PRL 95, 236002 (2005)

PHYSICAL REVIEW LETTERS

week ending
2 DECEMBER 2005
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The impact of the convective fluid motion induced by the electric fields on the dielectrophoretic
manipulation of particles is investigated theoretically and experimentally. By means of a simplified model
a channel with a periodic array of microelectrodes we show that electroconvective flows induce the
formation of traps for particles, providing a dynamical mechanism to control microparticles in such
devices. We demonstrate experimentally the theoretically predicted dynamical phenomena.
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Dielectric particles suspended in a dielectric media
are polarized under the action of electric fields. If the field
is spatially inhomogeneous, it exerts a net force on the
polarized particle known as dielectrophoretic (DEP) [1].
This force depends upon the temporal frequency and
spatial configuration of the field as well as on the dielectric
properties of both the medium and the particles.
Dielectrophoresis is an increasingly popular efficient
method to separate particles in microflows [2]. DEP forces
can be switched on and off to selectively capture cells,
bacteria, spores, DNA, proteins, and other matter. One
could envision, for instance, an application using DEP to
capture a suspected pathogen which then is shuttled to a
selected area of the microfluidic device where its DNA is
extracted and analyzed.

Since the dielectrophoretic mobility of a particle scales
directly with its surface area, the manipulation of smaller
particles requires larger gradients of the electric fields.
Nevertheless, by using microfabricated electrodes to gen-
erate large electric field gradients, it is now possible to
move submicron particles by means of DEP [34].
However, large electric field gradients may strongly inter-
act with the background media creating, by several electro-
hydrodynamic effects, flows whose drag perturbs the
particle trajectories. An understanding of this disturbance
is thus crucial to predict and control it in developing
applications of DEP to specific microfluidic devices. On
the other hand, the combined dynamics induced by both
advection and electric forces is a largely unexplored but
interesting field of research.

In this Letter we first introduce a model where the DEP
particle dynamics produced by such arrays is perturbed by
the advection due to a realistic model of the corresponding
electrohydrodynamic convective flow. By means of this
model we then predict an important dynamical conse-
quence of the perturbing flow: the appearance of trapping
zones from where particles cannot escape.

We consider a simple but commonly used configuration
of electrodes array for which a closed-form solution of the
electric field and the DEP force was derived in [5]. It
consists of a periodic array of long parallel microelectrodes
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as depicted in Fig. 1(a). The time-averaged DEP force is
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where E is the rms electric field, a is the particle radius, @
is the angular field frequency, and Re[z] indicates the real
part of the complex number z. The factor K(w) is a
measure of the effective polarizability of the particle,
known as the Clausius-Mossotti factor, given by K(w) =
(€, — €,)/(€, + 2¢;,) where €, and €, are the complex
permittivities of the particle and the medium, respectively.
The complex permittivity is defined as €* = € — i(o/w),
where i = +/—1, € is the permittivity, and o is the con-
ductivity of the dielectric.

The Clausius-Mossotti factor depends on the dielectric
properties of the particle and the medium, and on the
frequency of the applied field. Variations in this factor

FIG. 1 (color online). (a) The arrangement of an interdigitated
electrode array. (b) SEM image of the titanium DEP chip with
24 parallel electrodes. (c) Electric field strength, |E|?, in a plane
10 wm above the electrodes.
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give rise to a DEP force that is frequency dependent and
unique to each particle type. For a sphere, the real part of
K(w) is bounded by the limits — 1 < Re[K(w)] < 1. When
Re[K(w)] > 0 the induced force points toward the high
electric field at the electrode surfaces and is known as
positive-DEP (p-DEP). Conversely, when Re[K(w)] <0
(negative- or n-DEP), the force points in the direction of
decreasing field strength and the particles are repelled from
the electrodes edge [Fig. 2(a)].

