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Resum

Un dels aspectes més significatius de la Fı́sica és l’estudi de totes les interaccions
existents a la naturalesa. No seria massa agosarat afirmar que l’enorme progrés
tecnològic sofert per la humanitat al llarg dels darrers segles es deu indubtable-
ment a la millora substancial del coneixement sobre les interaccions i propietats
de la matèria. Els polı́mers i els col·loides són un clar exemple de com un en-
teniment cada volta millor de les seves interaccions i propietats ha redundat en
una millora de la qualitat de vida al llarg dels darrers dos segles. Tot i que els
polı́mers i col·loides han estat estudiats durant tant de temps, els nous avanços en
els camps de la quı́mica i el disseny molecular han obert la porta a nous tipus de
polı́mers i partı́cules col·loı̈dals amb aplicacions difı́cils d’imaginar anys enrera.
Com exemple hom podria citar el cas dels liposomes estabilitzats amb cadenes
polimèriques els quals poden transportar medicament anticancerós i que tenen di-
versos avantatges respectes a altres vies de lluita contra el càncer. La natura també
ens ofereix molts exemples de sistemes polimèrics i col·loı̈dals dels quals tenir-ne
un coneixement de les seves propietats ens és vital com ara l’ADN, les proteı̈nes o
els liposomes i superfı́cies cel·lulars. Per tant, una millora del coneixement sobre
polı́mers i col·loides no només ens ajudarà a millorar i optimitzar les aplicacions
de les noves molècules producte de les sı́ntesis sinó que també ens servirà per a
entendre millor el funcionament i les propietats dels sistemes biològics.

Tot i la gran quantitat de coneixements de que ja es disposa sobre dits sis-
temes, hom pot considerar de fet que encara s’està lluny d’un coneixement abso-
lut de les propietats i interaccions dels col·loides i els polı́mers. Aixı́ per exemple,
al dia d’avui només tenim un coneixement molt parcial de com controlar i mod-
ificar les interaccions en aquests sistemes, i de fet, alguns aspectes molt bàsics
romanen encara sense una explicació quantitativa adequada.

Per aquesta raó, la present tesi s’ha realitzat amb el propòsit de contribuir en la
mesura del possible a una millora del coneixement que tenim en alguns d’aquests
aspectes bàsics però encara no entesos del tot. El contingut de la tesi s’ha dividit
en onze capı́tols dels quals els tres primers estan dedicats a donar una introducció
bàsica amb la intenció de facilitar una millor comprensió dels capı́tols posteriors
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en els que s’exposa la recerca duita a terme. El primer capı́tol de la introducció
presenta les principals caracterı́stiques dels sistemes polimèrics, mentre que el
segon capı́tol introdueix els trets més rellevants que emprarem en aquesta tesi
associats la fı́sica dels polı́mers. El tercer i darrer capı́tol d’aquesta introducció
exposa les principals caracterı́stiques dels mètodes numèrics usats en la recerca
que hem fet.

L’exposició de la recerca duita a terme comença amb els capı́tols 4 i 5 on
s’estudien les transformacions de fase en sistemes col·loı̈dals (en dues dimen-
sions) induı̈des per unes forces d’origen entròpic anomenades forces de minva-
ment, conegudes també pel seu nom en anglès com a ’depletion forces’. En els
següents dos capı́tols (6 i 7) es presenta l’estudi duit a terme sobre les propietats
d’un tipus de partı́cules col·loı̈dals conegudes amb el nom de raspalls esfèrics
polimèrics (’spherical polymer brushes’). En particular, l’estudi es centra en car-
acteritzar el comportament d’aquells raspalls esfèrics en els quals els efectes in-
duı̈ts per la curvatura de la superfı́cie són substancials. En el capı́tol 6 es presenta
la caracterització de la força existent entre dos d’aquests raspalls esfèrics, mentre
que en el capı́tol 7 s’estudia el cas de raspalls esfèrics encapsultats dins d’una cav-
itat esfèrica. Per altra banda, els següents tres capı́tols (8 a 10) estudien la conduc-
ta de cadenes polimèriques sotmeses a lligadures no trivials. Aixı́, en el capı́tol
8 es determina l’efecte que tenen les interaccions de volum exclòs en cadenes
polimèriques semiflexibles confinades sobre superfı́cies esfèriques. En el capı́tol
9, hom estudia els procés d’adsorció de copolı́mers de bloc semiflexibles quan
s’adsorbeixen sobre superfı́cies homogènies. Finalment, en el capı́tol 10 s’es-
tudien els processos d’adsorció i reconeixement de cadenes homopolimèriques
quan es troben pròximes a superfı́cies que presenten un patró consecutiu de vetes
adsorbents i no adsorbents. La tesi finalitza amb un capı́tol onzè en el que es
recullen les principals conclusions obtingudes en els capı́tols de recerca.

Tots els anteriors estudis s’han duit a terme mitjançant simulacions numèriques
en les que s’han emprat les tècniques de Monte–Carlo i la Dinàmica Browniana.
La Dinàmica Browniana s’ha emprat en els capı́tols 4 i 5 per a l’estudi de les
transformacions de fase en el els sistemes col·loı̈dals amb forces de minvament.
Mentre que les tècniques de Monte Carlo s’han usat en la resta de capı́tols per a la
modelització de les cadenes polimèriques. Les simulacions numèriques presen-
ten diversos avantatges respecte la recerca tradicional duita a terme en laboratoris.
Per una banda, les simulacions numèriques ens permeten dur a terme l’estudi de
sistemes en els que altrament seria molt difı́cil la caracterització bé per problemes
inherents a la preparació de les mostres en la forma adequada per dur a terme dit
estudi; bé per motius relacionats amb dur a terme mesures difı́cils d’obtenir amb
les tècniques disponibles en el laboratori. Com exemple, podrı́em esmentar que
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les simulacions numèriques ens permeten evitar fàcilment els problemes rela-
cionats amb la presència del camps gravitatoris durant els processos d’agregació
col·loı̈dal. Un altre exemple seria el fet que les simulacions numèriques perme-
ten estudiar amb tant de detall com es vulgui les primeres passes dels processos
d’agregació. Cicumstància que pot ser de gran utilitat en aquells processos en
els que les cinètiques siguin massa ràpides com per a poder ésser seguides amb
detall en el laboratori. Tot i aquest seguit d’avantatges, el principal problema que
es presenta al dia d’avui quan hom es decideix a dur a terme un estudi mitjançant
simulacions numèriques és la limitada potència dels ordinadors, la qual ens obliga
a treballar amb sistemes de grandària reduı̈da i models fı́sics força simplificats.

Els principals resultats i conclusions obtingudes al llarg de la present tesi es
resumeixen en els següents paràgrafs:

• L’estudi dels sistemes col·loı̈dals bidimensionals exposat en els capı́tols 4
i 5 mostra una transició des d’una fase col·loı̈dal dispersa cap a una regió
en la que coexisteixen dues fases: una formada per partı́cules en forma
dispersa i l’altra fase constituı̈da per agregats col·loı̈dals cristal·lins. Dita
transició s’observa al incrementar la fondària del pou del potencial d’inter-
acció entre les partı́cules col·loı̈dals. Si es segueix incrementant la fondària
del pou del potencial, aleshores s’observa com els agregats passen de tenir
una naturalesa compacta a fractal. Aquests agregats fractals tenen una es-
tructura hı́brida en el sentit que presenten un empaquetament hexagonal
compacte a escales de longitud curtes, mentre que semblen objectes frac-
tals quan són observats a longituds d’escala majors. Per a pous de potencial
prou fondos, hom recupera la conducta observada en els models DLCA en
termes del valor de la dimensió fractal, el valor de l’exponent cinètic z i
la forma d’escalament que presenta la distribució de grandàries dels agre-
gats. Per a pous de potencial de poca fondària, però encara dins de la regió
de coexistència de les dues fases, la cinètica observada per al creixement
dels agregats presenta diverses similituds amb la cinètica associada a les
separacions de fases en mescles binàries a temps mitjos. En el cas de pous
de potencials prou petits en els quals només existeix la fase dispersa, hom
observa que la cinètica d’agregació concorda força bé amb el model de
camp-mig desenvolupat per Sorensen, Zhang, and Taylor (SZT) [71] per a
sistemes en que la fragmentació dels agregats juga un paper primordial.

• L’estudi sobre la veracitat o no de la hipòtesis d’escalament dinàmic per al
factor d’estructura S(q) en la separació de fases dels sistemes col·loı̈dals
amb forces de minvament (capı́tol 5) ens mostra que efectivament existeix
un vertader escalament dinàmic per a pous de potencial amb poca fondària
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però que es troben dins de la regió de coexistència de les dues fases. Els
resultats mostren que en aquests casos, després d’un perı́ode inicial transi-
tori, existeix una única longitud caracterı́stica en el sistema que és condició
necessària per a tenir un vertader escalament dinàmic. El perı́ode transitori
inicial compren la fase de nucleació dels agregats i la fase inicial de creixe-
ment en la que els agregats creixen bàsicament per mitjà de la incorporació
de monòmers i petits agregats als nuclis que van creixent. En aquest règim,
la distància entre agregats i el radi de gir evolucionen de forma diferent
amb el temps i l’escalament dinàmic és impossible. No obstant, després
del perı́ode transitori inicial, el mecanisme de creixement predominant és
la col·lisió entre els grans agregats amb la subseqüent reorganització de les
seves superfı́cies amb l’objectiu de reduir la seva tensió interfacial. Els
processos de creixement que romanen actius després del perı́ode transitori
inicial indueixen a la distància entre agregats i al radi de gir a una evolu-
ció temporal semblant. Per aquest motiu, després del perı́ode inicial sı́ que
s’observa una única longitud d’escala en el sistema.

En el cas de pous de potencial fondos, els processos de creixement in-
dueixen la formació d’agregats de naturalesa fractal. En aquest cas els
resultats proven que el sistema està controlat per dues longituds carac-
terı́stiques que evolucionen de forma diferent amb el temps. Aquest dar-
rer fet implica que no és possible tenir un vertader escalament dinàmic
en el sistema. Tot i això, els resultats mostren un escalament aparent de
les dades durant un cert perı́ode de temps degut a que dins de dita fines-
tra de temps, les dues longituds caracterı́stiques tenen valors comparables.
Els resultats obtinguts s’han comparat amb les prediccions teòriques de
Huang-Oh-Sorensen (HOS) [166]. Dits autors assumeixen que en sistemes
monodispersos el factor d’estructura se pot escriure com un producte del
factor d’estructura associat als centres de masses dels agregats multipli-
cat per un factor d’estructura associat a les partı́cules que conformen un
d’aquests agregats. Cadascun d’aquests dos factors d’estructura té les seves
pròpies longituds caracterı́stiques. La comparació mostra una concordança
parcial amb les prediccions de HOS, per una banda s’observa que dita teo-
ria pot explicar l’origen del pic observat en el factor d’estructura per a pous
de potencial poc fondos. En canvi, les prediccions de HOS no permeten ex-
plicar adequadament l’origen del pic en el cas de pous de potencial fondos.
Una explicació plausible per aquesta falta de concordança per a potencials
fondos és que en aquest cas els grans agregats mostren una polidispersió
major.
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• Els estudis duits a terme al llarg dels capı́tols 4 i 5 demostren clarament
la importància de l’ús de la Dinàmica Browniana en l’estudi de l’agre-
gació col·loı̈dal, i més generalment en l’estudi de sistemes que presentin
transicions en les que el sistema evoluciona des d’una fase dispersa cap
a una fase sòlida. Els resultats mostren que és possible estudiar amb la
dinàmica Browniana sistemes d’agregats que evolucionen des d’una mor-
fologia cristal·lina compacte a una morfologia fractal just canviant el valor
d’un simple paràmetre.

• En els capı́tols 6 i 7 ens hem concentrat en l’estudi dels anomenats raspalls
esfèrics (partı́cules col·loidals que contenen polı́mers enganxats a la seva
superfı́cie) en aquells casos on els efectes de la curvatura juguen un paper
primordial. Aixı́, en el capı́tol 6 hem mesurat la força d’interacció entre
dos raspalls esfèrics. Els resultats mostren que és possible descriure el per-
fil de forces mitjançant dos règims. A distàncies curtes, la teoria de Witten
and Pincus [169] proporciona una descripció adequada de la força. Mentre
que a distàncies més llargues la interacció es pot explicar en termes d’una
extensió a la teoria de Flory per a dissolucions diluı̈des de polı́mers. Els
resultats mostren que la conducta global s’ajusta qualitativament bé (ex-
cepte en el règim de distàncies curtes) mitjançant la teoria fenomenològica
de Doroszkowski and Lambourne [170] sempre i quan els respalls tinguin
una densitat de cadenes polimèriques enganxades sobre la seva superfı́cie
prou elevada. Els resultats també indiquen que la grandària radial carac-
terı́stica dels raspalls no pertorbats segueix la mateixa relació d’escala re-
specte de la longitud de les cadenes N i el nombre de cadenes enganx-
ades f que els polı́mers d’estrella R0 ∼ N3/5f1/5. Els resultats obtinguts
s’han comparat amb els formalismes de camp-mig autoconsistent (SCF) de
Wijmans-Leermakers-Fleer [202] i Lin-Gast [210]. S’han observat grans
discrepàncies entre els resultats SCF i els resultats de Monte–Carlo en sis-
temes amb gran curvatura. Els mètodes SCF sobreestimen la interacció
entre raspalls esfèrics a distàncies curtes degut a que no poden tenir en
compte, de forma adequada, les correlacions existents entre monòmers.

• En el capı́tol 7 es presenten els resultats obtinguts per a raspalls esfèrics
confinats dins de cavitats esfèriques. La densitat de monòmers i la pressió
dins de la cavitat han estat mesurades. A més de les tècniques de Monte–
Carlo, en aquest estudi s’ha fet un ús directe de la llei de recurrència de
la funció de densitat de probabilitat per al propagador GN (r, r′), evitant
d’aquesta manera les aproximacions involucrades en els càlculs autocon-
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sistents de camp mig que empren equacions tipus Schrödinger. Una com-
paració directa entre els mètodes de SCF usats i els resultats obtinguts
mitjançant simulacions MC mostra que l’ús de la llei de recurrència i per
tant de l’aproximació de camp-mig és una bona alternativa en el cas de ras-
palls lliures o dèbilment comprimits. En el cas de sistemes força comprim-
its, es proposa un extensió de la teoria de Flory per solucions polimèriques.
Els resultats via Monte–Carlo concorden força bé amb l’extensió proposada
a la teoria de Flory, amb l’avantatge addicional de que l’extensió proposa-
da no implica cap cost computacional. En el règim de compressions molt
elevades, s’ha trobat que la fracció volumètrica de monòmers v segueix
un escalament amb la pressió P , P ∼ vα. Els resultats SCF donen
α = 2.15 ± 0.05, pròxim a la llei de des Cloiseaux (α = 9/4), mentre que
les simulacions de Monte-Carlo indiquen α = 2.73 ± 0.04. La diferència
entre els valors d’α trobats mitjançant MC i SCF es pot atribuir al fet que
els càlculs SCF no tenen en compte de forma adequada les correlacions
existents entre monòmers.

