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Turn-on Jitter of

External-Cavity

Semiconductor Lasers

E. Herndndez-Garcia, C. R. Mirasso,

Abstract—Analytical expressions, validated by numerical simu-
lations, are obtained for the turn-on delay jitter of semiconductor
lasers subjected to weak optical feedback in short external cavi-
ties. The results show explicitly that displacement of the external
reflector on optical wavelength scales causes significant changes
in the switch-on dynamics of the laser. It is found that more than
a 400% increase of jitter can occur under certain circumstances.
The demonstrated sensitivity of laser switch-on dynamics to
reflector location is considered to be particularly relevant to the
performance of packaged laser diodes.

I. INTRODUCTION

URN-ON delay jitter is of considerable importance for

practical applications of semiconductor lasers. It causes
a degradation of the temporal resolution and it acts as a
limiting factor in the performance of high-bit rate optical
communication systems. Jitter properties have been exten-
sively studied both experimentally and numerically [1]-[4].
Most recently, the dependence of jitter properties on bias
level and modulation frequency of the injection current have
been considered [5] showing that biasing below threshold can
be advantageous to reduce the jitter in a situation of signal
transmission at high speed (Gb/s). The connection of pattern
effects with the randomness of the turn-on time have also been
evidentiated [6].

Optical feedback is a well-known effect to take into account
when considering the performance of a laser diode in an
optical communication system (7], [8]. Small amounts of
feedback are known to be useful for linewidth reduction, but
feedback intensities likely to occur in optical communication
systems degrade its performance through the occurrence of
the “coherence collapse” [9], [10] giving rise to linewidths
of several GHz and a chaotic intensity signal [11]. A general
classification of the effect of feedback on semiconductor laser
spectral and dynamic properties has been reported [7], [12].
That classification is concerned with the CW operation of
the device. However, few studies are available of external-
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cavity lasers under direct-modulation conditions [13]-[16] or
in the transient regime following a gain-switching [17]. Only
recently the degradation in the performance for a digital
intensity modulated direct detection system caused by optical
feedback has been considered in some detail [13]. In this
context, the turn-on dynamics and associated jitter properties
of semiconductor lasers affected by optical feedback have been
examined [14]-[16].

The characterization of jitter properties associated with the
turn-on dynamics of semiconductor lasers in the presence of
optical feedback seems a worthwhile task given its practical
implications in optical communication systems. The results of
previous work are [15], [16] purely numerical, consider a fixed
value of the external round-trip delay time and study the turn-
on dynamics from a bias above threshold. In these situations,
it has been shown that the jitter can be largely increased with
increasing amounts of feedback power. This is true both in
situations of largely separated gain-switching events and under
fast pseudorandom-word modulation as appropriate for signal
transmission. In this paper, we explore further these questions
studying the dependence of jitter properties on the external-
cavity round-trip time. We address the problem through an
analytical calculation that allows us to capture in a general
way some of the basic issues of the problem. In addition,
numerical calculations are reported for parameter values for
which our analytical approximations break down. We consider
turn-on dynamics from a bias below threshold. This choice
of bias is made in view of the results of reference [5] for
rapidly modulated lasers. Our results are obtained for weak
feedback conditions. Such conditions are met, for example, in
laser diode modules where unwanted reflections from lenses,
fiber facets, and other package components may affect the
laser behavior. It has been shown that axial displacement of
reflecting planes in laser diode modules can cause optical
output power fluctuations as well as shifts in the laser emission
spectrum [18]. -

Of additional significance for the present work is the fact
that the weak optical feedback obtained in such laser packages
would be associated with relatively short external cavities and
consequently short feedback-delay times. In such a regime of
operation, the accuracy of analytical expressions as reported in
this paper have been confirmed numerically. Very weak reflec-
tions from distant reflectors, say from nominally reflectionless
facets of semiconductor optical amplifiers or optical fibers,
may also be described within the formalism presented here.

