mechanics of the game is as follows: at each time step, one of the
players is chosen and he decides who will be his target. He then aims at this person and
with a given probability he might achieve the goal of eliminating him from the game
(this is usually expressed as the players “shooting" and “killing" each other, although
possible applications of this simple game do not need to be so violent). Whatever the
result, a new player is chosen amongst the survivors and the process repeats until only
one of the three players remains. The paradox is that the player that has the highest
probability of annihilating competitors does not need to be necessarily the winner of
this game. This surprising result was already present in the early literature on truels, see
the bibliography in the excellent review of reference [1]. According to this reference,
the first mention of truels was in the compendium of mathematical puzzles by Kinnaird
[2] although the name truel was coined by Shubik [3] in the 1960s.

Different versions of the truels vary in the way the players are chosen (randomly,
in fixed sequence, or simultaneous shooting), whether they are allowed to “pass", i.e.
missing the shoot on purpose (“shooting into the air"), the number of tries (or “bullets")
available for each player, etc. The strategy of each player consists in choosing the
appropriate target when it is his turn to shoot. Rational players will use the strategy
that maximizes their own probability of winning and hence they will chose the strategy
given by the equilibrium Nash point. In a series of seminal papers[4, 5, 6], Kilgour has
analyzed the games and determined the equilibrium points under a variety of conditions.

In this paper, we analyze the games from the point of view of Markov chain theory.
Besides being able to reproduce some of the results by Kilgour, we obtain the probability
distribution for the winners of the games. We restrict our study to the case in which there
is an infinite number of bullets and consider two different versions of the truel: random
and fixed sequential choosing of the shooting player. These two cases are presented in



sections 2 and 3, respectively. In section 4 we consider a variation of the game in which,
instead of eliminating the competitors from the game, the objective is to convince them
on a topic, making the truel suitable for a model of opinion formation. Some conclusions
and directions for future work are presented in section 5 whereas some of the most
technical parts of our work are left for the final appendixes.

2. RANDOM FIRING

Let us first fix the notation. The three players are labeled as A,B,C. We denote by a,
b and c, respectively, their marksmanship, defined as the probability that a player has
of eliminating from the game the player he has aimed at. The strategy of a player
is the set of probabilities he uses in order to aim to a particular player or to shoot
into the air. Obviously, when only two players remain, the only meaningful strategy
is to shoot at the other player. If three players are still active, we denote by PAB,
PAC and PA0 the probability of player A shooting into player B, C, or into the air,
respectively, with equivalent definitions for players B and C. These probabilities verify
PAB + PAC + PC0 = 1. A “pure" strategy for player A corresponds to the case where one
of these three probabilities is taken equal to 1 and the other two equal to 0, whereas a
“mixed" strategy takes two or more of these probabilities strictly greater than 0. Finally,
we denote by π(a;b,c) the probability that the player with marksmanship a wins the
game when he plays against two players of marksmanship b and c. The definition implies
π(a;b,c) = π(a;c,b) and π(a;b,c)+π(b;a,c)+π(c;a,b) = 1.

In the particular case considered in this section, at each time step one of the players
is chosen randomly with equal probability amongst the survivors. There are 7 possible
states of this system labeled as ABC, AB, AC, BC, A, B, C, according to the players
who remain in the game. The game can be thought of as a Markov chain with seven
states, three of them being absorbent states. The details of the calculation for the winning
probabilities of A, B and C as well as a diagram of the allowed transitions between states
are left for the appendix 6.1. We now discuss the results in different cases.

Imagine that the players do not adopt any thought strategy and each one shoots
randomly to any of the other two players. Clearly, this is equivalent to setting PAB =
PAC = PBA = PBC = PCA = PCB = 1/2. The winning probabilities in this case are:

π(a;b,c) =
a

a+b+ c
, π(b;a,c) =

b
a+b+ c

, π(c;a,b) =
c

a+b+ c
, (1)

a logical result that indicates that the player with the higher marksmanship possesses the
higher probability of winning. Identical result is obtained if the players include shooting
in the air as one of their equally likely possibilities.