• En el capı́tol 8 es presenten els resultats obtinguts per a cadenes flexibles i
semiflexibles confinades sobre superfı́cies esfèriques. Els resultats es com-
paren amb les prediccions teòriques per a cadenes ideals de Mondescu and
Muthukumar (MM) [267], y Spakowitz and Wang (SW) [268]. S’ha trobat
que en tots els casos estudiats les prediccions de SW concorden força mil-
lor amb els resultats obtinguts mitjançant simulacions de Monte–Carlo que
amb les prediccions de MM. Les conformacions de cadenes de longitudL, i
longitud de persistència lp restringides a moure’s sobre una esfera de radiR
poden ésser descrites de manera raonable mitjançant el formalisme de SW
en el règim L/(2π) < R < 2lp. Per a R/lp > 2, la distància quadràtica
mitja entre els finals de cadena, evoluciona en funció de la longitud de la
cadena des d’un valor semblant a un camı́ autoevitant de dimensió dos, fins
a un valor de saturació. En el lı́mit de cadenes curtes i amb gran rigidesa
s’observa una conducta similar al cas lı́mit d’una barra rı́gida. A diferència
de les cadenes ideals, les cadenes amb efectes d’exclusió de volum que
es troben confinades sobre esferes de radi prou gran mostren una transició
des d’un estat desordenat a un estat helicoidal quan s’incrementa prou la
rigidesa de la cadena. Dita transició ha estat caracteritzada per mitja de la
funció de correlació orientacional dels enllaços. Els resultats reflecteixen
un balanç entre l’energia associada al vinclament de la cadena i les interac-
cions de volum exclòs.
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• L’estudi dels processos d’adsorció de cadenes polimèriques semiflexibles
sobre superfı́cies planes s’ha duit a terme en els capı́tols 9 i 10. Aixı́,
en el capı́tol 9 es presenten els resultat per a l’adsorció de polı́mers-
bloc sobre superfı́cies homogènies. Concretament, s’han estudiat i com-
parat entre si diversos tipus d’estructures copolimèriques, tals com ara ho-
mopolı́mers, diblocs, copolymers tipus (AαBα) , i heteropolı́mers amb es-
tructura aleatòria. En tots els casos estudiats s’ha observat que els processos
d’adsorció es troben afavorits amb un increment de la rigidesa de la cadena.
En particular, s’ha observat que l’adsorció completa d’estructures dibloc és
de fet un procés que té lloc en dues passes a temperatures d’adsorció difer-
ents que depenen de la rigidesa de la cadena, la longitud de la cadena i
les energies d’adsorció de cada tipus de monomer amb la superfı́cie εA
and εB . Aquest procés observat per diblocs gradualment reverteix cap a
un procés únic en el cas de copolı́mers de grandària de bloc α reduı̈da .
Els resultats mostren que cada bloc de les cadenes copolimèriques rı́gides
satisfà, independentment, les lleis d’escalament clàssic per a cadenes flex-
ibles, en canvi, s’ha trobat que l’exponent de l’escalament φ depèn de la
rigidesa de la cadena i de les energies d’adsorció. Per a cadenes rı́gides
prou llargues, el radi de gir exhibeix una conducta tı́pica d’una cadena
polimèrica composta deN/lp unitats on la seva longitud de persitència can-
via com lp ∼ (κ/kBT )0.5.

• El capı́tol 10 presenta un estudi sobre el procés d’adsorció de cadenes ho-
mopolimèriques sobre una superfı́cie construı̈da a base d’un patró perı́odic
de vetes adsorbents i no adsorbents. La conducta de les cadenes en funció
de la rigidesa de la cadena, l’energia d’interacció i l’amplada de les vetes ha
estat estudiada en detall. S’observa que el procés consta de dues etapes: i)
la cadena s’adsorbeix de forma bastant isotròpica sobre la superfı́cie a una
temperatura caracterı́stica Tc , i, ii) cal una nova reducció de la temperatura
per davall de Tc per a que la cadena sigui reconeguda per a la superfı́cie i
s’ajusti al patró especificat. La reorganització de la cadena adsorbida sobre
la superfı́cie al abaixar la temperatura s’ha estudiat mitjançant la determi-
nació del grau d’estirament , Q, i de la no-asfericitat de la cadena, A. Els
resultats mostren que existeix una amplada de les vetes òptima que maxim-
itza l’estirament de les cadenes. S’ha introduı̈t un criteri per estimar la
temperatura caracterı́stica a la qual té lloc el reconeixement del patró per
part de la cadena Tr < Tc. La dependència d’aquesta temperatura de re-
coneixement Tr amb els paràmetres associats a la cadena i a la superfı́cie
ha estat també estudiada en detall.
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Desig que els materials exposats al llarg de la present tesi siguin a més d’u-
na contribució a la clarificació de certs aspectes relacionats amb la fı́sica dels
polı́mers i els col·loides, una aportació de valor per aquells que volen començar
la seva recerca en aquest camp i a més a més seveixi per a estimular nous estudis
tant teòrics com experimentals.

Joan J. Cerdà.
Palma de Mallorca, Maig 2005.
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Preface

When somebody begins to read a thesis about colloids and polymers, two quite
natural key questions arise:

(a) Why should polymers and colloids matter to physicists?

(b) After approximately two centuries of hard studies about the nature and be-
havior of colloidal and polymeric systems: There is still something inter-
esting to be done in this area?

In my opinion the answer to the above questions is dealt in an excellent way
by Daoud and Williams in their book about soft-matter physics2. Therefore an
adapted answer to the above issues based upon Daoud-Williams statements could
be

(a) One of the main topics in physics should be the study and understand-
ing of all the interactions present in nature. The study and the subsequent
understanding of the matter properties and behaviors have reported in the
past two centuries many improvements and benefits to humanity. Polymers
and colloids are a clear example of how their study has become in a large
progress and a better life quality. In addition, the study of such systems
has contributed and it still contributes to broaden our notion of how mat-
ter can behave: self-organization in the space, flow and carrier properties,
superconducting materials, etc.

(b) Although colloids and polymers has been object of scientific research for a
very long time, the advances in synthetic chemistry have opened the door
to a vast, new and mainly unexplored region in the field. It is not very
daring to claim that we are still in the first stages. The shaping and con-
trol of the interactions in the polymeric and colloidal systems is not still
full understood. In this context, some very basic aspects of colloid and
polymer science still remain without a successful quantitative explanation.
Therefore the field is still plenty of room for new and fresh research.

2Daoud, M.; and Williams, C. E., Soft Matter Physics; Springer-Verlag: Berlin, 1999.
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In fact, the purpose of the present thesis is to give an insight about several still
non rather well understood issues in polymeric and colloidal systems. The thesis
is divided into eleven chapters from which the three first constitute a brief intro-
duction to the basic knowledge needed for a better understanding of the follow-
ing chapters. Thus, Chapter 1 is devoted to an introduction to colloidal systems,
whereas Chapter 2 deals with the basic characteristics of polymeric systems, and
Chapter 3 ends the general introduction by summarizing the main features of the
numerical methods used along the thesis. Research exposition begins with Chap-
ters 4 and 5 devoted to the study and characterization of the phase transforma-
tions in two-dimensional depletion driven colloids. On the other hand Chapters
6 and 7 deal with the properties of a particular but very important kind of col-
loidal particles known as spherical polymer brushes. The pair-wise interaction
of spherical brushes when curvature effects are important is studied in Chapter
6, whereas Chapter 7 focuses on the behavior of a spherical brush encapsulated
inside a spherical cavity. The three following chapters (8 to 10) are devoted to the
study of the behavior of polymer chains with non trivial constraints. In Chapter 8
a study about the excluded volume effects on polymer chains confined to spherical
surfaces is presented. Chapter 9 is devoted to the characterization of the adsorp-
tion process of semiflexible block-copolymers on homogeneous surfaces. Finally,
Chapter 10 studies the processes of adsorption and recognition of homopolymer
chains close to pattern-striped surfaces. The thesis ends with a chapter in which
the main conclusions obtained along Chapters 4 to 10 are highlighted.

All the above topics have been addressed by using Monte-Carlo and Brownian-
Dynamics numerical techniques. Numerical simulations have become nowadays
a basic tool in the study of complex systems, otherwise difficult to prepare in the
lab, giving the possibility of measuring properties with an accuracy in some cases
not available with current lab tools. They can be used to test ideas concerning
the behavior of experimental systems and to pose well defined problems for the-
oretical analysis. In this way, they provide a valuable bridge between theory and
experiment. As an example, numerical simulations allow us to bypass easily the
problems related to the presence of gravity during colloidal aggregation in experi-
ments. In the same direction, numerical studies allow us to observe the very early
stages of the aggregation phenomena, specially useful when one deals with fast
kinetics difficult to characterize in lab. On the other hand, the main handicap of
current numerical simulations is the limited amount of power calculus of present
computers which forces us to the study of small sized systems.

In addition to make a contribution intended to clarify several aspects in col-
loidal and polymeric systems, I hope the material herein presented would be a
valuable reference for those who want to start a research in the field of the physics
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of polymers and colloids. In turn, I hope the thesis would stimulate further fresh
theoretical and experimental studies.

Joan J. Cerdà
May 2005
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Chapter 1

An introduction to colloids
Physics is becoming so unbelievably complex that it is taking longer and
longer to train a physicist. It is taking so long, in fact, to train a physicist
to the place where he understands the nature of physical problems that he is
already too old to solve them.
Eugene P. Wigner, (1902-1995)

Well, let’s try to make it easier for the sake of the next generations . . .

This chapter is intended to provide a short summary of the main topics related
to the world of colloids. As we will see in brief, colloids comprise a huge

area with applications in many, an sometimes unsuspected, areas.
A colloidal system can be defined as a diphasic medium in which one of the

phases is very finely dispersed in the other phase. In this definition no restriction
is made on the chemical nature or the physical state of the constituents. The
characteristic length scale of the domains of the dispersed phase ranges usually
between 1nm and 1000nm. Historically, the term colloid was coined in 1861
by the British chemist Thomas Graham from the Greek word kolla for glue, to
label a supposed characteristic of some chemical class of products that do not go
through a wall of parchment.

Colloids far from being a weird phenomena in nature are almost omnipresent
in our every day life (Table 1.1). The large variety of colloidal systems and their
useful properties have overspread the use of colloids in many areas ranging from
chemical and food industry to nanotechnology and medicine. Examples of the use
of colloids in current technological devices are the electrophoretic image displays
1 (EPIDs), and the superheated-superconducting colloid detectors of elemental
particles 2 (SSCD’s).

1The EPID or electrophoretic image display contain submicron-size particles of pigments dis-
persed in a liquid along with a dye that provides contrast. When an electrical potential is applied
to the system, pigment particles are driven to the interface between the suspending liquid and a
viewing plate. EPIDs might be used in the design of new TV flat panel devices. Nowadays, EPID’s
are used for instance in the manufacture of the so-called e-paper.

2Superheated-superconducting colloid detectors (SSCD’s) are devices in which superconduct-

1
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Continuous Dispersed phase
medium Solid Liquid Gas
Liquid Suspensions Emulsions Foams

Inks Mayonnaise Whipped cream
Gas Solid aerosols Liquid aerosols

smoke fog
Solid Solid dispersions Solid emulsions Solid foams

Composite Butter Polyurethane
materials foams

Table 1.1. Some examples of colloidal systems classified in function of the physical state of
the constituents.

Disciplines that use colloids have improved their performances thanks to the
knowledge about colloids acquired during the XX-th century. However, despite
the huge efforts done, not all the aspects about colloids are perfectly understood
at present. Some basic questions about colloidal systems remain still unsolved
or are only partially understood. For instance, the interaction among colloids
in certain systems is still poorly understood. Another weak point is related to
the understanding of how the initial conditions, interparticle potentials and flow
properties influence the creation of mesoscopic structures in colloidal systems.
Also the rheology of colloidal suspensions is still a battle horse in many labs
around the world.

Part of the work done in this thesis is devoted to improve our knowledge on
some of the weak points concerning colloidal systems. However, before we face
up such effort we will review some basic facts about colloids.

1.1 Brownian Motion and diffusion

In 1828 Robert Brown reported the erratic movement of pollen particles floating
in quite water which seemed to jump randomly in any direction. The same be-
havior was observed by Brown when pollen was replaced with very fine mineral

ing colloids of a few micrometers in diameter are embedded in a dielectric material, and placed in
a magnetic field. The grains are maintained just below their superconducting transition tempera-
ture. The device is used to detect fundamental particles: when the fundamental particle collides
with the colloid, it deposits a small amount of energy enough to promote a transition in the grain
from superconductor to the normal state in which the magnetic flux can penetrate into the colloid.
This change of phase of the colloid particle produces a detectable electromagnetic signal. See for
instance, Drukier, A. Z.; Freese, K. F.; and Spergel, D. N., Phys. Rev. D, 33, 3495, (1986).
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particles. Brown concluded from these observations that the random motion oc-
curred independently of the origin and composition of the particles. What Brown
observed in 1828 was in fact the typical motion of colloidal particles. In 1905,
Einstein [1] proposed the following theory to explain the Brownian (colloidal)
motion: the displacement ~x(t) of a colloidal particle of mass m is governed by
the equation

m
d2~x

dt2
= − 1

µ

d~x

dt
−∇U + ~frandom(t) (1.1)

that assumes that three forces act onto the particle: the first term on the right
side states for a friction force due to the viscosity of the fluid. The second term
are the forces due to external potentials like the gravity. The third term stands
that the constant buffeting of a colloidal particle by solvent molecules can be
described through a force that fluctuates randomly in time but with zero mean.
If we assume that the motion is over-damped because the viscous term usually
dominates the inertial one, then d2~x

dt2 = 0, and the above equation reduces to the
Langevin equation

d~x

dt
= −µ∇U + ~η(t) (1.2)

where ~η(t) = µ~frandom(t) is a stochastic velocity with zero mean 〈~η(t)〉 = 0. If
we assume that the probability distribution of ~η(t) is Gaussian with variance 2D

(we will see later the meaning of D)

P [~η(t)] ∼ e−
R
dτ ~η

2(τ)

4D (1.3)

then the covariance of the noise at two times t and t′ is

〈η(t)η(t′)〉 = 2Dδ(t − t′) (1.4)

When U = 0 the separation ~x(t)− ~x(0) has a variance given by

〈(~x(t)− ~x(0))2〉 = 6Dt (1.5)

In fact, it is possible to show that the parameter D is the diffusion coefficient
of particles in the fluid when U = 0. Furthermore, it is possible to show that
Einstein’s relation connecting the fluctuations of noise to the dissipation in the
medium

D = kBTµ (1.6)

must be satisfied in the Brownian motion.
Experiments show that the use of the Langevin equation with a noise sat-

isfying the above constraints is an adequate approach to describe the Brownian
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motion of a colloidal particle. However, in a colloidal system there are many par-
ticles so a formalism which gives a global description of the system is desirable.
It is possible to describe a whole system of colloidal particles in terms of the parti-
cle concentration c(~x, t) (rather than particle per particle) using the Smoluchowski
equation [2],

∂c

∂t
= µ∇ · (kBT∇c+ c∇U) (1.7)

Another approach is the description of the Brownian motion in terms of the tem-
poral distribution function of the position ~x and velocity ~v of particles f(~x,~v; t).
It is possible to obtain an equation for such distribution function if we assume
the next hypothesis: (i) the fluid evolves on a much shorter time-scale than the
particle, and a Markov assumption can be made for the variables associated to
the particles; (ii) only small jumps occur, and the transition probabilities be-
tween two states of the particle is sharply peaked around a mean value. Under
these assumptions, the time evolution of f(~x,~v; t) reduces to a Fokker-Plank (or
Kramers-Klein) equation:

∂f(~x,~v; t)

∂t
= ∇~v ·

[(
~v

µm
− F (~x, t)

m
+
kBT

m2µ
∇~v
)
f(~x,~v; t)

]
−∇~x ·(~vf(~x,~v; t))

(1.8)
where F is the force derived from U . The Fokker-Plank equation can also be
deduced starting from the Liouville equation, the advantage of deriving it from
Liouville equation is that in such case we can bypass the stochastic assump-
tions assumed in the phenomenological description of the Brownian motion [3,4].
Kramers-Klein and Smoluchowski descriptions for a colloidal system are in fact
analogous, a rigorous proof of this relation was established by Wilemski in 1976
[5].

The use of a single scalar µ to deal with friction in the Brownian motion (
Rouse Model ) is just an approximation to the real motion of colloidal particles.
It is possible to go further in the description of the Brownian movement, but µ
should be replaced by a mobility matrix which accounts for the hydrodynamic
interactions between all the particles.

1.2 Stability of colloidal systems

The colloidal particles present in a system can suffer several types of attractive
and repulsive forces. These forces can arise directly from the interaction with
other colloidal particles or as an effect due to the special characteristics of the
medium in which colloids are dispersed. If the net force acting upon colloidal
particles is repulsive we will have an stable system. However, if the net force
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among colloids is attractive the system is unstable and the colloids tend to form
mesoscopic domains called aggregates. In fact, the tuning of the colloidal in-
teractions has been used by the humanity since the ancient times. For instance,
when we pour an acid such as vinegar or citric acid into milk, it is possible to
obtain cheese, white glue (the casein glue used by painters), or a plastic material
depending on the type of milk and the subsequent treatment. The acid is respon-
sible for a change in the interactions between casein proteins 3 usually found in
milk forming micelles (a type of colloidal particle).

