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We theoretically investigate the polarization-resolved dynamics of two vertical-cavity

surface-emitting semiconductor lasers that are mutually coupled through coherent optical

injection. We find a sequence of bistable polarization switchings that can be induced by

either changing the coupling strength or the optical propagation phase. The successive

polarization switchings are correlated to the creation of new compound-cavity modes when

these parameters are continuously varied. c© 2005 Optical Society of America
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The understanding and control of the polarization degree of freedom in lasers is of fundamental importance

in any polarization sensitive application. The heterostructure of a conventional edge-emitting laser induces

a large anisotropy between TE and TM modes. Therefore, these devices generally emit in a single and well

defined polarization state, unless induced strain or other band structure engineering techniques are applied.

On the other hand, vertical-cavity surface-emitting lasers (VCSELs) preferentially emit linearly polarized

(LP) light along one of two orthogonal preferred directions (x̂ and ŷ) due to the weak material and cavity

anisotropies. However, polarization switching between x̂ and ŷ is often observed when either varying the

temperature and/or the injection current,1 when feeding back part of the emitted light,2 or when injecting

external light.3 In mutually coupled edge-emitting lasers, achronal synchronization of chaotic

coupling-induced instabilities, symmetry-breaking,4 and the role of asymmetries5 have been

reported. Recent experimental studies6 have demonstrated that the mutual coupling of two

similar VCSELs can also induce instabilities with high synchronization degree in both total

intensity and polarization.

In this letter, we investigate the mutual coupling of two similar VCSELs in order to determine the role of

light polarization dynamics in their mutual entrainment. In this configuration, we find a coupling-induced
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polarization switching (PS) scenario, where multiple PS occur when continuously varying either the coupling

strength or the propagation phase between the two lasers. Each PS event is correlated to the creation of

a new linearly polarized compound-cavity mode with higher gain. In addition, a bistable region appears

around each PS which hysteresis width can be controlled by varying the coupling parameters. Controllable

bistable PS in mutually-coupled VCSELs may add new functionalities to those applications employing a

bistable region for fast switching applications.7

Each solitary VCSEL is described according to the spin-flip model.8 For moderate coupling strength,

the interaction between the lasers is taken into account by including delayed optical injection terms.9 The

equations governing each laser read

Ė1,2± = κ(1 + iα) [N1,2 ± n1,2 − 1]E1,2±

−(γa + iγp)E1,2∓ + ξe−iΩτE2,1±(t− τ)

+F1,2±(t) , (1)

Ṅ1,2 = −γe
[
N1,2 − µ+ (N1,2 + n1,2)|E1,2+|2

+ (N1,2 − n1,2)|E1,2−|2
]
, (2)

ṅ1,2 = −γsn1,2 − γe
[
(N1,2 + n1,2)|E1,2+|2

− (N1,2 − n1,2)|E1,2−|2
]
, (3)

where the subindices 1, 2 label the lasers. E± are the circularly-polarized components of the electric field

(E± = (Ex ± iEy) /
√

2). N represents the total inversion population while n is the difference of population

inversions between the up/down spin reservoirs associated to emission of opposite circularly-polarized pho-

tons. We consider the same internal parameters for both VCSELs and a perfect alignment between their two

x̂ and ŷ eigenaxes. The meaning and values of the parameters in Eqs. (1)-(3) are: linewidth enhancement fac-

tor α = 3, cavity decay rate κ = 300 ns−1, total carrier number decay rate γe = 1 ns−1, amplitude anisotropy

γa = −0.1 ns−1, phase anisotropy γp = 3 ns−1. We fix the normalized pump at µ = 1.5, where the solitary

VCSELs emits in a stable x̂-polarization. The spin-flip rate is γs = 1000 ns−1, as reported in experiments

on PS in VCSELs.10 The distance between both VCSELs is only L=6 cm (coupling time τ = 0.2 ns). Ω is

the optical frequency of the two free-running lasers. The coupling strength ξ and propagation phase Ωτ are

our bifurcation parameters. The last term in the field Eq. (1) are Langevin noise sources that account for

spontaneous emission processes F±(t) =
√
βγe(N ± n)χ±(t), where χ±(t) are independent complex random

numbers with zero mean and δ-correlation. The spontaneous emission factor is β = 10−5.