It is conceivable, though, that players will not decide the targets randomly, but will
use some strategy in order to maximize their winning probability. Completely rational
players will choose strategies that are best responses (i.e. strategies that are utility–
maximizing) to the strategies used by the other players. This defines an equilibrium
point when all the players are better off keeping their actual strategy than changing to
another one. Accordingly, this equilibrium point can be defined as the set of probabilities
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FIGURE 1. In the parameter space (b,c) with c < b < a = 1, we indicate by black (resp. dark gray,
light gray) the regions in which player A (resp. B, C) has the largest probability of winning the truel in the
case of random selection of the shooting player and the use of the optimal strategy, as given by Eq. (2).

Pαβ (with α =A,B,C and β =A,B,C,0) such that the winning probabilities have a
maximum. This set can be found from the expressions in the appendix, with the result
that the equilibrium point in the case a > b > c is given by PAB = PCA = PBA = 1 and
PAC = PA0 = PBC = PB0 = PCB = PC0 = 0. This is the “strongest opponent strategy”
in which each player aims at the strongest of his opponents[1]. With this strategy, the
winning probabilities are:

π(a;b,c) =
a2

(a+ c)(a+b+ c)
, π(b;a,c) =

b
a+b+ c

, π(c;a,b) =
c(c+2a)

(a+ c)(a+b+ c)
(2)

(notice that these expressions assume a > b > c; other cases can be easily obtained by a
convenient redefinition of a, b and c).

An analysis of these probabilities leads to the paradoxical result that when all players
use their ’best’ strategy, the player with the worst marksmanship can become the player
with the highest winning probability. For example, if a = 1.0, b = 0.8, c = 0.5 the
probabilities of A, B and C winning the game are 0.290, 0.348 and 0.362, respectively,
precisely in inverse order of their marksmanship. The paradox is explained when one
realizes that all players set as primary target either players A or B, leaving player C as
the last option and so he might have the largest winning probability. In Fig.1 we plot the
regions in parameter space (b,c) (after setting a = 1) representing the player with the
highest winning probability.

Imagine that we set up a truel competition. Sets of three players are chosen randomly
amongst a population whose marksmanship are uniformly distributed in the interval
(0,1). The distribution of winners is characterized by a probability density function,
f (x), such that f (x)dx is the proportion of winners whose marksmanship lies in the



interval (x,x+dx). This distribution is obtained as:

f (x) =
∫

dadbdc [π(a;b,c)δ (x−a)+π(b;a,c)δ (x−b)+π(c;a,b)δ (x− c)] (3)

or

f (x) = 3
∫ 1

0
db

∫ 1

0
dcπ(x;b,c) (4)

If players use the random strategy, Eq. (1), the distribution of winners is f (x) =
3x [x lnx−2(1+ x) ln(1+ x)+(2+ x) ln(2+ x)]. In figure 2 we observe that, as ex-
pected, the function f (x) attains its maximum at x = 1 indicating that the best marks-
manship players are the ones which win in more occasions.

We consider now a variation of the competition in which the winner of one game
keeps on playing against other two randomly chosen players. The resulting distribution
of players, f̄ (x), can be computed as the steady state solution of the recursion equation:

f̄ (x, t +1)=
∫

dadbdc [π(a;b,c)δ (x−a)+π(b;a,c)δ (x−b)+π(c;a,b)δ (x− c)] f̄ (a, t)

(5)
or

f̄ (x) =
1
3

f̄ (x) f (x)+2
∫ 1

0
db

∫ 1

0
dcπ(x;b,c) f̄ (b) (6)

In the case of using the probabilities of Eq. (1) the distribution of winners is1 f̄ (x) = 2x.
For players adopting the equilibrium point strategy, Eq.(2), the resulting expression

for f (x) is too ugly to be reproduced here, but the result has been plotted in Fig. 3. Notice
that, despite the paradoxical result mentioned before, the distribution of winners still has
it maximum at x = 1, indicating that the best marksmanship players are nevertheless the
ones who win in more occasions. In the same figure, we have also plotted the distribution
f̄ (x) of the competition in which the winner of a game keeps on playing. In this case,
the integral relation Eq.(6) has been solved numerically.