In our configuration the electric field has local minima
above the center of the electrodes whereas it reaches the
strongest values at their edges [Fig. 1(c)]. In the absence of
fluid flow, the particles experiencing p-DEP collect at the
strong field points at the electrode edges. On the other
hand, particles pushed away from the electrodes by
n-DEP reach an equilibrium position away from the elec-
trodes where the vertical component of the DEP force is
balanced by buoyancy. Since the horizontal component
decays much faster than the vertical one, in dynamical
terms these equilibrium positions form, in practice, a con-
tinuous line of fixed points.

However, electric fields induce fluid motions through
several electrohydrodynamic effects. The most important
of those that occur in microelectrode devices are electro-
thermal convection and ac electro-osmosis. The former
appears due to a nonuniform Joule heating of the fluid
which leads to gradients of its permittivity and conductiv-
ity. The applied electric fields acting on the permittivity
and conductivity gradients generate electrical body forces
that induce the flow [6]. The latter, instead, is caused by
electrical stresses in the diffuse double layer of charges
accumulated above the electrodes [7]. Whether electrother-
mal or ac-electro-osmotic flows dominate the motion of
fluid in the device depends mainly on the frequency of the
applied electric field, ac electro-osmosis being dominant at
a frequency range several orders of magnitude below the
charge relaxation frequency (w. = o/€). In any of these
situations, the electrohydrodynamic forces dominate the
buoyancy forces at typical microfluidic system sizes (d <
300 wm) [8]. For a careful choice of the applied frequency,
the induced fluid flows will have a minimal effect but in the
DEP manipulation and/or separation of submicron parti-
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FIG. 2. (a) Plot of the real part of the Clausius-Mossotti
function for €,, = 80¢,, o, = 0.001 Sm™!, €, = 2.5¢, and
o, = 0.009 Sm™!. (b) Streamlines of the cellular flow used in
the model.

cles one is usually forced to use frequencies for which the
fluid flow generated electrohydrodynamically has to be
taken into account. We will show that this is not neces-
sarily an annoyance, since the induced dynamical proper-
ties can be creatively used as a mechanism to control
microparticles.

Experiments and numerical simulations of the coupled
electrothermohydrodynamic problem in devices with in-
terdigitated array of electrodes [4,7,9—11] show that both
electrothermal and ac-electro-osmotic flows consist of
convective rolls centered at the electrode edges and pro-
vide good estimates for their strength and frequency de-
pendence. Near the electrodes, the fluid velocity u, ranges
from 1 to 100 ums~! decaying exponentially with the
transversal distance to the electrodes. Additionally, the
flow satisfies no-slip boundary condition at the bottom of
the device (u, = u, = 0) and both the horizontal compo-
nent of the velocity and the normal derivative of the
vertical one vanish at the symmetry planes (u, = du,/
dn = 0). In order to analyze the impact on the DEP dy-
namics of the observed cellular flow we mimic this with a
simple model fulfilling all the above mentioned conditions.
This flow, depicted in Fig. 2(b), comes from the stream
function:

l//steady = u(]yzeiy/ﬁ COS(WX) (2)

which ensures its incompressibility, Vu = 0. The parame-
ter B controls the vertical position of the center of the rolls.

In a device of a characteristic length d =~ 20 um, with
flow velocities wuy =~ 10 ums™', fluid viscosity v =
10°°m?>s™! (p = pr=1073 kgm !s™!), and microme-
ter particles a = 1 um, the particle’s Stokes number is of
order St = (2a’u/9vd) =~ 107, which implies that inertial
effects can be neglected. For particles of a few hundreds
of nm, Brownian motion can also be neglected when
compared to DEP forces [6]. Therefore, the velocity of
the particles is determined by only the DEP, buoyancy and
drag forces:

dr (Fpgp) 2a?
C—u+ + —p,)—g. 3
T 6mma (Pp = Pm) on ¢ 3)

