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We study the relation between the discrete-time version of the flashing ratchet known as
Parrondo’s games and a compression technique used very recently with thermal ratchets
for evaluating the transfer of information— negentropy — between the Brownian particle
and the source of fluctuations. We present some results concerning different versions of
Parrondo’s games showing, for each case, a good qualitative agreement between the gain
and the variation of the entropy.

Keywords: Ratchets; Parrondo’s paradox; information theory.

1. Introduction

The field of microscopic Brownian particles has recently focused its attention on new
directed transport phenomena under the conditions of (i) broken spatial inversion
symmetry and (ii) the contact with a thermal bath in a nonequilibrium situation [1].
The first condition is accomplished through an asymmetric potential, usually a
ratchet-like potential. The second condition can be achieved in different ways,
either by periodic or stochastic forcing (pulsating ratchets), or by additive driving
force unbiased on average (tilting ratchets). The flashing ratchet corresponds to the
class of pulsating ratchets and it consists on switching on and off either periodically
or stochastically a ratchet potential. This model has been used recently for DNA
transport [2] and separation of biological macromolecules [3].

Recently, Arizmendi et. al [4] have quantified the transfer of information —
negentropy — between the Brownian particle and the nonequilibrium source of
fluctuations acting on it. These authors coded the particle motion of a flashing
ratchet into a string of 0’s and 1’s according to whether the particle had moved to
the left or to the right respectively, and then compressed the resulting binary file
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using the Lempel and Ziv algorithm [5]. They obtained in this way an estimation
of the entropy per character h, as the ratio between the lengths of the compressed
and the original file, for a sufficiently large file length. They applied this method to
estimate the entropy per character of the ergodic source for different values of the
flipping rate, with the result that there exists a close relation between the current
in the ratchet and the net transfer of information in the system. The aim of this
paper is to apply this technique to a discrete-time and space version of the Brownian
ratchet, known in the literature as Parrondo’s paradox.

Parrondo’s paradox [6–12] states that a combination of two negatively biased
games — losing games — can give rise to a positively biased game — a winning
game. Although this paradox appeared as a translation of the physical model
of the flashing ratchet into game-theoretic terms, there has been no quantitative
demonstration of their relation until very recently [13–15].

More precisely, the paradox is based on the combination of two games (Par-
rondo’s games). One of them, game A, is a simple coin tossing game where the
player has a probability p (respectively, 1− p) of winning (respectively, losing) one
unit of capital. The second game, game B, is a capital dependent game, where the
probability of winning depends on the capital of the player modulo a given number
M . Usually, M is set to 3 and the winning probability is pi if the capital is equal to
i mod 3. One of the possibilities for the numerical values is: p = 1

2
− ε, p0 = 1

10
− ε,

p1 = p2 = 3

4
− ε, where ε is a small biasing parameter that converts games A and B

into losing games. When ε = 0 it can be demonstrated that the fairness condition
is fulfilled for both games, that is

∏M−1

j=0
pj =

∏M−1

j=0
(1− pj). As soon as ε > 0 this

condition no longer applies and A and B are both losing games.
The combination game, game AB, is obtained alternating between game A and

game B with probabilities γ and 1 − γ, respectively. The corresponding winning
probabilities of game AB are q0 = γp + (1 − γ)p0 when the capital is multiple
of 3, and q1 = q2 = γp + (1 − γ)p1, otherwise. Since it can be checked that
∏M−1

j=0
qj >

∏M−1

j=0
(1− qj) for γ ∈ (0, 1) and not too large ε, it turns out that game

AB is a winning game in those cases.
Several other versions of the games have been introduced: in the so-called co-

operative games [16, 17], one considers an ensemble of interacting players; in the
history dependent games [18,19], the probabilities of winning depend on the history
of previous results of wins and loses; finally, in the games with self-transition [20],
there is a nonzero probability ri that the capital remains unchanged (not winning
or losing) in a given toss of the coins.

Some previous works in the literature have related Parrondo’s games and in-
formation theory. Pearce, in Ref. [21], considers the relation between the entropy
and the fairness of the games, and the region of the parameter space where the
entropy of game A is greater than that of B and AB. Harmer et. al [22] study the
relation between the fairness of games A and B and the entropy rates considering
two approaches. The first one calculates the entropy rates not taking into account
the correlations present on game B, finding a good agreement between the region of
maximum entropy rates and the region of fairness. The second approach introduces
these correlations, obtaining lower entropy rates and no significant relation between
fairness and entropy rates for game B.