3. SEQUENTIAL FIRING

In this version of the truel there is an established order of firing. The players will
shoot in increasing value of their marksmanship. i.e. if a > b > c the first player to
shoot will be player C, followed by player B and the last to shoot is player A. The
sequence repeats until only one player remains. Again, we have left for the appendix
6.2 the details of the calculation of the winning probabilities. Our analysis of the
optimal strategies reproduces that obtained by the detailed study of Kilgour[5]. The
result is that there are two equilibrium points depending on the value of the function
g(a,b,c) = a2(1−b)2(1− c)−b2c−ab(1−bc): if g(a,b,c) > 0 the equilibrium point

1 The result is more general: if π(a;b,c) = G(a)/[G(a)+ G(b)+ G(c)], for an arbitrary function G(x),
the solution is f̄ (x) = G(x)/

∫ 1
0 G(y)dy.
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FIGURE 2. Distribution function f (x) for the winners of truels of randomly chosen triplets (solid line)
in the case of players using random strategies, Eq. (1); distribution f̄ (x) of winners in the case where the
winner of a truel remains in the competition (dashed line).
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FIGURE 3. Similar to Fig.(2) in the case of the competition where players use the rational strategy of
the equilibrium point given by eq.(2).

is the strongest opponent strategy PAB = PBA = PCA = 1, while for g(a,b,c) < 0 it turns
out that the equilibrium point strategy is PAB = PBA = PC0 = 1 where the worst player C
is better off by shooting into the air and hoping that the second best player B succeeds
in eliminating the best player A from the game.
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FIGURE 4. Same as Fig.1 in the case that players play sequentially in increasing order of their
marksmanship.

The winning probabilities for this case, assuming a > b > c, are:

π(a;b,c) =
(1− c)(1−b)a2

[c(1−a)+a][b(1−a)+a]
,

π(b;a,c) =
(1− c)b2

(c(1−b)+b)(b(1−a)+a)
,

π(c;a,b) =
c[bc+a[b(2+b(−1+ c)−3c)+ c]]

[c+a(1− c)][b+a(1−b)][a+b(1−a)]
, (7)

if g(a,b,c) > 0, and

π(a;b,c) =
a2(1−b)(1− c)2

[a+(1−a)c][a+b(1−a)+ c(1−a)(1−b)]
,

π(b;a,c) =
b
(

b(1− c)2 + c
)

[b+(1−b)c][a+b(1−a)+ c(1−a)(1−b)]
,

π(c;a,b) =

ac(1−b)(1−c)
a+c(1−a) + c(b+c(1−2b))

b+c(1−b)

[a+b(1−a)+ c(1−a)(1−b)]
, (8)

if g(a,b,c) < 0. Again, as in the case of random firing, the paradoxical result appears
that the player with the smallest marksmanship has the largest probability to win the
game. In figure 4 we summarize the results indicating the regions in parameter space
(b,c) (with a = 1) where each player has the highest probability of winning. Notice that
the ’best’ player A has a much smaller region of winning than compared with the case
of random firing.

In figure 5 we plot the distribution of winners f (x) and f̄ (x) in a competition as
defined in the previous section. Notice that now the distribution of winners f (x) has a
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FIGURE 5. Same as Fig.2 in the case that players play sequentially in increasing order of their
marksmanship. Notice that now both distributions of winners present maxima for x < 1 indicating that
the best a priori players do not win the game in the majority of the cases.

maximum at x ≈ 0.57 indicating that the players with the best marksmanship do not win
in the majority of cases.

4. CONVINCING OPINION

We reinterpret the truel as a game in which three people holding different opinions, A, B
and C, on a topic, aim to convince each other in a series of one-to-one discussions. The
marksmanship a (resp. b, c) are now interpreted as the probabilities that player holding
opinion A (resp. B or C) have of convincing another player of adopting this opinion.
The main difference with the previous sections is that now there are always three
players present in the game and the different states in the Markov chain are ABC, AAB,
ABB, AAC, ACC, BBC, BCC, AAA, BBB and CCC. The analysis of the transition
probabilities is left for appendix 6.3. We consider only the random case in which the
person that tries to convince another one is chosen randomly amongst the three players.
The equilibrium point corresponds to the best opponent strategy set of probabilities in
which each player tries to convince the opponent with the highest marksmanship. The
probabilities that the final consensus opinion is A, B or C, assuming a > b > c are given
by

π(a;b,c) =
a2
[

2cb2 +a
(

(a+b)2 +2(a+2b)c
)]