����

����

Figure 1.1. When an acid such as vinegar is added to milk, casein proteins coagulate leading
to cheese, glue or plastic depending on the procedure.

The stability, instability or metastability of a colloidal system depends on the
type of interactions present in each colloidal system. Colloidal particles inter-
act with other colloidal particles as well as with the molecules of the medium in

3The addition of small amounts of acid to the milk promotes the denaturalization of casein
proteins and its coagulation. It is a similar process to the produced by bacteria which convert
the lactose of the milk in acid lactic. In natural milk, casein proteins (80% of milk proteins) are
known to form negatively charged micelles, the electrical charge contribute to the stabilization
of such micelles. When acid is added to milk, casein micelles reduce their electric charge and
eventually become unstable in the suspension. Usually micelles start an aggregation process due to
hydrophobic interactions (milk is a 88% water). When whole milk is used, the colloidal fat particles
present in the milk are drag along with the casein proteins leading to the formation of cheese. When
skim milk is used, the visible white clumps contain mainly casein protein. If casein clumps are
separated from the whey, diluted with a little of water an neutralized with sodium bicarbonate
(baking soda), we get a white glue: the casein glue. The optional use of heat when adding the
acid has a twofold effect: it helps to denaturalize the proteins, and it promotes the reactions of
polymerization among proteins. The heating of Casein clumps, depending on the conditions, may
eventually lead to plastic matter that behaves like rubber and it hardens with time. A harder plastic
can be obtained if casein reacts with formaldehyde.
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which colloids are dispersed. Colloidal interactions can be described in terms of
the basic interactions of molecules or atoms that form the colloidal particles. The
number and nature of the interactions is extremely diverse but a rough classifica-
tion of the main interactions is depicted in Figure 1.2.

Concerning the electrostatic forces, a colloidal particle can acquire a net
charge due to several processes: adsorption of charged species from the medium,
chemical equilibria of dissociating groups in the particles (like Casein proteins
in milk), or desorption of lattice ions. However, electro-neutrality must be sat-
isfied, and consequently a layer of counter ions must form around the colloidal
particles. This layer is usually called the electrostatic double layer, and the inter-
actions are of complex nature. However, the force can be roughly approximated
as an exponential decaying force

Fdouble layer ∼ e−κR (1.9)

where R is the distance among the surface particles, and 1/κ is a characteristic
length called the Debye length that, in general, ranges from 30nm for very low
concentrations of polyelectrolytes to 0.1nm for high concentrations. A deeper
study of double layer effects can be found in Evans-Wennerström [6] and Is-
raelachvili [7]. Keesom, Debye and London forces are generally referred as van
der Waals forces (vdW)4. Besides vdW forces are not as strong as hydrogen-bond
and covalent interactions (see Table 1.2), vdW forces play a main role in the sta-
bility of neutral colloidal suspensions as we will see later. In the non-retarded

Force Associated strength (KJ/mol)
From To

Keesom 0.5 20
Debye 0.02 0.5

London 0.5 30
H-bond 4 50
covalent 100 800

Table 1.2. A rough estimation of range of strengths associated to several types of intermolec-
ular forces.

approximation 5, the leading terms of the three contributions to the vdW forces

4We adopt here a restrictive definition of the van der Waals forces accordingly to the IUPAC cri-
teria [IUPAC Compendium of Chemical Terminology, 2nd Edition, 1997]. The term ’van der Waals
forces’ is sometimes used loosely for the totality of nonspecific attractive or repulsive intermolecu-
lar forces.

5At separations larger than a few nanometers retardation effects become significant. There is a
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Figure 1.2. A rough classification of the main interactions that exist among molecules that
form colloidal particles. Interaction energies (in SI units) have been written in the scheme for
those cases where expressions of the energy are simple and general. The notation is: q stands
for the electric charge, u is the electric dipole moment, α is the electric polarizability, r is the
distance between particles, kB is the Boltzmann constant, T absolute temperature, h Planck’s
constant, ν is the electronic adsorption (ionization) frequency , and εo is the permittivity of
the vacuum.
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exhibit a characteristic dependence 1/r7. This similarity can be used to model an
effective attractive potential between molecules proportional to−1/r6. However,
each colloidal particle is usually formed of many molecules or atoms which make
vdW interactions among large bodies (colloidal particles) non trivial. If we as-
sume colloidal particles to be monodisperse spheres of diameter D, then the net
contribution of the molecular forces ∼ 1/r6 is6 [8],

VvdW (r) =
−A
12

[
D2

r2 −D2
+
D2

r2
+ 2 ln

(
1− D2

r2

)]
(1.10)

where the Hamaker constant A is a measure of the strength of the vdW forces
between the colloidal aggregates (A ≈ 10−20 − 10−18J ). In the limit D � r Eq.
1.10 behaves as VvdW (r) ∼ −AD/r, whereas in the limit D � r the dependence
VvdW (r) ∼ −AD6/r6 is recovered.

In addition to vdW forces, a repulsive force arises at very small separations
between neutral colloids. This repulsive short ranged force has a quantum nature
and it is due to the distortion of the clouds of electrons of the atoms when they are
very close. The interaction is complex, and a general and simple expression for
such type of interactions is not available. In practice, we assume an arbitrary but
convenient representation (an effective potential) for this repulsive interaction at
short distances. The most rough model represents the interaction as a hard-core
potential,

V (rij) =

{
0, for |ri − rj | > σ,
∞, for |ri − rj | < σ.

(1.11)

where σ is a parameter determining the range of the repulsive interaction. The
hard-core potential is, in fact, the limiting case (n→∞) of a power-law model,

V (rij) =
(σ
r

)n
(1.12)

The power-law model represents a more realistic approach than the hard-core
because electron clouds are to some extent penetrable. However, a power-law
dependence is usually more expensive in computer time than a hard-core poten-
tial. Another representation of the repulsive force is the exponential-potential

finite time taken for the changes in the electromagnetic field to travel from one particle to a second
particle and its effects come back because electromagnetic fields do not propagate instantaneously.
Retardation effects occur when such delay in time becomes comparable to the period of the fluctu-
ating field itself. Non-retarded van der Waals forces are a simplification of the true phenomena.

6Hamaker method assumes pair-wise additivity of the molecular vdW forces which constitutes
a rough approximation. A more accurate alternative is to use the continuum theory of Lifshitz
[7,9,10] which leads to power-law dependences close to those obtained with the Hamaker method.
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V (rij) ∼ exp(−rij/σ) but usually its calculation is more expensive in computer
time.

In order to overcome the complex nature of the interactions present in col-
loidal systems, the use of effective potentials has become a natural way to try
to explain the stability or instability of colloidal suspensions. When the double-
layer electrostatic phenomena is not considered (neutral colloids), a commonly
used effective potential between the molecules forming colloidal aggregates is
the Lennard-Jones potential7,

ULJ = 4ε

(
σ12

r12
− σ6

r6

)
(1.13)

where ε is equal to the absolute value of the maximum depth of the potential.
If we suppose the colloidal aggregates are monodisperse spheres of radius R,
and diameter D, then the net contribution of the components 1/r6 to the large
body interactions is given by Eq. 1.10, whereas the components 1/r12 have a
contribution [11],

VLJ12
(r) =

Aσ6

37800

1

r

[
r2 − 14Rr + 54R2

(r − 2R)7
+
r2 + 14Rr + 54R2

(r + 2R)7
− 2

r2 − 30R2

r7

]

(1.14)
When a molecular LJ potential is used,the Hamaker constant is A = 4π2εσ6ρ2,
where ρ is the density of molecules or atoms in a colloidal particle.

Once we have a rough approximation to the interaction between colloids,
a first crude approach to the study of the stability of colloidal suspensions can
be done. Figure 1.3 shows the effective interaction among colloidal particles
Vmodel = VLJ12

+ VvdW . The combination of a repulsive and an attractive force
leads to the existence of a short-ranged potential-well which, in principle, will
force neutral colloidal particles to aggregate. Figure 1.3 makes clear that other
repulsive forces (electrostatic or steric) will be needed usually in order to make a
colloidal suspension stable.

The study of the colloidal stability-instability phenomena through the pre-
vious potential is a rough approximation to the simplest colloidal suspension in
which the dispersing medium does not play any role. We will study the stability-
instability phenomena in more complex scenarios where the dispersing medium
modifies substantially the nature of the colloid-colloid interactions.

7The Lennard-Jones potential contains a term −1/r6 to take into account the vdW forces, and a
term 1/r12 to describe the force that arises from the distortion of the electronic atomic shells. The
1/r12 dependence is arbitrary but it has been observed to lead to reasonable results. A historical
reason to set the repulsive term as 1/r12 is that it is straight to calculate once 1/r6 is known.
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2.05 2.1 2.15 2.2
r/R
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Figure 1.3. The effec-
tive potential Vmodel =

VLJ12 + VvdW in rescaled
units of ε and the radius
of the colloidal particles R.
The two contributions to the
potential are plotted with
dotted (VLJ12 ) and dashed
lines (VvdW ). The potential
has been computed for par-
ticles of size R = 10σ. The
density of molecules inside
the colloidal particles is set
to ρ = (σ)−3.

1.2.1 The DLVO model

One of the former theories intended to explain the existence of both stable and un-
stable suspensions was the DLVO theory developed in the 40’s independently by
Derjaguin-Landau [12] in Russia, and Verwey-Overbeck [13] in the Netherlands.
The theory assumes that the presence of charged particles in the medium leads
to the formation of a double-layer surrounding the colloidal particles [7]. The
presence of the double-layer implies the existence of an exponential decaying re-
pulsive force (Eq. 1.9). When the size of the objects is small enough gravitational
effects can be neglected, and it is possible to consider the stability of a suspen-
sion due to the combination of attractive van der Waals forces and the repulsive
electrostatic effects. The theory predicts that vdW forces become increasingly
important when the interparticle distance is reduced, whereas the electrostatic
double layer interactions dominate at large separations. For instance, the DLVO
theory predicts the following potential for monodisperse spherical aggregates of
diameter D = 2R, and total charge −Ze suspended in a simple 1 : 1 electrolyte
solution [14],

VDLV O(r) = VSC + VvdW +
Z2e2

ε

(
exp(κR)

1 + κR

)2 exp(−κr)
r

(1.15)

where ε is the dielectric constant, VvdW is given by Eq. 1.10, and VSC represents
the core steric repulsion. As it is shown in Figure 1.4(a), when the electrostatic
repulsive term is large enough, an energy barrier prevents the suspension from
suffering spontaneous aggregation. When the concentration of electrolytes in-
creases the double layer becomes thiner and the electrostatic force is weaker. By
tuning the concentration of electrolytes a secondary minimum can exist (Figure
1.4(b)). This second minimum usually is rather shallow with a depth of the order
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of few kBT ’s. If the energetic barrier separating the primary from the secondary
minimum is large when compared to kBT the aggregation occurs only through the
secondary minima. The resulting aggregates often can be redispersed by merely
shaking the sol. Nonetheless, aggregation through secondary or shallow minima
leads to very interesting aggregation kinetics and cluster morphology. Aggregates
formed through secondary minimum are, in fact, meta-stable because colloids
will tend to reach the thermodynamic equilibrium state reaching the primary min-
imum. The knowledge about how long a colloidal suspension would remain in
the meta-stable state is of fundamental interest for pharmaceutical and chemical
industries because it is a main factor to determine the shelf-live of their products.
By tuning adequately the interactions products can last for years. For instance
some gold colloids prepared by Faraday 130 years ago are still conserved.
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Figure 1.4. Electrostatic forces can induce the formation of energy barriers (a), and secondary
minima (b). Potentials have been obtained accordingly to Eq. 1.15 with Z = 10, ε = 80εo,
A=10−19J , and R = 10nm.

Although the DLVO theory explains roughly the stability of many charged
colloidal systems, it is an old theory and does not account for a large list of inter-
actions like Hofmeister8 effects, hydrogen bonding, or hydration forces 9 among

8The Hofmeister effect is known since 1888 when Franz Hofmeister demonstrated hat the
amount of salt required to precipitate hen-egg-white protein depends on the choice of the back-
ground salt. Since then, similar effects have been observed in nature as, for instance, in the foami-
ness of ocean waves that depends on the background salt [Craig, V. S. J.; Ninham, B. W.; Pashley,
R., Nature, 364, 317, (1993).]. Hofmeister effect has been also found in a large number of biological
systems, for instance, the permeability of red blood cells also depends on the type of background
salt.

9The DLVO theory is based on the assumption that water is a continuum fluid described by its
bulk properties. At separations of the order of the molecular size, this is no longer the case. The
specific interactions of water with the surface of the colloidal particles leads to the solvatation or
hydration forces. Water binds strongly to chemical surface groups like phosphates, sulphates, or
hydroxylic groups. When two particles try to get closer, water molecules must be removed with
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others that are known to play a significant role in some colloidal systems. For a
review about the break up of DLVO forces see Boström-Williams-Nimham [15]
and Grasso et al [16], also the book of Israelachvili [7] deals with some ”non-
DLVO” forces.

1.2.2 Addition of polymers to colloidal systems

The presence of polymers in the colloidal suspension is another interesting sce-
nario in the study of the stability of colloidal particles. The introduction of poly-
mer chains in a colloidal dispersion can promote either the stabilization or the
aggregation and sedimentation of the colloidal particles.

The twofold nature of polymers in colloidal suspensions is known and used
since ancient times. Ancient Chinese people knew (and European people redis-
covered in the middle ages) a fine suspension of carbon no longer sediments out
when Arabic gum (a natural polymer obtained as an exudate from a bush) is added
to the mixture. This stabilized suspension is the called Indian Ink. Also exam-
ples of stabilization of colloids using short organic chains are found in our every
day life, for instance the emulsifier lecithin (common name for the phosphatidyl-
choline, PC) is used in chocolate and mayonnaise to prevent them from forming
agglomerates. An example in the opposite direction comes from wine. In or-
der to clear wine of impurities we can pour a watered-down egg white inside the
wine. In this case polymers cause colloids in suspension to aggregate forming
agglomerates large enough to sediment out and wine comes clear.

These two opposite effects can be explained as follows. If we add a solution of
some neutral polymer of very high molecular weight to a dispersion of particles,
the first adsorbed chains create a thin adsorbed layer (see Figure 1.5(a)). Since the
chain conformation is highly flattened, polymers have a small effect in the system
behavior. As we increase the polymer concentration, links can be established
between particles, aggregates may form and precipitate (see Figure 1.5(b)). This
phenomena is known as bridging flocculation. When we increase furthermore the
polymer concentration, the surface particles saturate with polymers and then one
particle repel each other via steric effects. In this case, a partial redissolution is
possible (Figure 1.5(c)).

If we use a solution of polymers of low molecular weight (figure 1.5(d)),
usually from 3000 to 10000 Daltons 10, as soon as the colloidal particles are sat-
urated with polymers, a repulsive force appears at short distances. In such cases,

a subsequent energetic cost. The energetic cost of removing water molecules close to the surfaces
can be understood as an effective repulsive hydration or solvatation force among particles.

10Dalton is a unit of mass equal to the weight of an hydrogen atom, (1.657 × 10−24 g). The
weight of proteins and other macromolecules are often measured in Daltons.
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Figure 1.5. Schematic rep-
resentation of four possi-
ble situations when poly-
mers chains are added to a
dispersion of colloidal par-
ticles. Plots (a-c) repre-
sents cases of long polymer
chains with increasing poly-
mer concentration. Plot (d)
represents the case of short
chains.

the steric effect generated by the adsorbed polymer chains dominates the attrac-
tive van-der Waals forces between uncoated particles, furthermore, the possibility
of creating links between adsorbed chains over different particles is reduced due
the low molecular weight of the chains.