In this paper we aim to relate the current or gain in Parrondo’s games with
the variation of information entropy of the binary file generated using techniques
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similar to those of Ref. [4]. In Sec. 2 we show the numerical results coming from
simulations of the different versions of Parrondo’s games mentioned above, and we
offer, in Sec. 3, a theoretical analysis that helps to understand the behavior observed
in the simulations.

2. Simulation Results

We have performed numerical simulations of the different versions of the games.
In every case, the evolution of the capital of the player has been converted to a
string of bits where bit 0 (respectively, 1) corresponds to a decrease (respectively,
increase) of the capital after δt plays of the games. It will be shown that the delay
time δt between capital measurements is a relevant parameter.

An estimation of the entropy per character, h, is obtained as the compression
ratio obtained with the gzip (v. 1.3) program, that implements the Lempel and
Ziv algorithm, although it has been stressed by some authors that this is not the
best algorithm one can find in the literature. The simplicity in the use of this
algorithm (as it is already implemented “for free” in many operating systems) is an
added value, as it will become apparent in the following when we consider strings
of symbols generated by more than one ergodic source. As suggested in Ref. [4], we
expect that the negentropy, −h, which accounts for the known information about
the system, is related in some way with the average gain in the games.
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Fig. 1. Comparison of the average gain per game (solid line) with the entropy difference ∆h (sym-
bols) as a function of the switching rate γ, for several values of the delay time δt, as shown in
the legend, and the following versions of the Parrondo’s paradox: Left panel: Original Parrondo’s
combination of games A and B with probabilities: p = 1

2
, p0 =

1

10
and p1 =

3

4
. Right panel: Par-

rondo’s combination of games A and B including self-transitions. The values for the probabilities
are: p = 9

20
, r = 1

10
, p0 =

3

25
, r0 =

2

5
, p1 =

3

5
and r1 =

1

10
(see Ref. [20] for the choice of these

parameters).

In Fig. 1 we compare the average gain in game AB with the value of the entropy
difference ∆h = h(γ = 0)− h(γ) as a function of the probability γ and for different
delay times δt. We find indeed a qualitative agreement between the increase in the
gain and the decrease in entropy as the γ parameter is varied. This decrease in the
entropy of the system implies that there exists an increase in the amount of known
information about the system. Notice that the compression rate depends on δt, and
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Fig. 2. Same as Fig. 1 in other versions of Parrondo’s paradox: Left panel: History dependent
games, alternating between two games with probabilities: p1 = 9

10
, p2 = p3 = 1

4
, p4 = 7

10
;

q1 =
2

5
, q2 = q3 =

3

5
and q4 =

2

5
(see Ref. [18] for the choice of these parameters). Right panel:

Cooperative Parrondo’s games with probabilities: p = 1

2
, p1 = 1, p2 = p3 =

16

100
, p4 =

7

10
and

N = 150 players (see Ref. [16] for the choice of these parameters).

that the γ value for which there is the maximum decrease in entropy agrees with
the value for the maximum gain in the games. This agreement is similar to the one
observed when applying this technique to the Brownian flashing ratchet [4].

Similar results are obtained in other cases of Parrondo’s games. For instance, in
the right panel of Fig. 1 we compare the average gain and the entropy difference in
the games with self-transition [20]. Again in this case the maximum gain coincides
with the γ value for the minimum entropy per character for all values of δt.

Finally, in Fig. 2 we present the comparison in the case of the history dependent
games [18] (left panel), and cooperative games [16] (right panel), showing all of
them the same features as in the previous cases. We conclude that there exists a
close relation between the entropy and the average gain. In the next section we will
develop a simple argument that helps explaining this relation.

3. Theoretical Analysis

Shannon, in his seminal work [23], defines the entropy per character of a text pro-
duced by an ergodic source as the following expressiona:

H = −

∑

i

pi · log(pi) (1)

where pi denotes the probability that the source will emit a given symbol ai, and
the sum is taken over all possible symbols that the source can emit. For instance,
if we consider game A as a source of two symbols, 0 (losing) and 1 (winning) , the
Shannon entropy according as a function of the probability p of emitting symbol
1 (i.e. the probability of winning) is H(p) = −p log p − (1 − p) log(1 − p). In
Fig. 3 we compare this expression with the compression factor h obtained using
the gzip algorithm. As shown in this figure, in this case of a single source, the

aUnits are taken such that all logarithms are base 2.
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Fig. 3. Comparison between the theoretical value obtained for the Shannon entropy — solid
line — with the numerical values — circles — obtained with the gzip algorithm for a single source
emitting two symbols with probability p.

compression factor of the gzip algorithm does give a good approximation to the
Shannon entropy.