(a+b)2(a+ c)2(a+b+ c)
,

π(b;a,c) =
b2(b+3c)

(b+ c)2(1+b+ c)
,

π(c;a,b) =
c2
[

c3 +3(a+b)c2 +a(a+8b)c+ab(3a+b)
]

(a+ c)2(b+ c)2(a+b+ c)
, (9)
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FIGURE 6. Same as Fig.1 for the convincing opinion model.
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FIGURE 7. Same as Fig.2 for the convincing opinion model.

respectively. As shown in Fig. 6, there is still a set of parameter values (a,b,c) for which
opinion C has the highest winning probability, although it is smaller than in the versions
considered in the previous sections.

Similarly to other versions, we plot in figure 7 the distribution of winning opinions,
f (x). Notice that, as in the random firing case, it attains its maximum at x = 1 showing
that the most convincing players win the game in more occasions. We have also plotted
in the same figure, the distribution f̄ (x) which results where one of the winners of a truel
is kept to discuss with two randomly chosen players in the next round.



5. CONCLUSIONS

As discussed in the review of reference [1], truels are of its interest in many areas of
social and biological sciences. In this work, we have presented a detailed analysis of
the truels using the methods of Markov chain theory. We are able to reproduce in a
language which is more familiar to the Physics community most of the results of the
alternative analysis by Kilgour[5]. Besides computing the optimal rational strategy, we
have focused on computing the distribution of winners in a truel competition. We have
shown that in the random case, the distribution of winners still has its maximum at the
highest possible marksmanship, x = 1, despite the fact that sometimes players with a
lower marksmanship have a higher probability of winning the game. In the sequential
firing case, the paradox is more present since even the distribution of winners has a
maximum at x < 1. It would be interesting to determine mechanisms by which players
could, in an evolutionary scheme, adapt themselves to the optimal values.

6. APPENDIX: CALCULATION OF THE PROBABILITIES

6.1. Random firing

In this game there are seven possible states according to the remaining players. These
are labeled as 0,1, . . . ,6. There are transitions between those states, as shown in the
diagram in Fig. 8, where pi j denotes the transition probability from state i to state j (the
self–transition probability pii is denoted by ri).

States Remaining players

0 ABC
1 AB
2 AC
3 BC
4 A
5 B
6 C

2

1

3

4

5

6

r3

r2

0

r1

5r

r6

4r

r0

p
01

p
02

p
03

p
14

24
p

15
p

35
p

26
p

p
36

FIGURE 8. Table with the description of all the possible states for the random firing game, and diagram
representing the allowed transitions between the states shown in the table.

From Markov chain theory[7] we can evaluate the probability u j
i that starting from



state i we eventually end up in state j after a sufficiently large number of steps. In
particular, if we start from state 0 (with the three players active), the nature of the game
is such that the only non-vanishing probabilities are u4

0, u5
0 and u6

0 corresponding to the
winning of the game by player A, B and C respectively. The relevant set of equations
is 2:

u4
0 = p01 u4

1 + p02 u4
2 + p03 u4

3 + r0 u4
0, u5

0 = p01 u5
1 + p02 u5

2 + p03 u5
3 + r0 u5

0,
u4

1 = p14 u4
4 + r1 u4

1, u5
1 = p15 u5

5 + r1 u5
1,

u4
2 = p24 u4

4 + r2 u4
2, u5

2 = r2 u5
2,

u4
3 = r3 u4

3, u5
3 = r3 u5

3 + p35 u5
5.

Solving for u4
0, u5

0 and u6
0 we obtain:

u4
0 =

p01 p14

(1− r0)(1− r1)
+

p02 p24

(1− r0)(1− r2)
,

u5
0 =

p01 p15

(1− r0)(1− r1)
+

p03 p35

(1− r0)(1− r3)
, (10)

u6
0 =

p02 p26

(1− r0)(1− r2)
+

p03 p36

(1− r0)(1− r3)
.