Fig. 1 shows maps of the LP mode intensities of laser 1 upon variation of the coupling strength (ξ) and
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propagation phase (Ωτ mod 2π). Intensities are plotted after removing transients and averaging over 50 ns.

The alternation between dark and light regions demonstrates successive PS between orthogonal LP states.

Moreover, PS events appear with a clear periodicity in the coupling parameters. The maps of laser 2 are

not shown in the figure because PS occur for the same coupling conditions in both VCSELs. Interestingly,

numerical simulations show that the coupling-induced PS scenario is robust against small mis-

match of the laser parameters: linear anisotropies, detuning and misalignment of polarization

axes.

In order to gain insight into the origin of the coupling-induced PS, we study the bifurcations of LP

solutions of Eqs. (1)-(3) as the coupling strength and phase are changed. Two kinds of monochromatic LP

solutions appear. Symmetric (asymmetric) fixed points corresponds to identical (different) output power and

inversion of both lasers. In our case, numerical simulations indicate that only symmetric LP solutions are

stable. Therefore, we concentrate our analysis to the symmetric fixed points. They are obtained by imposing

the steady-state conditions E1+ = E0e
iωt, E1− = E0e

i(ωt+ϕ), E2+ = E0e
i(ωt+φ), E2− = E0e

i(ωt+φ+ϕ),

N1,2 = N0, and n1,2 = 0, where ϕ controls the polarization direction and φ takes into account the relative

phase between the electric fields of both lasers. These conditions are only satisfied for a relative phase φ = 0

(φ = π) leading to in-phase (anti-phase) solutions. After a little of algebra, the frequency shift and inversion

of the symmetric monochromatic solutions read

ω = ±(αγa − γp)

− ξ
√

1 + α2 sin (φ− Ωτ − ωτ − arctanα), (4)

N =
1

κ
[κ± γa − ξ cos (φ− Ωτ − ωτ )] , (5)

where ± stands for x̂ and ŷ states. As shown in Fig. 2, the corresponding LP steady-states along the x̂ and

ŷ polarization directions are located on two different ellipses in the frequency (ω) versus inversion (N) phase

space. The steady-states are plotted for increasing values of the coupling strength near the transition to a

PS event (13 ≤ ξ ≤ 13.8 ns−1). For ξ = 13 ns−1 in panel (a), the system operates in the lowest inversion

fixed point, which in this case corresponds to an in-phase ŷ-LP solution. An increase of the coupling strength

in panel (b) creates a new pair of x̂-LP modes through a saddle-node bifurcation. One of these two modes

is a stable node, hence accessible as a stable attractor for the laser system. However, at this stage the

system still operates in the most stable maximum gain mode (MGM) of the ŷ-polarized ellipse. For larger

coupling strengths [panel (c)], the ŷ-LP MGM destabilizes to a limit cycle through a Hopf bifurcation at

the relaxation oscillation frequency. Further increasing ξ, the oscillatory dynamics is interrupted and the

laser finally switches to the x̂-LP in-phase fixed point, which has become the new MGM [panel (d)]. If the
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coupling rate is continously increased this process repeats and new PS are periodically induced following the

same mechanism. When the procedure is repeated decreasing the coupling from large values, bistability is

observed since the saddle-node bifurcation, that creates the stable x-LP mode, is located at a smaller ξ than

the PS point. Numerical simulations show that the coupling-induced PS scenario is qualitatively

preserved for different γs values ranging from 50 ns−1 to 104 ns−1. However, the range of

coupling strengths around PS where total intensity instability appears increases for small γs.

Moreover, the amount of spontaneous emission noise slightly modifies the PS positions. Since

two stable orthogonal LP attractors coexist around each PS, noise may favor the jump to an orthogonal LP.