The basic physical effect which will be shown here to be
of great significance in the transient regime is the change of
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laser threshold when the laser is subject to optical feedback.
It is important to observe that this change in threshold is
dependent upon the phase of the light returned to the laser
cavity after a round trip of the external cavity. In consequence
to this phase dependence, there is a phase dependence (or
equivalently external-cavity length dependence) of the laser
threshold in the presence of feedback. It is shown here that
such phase dependence gives rise to (damped) oscillations in
the laser turn-on time and jitter as a function of external-cavity
length. The amplitude of these of oscillations is of significance
for short external cavities as appropriate to packaged laser
diodes as noted above. The frequency of these oscillations
is determined by the optical frequency so that extremely
small variations of the external-cavity length result in large
variations of the turn-on times. This effect can give rise to
an effective large jitter associated with noise sources which
randomly modify the external-cavity length in tiny amounts.
The sensitivity to small variations of the external-cavity length
has also been addressed in the context of CW-operation for
situations of stronger feedback [19].

The outline of the paper is as follows. In Section II, we
present the analytical calculation of jitter properties and its
main consequences. The calculation is substantiated by numer-
ical results presented in Section III. Some general conclusions
are summarized in Section IV. The Appendix contains the
mathematical details of our calculation.

II. CALCULATION OF JITTER
PROPERTIES FOR WEAK FEEDBACK

A. Dynamical Model

We consider a situation in which a single-mode semiconduc-
tor laser is coupled to an external cavity. The delay-differential
equations appropriate to describe this configuration are the
Lang-Kobayashi equations [20] which describe the coupled
time evolution of the complex amplitude of the electric field
E of the laser (in the slowly varying envelope approximation)
and the carrier number N inside the laser cavity. Supplemented
with Larngevin noise terms [7] and neglecting gain saturation
effects, these equations can be written as follows:

14
5—9(N(t) = No) = 1]E(?)

+ K(T)E(t — ) + V28N (£)E(2), Y]

N =C —7.N(t) - g(N(t) - No)|E(t)|?

— V8BN)(E(t)"£(t) + E(t)E()")
+ V27N ()N (). @

The equation for the complex field E is written in the frame
of reference in which the electric field is constant except for
phase diffusion when the laser is on and in CW operation
in the absence of feedback. The meaning and values used
for numerical calculations of the parameters in (1)~(2) are
given in Table I. Spontaneous emission noise is modeled
through the last term in (1), and random nonradiative carrier
decay is included through the term containing £y in (2). The
complex random process £(t) and the real random process

E@) =
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TABLE 1
MEANINGS AND VALUES OF THE PARAMETERS IN (1) AND (2)

Parameter Meaning Value Units

g Gain parameter 5.6 - 10~% ps—!

¥ Inverse photon 0.4 ps—!
lifetime

Ye Inverse carrier 5.10~4 ps~!
lifetime

o Linewidth 55 adimensional
enhancement
factor

B8 Spontaneous 1.1-10—8 ps~!
emission rate

wo Optical angular 1,216 - 103 ps—t
frequency

No Carrier number at 6.8 - 107 adimensional
transparency

Chias Bias current 3.4.1016 carriers/s

Cin Threshold current 3.76 . 1016 carriers/s

Con Injection current  1.316. 1017 carriers/s
after gain
switching

K Feedback 0.1, 0.15 ps—L.
coupling
parameter

T Delay feedback  variable ps.
time

En(t) are taken to be Gaussian processes of zero mean, and
of correlations given by the following:

(E@E)") = 28(t - 1) 3)
(EWen(t)) =0 @
(En()En(t)) = 6(t = t'). ®
K(7) in (1) is given by
K(r) = Ke W ®)

where the feedback coupling parameter & is determined by
the quotient between the external reflectivity and the internal
cavity roundtrip time [7]. We will consider here values of &
appropriate for weak external feedback situations while we
will leave the delay feedback time 7 measuring the length of
the external cavity as a free parameter of our study.