All the above examples are related to polymers that adsorbs onto the sur-
face of the colloidal particles. Although at first sight could be surprising, non-
adsorbing polymers can modify the properties of colloidal solutions as well. The
presence of such non-adsorbing polymers in solution leads to net attractive forces
among colloidal particles called depletion forces, that produce the depletion floc-
culation phenomenon. The range of the attraction is directly related to the radius
of gyration of the polymer, whereas the strength is proportional to the polymer
concentration (osmotic pressure). The origin of the depletion forces can be ex-
plained as follows. As it is shown in Figure 1.6-(a), the surface of the particles
can be assumed to be impenetrable walls. Therefore, polymers close to the sur-
face have some of their conformations forbidden what is an entropic penalty. In
order to minimize the lose of entropy the polymer concentration near the parti-
cles (the so called depletion zone) decreases. Nonetheless, the existence of zones
depleted of polymers also have an entropic penalty so the colloids tend to reduce
the net area exposed to the polymers. A way to reduce the exposed area is that
colloidal particles approach each other, (Figure 1.6-(b)). If the attractive force
created by the depletion effects is large enough to overcome the repulsive forces,
the colloidal particles eventually aggregate. This attractive force can be also in-
terpreted as if it arises from an unbalanced osmotic pressure when the polymers
are expelled from the gap between two colloids.
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Figure 1.6. Colloids tend to approach in order to reduce the volume excluded to polymers.
This phenomena can be modeled in terms of a depletion force among colloids.

1.2.2.a Modeling the presence of non-grafted polymers in colloidal systems

The statistical mechanics of colloid-polymers mixtures goes back to the pio-
neering studies of Asakura and Oosawa [17, 18] (AO) in the 50’s. AO showed
that when two large bodies are immersed in a solvent containing small macro-
molecules, an effective attractive interaction is induced between the two bodies.
AO obtained an explicit expression for the depletion force between two colloids
immersed in an ideal solution of macromolecules. In the 70’s Vrij [19] went
an step further by writing down an explicit one-component Hamiltonian model
widely used in subsequent studies about colloid-polymer mixtures. The model is
known today as the AO model or Asakura-Oosawa-Vrij model. The genuine AO
model is an extreme non-additive binary hard-sphere model in which the colloids
are treated as hard-spheres with diameter σc, and the polymers have a double
character: polymer chains do not interact among them and cannot penetrate the
colloidal particles. For a colloid, a polymer looks in the AO model as a hard-
sphere of diameter σp = 2Rg ,Rg being the radius of gyration of the polymer (see
Chapter 2). The pairwise potentials colloid-colloid (Vcc), colloid-polymer (Vcp),
and polymer-polymer (Vpp) are:

Vcc(rij) =

{
0, for |ri − rj| > σc,
∞, for |ri − rj| < σc.

(1.16)

Vcp(rij) =

{
0, for |ri − rj | > (σc + σp)/2,
∞, for |ri − rj | < (σc + σp)/2.

(1.17)

Vpp(rij) = 0 (1.18)
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These potentials are a good approximation for sterically stabilized particles,
and also for charged colloids dissolved in a solvent with a high ionic concentration
where the screening length is short. The assumption that the polymers do not
interact among them is only valid for low polymer concentrations and polymers
in a θ-solvent (see Chapter 2). The question about the importance of the degree of
deformation of ideal polymers when they are mixed with colloids in the AO model
was addressed in the pioneering Monte Carlo simulations of Meijer and Frenkel
[20]. In their work a comparison of simulations of colloid-polymer mixtures using
the AO model with simulations using ideal polymers onto lattices was done. The
results showed that if σp < 0.7σc the AO worked remarkable well.

The AO model can be worked at several levels. Direct computer simula-
tions [21, 22] where polymers and colloids are explicitly in the system are not
straightforward due to slow equilibration and non-ergodicity. A second approach
is the effective one-component Hamiltonian in which an effective Hamiltonian
is obtained for one of the components by integrating out the the degrees of
freedom of the other component. The effective one-component Hamiltonian
is an exact map of the binary solution to a single effective-component when
ζ = σp

σc
< 2/

√
3 − 1 ∼ 0.1547. For ζ < 0.1547 geometrical considerations

ensure that there is no triple overlap of exclude volume regions, even when three
colloids are in simultaneous contact. The effective pair potential can be written
as

V eff (r; zp) = Vcc(r) + VAO(r; zp) (1.19)

where Vcc is the pairwise potential among two colloids, and VAO is the Asakura-
Oosawa pair depletion potential,

βVAO(rij ; zp) =

{
0, for s > 1 + ζ ,

−η
(
1 + ζ−1

)3 (
1− 3s

2(1+ζ) + s3

2(1+ζ)3

)
, for 1 < s < 1 + ζ .

(1.20)
where η = π

6σp
3zp, s = rij

σc
, ζ = σp

σc
, and zp is the fugacity of the polymers.

When ζ > 0.1547 the one-component Hamiltonian becomes inexact because
three-body and higher-body terms are also present. We want to point out that in
our simulations on polymer depletion driven colloids ζ ≤ 0.1 so the mapping
between the one effective component and the binary liquid is exact. The phase
behavior of the AO model is of fluid-solid type for small ζ’s, whereas for large
ζ’s stable gas-liquid phase separations occurs because many-body interactions
become important. In fact, the phase behavior of the AO model for ζ > 0.1547

is only partially understood. Gast et al [23] predicted (using thermodynamic per-
turbative theories) at large ζ’s a stable colloidal liquid phase that resemble those
of simple atomic fluids for ζ > 0.6. A critique to the Gast predictions was done
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in the sense that the contribution of many-body interactions are not necessarily
small, and a reasonable doubt exist about the usefulness of perturbative meth-
ods in this case. Another alternative to the one-component Hamiltonian at large
ζ’s is the so-called free-volume theory of Lekkerkerker et al [24]. This theory ac-
counts for some of the many-body effects and predicts a stable colloidal gas-liquid
transition for ζ > 0.32. The phase diagrams estimated through the free-volume
theory shows similar trends than in the Meijer Monte Carlo lattice simulations
[20]. Another method used to deal with phase behavior at large ζ’s is the density
functional theory (DFT) specifically designed for the AO model [25] which has
predicted new interfacial phenomena in the liquid-gas interface.

The presence of many-body effects is not the only problem present in the
AO model for large ζ values. Potentials used during the study of the kinetics of
depletion interactions are often treated as instantaneous potentials. But depletion
interactions need time to build up because particles need a time to collide among
them. Vliegenthart and Schoot [26] have reported substantial fluctuations of the
depletion force respect to the value obtained using instantaneous potentials do
exist for large ζ values.

The AO model is not the only model that exists to mimic colloid-polymer
mixtures. For instance, models based on liquid-state integral equations are also
available [27]. Before concluding this section devoted to the presence of polymers
in the suspension, we want to point out that an interesting topical review about
experiments in real polymer-colloids mixtures has been recently written by Poon
[28].

1.2.3 Colloid stabilization using grafted polymers

Another way of using polymers to stabilize colloidal systems consist on grafting
polymer chains by one edge directly onto the surface of the colloidal particles
rather than coating the colloid with an adsorbed polymer layer. As it is shown in
Figure 1.7, when the density of grafted chains is large enough, a brush like effect
occurs (see Chapter 2).

Figure 1.7. The brush-
like effect can be observed
by increasing the density of
chains grafted onto a planar
surface.
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The polymer brushes provide a particularly effective steric protection for the
colloidal particles. The end-grafted polymer stabilized colloids have been found
useful in many applications of special relevance. For instance, the sterically sta-
bilization of liposome have been used to improve in a large extent the colloidal
and biological properties of anticancer drugs 11. Another important area in which
sterically stabilized colloids play a main role is in nanotechnology where they are
used in the quantum dot assembly 12. Also grafted polymer particles like grafted
polystyrene colloids have been used to take up contaminants such as toluene,
chloroform or naphthalene from water.

The use of the brush effect as stabilizer of colloids is not only limited to
polymers attached through chemical bonds by one end to the surface. Mixed-
monomer macromolecules whose chains contain two blocks (diblock polymers)
are also of interest. In the diblock molecules, one of the blocks has a strong
affinity for the solvent, whereas the other has a strong affinity for the surface. This
duality leads to an anchor/buoy system with remarkable stabilization capacity.

It is worthwhile to point out that besides the relevance of such systems and
their many potential applications, the pair-wise interaction potential between two
of such particles has not been studied for the case of colloids having a size of the
same order than the characteristic size of the chains. One of the aims of this thesis
is the study of the interaction between two polymer-brush colloids in this regime.

11Electrostatic stabilization cannot provide adequate stability to liposomes in in vivo applications
where blood proteins and enzymes can disintegrate them easily. Conventional liposomes are in most
of cases cleared by macrophages in the liver and spleen, so a large amount of drugs are released
there. In contrast, liposomes with surface-grafted polymers have a more prolongated circulation in
the body and its biodistribution is different from the usual liposomes. Grafted-polymer liposomes
tend to accumulate in tumors, infections and inflammations that are characterized by leaky capil-
laries. The sterically stabilized liposomes are finally destroyed by macrophages in these sites. Due
to the capacity to evade the defenses of the immune systems for a long time and to concentrate
in specific areas, the sterically stabilized polymers have been used as ideal vehicles for anticancer
drugs. Packing the drug into such special liposomes, the drug reaches in a large extent the target
tissue, allowing a reduction in the systemic concentrations needed. The reduction of systemic con-
centrations reduces the toxicity of the drug and therefore its secondary effects on patients. For a
good review on the novel applications of liposomes see Lasic, Dan D., Tibitech, 16, 307, (1998).

12At nanoscopic level the properties of small particles change with the size of the particle due
to the important change in the surface/volume ratio of the particles. As an example small CdSe
crystals exhibit different colors depending on the particle size black (∼ 10nm), red (∼ 4.5nm),
or yellow (∼ 1.2nm). In the bottom-up technique, organic chains that became grafted onto the
particles surface are used to avoid the natural tendency of small crystals to aggregate and form
larger crystals with ordinary macroscopic properties.
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1.3 The colloidal aggregation process

In the previous sections we have commented that unstable colloid solutions tend
to form colloidal aggregates that in presence of a gravitatory field tend to precipi-
tate out of the solution when they are large enough. The study of the formation of
colloidal aggregates is interesting for many reasons. Aggregation process leads
to the formation of very different morphologies depending on the strength and
range of the colloidal interactions. The particular morphology of an aggregate is
of interest because it may influence, for instance, their suitability as a catalyzer
or a molecular adsorber as well as influence other properties of the aggregate.
Furthermore, colloidal aggregation brings an excellent opportunity for a better
understanding of crystallization and nucleation processes (see Chapters 4 and 5).

The kinetics and the cluster morphology are fundamental aspects in the study
of the aggregation. The aggregation kinetics has been studied since the begin-
nings of the XX-th century. For instance, Smoluchowski developed his famous
kinetic equation as early as in 1916. In reference to the cluster morphology, as
long as the beginnings of the XX-th century people knew that aggregates ob-
tained through an slow aggregation process were apparently compact, whereas
aggregates obtained in a fast aggregation process had very weird ramified struc-
tures. The cluster morphology was at that time considered as too complicated to
have a quantitative description. Only since the late 70’s with the introduction of
the mathematical concept of fractal structure it has been possible to go an steep
beyond and do a quantitative investigation of the cluster morphology and kinetics
of such disordered aggregates. A general review about the role of fractals in the
aggregation phenomena can be found in Jullien-Botet [29].

1.3.1 Fractals

The concept of Fractal was introduced in the 70’s by Benoit Mandelbrot [30].
A fractal can be defined as a rugose object in which rugosities are present at
any length scale. Therefore no tangent line or tangent point can be defined on
its surface or contour. An example of fractal is shown in Figure 1.8 where the
aggregation of carbon soot (colloidal particles made of carbon) leads to a ramified
fractal structure.

One should keep in mind that in Nature do exist a below and an upper charac-
teristic length scale within which a real object can be considered to have a fractal
structure. For fractal colloidal aggregates the natural cutoff lengths are the size
of a single colloidal particle, that is usually compact, and the whole size of the
aggregate.

The term Fractal includes several classes of objects: self-similar fractals, ran-
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Figure 1.8. Ramified struc-
tures that resemble a fractal
can be obtained when car-
bon soot aggregates. Taken
from NASA web page, fact
sheet number: FS-2002-03-
56-MSFC.

dom self-similar fractals, non-similar fractals, and multi-fractals. Self-similar
fractals are those whose structure is invariant under a change of scale, that is, the
fractal looks identical whatever scale we choose to observe it. However, real ob-
jects often do not have regular shapes and usually have some randomness. Thus,
for real objects, the best we can expect is a self-similarity property in a statisti-
cal sense. We can still use the tools used to characterize self-similar fractals to
describe random fractals by doing a little of statistics.

In contrast, non-similar fractals are more difficult to characterize 13. An ex-
ample of non-similar fractal could be an object in which the growth or building
rules are different when we consider different directions in the space. A multi-
fractal set can be roughly defined as an infinite number of interpenetrating fractal
subsets, where each subset has its own morphology and growth rules. Reviews
on multifractality can be found in the books of Vicsek [31] and Meakin [32].

Fractals can be classified with several parameters, from which the most com-
mon is the fractal dimension.

1.3.1.a Parameters used to characterize fractal objects

The fractal dimension is one of the main parameters used to characterize a fractal
object. There are several definitions of the fractal dimension, the most general
and, at the same time, the most complex definition is the Hausdorff-Besicovitch
dimension [33] DHB . Consider the fractal object as a mathematical set of points

13Non-similar fractals cannot be described through a single fractal dimension like in self-similar
fractals. The number of parameters needed depends on the degree of anisotropy and complexity
associated to the growth rules. When the number of parameters needed to describe the object in a
proper way becomes infinity, we call such object a multi-fractal.
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in a metric spaceE, andA ⊂ E. We define the d-dimensional Hausdorff measure
Hd(A) as the infimum of positive numbers ai such that, for whatever r > 0, A
can be covered by a countable family of closed sets of diameter less than r such
that the sum of the d-th powers of their diameters is less than ai. The value
of Hd(A) can range from 0 to ∞ depending on the value of d we choose. We
now define the Hausdorff-Besicovitch dimension DHB of A as the infimum of di
such that Hdi(A) = 0. In a mathematical sense, a set is called fractal when its
Hausdorff-Besicovitch dimension is greater than its topological dimension.

A most simple definition of fractal dimension is the Minkowski-Bouligand
dimensionDMB , which is often identical to the Hausdorff-Besicovitch dimension
DHB . If we cover all the object using a minimum number Nl of spheres of
diameter l, in the limit l→ 0 we expect the power-law

Nl ∼ l−DMB

to be satisfied. It is conjectured that DMB ≥ DHB , and only for strictly self-
similar fractals, DMB = DHB .

Other power-law relationships can be used in order to describe a fractal. In
some cases these alternative measures lead to results similar to DMB or DHB , in
other cases, they measure intrinsic different properties of the fractal. For instance,
we can measure the mass contained in a sphere of radius r centered at a given
point of the object, the mass m(r) is expected to follow the power-law:

m(r) ∼ rD

where D is often called the self-similarity exponent since if one multiplies all
lengths by β, masses should be multiplied by βD. Another name for the exponent
D is the mass dimension. For strictly self-similar fractals, the mass dimension
coincides with the Hausdorff-Besicovitch dimension. It is worthwhile to remark
that the mass distribution is related to the probability of finding a particle at dis-
tance r from another particle, and this is by definition the correlation function
C(r), therefore, in a fractal object we must expect the correlation function to
obey a power law given by

C(r) ∼ r−(d−D)

where d is the dimension of the smallest Euclidean space embedding the whole
object.

Another parameter we can define using a power law relationship is the
Spreading dimension ds of a fractal. If we carry out walks of length L by vis-
iting a sequence of points inside the object and sum the mass of all visited points
m(L), we expect m(L) to follow

m(L) ∼ Lds
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Notice that if we could deform the object without breaking the connections among
the points that form it, we would be able to change the fractal dimension but not
the spreading dimension.