We can now derive the expressions for the transition probabilities pi j. Remember that
we denote by a the probability that player A eliminates from the game the player he has
aimed at (and similarly for b and c), and that Pαβ (α =A,C,B and β = A,B,C,0) the
probability of player α choosing player β (or into the air if β = 0) as a target when it is
his turn to play (a situation that only appears when the three players are still active). We
have then:

r0 = 1− 1
3(a(1−PA0)+b(1−PB0)+ c(1−PC0)), p01 = 1

3(aPAC +bPBC),

p02 = 1
3(aPAB + cPCB), p03 = 1

3(bPBA + cPCA),

p14 = p24 = 1
2a, p15 = p35 = 1

2b,
p26 = p36 = 1

2c, r1 = 1− 1
2(a+b),

r2 = 1− 1
2(a+ c), r3 = 1− 1

2(b+ c).

(11)

6.2. Sequential firing

As in the random firing case, we describe this game as a Markov chain composed of
11 different states, also with three absorbent states: 9 , 10 and 11. In Fig. 9 we can see
the corresponding diagram for this game, together with a table describing all possible
states. Based on this diagram, we can write down the relevant set of equations for the
transition probabilities u j

i :

2 There is no need to write down the equations for u6
0 since it suffices to notice that u4

0 +u5
0 +u6

0 = 1.



States Remaining players

0 A B C
1 A B C
2 A B C
3 B C
4 A C
5 B C
6 A B
7 A C
8 A B
9 C
10 B
11 A

4

3

0

p
04

7

5

10

15
p

53
p

35
p

p
03

p
3 10

59
p

11
6 8

86
p

68
p

28
pp

16

1 2

27
p

p
12

p
20

p
01

p
74

p
47

p
4 11

6 11
p

8 10
p

9
79

p

FIGURE 9. Table: Description of the different states of the game for the case of sequential firing.
The highlighted player is the one chosen for shooting in that state. Diagram: scheme representing all the
allowed transitions between the states shown in the table for the case of a truel with sequential firing in
the order C→ B → A with a > b > c.

u9
0 = p03u9

3 + p01u9
1 + p04u9

4, u10
0 = p03u10

3 + p01u10
1 , u11

0 = p01u11
1 + p04u11

4 ,

u10
1 = p12u10

2 + p15u10
5 + p16u10

6 , u9
1 = p12u9

2 + p15u9
5, u11

1 = p12u11
2 + p16u11

6 ,

u11
2 = p28u11

8 + p27u11
7 + p20u11

0 , u9
2 = p27u9

7 + p20u9
0, u10

2 = p28u10
8 + p20u10

0 ,

u9
3 = p35u9

5, u10
3 = p35u10

5 + p310,

u9
4 = p47u9

7, u11
4 = p47u11

7 + p411,

u9
5 = p53u9

3 + p59, u10
5 = p53u10

3 ,

u10
6 = p68u10

8 , u11
6 = p68u11

8 + p611,

u9
7 = p74u9

4 + p79, u11
7 = p74u11

4 ,

u10
8 = p86u10

6 + p810, u11
8 = p86u11

6 .

(12)



The general solutions for the probabilities u9
0, u10

0 and u11
0 are given by

u9
0 =

1
1− p01 p12 p20

[

p59(p03 p35 + p01 p15)

1− p35 p53
+

p79(p04 p47 + p01 p12 p27)

1− p47 p74

]

,

u10
0 =

1
1− p01 p12 p20

[

p310(p03 + p01 p15 p53)

1− p35 p53
+

p01 p810(p16 p68 + p12 p28)

1− p68 p86

]

, (13)

u11
0 =

1
1− p01 p12 p20

[

p411(p04 + p01 p12 p27 p74)

1− p47 p74
+

p01 p611(p16 + p12 p28 p86)

1− p68 p86

]

,

with transition probabilities given by

p01 = (1− c)+ cPC0, p03 = cPCA, p04 = cPCB,
p12 = (1−b)+bPB0, p15 = bPBA, p16 = bPCA,
p20 = (1−a)+aPA0, p27 = aPAB, p28 = aPAC,
p35 = p86 = 1−b, p310 = p810 = b,
p47 = p68 = 1−a, p411 = p611 = a,
p53 = p74 = 1− c, p59 = p79 = c.

6.3. Convincing opinion

For this model we show in Fig. 10 the diagram of all the allowed states and transitions,
together with a table describing the possible states.