B. Analytical Solution

The intention of the present paper is to obtain a description
of the transient dynamics of the external-cavity laser in a
relatively simple form which captures the significant physical
effects associated with the dependence on the phase of the light
reentering the laser after a roundtrip in the external cavity. We
consider the dynamical evolution after the injection current C
is suddenly changed from a value Cp;as below its threshold
value to a value C,, such that the laser switches on. In the
absence of feedback, the threshold value of the current below
which no laser amplification occurs is given by Cyp, = v (No+
v/9). The approach taken here to obtain analytical information
from the coupled equations (1) and (2) is to exploit the linear
nature of the laser dynamics in the turn-on regime. Within
this approach, we obtain tractable expressions which clarify
the essential features of the device behavior under transient
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conditions. These essential features will be substantiated by
numerical simulations of the dynamical equations (1) and (2)
as described in the next section.

In order to calculate the turn-on time, we consider the initial
stage of evolution, when the intensity is very small, so the term
containing |E(t)|? in (2) is negligible. In addition, the noise
terms in that equation are much smaller than the deterministic
drift and they can also be neglected [21]-[23]. Within this
approximation, (2) can be solved as

N(t) = Non + (Nep — Nog)e™ Yt tm), %)
The early evolution of the electric field is described by
E(t) = (t)E(t) + K(T)E(t — 7) + V2BN()E(X)  (§)
where
a(t) = L2 [N (D) ~ No) = ). ©
In (7), Non = Con/7e, Neh = Ctn/Ve, and tyy, is the threshold

time at which N(#n) = Nen.

The above equation for the field is a linear equation with
a delayed term and time-dependent coefficients. We find in
the Appendix an approximate solution to (8) and show that
the statistics of switch-on times can be calculated from the
known results in the absence of feedback but with the inverse
photon lifetime v and the spontaneous emission intensity (3
replaced by

Yeit =7 — 2Re (20) (10)
B
eff = T3 1
Bett T 1D
with zp given by
1+

2y = Kexp (—iw.yr +
[M( e”’”) +( o — Nth) ]) 12
Ye
The main approximation needed to obtain this result is, as
discussed in the Appendix, a single pole approximation (SPA).
It consists in neglecting all poles except one in the calculation
of an inverse Laplace transformation. The pole which is kept
2 is such that 25 = 0 in the absence of feedback and remains
close to zero for small x. The other poles are related to
external-cavity modes of the laser. Numerical calculations of
the position of these other poles in the complex plane show that
they are strongly damped if «7 < 0.1. Then the reduction of
the laser dynamics to the case with no external cavity but with
the effective parameters given in (10), (11), and (12) will be
correct in that range of parameters. We stress that the condition
of weak feedback considered here for the transient properties
needs not to coincide with the condition of weak feedback for
steady-state properties which are the basis of the classification
in [12). For example, for the values of k7 considered here one
can still find frequency multistability in CW operation if the
linewidth enhancement factor « is large enough.

C. Laser Threshold Variation

The reduction of the feedback problem to the one in the
absence of feedback but with modified parameters, (10) and
(11), has important consequences in the identification of the
laser threshold. The laser threshold is here defined as the value
of the injection current above which the laser switch-on will
be triggered by any amount of noise. The replacement of -y by
Yef in the expression for Cyy leads to an effective threshold
current C&

Cel = (No + 79—“) (13)
This effective threshold is plotted in Fig. 1 as a function of 7.
Its main characteristics, easily extracted from (10)—(12) are:
a) an oscillatory behavior of frequency given by wg + O(7)
for small 7; b) the oscillations are damped so that they are
unimportant for 7 = (9(Con — Cin)/2)~%/?; ) for large
7,Csf — Cyp, the value in the absence of feedback. The
physical origin of these three characteristics can be easily
understood. If the reinjected field is in phase with the field in
the cavity, then the delayed term in (8) acts as an effective
increase of g(t) for all times or equivalently, a reduction
in cavity losses, so that the field instability occurs at a
reduced value Cf of the injection current. This is specially
clear for 7 — 0, where this effect is obvious from the
form of the equation. When the feedback field reenters the
cavity in phase opposition with respect to the field in the
cavity, the reverse effect occurs; the current needed for the
beginning of amplification is higher. The evolution of the
phase during the external-cavity roundtrip is essentially given
by the instantaneous value of the optical frequency of the
laser at the time when carrier number crosses threshold, which
turns out to coincide with wp, which is the frequency of the
laser when it is on and in the absence of feedback. This
determines the frequency of the oscillations of Cgff as a
function of 7. Small corrections to wg arise from (12) and
they are due to the variations in the instantaneous frequency
during the switch-on process [23], [24]. These corrections are
only noticeable for large 7, for which the oscillations are
already damped. The damping of the oscillations at large 7
is clearly expected; if 7 is larger than the switch-on time of
the laser in the absence of feedback, the laser will switch-on
before feeling the effect of feedback (the feedback field is also
present during times smaller than 7, but its intensity is given
by spontaneous emission noise in the off-state which is of
negligible importance compared with the nondelayed terms in
the evolution equation). Then, the oscillation disappears and