Another exponent of interest is the tortuosity λ. If we choose two points
inside the object separated by a distance l, and the length of the minimal path
entirely contained in the object is lmin, we define the tortuosity λ as,

lmin ∼ lλ

due to the definitions of D and ds, the following relation is expected to hold
λ = D/ds.

It is remarkable that the concept of fractal far from being a tool of exclusive
use for mathematicians and physicists, it has also found many application in biol-
ogy and medicine [34,35]. From the anatomical outline of neuronal cells, vascular
and airway systems to the detection of some cancers via the determination of the
fractal dimension of cell membranes 14.

1.3.2 Measuring Fractal dimensions of colloidal aggregates

In the above section we have summarized the main issues related to fractal ob-
jects, among them the use of the fractal dimension as a descriptor of the fractal.
We found that basically there are two theoretical ways of defining the fractal
dimension, the Hausdorff-Besicovitch dimension DHB , and the more practical
Minkowski-Bouligand dimension DMB . Based on these definitions, several al-
gorithms have been defined to compute the fractal dimension of a given object.

1.3.2.a The box-counting method

The method consist on covering the object with boxes of size r, and determin-
ing the number of boxes N(r) we need to cover the object. The box-counting
dimension Db is determined through the relationship

N(r) = r−Db

In practice, when the object is formed by a set of discrete points, as in a
colloidal fractal aggregate, the accuracy of the value of Db is observed to depend
on the number of points that form the object. For instance, if we measure the Db

of a compact 2d object that has been discretized in a regular lattice we observe

14The fractal concept have been used in the detection of some types of cancers in which cell
membranes become altered. For instance, Hairy-cell leukemia is a form of lymphocytic neoplasia
that produces lymphocytes with more pseudopods than normal lymphocytes.
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that Db
∼= 1.83 for an object containing 1000 points, Db

∼= 1.93 if it contains
5000 points and Db

∼= 1.96 for a compact object discretized in 30000 points.
This example tell us that we must be cautious with the Db values obtained for
small colloidal aggregates, and assign a reasonable range of error to them.

For fractals that do not have a multi-fractal nature, the dimension obtained
by dilating a box centered on a given point (nested squares method, also known
as the sand box method) is equivalent to the dimension obtained by covering the
structure with boxes. One should be aware that a random placement of the origin
in the nested squares method can lead to a breakdown of the method, typically
the centroid of the aggregate is an usual choose to place the center of the boxes.

1.3.2.b The cluster-ensemble averaged fractal dimension

The averaged fractal dimension of a set of aggregates can be measured through
the evaluation of their radius of gyration Rg. The radius of gyration is expected
to behave as Rg ∼ N1/Df where Df is the cluster-ensemble averaged fractal
dimension and N the mass (number of units) of the aggregate. We have found in
our studies that this method is more accurate than the box-counting method when
fractal aggregates are not very large. This method constitutes a fast way in order to
compute an averaged value of the fractal dimension of a set of aggregates resulting
from an aggregation process. However, caution must be taken when the size
distribution depends on the spatial direction where the hypothesis Rg ∼ N1/Df

turns out to be incorrect.
Besides all, we have found this method to be the most reliable on computing

the fractal dimension of the aggregates in our computer simulations.

1.3.2.c The density correlation function method

The correlation function of a fractal object can be defined as

C(~r) =
1

V

∑

~r′

ρ(~r + ~r′)ρ(~r′)

where ~r′ stands for the positions of all the particles that form the fractal. If the
fractal is spherically symmetric, then C(r) = C(~r). Self-similar fractals are
expected to have a decaying correlation function

C(r) ∼ rDf−d

This method can be used to determine the fractal dimension from a single
aggregate or to obtain an averaged fractal dimension from a set of aggregates.
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The use of the correlation method with a single cluster is not adequate when
clusters are small because in that case the borders of the object influence strongly
the correlation function.

1.3.3 Irreversible cluster-cluster aggregation kinetics

Irreversible cluster-cluster aggregation is expected when the attraction among par-
ticles is larger than few kBT ’s. Several approaches have been used to deal with
the kinetics of the irreversible cluster-cluster aggregation. Direct analysis of the
Smoluchowski equation [36, 37]; Friedlanders’s theory of self-preserving spectra
[38–40] also known as the Scaling theory; numerical works based on solving the
master equation; and computer simulations of aggregation models [41, 43–45]
(DLCA, RLCA, etc.).

1.3.3.a Analytical results from Smoluchowski equation

A key equation in the history of the studies about the kinetics of the irreversible
particle aggregation is the Smoluchowski equation. Consider a process in which
two aggregates of i and j particles join to form a larger aggregate of size i + j.
The process can be represented as Ai + Aj → Ai+j . Assume that the rate of
such events per unit of volume and time is given by Kijcicj , where ci and cj are
the concentration of clusters of size i and j respectively. Kij would represent an
intrinsic constant associated to the aggregation process. Notice that several strong
assumptions are implicit in the above statements:

• Binary collisions between aggregates are assumed.

• Spatial fluctuations are neglected (mean-field approach). Therefore the
transport of species cannot be a rate-limiting factor in the system because
it leads to large spatial correlations.

• The rate of collisions between two aggregates is proportional to the prod-
uct of their concentrations. This last hypothesis is a tough approximation,
nonetheless it has been found to be in reasonable agreement with numerical
simulations when concentrations are low [46].

Additionally, a cluster of size i+ j can dissappear in a processAi+j +Ak →
Ai+j+k. Therefore, by analogy to chemical kinetics equations, the equation giv-
ing the evolution of the concentration of aggregates of size k, ck, should obey the
following Smoluchowski equation,

dck
dt

=
1

2

∑

i+j=k

Kijcicj −
∑

i

Kikcick (1.21)



24 An introduction to colloids

The Smoluchowski equation is often rewritten in terms of the number of aggre-
gates nk containing k particles, nk = V ck, where V is the volume of the system,
thus

dnk
dt

=
1

2

∑

i+j=k

kijninj −
∑

i

kiknink (1.22)

where kij = Kij/V .
It is rather obvious that in order to go further in the kinetic study, some insight

about the set of kinetic coefficients Kij is needed. It is a common practice to
refer the Kij coefficients for all particles as the aggregation kernel. Although
the Smoluchowski equation dates back to 1916, explicit forms of the Kij based
on microscopic details of the aggregation phenomena were not studied until the
50’s and 60’s. Even if we assume Kij to be known, a system of infinitely many
coupled non-linear rate equations must be solved.

Exact analytical solutions of the Smoluchowski equation are only available
for simple functional forms of the aggregation kernel. However, Smoluchowski
himself obtained an elegant solution for the case of an initial monodisperse system
of N single particles (n1 = N,nk = 0 for k > 1), for a constant aggregation
kernel Kij = κ. Consider that the solution for nk can be separated into the
product of two independent time functions

nk = φ(t)[ψ(t))]k−1 (1.23)

with the initial conditions φ(0) = N and ψ(0) = 0. Then, the solution to the
Smoluchowski equation for a constant kernel Kij = κ is

nk = N
(κNt/2)k−1

(1 + κNt/2)k+1
(1.24)

Such expression predicts that the number of clusters of size k has a maximum
at intermediate times followed by a asymptotical decrease with t−2. For t �
2/(kN) , nk can be written as an exponential decaying function

nk =
4

k2κ2N

(
k

t

)2

exp

(−2k

κNt

)
(1.25)

Other analytical solutions have been derived for a whole family of kernels
that verify the homogeneity relation:

Kαi,αj = αλKij

In principle one can differentiate two regimes: the flocculation regime in which
λ < 1, and the gelation regime for λ > 1. It can be shown that in the flocculation
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regime, the mean cluster size 〈n〉 at large times behave as

〈n〉 ∼ tz (1.26)

with
z =

1

1− λ. (1.27)

If we resrict to very large clusters (k > 〈n〉) and times, the reduced form for the
size distribution function can be obtained [47],

nk ∼ k−θf(k/〈n〉) (1.28)

with θ = 2, and
f(x) = x−λ exp(−x(1− λ)). (1.29)

For w < 0 the distribution will exhibit a maximum at a finite k whereas for
0 < λ < 1 the distribution is always decreasing. The gelation regime (λ > 1) is
characterized by the fact that, after a typical finite time T , a cluster that spreads
from one extreme to the other of the system appears. The mass of such aggregate
diverges as the size of system is taken to infinity. This violation of the mass
conservation by some kernels after a finite time T was first reported by Leod [48]
in the 1960’s. In the late 1970’s meaningful solutions for times t > T were found,
and a physical interpretation in terms of ”gelation transition” was given [49–51].

The value of the exponent z can be calculated easily for colloidal clusters that
follow a Brownian motion. Smoluchowski showed that a reasonable kernel for
three dimensional Brownian clusters was,

Kij ∼ (i1/3 + j1/3)(i−1/3 + j−1/3)

where the first term is related to the effective cross-section assumed to be pro-
portional to the sum of the clusters radii. The second term is associated to the
sum of the cluster diffusivities which are inversely proportional to the clusters
radii (following Stokes-Einstein relation). The above kernel can be generalized
to clusters in a d-dimensional space with a fractal dimension Df . If we assume
that the diffusivity of a cluster of size i, ui, has a power law dependence ui ∼ iγ

on the cluster size, then

Kij ∼ (i1/Df + j1/Df )d−2(iγ + jγ)

It is straightforward to check that this kernel is homogeneous with a homogeneity
degree λ = (d−2)/Df +γ. If we combine this results with the previous one z =

1/(1 − λ), we obtain that the exponent z for aggregates that follow a Brownian
motion in an irreversible process is

z =
1

1− γ − (d− 2)/Df
(1.30)
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1.3.3.b The Scaling approach in the irreversible cluster aggregation

The analytical expressions 1.25 and 1.28 obtained for particular kernels contain
the seed of what has turn out to be another successful approach to the study of
the aggregation kinetics: the scaling theory. In fact, Scaling techniques have been
proved to be useful even in circumstances where the Smoluchowski equation does
not provide an adequate representation of the aggregation kinetics. An excellent
review of this issue has been reported by Leyvraz [40].

It is possible to rewrite the Eq. 1.25 as

nk = k−θf(k/tz) (1.31)

with θ = 2 and z = 1 for the case of a constant kernel. In this reduced form,
the equation resembles to Eq. 1.28. This result suggests the possibility that other
solutions for nk may also be written in a similar way.

In the scaling theory we assume the solutions of interest can be written as
in Eq. 1.31. In addition, we assume f(x) to verify: (a) f(x) is exponentially
small for x � 1, and (b) f(x) ∼ xδ for x � 1, then it can be proved that the
mean cluster size 〈n〉 must behave as 〈n〉 ∼ tz and the number of clusters Nc

must follow the power-law 〈Nc〉 ∼ t−z provided that the next identities should
be always satisfied: ∑

nk = Nc (1.32)
∑

knk = N (1.33)

On the other hand, for small 〈n〉/tz , Vicsek and Family [41] showed that the
following scaling expression was also a plausible scaling form,

ns(t) ∼ t−ws−τF (s/tz) (1.34)

In this case, the function F is an explicit function of s and t. The scaling form
1.34 combined with the normalization condition

N =
∑

knk ∼
∞∫

1

nk(t)kdk (1.35)

leads to

N ∼ t−w+z(2−τ)

∞∫

tz

x1−τf(x)dx (1.36)

Since the total mass of the system must be constant, the exponents w,τ and z are
related as

w = (2− τ)z (1.37)
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Eq. 1.37 implies the inequality τ ≤ 2 because w > 0 and z > 0 in physical
systems (where small aggregates join to form larger aggregates). Another conse-
quence of Eq. 1.37 is that a comparison of Eq. 1.31 for x � 1 with Eq. 1.34
leads to θ = 2. Notice that the result θ = 2 was obtained initially for the partic-
ular case of a constant kernel. The result obtained now is, by far, more general.
Furthermore, it is also possible to show that the scaling form given by Eq. 1.34
leads the same averaged aggregate size dependence with time,

〈n〉 ∼ tz (1.38)

and the total number of clusters in the system behaves as [41]

Nc ∼
{
t−z, for τ < 1,
t−w, for τ > 1.

(1.39)

1.3.3.c The master equation in the irreversible cluster aggregation

All the approaches based in the Smoluchowski equation neglect spatial fluctua-
tions. Results obtained from numerical simulations [52, 53] point out that irre-
versible aggregating systems with Euclidian dimension d < dc = 2, show large
spatial fluctuations that lead to kinetic exponents which depend on the dimension
as well as to novel non-monotonic cluster size distributions. Smoluchowski equa-
tion, as well as rate-equations (their analogous in the continuum), assume that the
time evolution of the population aggregates is deterministic. In some cases, ran-
dom fluctuations can play a main role and lead to results that differ notoriously
from those obtained using the Smoluchowski formalism.

An alternative to the deterministic Smoluchowski formalism are the stochastic
approaches for modeling the kinetics, one of those is based on the use of master
equations. The main element of the master equation formalism is the ”grand
probability function”, P (N1, N2, ..., Nn; t) that represents the probability that in
a volume V at time t there are N1 ”aggregates” of size 1, N2 aggregates of size
2, ..., and Nn aggregates of size n. The master equation is the time-evolution
equation for the grand probability function P , that in an irreversible system reads

dP ( ~N, t)

dt
=

1

2V

∑

i,j

Kij((Ni+1)(Nj+1+δi,j)P ( ~N+
ij , t)−Ni(Nj−δi,j)P ( ~N, t))

(1.40)
whereKij is the aggregation kernel, and ~N+

ij stands for, (N1, ..., Ni + 1, ..., Nj +

1, ..., Ni+j − 1, ..., Nn) for i 6= j, and (N1, ..., Ni + 2, ..., N2i − 1, ..., Nn) for
i = j. A breakthrough in the use of the master equation formalism was done in the
1970’s when Gillespie [54,55] published a new and successful algorithm to solve
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these equations. Since then, several authors have made use of the master equation
formalism to study irreversible aggregation phenomena ( see, for instance, Thorn
et al [56], and Odriozola et al [57]).

1.3.3.d Numerical models in the irreversible cluster aggregation

The use of mean field equations constitutes a rough approach to real systems.
An example of the limitations of the mean field is its break down when the rate-
limiting factor is the transport of clusters. Therefore, it would be desirable to con-
sider new approaches in which the transport mechanism and the reaction mecha-
nism are explicitly specified.

In an effort to go beyond the mean field in the study of irreversible aggre-
gation phenomena, several models of aggregation where proposed and tested by
computer simulations. These models, although very primitive, are able to cap-
ture some of the basic features of colloidal aggregation phenomena. Two main
classes can be considered: the models in which single particles stick to a single
cluster (i.e. DLA [58], RLA, and Eden [59] models) and the models in which
cluster-cluster aggregations are take into account. Experience has shown that
cluster-cluster models are a more suitable description of the aggregation processes
among colloidal particles. A broad description of these models can be found in
Vicsek [31].

Although multiple variants of cluster-cluster aggregation have been devised,
most of the models are usually based in the following assumptions: move a cluster
following Brownian or ballistic trajectories; when two clusters become nearest
neighbors, they combine to form a new larger aggregate with probability 0 <

p ≤ 1. Notice that fragmentation of the clusters formed in previous steps is not
allowed, therefore, when aggregation occurs, it has an irreversible nature even if
p < 1.

We may classify these models into two main families: diffusion-limited
cluster-cluster aggregation models (DLCA) in which p = 1 (the first time they
become together they aggregate), and reaction-limited cluster-cluster aggregation
models (RLCA), in which p < 1.