If the source is a mixed source, that is, composed by M independent sources each
one appearing with a probability Πj and with entropy Hj , the entropy reads [23]

H =

M
∑

j=1

Πj Hj = −

∑

j,i

Πj p
j
i log(pj

i ). (2)

where p
j
i denotes the probability of emitting the symbol ai by source j.

From now on, we restrict our analysis to the case of the original Parrondo’s
paradox combining games A and B, as explained in the previous section. The
combined games AB can be considered as originated by two sources depending on
whether the capital is a multiple of 3 or not. The probability of emitting symbol 1
when using the first source is q0, whereas the same probability is q1 when using the
second source.

We first consider the case δt = 1, i.e. we store the capital after each single play
of the games. According to the previous discussion, the Shannon entropy for the
combined game AB is:

H = −Π0[q0 log(q0)+(1−q0) log(1−q0)]−(1−Π0)[q1 log(q1)+(1−q1) log(1−q1)] (3)

being Π0 the stationary probability than in a given time the capital is a multiple of
3. This can be computed using standard Markov chain theory, with the result [24]:

Π0 =
1− q1 + q2

1

3− q0 − 2q1 + 2q0q1 + q2
1

. (4)

In Fig. 4 we compare the Shannon entropy H given by the previous formula
with the numerical compression factor h as a function of the probability γ of mixing



April 6, 2005 12:39 WSPC/167-FNL 00240

L68 P. Amengual & R. ToralP. Amengual & R. Toral

0 0,2 0,4 0,6 0,8 1
γ

-1

-0,9

-0,8

-0,7

-h

Fig. 4. Plot of Shannon negentropy (solid line) for the combination game AB according to expres-
sion 3, together with the numerical values (circles) obtained with the compression factor of the
gzip algorithm in the case when δt = 1 step.

games A and B. Although certainly not as good as in the case of a single game,
in this case, the gzip compression factor gives a reasonable approximation to the
Shannon entropy of the combined game AB. It is worth noting that in this case of
δt = 1 the entropy increases with γ, corresponding to a decrease of the information
known about the system. In order to relate the entropy difference with the current
gain, we need to consider larger values for δt.

For δt � 1 the system gradually loses its memory about its previous state.
Therefore, the different measures are statistically independent and they can be
considered as generated by a single ergodic source. For this single source, the
probability of winning after one single play of the games is pw = Π0 q0+(1−Π0) q1.
However, we are interested in calculating the winning probability p> after δt plays.
In order to have a larger capital after δt plays it is necessary that the number of
wins overcomes the number of losses in single game plays. The distribution of the
number of wins follows a binomial distribution and the probability p> is given by:

p
>
=

δt
2

∑

k=0

(

δt

k

)

· pδt−k
w · (1− pw)

k. (5)

The corresponding Shannon entropy for this single source is:

H = −p
>
· log(p

>
)− (1 − p>) · log(1− p

>
). (6)

We compare in Fig. 5 the Shannon entropy coming from this formula and the
one obtained by the compression ratio of the gzip program for two different values
of δt = 500, 1000. In both cases, there is a reasonable agreement between both
results. Moreover, as shown in Figs. 1 and 2 the entropy follows closely the average
gain of the combined games.

As a conclusion, we have quantified the amount of the transfer of information
(negentropy) in the case of Parrondo’s games, considered as a discrete-time and
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Fig. 5. Plot of Shannon entropy difference ∆h = h(γ = 0) − h(γ) according to formulas 6 and 5
for δt = 500 (solid line) and δt = 1000 (dashed line) together with the numerical curves obtained
with the compression ratio of the gzip algorithm for the same values of δt = 500 (circles) and
δt = 1000 (squares).

space version of the flashing ratchet. This effect takes place in every existing ver-
sion of the games analyzed, showing its robustness, and it is the equivalent of the
same result obtained in the case of the Brownian ratchets. In the case of the original
Parrondo’s paradox mixing two games, A and B, we have computed the entropy by
considering that the capital originates from a combination of two ergodic sources,
reflecting the different winning probabilities when the capital is a multiple of three
or not. We have shown that the entropy behaves very differently for low and high
values of the delay parameter δt, while for δt = 1 there is a monotonic dependence
on the switching parameter γ, the relation between the gain and the current is only
apparent for large values of δt. Our paper offers a new and hopefully enlightening
approach to understand Parrondo’s paradox. This approach differs (and comple-
ments) from previous work [21, 22] in that we consider the capital of the player as
the information source.
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