eh — Cyy, for large 7.

It is important to note that the effective threshold of Fig. 1 is
of different nature than other definitions of threshold often used
in this context. For example, the existence of lasing steady
states in the presence of feedback is frequently discussed
in terms of another effective threshold [7]. Its value is also
determined by the consideration of the phase of the feedback
field with respect to the field on the cavity, but in the lasing
state. Such threshold is determined as the condition for the
existence of a nonvanishing steady-state solution for the field
intensity and does not coincide with the Cgff discussed by
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Fig. 1. Effective threshold for k = 0.1ps™! as a function of 7. Individual
oscillations are too fast to be appreciated in the scale of the plot.

us here. The threshold defined here (13) is associated with
the value of the current for which a linear instability of (8)
occurs. The difference between both kinds of threshold can
have interesting consequences. In particular, the oscillations of
the threshold determined in [7] are not damped as a function of
7. Then at large 7, it is possible to find values of the injection
current and s such that there exist lasing states while the off
state is linearly stable. This implies a kind of bistability in
which a finite perturbation is needed to switch-on the laser,
and hysteresis can occur by increasing and decreasing the
injection current,

D. Turn-on Jitter Calculations

Once the problem has been reduced to that in the absence
of feedback with the effective parameters in (10) and (11),
the calculation of the mean turn-on time (¢) and its standard
deviation ¢ around the mean can be done following the same
procedure as in [22] and [23] to find

1 C’nzm - Cbias 2f ‘I,(l)
t) = —Inp ———22 —-—|1-—==
) veln Con — C&ff a [1 2f |’ 14
(1)
2 _ _ 2y
ot = (= ()" = 5 (1s)
where we have introduced:
j=m¥ (16)
a = g(Con — Cgihy a7
eff
b= 4Bz (C#h 2 + 1). 18)
Ve a g

and ¥(1) = —0.577... is the digamma function of one, and
U/(1) = 1.638... is its derivative at the same point [25]. I,
is the intensity of reference used to define the turn-on time as
the time at which |E|2 = I,.. In our numerical calculations, I,
is taken as I, = 3- 104, which corresponds to a 13% of the
steady-state intensity in the absence of feedback.

Although the general picture just stated is physically sound,
and its general predictions will be confirmed by numerical
simulations, it should be stressed that the explicit formulas
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Fig. 2. Average turn-on time for x = 0.1 ps—! obtained from (14) as a
function of 7.

(10), (11), (14), (15) rely on the SPA, so that they are expected
to be precise only for small 7. In addition, (11) predicts an
increase of the effective noise intensity when 2 is near —1/7.
For the parameters that we use in the numerical calculations,
this increase is dramatic for 7 =~ 10 ps and 30 ps, and reflects
the proximity to 2o of some of the poles neglected by the SPA
and associated with external-cavity resonances. Equation (15),
which relies on a small noise intensity approximation, shows
artificial divergencies for those values of 7, accompanied by
“bumps” in (t). This is again a confirmation that (14) and (15)
are quantitatively valid only for k7 < 0.1. However, we show
in Section III that their qualitative predictions have a broader
range of validity.

Figure 2 shows (t) as a function of 7 from (14). To avoid
the unphysical “bumps,” the value of b has been fixed to the
5% of I, when the value calculated from (18) exceeded that
range. Thus, we expect this plot to be quantitatively correct
for small 7 and qualitatively for larger 7. The oscillations of
(t) as a function of the feedback delay time 7, of frequency
wp, are too fast to be distinguished in the scale of the plot.
For 7 of the order of 50 ps the effect of the feedback on the
turn-on time disappears and the mean turn-on time approaches
a constant value which coincides with the one in the absence
of feedback.