DLCA
The former diffusion-limited models are due to the independent works of

Meakin et al [60] and Kolb et al [61]. Clusters are assumed to undergo random
walks. The diffusion coefficientDs of a cluster of size s is assumed to depend on
the cluster size as

Ds ∼ sγ
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where γ is the diffusivity exponent. This can be justified by the fact that the mo-
bility of a particle in a fluid is inversely proportional to its hydrodynamic radius.
The classic DLCA considers γ = 0. If γ is non-zero, clusters are usually moved
as follows: i) a random number 0 < η < 1 is selected, and ii) the cluster is moved
only if η < Ds/Dmax where Ds is the diffusion coefficient of the cluster, and
Dmax the largest diffusion coefficient in the system. Simulations of diffusion-
limited models lead to the formation of clusters of fractal nature in which the
fractal dimension is observed to depend on the diffusivity exponent γ. In 2d, if
γ < 1, the fractal dimension is almost the same D ∼= 1.45. For γ > 1, simula-
tions show a continuous change from D ∼= 1.45 to D ∼= 1.7, for γ = 2. If γ ≥ 2

the fractal dimension is constant and equal to the fractal dimension obtained in
diffusive particle-cluster aggregation (DLA) D = 1.7. DLCA simulations also
confirm that the exponents w, z, and τ , as well as the cluster size distribution
function nk(t), depend on γ. In particular, numerical results show that nk(t) ex-
hibits a crossover from a bell-shaped distribution in k for γ < γc to a monotonic
decreasing function when γ > γc. This crossover is also related to a change in
the way in which cluster size distributions scale. If γ > γc, DLCA results scale
as

nk(t) ∼ t−wk−τf(k/tz) (1.41)

where f(x) is a cutoff function f(x) ∼ 1 for x � 1 and f(x) � 1 for x � 1.
For γ < γc, a scaling form

nk(t) ∼ k−2F (s/tz) (1.42)

is still valid, but the cutoff function F (x) is F (x) = x2g(x). g(x) � 1 for
x � 1, and also g(x) � 1 for x � 1 which give rise to a bell-shaped function.
In addition, DLCA results for 〈n〉 and NC agree with the usual power laws given
in Eq. 1.38 and 1.39 respectively. This power laws are observed for any value of
γ.

RLCA
In the reaction-limited cluster-cluster aggregation we can study the dynamical

properties [62] through a diffusion-limited model with p� 1 [43]. If we assume
the stick probability of two clusters of size i and j to be size dependent in the
form,

Pij =

{
po(ij)

σ , for po(ij)σ < 1,
1, for po(ij)σ ≥ 1.

where po ≤ 1 is a constant. In this case, in addition to the crossover exponent γc,
a second crossover exponent σc appears. When γ > γc (or σ > σc) the scaling
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law given by Eq. 1.41 applies. However, if γ < γc (or σ < σc), the scaling form
Eq. 1.41 is no longer valid, but Eq. 1.42 applies.

1.3.4 Reversible cluster-cluster aggregation kinetics

In many cases the aggregation process exhibit a certain degree of reversibility.
Suppose a fragmentation processes Ai+j+k → Ai+j + Ak occurs with a rate
of events per unit of volume and time given by Fij ci+j . Then, the generalized
Smoluchowski equation reads,

dnk
dt

=
1

2

∑

i+j=k

(kijninj − Fijni+j)−
∑

i

(kiknink − Fkjnk+j) (1.43)

A general solution of the above equation is not available although the exis-
tence and uniqueness of mass-conserving solutions for such equations has been
proved mathematically (Lamb [63], and references therein). As a difference to
the irreversible case, the inclusion of fragmentation processes leads under some
conditions to stable equilibrium solutions for the cluster mean size and the size
distribution. Unlike the irreversible Smoluchowski equation (invalid for systems
with dimensionality d < 2), the mean field reversible Smoluchowski equation
can also be applied to systems with dimensionalities d ≥ 1 [64] . It has been
suggested the possibility that in the reversible case spatial fluctuations, that play
a critical role in low dimensionality systems, are somehow compensated by the
cluster fragmentation phenomena [64].

Blatz and Tobolsky [65] appears to be the first who obtained an analytical
solution to the reversible Smoluchowski equation in 1945. They assumed the
fragmentation and aggregation kernels to be constants kij = κ1 and Fij = κ2.
Since their pioneering work, analytical solutions have been restricted to a small
number of kernel dependences [65–69].

Nonetheless, interesting results can be obtained for the reversible case when
the fragmentation kernel has the form Fij = κΦij , where κ is a breakup constant
and Φij is an arbitrary function (with Φ1,1 = 1) determining the dependence
of the fragmentation rate on the cluster sizes. We expect that by increasing κ,
the mean cluster size 〈n(κ, t)〉 will decrease. If the mean cluster size scales for
t→∞ with κ, then 〈n(κ, t)〉 is expected to behave asymptotically as

〈n (κ,∞)〉 ∼ κ−y (1.44)

and the total number of clusters behave as

N(t→∞, κ) ∼ κy (1.45)
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The value of the exponent y (independent of the system dimensionality) can be
calculated in the mean field picture [64] if we assume: (a) the aggregation and
fragmentation kernels are homogenous functions of degree λ and α respectively,
(b) the generalized Smoluchowski equation is invariant under the transformations
κ→ aκ and k → a−yk. If such conditions are fulfilled, the exponent y is simply
related to the degrees of homogeneity of the coagulation and fragmentation rate
constants,

y =
1

α− λ+ 2
(1.46)

1.3.4.a Scaling approaches to the reversible aggregation phenomena

If we assume that the scaling form for the irreversible aggregation also holds for
the reversible case [64],

nk(t, κ) ∼ k−2f(k/〈n(t, κ)〉) (1.47)

the scaling form for the cluster-size distribution at t→∞ is

nk(t→∞, κ) ∼ k−2f(kκy) (1.48)

The scaling function f(x) is expected to behave [64] as

f(x) ∼ x2−τe−cx (1.49)

where the exponent τ and the constant c are expected to depend on the details of
Fij . These results have been confirmed with τ = λ − α for aggregation kernels
that, in addition of being homogenous, satisfy the detailed balance condition [70],

kijninj = Fijni+j (1.50)

These type of kernels allow an explicit determination of the scaling forms for
their solutions.

The use of the scaling hypothesis for the reversible case (Eq. 1.47) can be
used to obtain new results. Sorensen et al [71] have shown that if the scaling func-
tion Eq. 1.47 holds for all time, and the aggregation and fragmentation kernels
are homogeneous functions, the mean cluster size 〈n〉 should obey the following
differential equation

d〈n〉
dt

= a〈n〉λ − b〈n〉α+2 (1.51)

where a and b are constants in the Sorensen deduction (which is true only in
certain cases). If a and b are constants, the above equation can be rewritten in a
scaled equation,

d〈n∗〉
dt∗

= 〈n∗〉λ − 〈n∗〉α+2 (1.52)
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in which 〈n∗〉 = 〈n〉/〈no〉 and t∗ = t/to. 〈no〉 is the equilibrium value of 〈n〉
at long times, whereas to could be identified with a characteristic time scale to
reach the equilibrium (when the solution leads to a steady state). The Eq. 1.52
becomes actually a worthwhile result because it allows us to compare numerical
works against predictions from Smoluchowski mean field equation and, in turn,
relate these results to the degrees of homogeneity of the kernels. Furthermore,
Eq. 1.52 establishes a stability criteria for the solutions of the Smoluchowski
equation. The kinetics is expected to yield a stable solution (〈n〉 has a finite value
at t → ∞) if α+ 2 − λ > 0; otherwise solutions are expected to diverge. In the
stable regime, if 〈n∗〉 � 1 and λ < 1, then

〈n∗〉 ∼ tz (1.53)

where z = 1/(1− λ). In the opposite extreme 〈n∗〉 → 1,

〈n∗〉 ∼ (c− t/z′)z′ (1.54)

with z′ = −1/(1 + α) and c as a constant value.
Unfortunately, Sorensen results are not as general as they could be thought at

first sight. Vigil and Ziff [72] pointed out that the Sorensen formalism, although
mathematically correct, could not warrant a and b to be constants for whatever
choose of the aggregation and fragmentation kernels. Until now no work has
established a general criteria to elucidate which type of kernels will lead a and
b to be true constants. It is known that the Blatz-Tobolsky model satisfy such
requirements. It is easy to show that models in which λ = α + 2 will be also
correctly described by Eq. 1.52. Another group of kernels that satisfy the above
equations 1.53 and 1.54 are those kernels in which detailed balance is satisfied at
equilibrium (see Eq. 1.50). Therefore, although Sorensen theory is not valid for
all the kernels, it seems to have a wide range of kernels in which is applicable.

In addition to the remark of Vigil and Ziff, Meakin and Ernst [44] obtained the
important result that the scaling distribution has two functional forms. At early
times, when aggregation dominates, the scaling form is similar to the scaling used
in the irreversible case. At large times, the scaling function f(x) is expected to
behave in a different way,

nk(t, κ) ∼ k−2f(kκy, tκx) (1.55)

where y is given by Eq. 1.46 and x = y/z. The transition from one scaling
regime to the other is characterized by a typical time τ(κ), that is supposed to
behave as τ(κ) ∼ κ−x for κ→ 0.

The results of Meakin-Ernst and Vigil-Ziff might in principle limit strongly
the usefulness of Sorensen results. In order to elucidate to which extent Sorensen
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results are valid, Elminyawi et al [73] integrated numerically the generalized
Smoluchowski equation for several kernels. Numerical results show that limi-
tations placed to the Sorensen results are not too severe. Theoretical predictions
agree with the numerical solutions with a large degree of accuracy in most of
cases. In addition, numerical results show that the crossover of nk(t) from the ini-
tial scaling form (exponential behavior) exist as predicted by Meakin and Ernst,
but changes in the scaling form are observed for clusters of size i� 〈n〉. Never-
theless such small clusters have a small contribution to the parameters a and b in
the Sorensen equation. Therefore, Sorensen results can be considered as a good
approach to the solution of the Smoluchowski equation in many cases.

1.3.4.b Other approaches to the reversible aggregation phenomena

As in the previous irreversible aggregation process, the master equation for-
malisms can be applied to the reversible aggregation case. To do so, the following
term should be added to the right hand side of the irreversible master equation (Eq.
1.40),

1

2

∞∑

n=2

(Nn + 1)

n−1∑

i=1

Fi,n−iP ( ~N−i,(n−i), t)−Nn

n−1∑

i=1

Fi,n−iP ( ~N, t)) (1.56)

whereFij is the fragmentation kernel, and ~N−ij stands for, (N1, ..., Ni−1, ..., Nj−
1, ..., Ni+j+1, ..., Nn) for i 6= j, and (N1, ..., Ni−2, ..., N2i+1, ..., Nn) for i = j.
This formalism has been applied to the study of the kinetics in several particular
reversible aggregation-fragmentation models [74–76].

As in the irreversible case, non-mean field approaches to the study of the
reversible aggregation phenomena have been done. These alternative approaches
will be presented in Chapter 4.

1.4 Scattering by aggregates

Scattering techniques are a very powerful tool for probing the structure and dy-
namics of the matter at microscopic level. Depending on the characteristic length
scales of the object under study, we can use: light, X-ray, and neutron scattering
techniques. The smallest length scale that can be resolved with a given technique
is of the same order of magnitude of the wavelength associated to the beam:
λ ∼ 0.1nm for Neutron and X-ray techniques, λ ∼ 500nm for light scatter-
ing. Any of the above methods have advantages and disadvantages depending
on the characteristics of the sample. For instance, neutrons are scattered much
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Technique Typical λ (nm) q (nm−1)
Laser light scattering 500 1 · 10−3 - 4 · 10−2

Small-angle x-ray scattering 0.15 2 · 10−2 - 4 · 10−1

Small-angle neutron scattering 0.1 7 · 10−3 - 9 · 10−1

Wide-angle neutron scattering 0.1 1 · 101 - 5 · 101

Table 1.3: Range covered by various scattering techniques.

more strongly than X-rays when the sample contains large amounts of light ele-
ments such as hydrogen. Atoms with large electronic structure produce a roughly
similar scattering strength in X-ray and neutron techniques. Radiation at optical
length scales is found to be scattered several orders of magnitude more strongly
than X-rays. Light scattering is desired in colloids where the density of scatters is
very low, but can also lead to the so-known multi-scattering phenomena (photons
are scattered more than once as they pass through the sample). Multi-scattering
is usually undesired because it complicates the scattering results, although the
multi-scattering problem has been turned into an asset in certain techniques as
the diffusing-wave spectroscopy [77]. Table 1.3 shows a comparison of the typi-
cal ranges covered by various scattering techniques.

Light scattering has proved to be very useful in the study of colloidal aggre-
gation, because colloidal aggregates often develop structures whose fundamental
length scales are comparable to optical length scales. The basic principles of the
static and dynamic light scattering by aggregates has been reviewed recently in
detail by several authors [78–81].

In this section we will give a short summary of the main facts related to the
scattering of radiation by colloidal aggregates.

Consider a scalar electromagnetic field,

E(~r) ∼ ei~ki·~r

affecting two colloidal particles (Figure 1.9). Light is scattered towards the de-
tector in the direction ~ks. Assuming the scattering to be elastic the wavelength of
the scattered light is unchanged, |~ki| = |~ks|. In order to simplify the discussion,
multi-scattering is neglected, and the refractive index of the medium is unity. The
light scattered from both particles will travel a different distance

∆s =

(
~ks
ks

)
·∆~r −

(
~ki
ki

)
·∆~r,

and therefore a phase difference ∆φ is present when both waves arrive at the
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detector. The relative phase is,

∆φ = 2π/λ∆s = (~ks − ~ki) ·∆~r = ~q ·∆~r

where the scattering wave vector ~q is defined as ~q = ~ks − ~ki, of modulus

q =
4π

λ
sin

(
θ

2

)
(1.57)

Detectorθ

∆r

∆r(ki/ki)

ki

ks

q = ks - ki

)

(ks/ks) ∆r

Figure 1.9: Scheme of the scattering of light from two particles.

The contribution to the scattered beam of a single particle j, located at posi-
tion ~rj , at the detector position ~R, can be written as

~Ej(~q, ~R) ∼ ~cj(~q)ei~ks·~Re−i~q·~rj (1.58)

where ~cj(~q) is the amplitude factor of the scattered light associated to the particle
j. The intensity associated to a system of N scatters is then

I(~q) ∼
〈∣∣∣ ~E(~q)

∣∣∣
2
〉
∼

N∑

j=1

N∑

k=1

~cj(~q)[~ck(~q)]
∗e−i~q·(~rj−~rk) (1.59)

If the amplitude factors are all them similar as would be the case for identical
spherical particles it is possible to rewrite the intensity as,

I(~q) ∼ F (~q)S(~q) (1.60)

where F (~q) is the form factor which describes the structure of a single particle,
and S(~q) is the structure factor that accounts for the spatial correlations among
the positions of the center of masses of the scatters,

S(~q) =

N∑

j=1

N∑

k=1

e−i~q·(~rj−~rk) =

∣∣∣∣∣
N∑

k=1

e−i~q·~rk
∣∣∣∣∣

2

(1.61)
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The structure factor can be easily related to the particle number function

n(~r) =

N∑

i

δ(~r − ~ri) (1.62)

and to its self-convolute function (better known as the autocorrelation function)

g(~r) =

∫
n(~r − ~ζ)n(~ζ)d~ζ (1.63)

through the equality
N∑

k=1

e−i~q·~rk =

∫
ei~q·~rn(~r)d~r (1.64)

and the convolution theorem of Fourier analysis. From Eq. 1.61 we obtain the
following expressions for the structure factor,

S(~q) =

∫
g(~r)ei~q·~rd~r (1.65)

and

S(~q) =

∣∣∣∣
∫
n(~r)ei~q·~rd~r

∣∣∣∣
2

(1.66)

Under the assumption of isotropy, S(~q) ∼ S(q) and g(~r) ∼ g(r), Eq. 1.65 yields
(for 3d)

S(~q) = 4π

∫
g(r)

sin(qr)

qr
r2dr (1.67)

In a pure liquid, (see Figure 1.10), the structure factor has the well known
damped-oscillating shape that reflects the fact that particles inside a liquid have
correlated positions, and that these correlations become weaker when the distance
among the particles increases.

In order to measure the structure factor associated to the colloidal particles
that form the aggregates in the suspension, we must subtract the profile of the
pure medium (the liquid). In what follows we will assume the structure factor
to be referred to the contribution of the colloidal particles only. The function
S(q) for large values of q is expected to give information about the interparticle
correlations among neighboring colloidal particles, whereas at low q values will
probe large scale correlations or inhomogeneities.