From the simulations, we find that the periodicity of PS, as ξ is varied, approximately equals the peri-

odicity in the creation of a new saddle-node pair. It can be demonstrated that, for a fixed polarization and

relative phase, the number of symmetric steady-states of Eq. (4)-(5) is proportional to 1 + ξτ
(
1 + α2

)1/2
/π.

Consequently, taking into account that the creation of new steady-states alternates between in-phase and

anti-phase modes, the periodicity in the PS events when ξ is changed in a definite direction is approximately

∆ξPS = π/τ
(
1 + α2

)1/2
. This value corresponds to the increase in ξ necessary to create a new pair of modes

with a given polarization. For our set of parameters this quantity corresponds to 4.96 ns−1, which agrees

very well with the numerical results shown in Fig. 1 where different PS with the same transition (x̂ 7→ ŷ, for

example) are observed to be separated by ∼ 5 ns−1.

The PS events induced by changing the propagation phase can also be understood in terms of the bifur-

cation of the LP solutions. When the phase is continously decreased from 2π to 0 there is a pulling of the

steady-states around the ellipses from the low to high inversion regions. At the same time, a new pair of

saddle-node modes is created at the lowest vertex of each of the ellipses while they are annihilated by an

inverse saddle-node bifurcation at the highest vertex. Since the process of creation of new pairs of modes

at the lowest corner of the ellipse occurs in alternation for the x̂ and ŷ polarization modes, this results into

PS events when varying the propagation phase. The transformation Ωτ 7→ Ωτ +π interchanges the in-phase

and anti-phase modes and defines the periodicity of the PS induced by phase changes. Similar bifurcation

mechanism has been reported in mutually coupled edge-emitting lasers.11

In our VCSEL system the selection of stable compound-cavity modes may be accompanied by new features

such as polarization switching with hysteresis. Fig. 3 shows the multiple PS events when varying ξ or Ωτ ,

clarifying the bistability that occurs when increasing and then decreasing the control parameter. When

sweeping the coupling strength both the switch-off and switch-on events of the x-LP mode are accompanied by

hysteresis, whose widths are labelled as H1 and H2 respectively (a). The orthogonal polarization component

(not shown) displays a complementary behavior. Interestingly, as shown in (c), H1 and H2 grow while

increasing ξ, hence showing the hysteresis width can be tuned with the coupling parameters. A scan of
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the propagation phase also leads to multiple PS (b) but, in contrast to previous case, i) only the switch-on

events of the x-LP mode are accompanied by bistability, and ii) the hysteresis width keeps constant when

changing Ωτ as a consequence of the symmetry of Eqs. (1)-(3) with respect to a change of π in Ωτ .

In conclusion, we have shown that mutually coupled VCSELs may lead to robust multiple bistable PS. A

sequence of PS events appear when varying the coupling strength or the propagation phase, with a periodicity

that is related to the creation of new compound-cavity modes with higher gain and orthogonal polarization.

Each PS event is accompanied by a large hysteresis whose width can be tuned by the coupling parameters.

Such controllable bistable PS system is interesting for fast optical switching applications.
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Fig. 1. Averaged intensities in the x̂- and ŷ-LP modes of one VCSEL as a function of ξ and Ωτ . Parameters
are specified in the text.
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Fig. 2. Panels (a)-(d) show the location of the symmetric fixed points in the N vs. ω phase space for ξ = 13
ns−1, ξ = 13.25 ns−1, ξ = 13.6, and ξ = 13.8 ns−1, respectively. Diamonds and triangles stand for the
in-phase and anti-phase x̂-polarized solutions. Squares and circles stand for the in-phase and anti-phase
ŷ-polarized solutions. Arrows identify the attractor at which the system operates.
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Fig. 3. Panels (a) and (b) show the evolution of the x-LP mode intensity as we increase (thin line) and then
decrease (thick line) ξ (a) and Ωτ (b). In (c) are shown the two hysteresis widths H1 and H2 [labelled in
(a)] as a function of ξ.
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