The oscillations of the mean turn-on time with 7 as obtained
from (14) are clearly shown in an expanded scale in Fig. 3.
The expression for () has two different terms which have
been plotted separately. The dashed line corresponds to the
first term in (14), which is the time 5 needed for the carrier
number N(t) to reach the modified threshold C&ff /.. The
difference between (¢) and t2f, is shown as the dashed-dotted
line. This last contribution, the average time needed for the
laser to switch-on after the current has reached threshold, is
also oscillatory, but the amplitude of the oscillation is too small
to be seen on the scale of the plot. The main contribution to the
amplitude of the oscillations of (t) comes from the first term.

Our analytical result for the jitter given by the standard
deviation ¢ of the turn-on time distribution also predicts an
oscillatory behavior with 7 and with the same frequency wp.
The amplitude of the oscillations grows with 7 for small 7.
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Fig. 3. Average tumn-on time (t) for & = 0.1ps™! around 7 = 0.1ps.
Solid line is the result obtained from (14), which is the sum of contributions
indicated by dashed and dash-dotted lines (see text). Stars are the results of
numerical simulations.

At intermediate T, it shows artificial divergencies, due to the
breakdown of our approximations, but since this amplitude
should go zero for large enough 7 (recall the discussion on
the shape of C&ff) it is clear that there is an intermediate 7
value for which the envelope of o has at least one maximum.
The formula for the variance is intended to give a guide of the
gross qualitative features just mentioned. However, a good
quantitative description is not expected since this quantity is
rather sensible to small variations in the injected signal [26]
which are not properly taken into account in the SPA.

III. NUMERICAL SOLUTIONS

As indicated above, a number of conditions need to be
fulfilled in order to derive our analytical results for average
turn-on time and associated variance. A very important re-
quirement is a situation of weak feedback with a small delay
time 7. The expressions obtained do demonstrate the main
physical effects which may be anticipated in such a situation.
However, it is considered valuable to compare the predictions
of the formulas with results obtained from direct computer
simulation of turn-on effects. Such results are given here. The
numerical results also allow the exploration of the statistics of
turn-on properties for a wider range of parameters beyond the
range for which (10)—(12) are valid. In particular, we present
results for larger values of 7. Prior to a discussion of those
results, it is indicated that the analytical formulas are almost
a prerequisite for undertaking the simulations. It is contended
that direct simulations may not yield all the significant physical
features if, without the basis of the analytical formulas, care
is not taken to work to adequate accuracy. In particular, trial
and error simulations without an analytical guide would be
of rather little help to find the oscillatory behavior of turn-on
properties with such a high frequency as wo.

The results of our numerical simulations are shown in Figs.
3 and 4. For a fixed value of 7 and « and the rest of parameters
as given in Table I, we perform a direct numerical integration
of (1) and (2) with the same method as in [23] with a time-
integration step At = 0.01 ps. This integration step is much

) IGOE . =
~ 140F X >
120 & s wx*
A
]
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Fig. 4. Average turn-on time {t) and its associated dispersion o from
numerical simulations in three ranges of 7. The stars are for « = 0.1 ps—L,
and in (b) the squares are for x = 0.15ps~!.

smaller than the one used in previous work [16] and it is
required here to obtain an adequate accuracy. Each turn-on
event is associated with a given sequence of random numbers
needed to model the noise terms. The initial condition for
each turn-on event is chosen as the value obtained from the
numerical solution of the stochastic laser equations with an
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injection current C = Ch,i,s during 500 ps. As stated before,
the turn-on time is defined as the time at which the light
intensity I = |E|? matches a value I, = 3 - 10%.

Given the very fast oscillation predicted for the statistical
properties of the turn-on times, we have looked at the variation
with 7 of the mean turn-on time (t) and its variance o at
intervals A7 = 1.033 - 10~* ps, corresponding to 50 values
of 7 in a period 27 /wy of the oscillations seen in Figs. 3 and
4. Each point in Figs. 3 and 4 corresponds to an average over
1000 turn-on events for fixed 7. Thus, we have considered
5-10% turn-on events within a period of the oscillations. This
analysis has been performed at four regions of feedback delay
times, namely around 7 = 0.1,1,5, and 10 ps.