1.4 Scattering by aggregates 37

Figure 1.10. Static liq-
uid structure factor for a liq-
uid of hard spheres at three
different volume fractions:
φ = 0.1 (solid line), φ =

0.2 (dotted line), and φ =

0.3 (dashed line).

1.4.1 Typical structure factors for fractal aggregates

Suspensions in which fractal aggregates are present usually exhibit a structure
factor S(q) in which at least three different regimes can be observed.

In the limit of very small qRg � 1 we are in the Rayleigh regime. In this
regime there is no interparticle interference because the probe lengths are much
larger than whatever typical length in the system. The regions of that size are
uncorrelated with each other and S(q) ∼ N 2.

In the limit qRg < 1 (lengths larger than the mean size of the aggregate), the
structure factor can be written as

S(q) ∼ N 2

(
1− 1

3
q2R2

g

)
+ ... ∼ N 2e−q

2R2
g/3 (1.68)

where Rg denotes the radius of gyration of the aggregate. The above result is
often called the Guinier equation [82–84] and can be obtained [29] by expanding
the integrand of Eq. 1.67 and use the identity,

R2
g =

1

2

∫
r2g(r)d~r (1.69)

The Guinier equation allows to determine the size of the aggregates easily because
it is independent of g(r) and thus of the details such as the refractive index.

In this regime qRg > 1 > qro we observe lengths smaller or comparable to
the size of the aggregate but still larger in comparison with the size of a single
colloidal particle ro. In order estimate S(q) in this regime we need an explicit
form for g(r). Teixeira [84] showed that g(r) is expected to scale as,

g(r) ∼ rDf−dh(r/R) (1.70)
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where Df is the fractal dimension of the aggregate, R is a characteristic length
that represent the size of the aggregate, and h(r/R) is a cutoff function that takes
care of the finite character of the aggregate. h(x) is approximately constant for
x < 1 and it decreases faster than any power law for x > 1. This cutoff function
is independent of the fractal nature of the aggregate and the structure factor can
be written as

S(q) ∼
∞∫

0

h(r/R)rDf−dsin(qr)/(qr)rd−1dr (1.71)

or,

S(q) ∼ q−Df
∞∫

0

h(u/(qR))uDf−2sin(u)du (1.72)

The nature of h(x) insures the convergency of the above integral to a finite
constant, thus the structure function of a fractal aggregate at large q-values is
expected to behave as

S(q) ∼ q−Df (1.73)

It is possible to obtain the fractal dimension of an aggregate from the above result,
as it has been done for several authors [85, 86].

log10(q)

lo
g 10

[I
(q

)]

Rayleigh  regime

Guinier Regime

Power law regime [ slope = -Df ]

Porod regime [ slope = -(d+1) ]

Figure 1.11. Schematic representation of the expected scattered light intensity I(q) versus q
from an ensemble of fractal aggregates. The four typical regimes are depicted.

For qro � 1 (q−1 becomes of the order of the size of the colloidal particles
ro) we enter the so called Porod regime. At this scale the fractal nature of the
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Figure 1.12. In some cases a peak at low angles appears in the scattering from an aggregating
suspension. The evolving intensity pattern I(q) is plotted versus q for an emulsion of droplets
that suffer an aggregation process. The times are t = 5, 90, 150, 240, 360, and 600 s (bottom
to top) after the temperature quench. The inset shows a double logarithmic plot for high
values of q. The plot have been taken from Bibette et al. [91].

aggregate is lost, unless primary particles by themselves have a fractal nature. In
this regime the structure factor behaves as [83, 87–89],

S(q) ∼ q−(d+1) (1.74)

In summary, the structure factor function for fractal systems is expected to
exhibit four regimes (Figure 1.11): the Rayleigh regime, the Guinier regime, the
regime ruled by Df , and the Porod regime. This picture, although useful, is in
some cases incomplete. Some aggregating systems exhibit a peak in the structure
factor at small non-zero angles (small q-values) [80, 90, 91] (see Figure-1.12).
Some authors have suggested that the presence of such peak at finite angle could
be the characteristic mark of the formation of a mesoscopic structure in the system
at the scale of tens of particles. Nonetheless, the origin and physical meaning of
this peak is still partially understood. This issue will be later revised in Chapter
5.





Chapter 2

Basic principles of polymer
physics

The aim of this chapter is introduce some basic concepts related to polymer
physics. A full statistical mechanics description of polymer physics is out of

the scope of the thesis and can be found elsewhere [92–95], however, we will re-
vise the main theoretical concepts and ideas related to the research studies carried
out in this thesis. Additional references are given along the chapter for readers
interested in a deeper study of the topics presented here.

2.1 What is a polymer?

A polymer can be roughly defined as a macromolecule made of a large se-
quence of chemical units (called monomers) linked by covalent bonds1. A di-
agrammatic representation of a polymer molecule is shown in Figure 2.1 where
A,B,C,... are monomer units and the dash symbols represent covalent bonds be-
tween monomers. The monomers that form a polymer could be in principle all
chemically different, although usual polymers only contain few different kinds
of monomers. The covalent bond that links a monomer unit with another is in
most of cases a Carbon-Carbon bound, nonetheless there are notorious exceptions
as proteins in which amino acids play the role of monomers which are linked
by Carbon-Nitrogen (C-N) covalent bonds. DNA can also be considered as a
polymer in which the monomers are the nucleotides. DNA monomers are linked

1Nowadays, the concept of giant macromolecules seems to us very natural, but it has a long
history. Prior to 1920’s, the vast majority of scientists denied the existence of such molecules. It
wasn’t until 1927 that the organic chemist Hermann Staudinger demonstrated without refusal that
polymers were made by a sequence of units linked by covalent bonds.

41
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among them by phosphor-oxygen bonds 2. A basic quantity related to a polymer
molecule is the number of monomers N often called the degree of polymeriza-
tion. Usually N � 1, for example, proteins have chain lengths of the order of
N ∼ 102 − 104 amino acids, whereas DNA (among the longest polymers) con-
tains about N ∼ 109 nucleotides.

A-D-C-D-A-E

A
-C

-B
 ...

C-C-A ...

A-F-C-F ...B
-A

-C
 ..

. Figure 2.1. The most
basic representation of a
polymer molecule is a di-
agram showing how chem-
ical monomer units are
linked among them to form
the primary structure of the
macromolecule. Each let-
ter in the diagram repre-
sents a different chemical
monomer, and straight lines
represent covalent bonds.

The most simple polymers are those based on a sequence of carbon and hy-
drogen atoms. Among them, the easiest is the well-known polyethylene that can
be depicted by the formula CH3 − (CH2)n − CH3 (see Figure 2.2). A typical
polyethylene molecule contains of the order of 105 monomer units (−CH2−).

H
H

C C

C C

H H H H

HH

� C C

C

H H H H

HH

valence angle

C

C

�

C

C

dihedral angle

Figure 2.2. Chemical rep-
resentation of a segment
of a polyethylene molecule
in which each −CH2−
unit constitutes a chemical
monomer. The angles θ and
φ stand for the valence and
the dihedral angles respec-
tively.

Polyethylene is the stereotype of a linear polymer that can be defined as a
polymer whose monomers are linked to other monomers through two and only

2Other polymers with covalent bonds between monomers different from carbon-carbon: polysi-
lanes (Si-Si), Silicons (Si-O), polygermanes (Ge-Ge), polystannanes (Sn-Sn), and the polyphosp-
hazenes (P-N).
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two covalent bonds, except the monomers located at both ends that are linked
by a single covalent bond to the remaining chain. Polymers in which there are
monomers that share bonds with three or more monomers are called ramified
polymers. The polymer depicted in Figure 2.1 is a clear example of a ramified
polymer. Polyethylene is also a prototype of a class of polymers called homopoly-
mers. We can define an homopolymer as a polymer in which all the monomeric
units are exactly the same, on the other hand, heteropolymers are polymers com-
posed by different monomers units. For instance, DNA can be considered as
a heteropolymer composed of 4 types of monomers, whereas, proteins are het-
eropolymers which contain usually up to 20 different kinds of monomers.

Heteropolymers in which there are only two different kinds of monomers are
called copolymers; if they contain three different types of monomers, terpoly-
mers, etc. Copolymers can be additionally classified depending on their internal
organization, namely.

• Statistical copolymers. The distribution of the two types of monomers in
the chain is essentially random ...BAABABBBBABABBABAAA....

• Alternating copolymers. Monomers are regularly placed along the chain
...ABABABABAB....

• Block copolymers. Comprised of substantial sequences or blocks of each
monomer
...AAAAABBBBBAAAAABBBBB....

• Grafted copolymers. Polymer blocks of one monomer are grafted onto a
backbone of the other monomer forming branches (Figure 2.3).

A-A-A-A-A-A-A-A-A-A ...
B
B

B

B

B
B

B
B
B

... ...

...

Figure 2.3. Schematic
representation of a grafted
copolymer molecule.

Both homopolymers and heteropolymers can be synthesized into complex
ramified structures. The most usual types of branched polymers are: star poly-
mers, miktoarm star copolymers, star copolymers, comb polymers, and den-
drimers (Figure 2.4).

Polymers can be electrically neutral or have charges distributed along their
structure. When a polymer contains charged units it is called a polyelectrolyte.
The charges must be counterbalanced either by the presence of monomers with
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(a) (b) (c)

(e)(d)
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Figure 2.4. Schematic
representation of the most
usual types of branched
homopolymers and het-
eropolymers: (a) star
polymer, (b) miktoarm
star copolymer, (c) star
copolymer, (d) comb
polymer, and (e) dendrimer.

opposite charges in the chain (polyampholytes ) or by the presence of counter-ions
around the chain.

The polymer structure and composition lead to different statistical proper-
ties, rising a rich variety of physical behaviors that determine the mechanical and
thermal properties of the polymeric materials or how do they interact with other
substances or structures.

2.2 Conformations of a polymer chain

A polymer molecule is usually represented in a fully stretched conformation. This
representation, although useful in certain cases is definitively misleading in refer-
ence to the usual conformations adopted by polymers. In practice, the probability
of a molecule to exhibit a fully stretched conformation is extremely low.

Consider, for instance, a fully stretched polyethylene chain as depicted in
Figure 2.2. In that conformation the valence angle θ and the dihedral angle φ
minimize the steric hindrance (overlap) among the monomers. However, due to
the thermal fluctuations, both θ and φ are allowed to oscillate around their optimal
values. The higher the temperature, the larger the oscillation of θ and φ around
their optimal values. The slight distortion of one valence or dihedral angle has
minimum consequences for the entire chain, but the sum of the effects of many
slight distortions leads the chain to adopt conformations very far from the full
stretched conformation, developing a random coil structure (Figure 2.5). A chain
able to suffer large deviations from the fully stretched conformations is said to
exhibit a large degree of flexibility.

To simplify still further the model, consider the valence angles and the bond
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lengths fixed to their optimal values, so the dihedral angles are the only parame-
ters to consider. As reflected in Figure 2.6, if the carbon Cn rotates, the dihedral
angle φ changes, however a monomer is not free to rotate because the hydro-
gen atoms linked to carbon Cn and those linked to the atom Cn−1 will repeal
among each other. The repulsions among atoms due to their proximity in space
are often called steric repulsions. Figure 2.7 shows the energy associated to the
dihedral angle φn. There are three minima (a Trans and two Gauche conforma-
tions) separated by two energy barriers. Two essential parameters in determining
the polymer conformations are: (1) the energy difference between two consec-
utive minima ∆ε, and (2) the energy barrier separating the two minima ∆E. If
∆ε is smaller than the thermal energy, kBT , the relative weight of gauche/trans
conformations will be of the order of the unity given rise to flexible chains. In
contrast, as the ratio ∆ε/KBT increases, the relative weight of gauche/trans con-
formations tends to zero, the trans state becomes the preferred one leading to a
stretched polymer chain. In polyethylene molecules ∆ε ∼ 3.34kJ/mol−1 . If we
assume that the ratio between the number of gauche, ng, to trans, nt, states is
governed by the Boltzmann factor,

ng
nt

= 2 exp(−∆ε/kT ) (2.1)

we will obtain that ng/nt is 0.036, 0.264, and 0.524 for T=100K, T=200K and
T=300K, respectively. These results entails that polyethylene (as well as many
other polymer molecules) at room temperature or higher temperatures exhibit a
large degree of flexibility since a large number of monomers are in the gauche
state. When the temperature is reduced, the number of Gauche conformations ng
reduces and the chain becomes stiffer or less flexible.

Figure 2.5. Polymers are usually not fully
stretched, they resemble a random coil.

Cn-2

Cn-1

180o -φn

Cn+1
Cn

θn

θn-1

Figure 2.6. Schematic representation of a
segment of a polyethylene chain.

A sequence of monomers of a polyethylene molecule maintain an approxi-
mately straight path when all their monomers are in the trans state. However,
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the chain orientation changes dramatically when a gauche conformation occurs.
Probability states that given a fixed ng/nt ratio, the probability that the (i + n)-
monomer has the same orientation in the space that the i-monomer decreases
with the distance n. Therefore, a chain can be naively depicted as a succession
of rigid rods, each of them composed of monomers in the trans state, separated
by monomers in the gauche state. Obviously the length of such rods fluctuates
in time, but we can estimate an averaged length lp for such rods. The quantity
lp is often called the persistence length 3 and it is a characteristic parameter for
a polymer. In the next section it is shown how lp can be numerically estimated.
If we look at a polymer at scales larger than lp, the polymer behaves as a flexible
chain resembling a random coil in which the effective monomers have a size lp.
However, if we look the polymer on scales shorter than lp, the chain will resemble
locally rather stretched. The value of lp for a real macromolecule depends on the
chemical details and the internal structure of the molecule. As an example, the
persistence length for polyethylene is about lp ∼ 0.6nm, for DNA typical values
are of the order of lp ∼ 50nm, whereas F-actin 4 reaches persistence length up to
lp ∼ 10000nm.

The global behavior of a polymer chain can be considered to be flexible or
stiff depending how lp compares to the full length of the molecule L. If L � lp
the chain behaves globally as a rigid rod (fully stretched) at all scales. If L � lp
the polymer is considered to be flexible and it looks like a loosely coiled ball
(Figure 2.5).

3Formally, we can write lp as a function of ∆ε: lp = lo exp(∆ε/kT ), where lo is a constant.
4F-actin is a polymer (or filament) composed by a sequence of linked globular actin proteins.

F-Actin as well as myosin filaments are present in myofibrils. Each muscle fiber contains several
hundred of thousands of myofibrils.
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2.3 Characterization of a single polymer chain

The study and characterization of a single polymer can be done at several levels.
In polymer physics we are not usually interested in the very fine chemical poly-
mer details. However, polymer physics looks at the global or coarse properties of
the polymers. At this level, it is common to characterize a polymer through the
evaluation of the characteristic parameters related to the distribution and orienta-
tion of monomers in space. One of these characteristic parameters was found in
the previous section when the persistence length lp was discussed. In the follow-
ing we will describe other magnitudes used along the thesis to describe the main
features concerning the polymer structure.

• The average root mean square end-to-end distance Ree.

• The Kuhn segment length.

• The radius of gyration Rg
• The chain asphericity parameter ∆.

• The non-sphericity parameter A.

• The bond-angle correlation BAC and the persistence length lp.

• The bond-order correlation function BOC .

2.3.1 The mean square end-to-end distance, and the Kuhn segment
length

The mean square end-to-end distance R2
ee defined as the average (over all chain

conformations) of the square distance between the two ends of the polymer
chain (Figure 2.8). If the positions of the N monomers of a chain are given
by ~r1, ~r2, ..., ~rN−1, ~rN , the mean end-to-end distance is defined as

R2
ee = 〈(~r1N )2〉1/2 = 〈(~r1 − ~rN )2〉1/2 (2.2)

where 〈...〉 denotes an average over all the possible chain conformations.
A common parameter intended to measure the degree of flexibility of the

polymer is the Kuhn segment length lK defined as,

lK =
R2
ee

L
(2.3)

where L is the length of the chain. The Kuhn length and the persistence length
are parameters with close meanings: a large value of lp or lK (respect to the
size of a monomer) implies a polymer with a low degree of flexibility. In Table
2.1 the Kuhn length for several macromolecules is compared to the size of their
monomers, a.
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Figure 2.8. Schematic plot of a poly-
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are depicted. The position vectors
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are called bond vectors, ~b. The dis-
tance between the two chain ends
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Macromolecule lK/a

polypropylene 3
polyvinylchloride (PVC) 4

polystyrene 5
cellulose diacetate 26

polyparabenzamide-benzamide 200
DNA (double helix) 300

polybenzyl glutamate (α-helix) 500

Table 2.1. Comparison between the Kuhn length lk and the linear size of a monomer a for
several molecules ordered with decreasing flexibility.