With this simple flow model, the motion of the particles
can be analyzed by using dynamical systems methods. Two
different dynamical phenomena are thus unveiled. Far from
the electrodes the flow is only a small perturbation of the
quiescent state. Thus, the invariant line of fixed points that
in absence of flow is located where the n-DEP force
balances the positive buoyancy, disintegrates into a dis-
crete chain of interconnected saddles and nodes. Because
of normal hyperbolicity [12], the invariant manifold origi-
nally formed by a continuum of fixed points is preserved
with just a slight change of shape as the saddle-node
connecting manifold. This, however, induces a dramatic
change in the dynamics since hyperbolic fixed points repel
the particles which then accumulate in small regions near
the nodes as depicted in Figs. 3(a) and 3(b). There the
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trajectories of several particles submitted to n-DEP forces
are shown to convergence towards equilibrium points situ-
ated above the interelectrode gaps. Analogously, Figs. 3(c)
and 3(d) show for p-DEP, that the particles which in
absence of flow should accumulate at the edges of the
electrodes can be forced by the flow, to concentrate in
the center of the electrodes instead. Experimental evidence
for the accumulation of particles in small regions above the
electrodes has been reported for both n-DEP [3,13] and
p-DEP [6,14] but without reference to the dynamical
origin of the phenomenon.

A second—and stronger—dynamical effect takes place
closer to the electrode surfaces: the creation of a closed
zone from which particles cannot escape. Figures 3(b) and
3(d) show two qualitatively different behaviors: some par-
ticles are trapped in closed areas above the gap between
electrodes, whereas others escape from the flow influence
converging to fixed points determined only by the DEP
force. These sets of trapped orbits resemble the Stommel
retention zones [15,16] studied in the context of sediments,
plankton, and nutrients dynamics in the ocean in the pres-
ence of the Langmuir circulation [17]. However, in contrast
with this case, since the DEP force induces a non-volume-
preserving dynamics, the motion within the trapping zone
is “dissipative” in the dynamical systems sense. As a
consequence, the particles here converge towards foci fixed
points instead of circulating around centers as in the
Stommel case. A phase portrait of Eq. (3) revealing this
dynamical feature is shown Fig. 4(f).

Let us note that the relative importance of the DEP force
to the Stokes force is proportional to a?. Fixing the flow
parameter u, and studying the dynamics as a varies, it
appears that a Stommel-like zone exists only if a is smaller
than a critical value a,.. The dependence a,. on the flow
strength is shown in Fig. 4(g). At a, bifurcations involving

y(pm)

R
L\‘J\\LH‘

ﬁ KW
J{W/
| I

i
!Hw\\\f‘“{‘ ‘(

i
0

y(um)

\

— L S —
x(Um) 100 0 x(Um)

FIG. 3. (a) Particle trajectories with n-DEP for point II in
Fig. 4, corresponding to w =5 MHz, p,/p, =095, B =
0.15d, and @ = 1.5 pm, with a flow moving from the gap to
the electrodes. (b) For point I in Fig. 4, a = 0.75 wm, with the
same flow as before. For the same parameters with p-DEP in (c)
and (d), respectively.

the collision and mutual annihilation of the two foci and
the two saddles occur leading to the disappearance of the
trapping zones. Although the detailed scenario of these
bifurcations will be presented elsewhere, here we illustrate
its practical impact on the particle dynamics. The right-
hand side panels in Fig. 3 show trapping zones for both
n-DEP (top) and p-DEP (bottom) with a,. < a whereas the
left-hand side ones show no signs of the former traps for
a.>a.