Figure 3 contains a comparison of analytical and simulation
results for the mean turn-on time for 7 close to 7 = 0.1. These
very small values of 7 are here considered for a check of
the SPA approximation used in our analytical calculation. For
such values of 7, and with x = 0.1 ps~, the approximation is
well justified and the agreement is very satisfactory both in the
amplitude and in the frequency of the oscillations. However, it
is already noticeable that the simulation results do not follow
a pure sine-oscillation, showing some degree of asymmetry
around the extreme value of (¢). Such asymmetry indicates
a small deviation from the SPA which becomes apparent
for larger values of 7 (see Fig. 4) for which the analytical
approximation breaks-down.

The numerical results for (¢) in Fig. 4 indicate that the
main qualitative predictions of (14) still hold beyond the
values of 7 for which quantitative agreement is found. Indeed,
we find an oscillation behavior with 7 of frequency wo and
amplitude decreasing with 7. For 7 = 0.1 the amplitude of
the oscillations (from maximum to minimum value) is of 59%
with respect to the value of (t) in the absence of feedback.
This amplitude decreases to less than 4% for 7 = 10. The
asymmetry of the oscillation with 7 is seen to become more
pronounced as T increases.

The numerical results for o (Fig. 4) are also in agreement
with two general predictions of (15), namely, they also show
an oscillating behavior with 7 of frequency wp, and the
amplitude of the oscillation first grows with 7 going through
a maximum before going to zero for very large 7. The effect
of the feedback in the jitter, measured by o, is relatively more
important than for () as seen in the very large amplitude of
the oscillations. We have found oscillation amplitudes in o of
a 55% for both 7 = 1 ps, and 10 ps. An additional important
feature borne out by our simulations is that for intermediate
7,0 shows rather sharp maxima for values of 7 for which (¢)
increases sharply with 7. The maximum values of (t} and o
do not occur for the same values of 7. The largest value of o
for £ = 0.1 ps~! occurs for 7 = 5 ps, with an amplitude of
oscillations of a 350% with respect to its value in the absence
of feedback.

We have also examined the dependence of turn-on statistics
on the feedback parameter x, by considering « = 0.1 and 0.15
ps~L. It is seen that for both values of & the dependence on
7 of the mean turn-on time is qualitatively similar, but the
amplitude of the oscillations increases with &, as predicted by
the analytic formulas. For s = 0.15 ps~! the amplitude of the
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oscillations of the variance at the range of 7 displayed is close
to the 470% of its value in the absence of feedback.

IV. CONCLUSIONS AND DISCUSSION

We have presented an analytical calculation and numerical
simulations of the turn-on delay time statistics of a laser-diode
gain-switched from below threshold in the presence of weak
optical feedback. Our results indicate that when the optical
feedback reenters the active medium of the laser before it turns
on, the turn-on time becomes extremely sensitive to very small
variations in the position of the external mirror. Variations
in this position in a length scale determined by the optical
frequency of the laser yield an increase in the jitter up to
more than a 400% under certain circumstances. The position
of the mirror can be adjusted for a compromise between min-
imization average turn-on time and maximum jitter. However,
mechanical disturbances causing small variations of mirror
position will result in a largely unpredictable value of the turn-
on time which can be thought of as an effective large jitter.
The results are of specific relevance to laser diode modules
within which laser diodes may be subject to weak external
reflections from a variety of optical elements including lenses,
fiber endfaces, and optical isolators.