The corresponding set of equations describing this convincing opinion model, as
derived from the diagram, are

u1
0 = r0u1

0 + p06u1
6 + p04u1

4 + p05u1
5 + p07u1

7,
u2

0 = r0u2
0 + p04u2

4 + p05u2
5 + p08u2

8 + p09u2
9,

u3
0 = r0u3

0 + p08u3
8 + p09u3

9 + p07u3
7 + p06u3

6,
u1

4 = r4u1
4 + p45u1

5 + p41, u2
4 = r4u2

4 + p45u2
5,

u1
5 = r5u1

5 + p54u1
4, u2

5 = r5u2
5 + p54u2

4 + p52,
u1

6 = r6u1
6 + p67u1

7 + p61, u3
6 = r6u3

6 + p67u3
7,

u1
7 = r7u1

7 + p76u1
6, u3

7 = r7u3
7 + p76u3

6 + p73,
u2

8 = r8u2
8 + p89u2

9 + p82, u3
8 = r8u3

8 + p89u3
9,

u2
9 = r9u2

9 + p98u2
8, u3

9 = r9u3
9 + p98u3

8 + p93.

(14)

And the general solution for the probabilities u1
0, u2

0 and u3
0 is

u1
0 =

1
1− r0

[

p61(p06(1− r7)+ p07 p76)

(1− r6)(1− r7)− p67 p76
+

p41(p04(1− r5)+ p05 p54)

(1− r4)(1− r5)− p45 p54

]

,

u2
0 =

1
1− r0

[

p52(p04 p45 + p05(1− r4))

(1− r4)(1− r5)− p45 p54
+

p82(p08(1− r9)+ p09 p98)

(1− r8)(1− r9)− p89 p98

]

,

u3
0 =

1
1− r0

[

p73(p06 p67 + p07(1− r6))

(1− r6)(1− r7)− p67 p76
+

p93(p09(1− r8)+ p08 p89)

(1− r8)(1− r9)− p89 p98

]

, (15)



States Opinions

0 A B C
1 A A A
2 B B B
3 C C C
4 A A B
5 A B B
6 A A C
7 A C C
8 B B C
9 B C C

r
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p
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93
p

r
9

0

r
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p
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p
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FIGURE 10. Table: description of the different states of the opinion model. Diagram: scheme repre-
senting the allowed transitions between the states.

where the transition probabilities are given by

p04 = 1
3cPCA, p06 = 1

3cPCB, p08 = 1
3bPBC,

p05 = 1
3bPBA, p07 = 1

3aPAB, p09 = 1
3aPAC,

p41 = p61 = 2
3c p45 = p98 = 1

3b, p54 = p76 = 1
3c,

p52 = p82 = 2
3b, p67 = p89 = 1

3a, p73 = p93 = 2
3a,

r0 = 1
3 [3−a−b− c], r4 = 2

3(1− c)+ 1
3(1−b), r5 = 1

3(1− c)+ 2
3(1−b),

r6 = 2
3(1− c)+ 1

3(1−a), r7 = 1
3(1− c)+ 2

3(1−a), r8 = 2
3(1−b)+ 1

3(1−a),

r9 = 1
3(1−b)+ 2

3(1−a).
(16)

ACKNOWLEDGMENTS

Acknowledgments We thank Cesáreo Hernández for bringing this problem to our
attention. This work is supported by MCyT (Spain) and FEDER (EU) projects FIS2004-
5073-C04-03 and FIS2004-953; P.A. acknowledges support form the Govern Balear,
Spain.



REFERENCES

1. D.M. Kilgour and and S.J. Brams, The truel. Mathematics Magazine 1997, 70, 315.
2. C. Kinnaird, Encyclopedia of Puzzles and Pastimes, 1946, Citadel, Secaucus, NJ (USA).
3. M. Shubik, Game Theory in the Social Sciences 1982, MIT Press, Cambridge, MA (USA).
4. Kilgour, D. M., The simultaneous truel. Int. Journal of Game Theory, 1972, 1, 229–242.
5. Kilgour, D. M., The sequential truel. Int. Journal of Game Theory, 1975, 4, 151–174.
6. Kilgour, D. M., Equilibrium points of infinite sequential truels. Int. Journal of Game Theory, 1977, 6,

167–180.
7. Karlin, S., A first course in stochastic processes. Academic Press, New York, 1973.