We now show that dynamics can be also used to govern
the behavior of the trapping zones. In analogy to the
breakup of transport barriers in volume preserving steady
flows [18], we found that the small time-dependent pertur-
bations also break the trapping zones in our case. A simple
way to introduce a time-dependent perturbation of the flow
generated in microelectrode devices is to add a small low
frequency electric field to the one used for the DEP ma-
nipulation. The electrohydrodynamic force, and therefore
the resulting flow, is composed by a steady term plus an
oscillatory one of twice the frequency of the applied field.
At sufficiently high frequencies, the oscillatory terms are
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FIG. 4 (color online). (a)—(e) Image sequence showing the
DEP-electro-thermoal-convective trapping of 1 wm diameter
latex beads and the effect of a low frequency disturbance. The
potential is 10V, the main frequency is 10 KHz, and
perturbing frequency is 100 Hz. The focus is at 6 microns above
the electrodes. (f) Phase portrait of our model, in arbitrary
scales, showing the stable (white circles) and unstable (black
circles) fixed points. (g) The bifurcation diagram in the parame-
ter space (a, u), region I is where trapping occurs. (h) The ratio
of particles initially within the trapping zone, escaped after
10 cycles, as a function of the frequency of perturbation, with
e =0.1.
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comparatively small so that we can consider only the time-
averaged flow. However, if we add a small low frequency
component to the applied field, it eventually will reflect as
time dependence in the convective flow and the DEP force.
By modeling such perturbations with a time-dependent
term to the stream function,

¥ = Pgeaay + €ugy*e /P sin(mx)sinQwr),  (4)

we find that the Stommel regions eventually break up
allowing a complete DEP control.

In Fig. 4(h) the fraction of particles that escape from
the trapping zone at a given time is plotted as a function of
the frequency of the perturbation. Clearly there is value
of the frequency that optimizes the particles spread, which
of the order of the characteristic turnover frequency of the
flow wy ~ u/d ~ 10-100 Hz. This suggests some sort of
resonant driven speedup of the spreading of particles out-
side the trapping zone.

In order to confirm these dynamical predictions we
conducted experiments on the titanium based DEP device
shown in Fig. 1(b) and described in [19]. An array of
20 pm titanium electrodes with a pitch of 40 microns
was patterned on a titanium substrate covered with an
isolation layer. A 0.2 X 6 mm channel was formed by
through etching a thin titanium foil 25 microns thick. By
means of a syringe pump Harvard Apparatus 2000, the
channel was filled with a 7.2 X 10° particles/mm? solu-
tion of fluorescent polystyrene spheres (Duke Scientific,
1.05 g/cm? density and 1 wm nominal diameter) in dion-
ized water (2 wS/cm) having a overall conductivity of
13 uS/cm. Once the flow is stabilized, an ac electric field
provided by a function generator Wavetek 21 (11 MHz
range) is applied to the electrodes through a homemade
circuit to add the perturbation. The data are collected with
an epifluorescent microscope Nikon Eclipse, a 20X water
immersion lens, and a CCD camera Hamamatsu C7300-
10-12NRP.

Figure 4(a) shows stabilized flow without the influence
of electrical field and the particles are uniformly suspended
in the fluid. When the ac electric field (10 KHz, 9V ;) is
applied [Fig. 4(b)], the particles move toward the elec-
trodes accumulating, as predicted, at the electrodes edges
and above the center. Then a 100 Hz, 9V ;- ac signal is
added and in few milliseconds [Figs. 4(c) and 4(d)] the
trapping zone become unstable and the particles are dis-
persed in the fluid. Figure 4(e) illustrates continuous devel-
opment of the perturbation.

In summary, this simple but realistic model of DEP in
the presence of electrohydrodynamic convection gives us
ground to predict the presence of dynamical trapping re-
gions that are then confirmed experimentally. These are
analogous to the Stommel zones found in sedimentation in
convective flows, but show a different structure due to the
non-Hamiltonian features of the DEP dynamics. We have
shown that small time-periodic perturbations let the parti-

cles escape the traps as in the Hamiltonian case. This
property, that can be easily implemented in practice by
superimposing a low frequency electric field, provides a
simple control tool for DEP manipulations. The p-DEP
traps described here constitute an efficient mechanism
comparable to other proposed ones such as optical tweez-
ers [20] and thermophoresis [21]. We hope that this work
opens the door to more sophisticated combinations of DEP
and hydrodynamic forces for control of bioparticles.
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