V. APPENDIX
In this appendix, we obtain an approximate solution to
(8) with N given by (7). Equation (8) can be rewritten by
introducing a new variable h(t) defined from

E(t) = h(t)elw ¥ (19)
In terms of it, (8) reads
h(t) = K(r)e®®Dh(t — 1) + R(t) (20)
awn= [ e =152
~[M’%%e'%“—%>a —€ M)+ (Non=New)7| (1)
R() = VANDe Ja " ) @)

These equations should be simplified further in order to obtain
closed expressions for the moments of the passage time. To
this end, we note that for times smaller than the switch-on
time, and for typical values of the parameters e~ (t~tn) x 1.
So that
1+ 0
Qt, ™) ~ Qr) = ——5=g
Non — N,
—2“7——“'(1 —€17) + (Non — Nen)7|.
e

(23)

After this approximation, the Laplace transform of (20) can
be readily obtained

zh(z2)—h(t = 0) = K(1)e" D~ h(2)+R(2)+M(z) (24)
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where h(z) and R(z) are the Laplace transforms of A(t) and
R(t), respectively, and

0
M(z)=eT"* h(t)e=*tdt.

(25)
The solution of (24) is
ﬁ(z) _ h(0) + Z\A/I(z) + R(z) 26)
z— K(1)e™*"
where we have introduced
K(7) = K(r)e 9™, @7

The inverse Laplace transformation should be applied to (26)
to obtain an expression for the electric field. As long as the
poles of h(z) are simple, the Laplace inversion gives h(t) as

ht) =) pe™ (28)
where z; are the zeros of the denominator in (26)
zi— K(1)e " =0 29)

and y; are the residua of (26) at these points. Equation (29)
has two kinds of solutions: one of the zeros zg exists also
in the absence of feedback (2o = 0) and in the presence of
feedback can be obtained perturbatively in K (7):

20 = K(1)(1 - 7K (7) + O((rK (7))?)). (30)

The other solutions of (29) have a very large and negative
real part when 7K (7) is small, so that their contribution to
(28) will be negligible. When 7K (1) ~ 0.1, the real part of
these zeros begins to be comparable to the real part of 2. For
large 7K (7), all the zeros are very close, some of them even
merge with zo, and also the series (30) looses convergence.
A good approximation for small 7K (7) consists in replacing
the series (28) by the first term, containing 2o. We call this
the single pole approximation (SPA). The associated residue
o can be calculated as

po = lim (2 — 20)h(2)
z—2g

h(O) + M(Z()) + R(Zo)
14712 ’

€2V

By using definition (19), we obtain the following approxima-

tion for the evolution of the electric field:

h(0) + M(zo) + R(Z())ezot-(-j;:h atydt’
1+ 729

from which we will calculate the passage-time statistics. To

this end, we compare this expression with the linear dynamics
of the laser in absence of feedback

E(t) = (32)

E(t) ~ (h(0) + BO))e % (33)

We see that one of the effects of the feedback is to replace the
initial condition A(0) by the quantity A(0)+ M (o), containing
the memory of the field during the feedback cycle previous to
the switching. Since the laser was off in that period, M (z) is
very small. In fact, it was shown in [22], [23] in the absence

of feedback, that for bias not too close to threshold it is a
good approximation to take h(0) =~ O in order to calculate
first-passage-time statistics. Then, it is expected than in the
same conditions, it is here a good approximation to take
h(0) + M(z,) = 0. Following the comparison, we see that
the expression for the linear dynamics in the presence of
feedback is equivalent to that in the absence of feedback but
with [ q(t')dt' replaced by zt + [;,, ¢(t')dt’ and the noise
intensity /@ replaced by +/B/(1 + 7z0). By noting that only
the intensity, that is, the modulus squared of E(t) plays a
role in the calculation of passage times, and using the explicit
expression for g(t) (9), we find that we can calculate passage
times from the formulae developed in absence of feedback
but with v and 3 replaced by Yes and Bes in (10) and (11).
The replacement (10) takes into account that the exponential
factor in (32) starts to amplify spontaneous emission noise for
different parameter values than in the absence of feedback.
This can be understood as a change in threshold current (see
Section II-C) or altematively as a change in the time after
which noise amplification is possible. On the other hand, the
replacement (11) amounts to a change in the noise intensity
caused by the field reinjection. In our calculations, we will
take in (10) and (11) zo &~ K (7). The inclusion of higher order
terms from (30) is only important when 7K (7) is such that
the SPA looses its validity. When this happens the feedback is
no longer weak and the contribution of the other poles cannot
be neglected.
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