2.3.2 The Radius of gyration of the chain

Another common way to character the size of a polymer is through the radius of
gyration Rg. We define the radius of gyration tensor through their elements,

Rα,β =
1

2N2

N∑

i,j=1

(ri,α − rj,α)(ri,β − rj,β) (2.4)

where α and β denotes de Cartesian components x, y, and z. The tensor can be
represented as a diagonalizable 3× 3 matrix. The three eigenvalues λi,




λ1 0 0

0 λ2 0

0 0 λ3


 (2.5)

characterize the size of the polymer along the principal axes. The eigenvectors
associated to the eigenvalues point along the directions of the three principal axes
of symmetry of the polymer. The square of the gyration radius is defined as the
sum of the three eigenvalues λi,

R2
g = λ1 + λ2 + λ3
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When the monomers are isotropically distributed, an alternative method can be
used in order to compute the radius of gyration,

Rg = 〈R2〉1/2 = 〈(~ri − 〈~ri〉)2〉1/2 (2.6)

where the outer 〈...〉 implies an average over all polymer conformations, and 〈~ri〉
stands for the position of the center of mass in a given conformation. Debye
proved [96] that Ree and Rg are related in the limit N →∞ by the equality,

R2
ee = 6R2

g (2.7)

when no correlations exists among the position of the monomers.

2.3.3 The asphericity and non-sphericity parameters

The eigenvalues λ1, λ2, λ3 of the radius of gyration tensor can be used to estimate
the ”deviation” of the cloud of monomers from a spherical distribution, i.e. to
determine the degree of anisotropy of the chain. Thus, the asphericity is defined
as,

∆ =
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

2(λ1 + λ2 + λ3)2
(2.8)

When the monomer distribution is perfectly spheric ∆ = 0, whereas for very
elongated conformations ∆ ∼ 1/4, and in the limit of a infinite fully stretched
chain ∆ ∼ 1.

In some cases it is possible to know in advance the direction along which
the principal axis will lie. Then, a simpler function, the non-sphericity A, can
be defined in order to measure the degree of anisotropy of the chain [97]. If,
for simplicity, we assume the main axis to lie along the eigenvector of λ2, the
non-sphericity is determined by,

A =
1

2

(
2〈λ2〉 − 〈λ1〉 − 〈λ3〉

〈R2
g〉

)
(2.9)

where R2
g = λ1 + λ2 + λ3. A = 0 when the monomer distribution is isotropic in

the 3d space, and A = 1 when all the monomers are perfectly aligned along the
eigenvector of λ2. When the chain has an isotropic 2d distribution, A = 1/4.

2.3.4 The bond-angle correlation function (BAC) and the persistence
length lp

The bond-angle correlation function (BAC) is defined as,

BAC(i) =

〈
~bj ·~bj+i
|~bj ||~bj+i|

〉
=

〈
cos

(
φ( ~̂bj~bj+i)

)〉
(2.10)
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where φ( ~̂bj~bj+i) is the angle formed by the bond vectors ~bj and~bj+i. A bond vec-
tor is defined as the difference between the position of two consecutive monomers
~bj = ~rj+1 − ~rj . The BAC function measures the degree of correlation between
bond angles that are separated i units along the chain. Chains without correla-
tions among monomer positions should have BAC(i) = 0 for all i. The BAC
function can be used in order to estimate of the persistence length lp of a polymer
chain. If we assume the BAC function to decay exponentially with the distance
between monomers, the persistence length lp can be defined as the decay length
of the BAC function,

BAC(x) ∼ exp

(−xσ
lp

)
(2.11)

where σ is the monomer size.

2.3.5 The bond orientational correlation function (BOC)

The BOC function measures the correlation in the orientation of polymer bonds
between monomers5 and is defined as,

BOC(i) = 〈p̂j · p̂j+i〉, (2.12)

where 〈...〉 represents an average along the chain and over all the polymer confor-
mations. The unitary vector p̂i is given by

p̂i =
~bi ×~bi+1

|~bi ×~bi+1|
(2.13)

and by definition its perpendicular to the plane containing the bond vectors ~bi and
~bi+1. The BOC function is expected to be zero when bond vectors are completely
uncorrelated in space. Whereas BOC(i) → 1 if the sequence of bonds between
monomers follow a perfect line path.

2.4 Models for ideal chains

Along the XX century, several simplified mathematical models have been pro-
posed in order to gain insight into the statistical properties of polymers. The
simplest models were based on the concept of ideal chains. An ideal chain repre-
sents a similar degree of simplification when compared to the role of the ideal gas

5The bond-angle correlation function (BAC) does not describe completely the orientation of
bonds. Pairs of bonds with similar bond angles can point into very different orientations in the
space.
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in the study of gases. An ideal chain is made of immaterial monomers, and corre-
lations among monomers do not exist or do not extent beyond few monomers in
the chain sequence. In addition, no interactions with solvent molecules or other
polymer chains are taken into account. The different mathematical models de-
veloped for ideal chains basically differ in the type of bonding assumed between
nearest monomers. The most common models for ideal chains are: the freely
jointed chain, the freely rotating chain, the Gaussian chain, and the worm like
model.

2.4.1 The freely jointed chain model

The freely jointed chain model is the simplest model describing a polymer: the
chain is composed of a sequence of N segments (monomers) of fixed length a
(Figure 2.8) . Each segment is free to point in whatever direction, and no correla-
tions among their orientations exist. The model is in fact completely equivalent to
the mathematical Random Walk problem. The mean square end-to-end distance
R2
ee can be written in terms of the bond vectors ~b as:

R2
ee = 〈(~r1N )2〉 =

〈(
N∑

i=1

~bi

)2〉
=

N∑

i=1

〈(~bi)2〉+ 2
N∑

i<j

〈~bi ·~bj〉 (2.14)

Taking into account that bond directions are not correlated 〈~bi · ~bj〉 = 0, and
(~bi)

2 = a2, we obtain the very important result,

Ree = 〈(~r1N )2〉1/2 = aN1/2 (2.15)

Thus, an ideal chain composed of freely jointed bonds has a mean size that in-
creases with the square root of the number of monomers in the chain, on the con-
trary to a fully stretched chain in which the size of the macromolecule increases
linearly with N .

The expression 2.15 is a very general result which goes beyond the freely
jointed chain model. More realistic models take into account the fact that bond
lengths among monomers are not constant, and their values oscillate around an
average length following an arbitrary probability bond length distribution func-
tion p(|~b|). It is possible to demonstrate [94] that whatever bond distribution
function is taken will lead to the same result 2.15 in the limit N →∞.

Thus, theN 1/2 behavior is universal in the limitN →∞ for any type of ideal
chain without correlations among its bonds. The same result is in fact obtained
if correlations among consecutive monomers are present 〈~bi · ~bj〉 6= 0, but they
decrease with the distance |i − j| [94]. When correlations are of finite size, the



52 Basic principles of polymer physics

chain can be redefined as a sequence of uncorrelated bonds ~c (Figure 2.9) that
behaves as predicted by the expression 2.15 in the limit of N →∞.

c1

c2

c3 c4

c5 c6

c7

c8

c9

c10

c11c12

c13

Figure 2.9. A polymer with finite range
bond correlations can be redefined in terms
of an uncorrelated sequence of bonds ~ci

Figure 2.10. A physical representation of
a Gaussian chain is a polymer made ofN−
1 beads in which consecutive monomers
are connected by springs obeying Hook’s
law.

2.4.2 The Gaussian chain model

The Gaussian chain model constitutes a particular case of an ideal chain com-
posed of segments of variable length in which the bond length probability distri-
bution function p(|~b|) is a Gaussian (see Figure 2.10)

p(~b) =

(
3

2π〈(~b)2〉

)3/2

exp

(
−3(~b)2

2〈(~b)2〉

)
(2.16)

The limit N → ∞ also applies to the Gaussian chain model. In fact, what-
ever bond length distribution is used, it leads to the same N 1/2 dependence as
established in the central limit theorem which states that all distributions tend
to become more and more Gaussian if samples are taken over larger and larger
sets. The Gaussian model, as the previous models described, do not reproduce
correctly the local structure of the polymer, but it describes accurately the statis-
tical properties at large scales. The advantage of using the Gaussian model lies
in the fact that is mathematically easier to handle that any other non trivial model
and they can be considered as an starting point for more elaborated models. For
instance, the bare Gaussian model can be modified to account for monomer cor-
relations, chain stiffness, and energetic interactions among monomers [92].
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2.4.3 The freely rotating chain model

In order to characterize chains in more detail, bond lengths and valence angles
between contiguous bonds are, in general, restricted to fairly narrow ranges. At
room temperature bond length oscillations are typically smaller than a 3% and
angle fluctuations are below five degrees. In the freely rotating chain model [92]
a chain is composed of N bonds of fixed length a, and a constant valence angle θ
is specified, however, dihedral angles do not have a fixed value. The constraints
of the model lead to the following expression for the correlation between bonds,

〈~bi ·~bi+k〉 = a2 cosk(θ)

the square end-to-end distance in the limit of N →∞ is given by [98]

R2
ee = Na2 (1 + cos(θ))

(1− cos(θ))

and the relation R2
ee = 6R2

g also applies. Improved rotational models tune the
correlations among bonds through the introduction of a restricted dihedral angle
φ. Usually these restrictions are formulated via potentials that depend on θ and
φ. Calculations become complex and matrix techniques must be used [92]. If we
assume a model in which θ and the bond length are constants and the rotational
potential only depends on φ, it is possible to prove that the mean square end-to-
end distance in the limit N →∞ is [99]:

R2
ee = Na2 [1 + cos(θ)]

[1− cos(θ)]

[1 + 〈cos(φ)〉]
[1− 〈cos(φ)〉]

2.4.4 The worm like chain model

The models in which valence and dihedral angles are restricted to their char-
acteristic values can be used to describe ideal semiflexible chains, but have the
disadvantage of being difficult to study analytically. An easier model for ideal
semiflexible chains from the analytical point of view is the Worm-like chain con-
tinuum model (WLC) also known as the Kratky-Porod chain [100]. The WLC
hamiltonian of a semiflexible chain with persistence length lp = κ/(kBT ) is:

H(~t(s)) =
κ

2

L∫

0

ds

(
∂~t

∂s

)2

(2.17)

where ~t(s) is the unit tangent vector to the chain at point s. The partition function
of the chain can be formally written as:

∫
D[~R(s)] e−βH(~t(s)) (2.18)
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where ~R(s) is the path followed by the chain in space. It is possible to demon-
strate that end-to-end distance for a Worm-like chain is [101]:

R2
ee =

l2p
2

(e−2L/lp − 1 + 2L/lp) (2.19)

that reduces to the behavior of a rigid rod when lp � L.

2.5 Real chains: the effect of long-range interactions

The type of interactions that occur in a real chain can be classified in short-range
and long-range interactions (see Figure-2.11). Short-range interactions are those
due to the bond structure and local interactions between atoms of monomers close
in the chain sequence. Long-range interactions involve pairs of units which are
remote in the chain sequence but close in space .

long-range interactions
short-range interactions

Figure 2.11. Short-range and long-
range interactions in a polymer chain.

An example of long-range interactions is the exclude volume interaction
which manifest the impossibility of two atoms to overlap their domains com-
pletely. The exclude volume interaction produces a non zero correlation in the
position of two monomers even if they are in opposite ends of the chain. There-
fore, the correlations that exclude volume interactions, as well as other long-range
interactions (for instance, electrostatic) produce cannot be taken into account by
ideal models. Other types of models beyond the ideal ones are needed if we want
to mimic the behavior of real chains, although ideal chain models are very use-
ful in describing polymer chains at θ-point (defined below) or polymer melts and
semi-diluted polymer solutions.

The monomers in real chains exhibit several types of long-range interactions,
just to mention the repulsive steric hindrance of monomers and van der Waals
forces, and are responsible of changes in size and structure of the real molecules
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respect to ideal chains. It is common to refer the size of a real molecule to an
equivalent ideal chain through the swelling parameter α,

Ree = αR(o)
ee

where R(o)
ee is the size of an equivalent chain in which long-range interactions are

turned off. Experiments show that the value of α is highly dependent on the type
of solvent in which the polymer is immersed.

When the interactions among monomers and solvent molecules are thermody-
namically favorable the solvent is known as a good solvent. In a good solvent the
polymer strives to maximize the number of contacts with the solvent by adopt-
ing a swelling conformation (Figure-2.12a). A special case of good solvent is
the athermal solvent in which monomer-monomer and monomer-solvent interac-
tions are of the same strength. The polymer behavior in good solvents is usually
modeled through an effective repulsive interaction between monomers. As a con-
sequence, the chain swelling α takes values larger than unity. In fact, experiments
show that α is a function of the molecular weight (∼ N ) 6. In good solvents the
end-to-end distance scales with the chain length as Ree ∼ N3/5 (in 3d systems)
instead of the ideal dependenceN 1/2. A huge amount of work has been devoted
to understand the differences between ideal and real chains.

• The Flory-Fisher theory: In 1949 Flory devised a simple theoretical
scheme to compute the dependence of the molecular size Ree with the
molecular weight (∼ N ) in real chains. The exponent he derived for 3d
chains was ν = 3/5. In 1966 M. Fisher generalized the method of Flory to
any chain dimensionality obtaining

Ree ∼ Nν ∼ N 3

d+2 (2.20)

for chains with exclude volume interactions in a good solvent. The theory
[102,103] is based on a minimization of the free energy of a polymer chain
in which two contributions compete: (a) a repulsive energy due to the ex-
clude volume interactions, Frep ∼ 〈c2〉Rd ∼ N2/Rd, where 〈c2〉 is the
monomer concentration in a region of size Rd occupied by the monomers
of the chain taken in a mean field approach whose monomer correlations
are neglected 〈c2〉 ∼ (N/Rd)2 and (b), an elastic free energy Fel ∼ R2/N

6The size of macromolecules can be determined by various experimental methods. For instance,
the gyration radius can be inferred from the measurements on scattered light intensity [92]. Another
method to estimate the radius of a polymer macromolecule is through the Stokes-Einstein relation
and the diffusion coefficient of the polymer that can be obtained using the Photon beat technique.
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is introduced to account for the large entropy penalty of stretched configu-
rations. The minimization of Frep + Fel leads to Eq. 2.20.

The Flory-Fisher expression (Eq. 2.20) gives results within a percent of the
most accurate numerical results. Therefore, for most purposes (Eq. 2.20)
can be considered numerically exact. The excellent agreement of Flory-
Fisher scheme with the experimental results led to the wrong idea that the
method was the correct frame to deal with the exclude volume problem.
Lately, other properties calculated with the Flory-Fisher method were ob-
served to not agree so well with experiments on real chains. In fact, the
formalism is so successful in calculating the exponent ν because it benefits
from a remarkable cancellation of two errors: an overestimation of Frep
since correlations among monomers are neglected, and an overestimation
of the attractive elastic force Fel.

• Renormalization techniques:

In 1972 de Gennes showed that a large chain is a critical object and the
same methods used in critical systems can be applied to polymer chains
[102, 103]. The renormalization technique applied to exclude volume
chains proved that polymer chains have, in fact, two universal exponents:
ν related to the chain size, and γ related to the chain entropy. All the the-
oretical formalisms prior to the renormalization implicitly assumed a value
of γ = 1, far from the real value γ ∼= 7/6 in 3d, and γ ∼= 4/3 in 2d.

• The self avoiding random walk approach: It constitutes a remarkable
fact that the exponents ν = 3/5 and γ = 7/6 in 3d, as well as ν = 3/4 and
γ = 4/3 in 2d can be obtained if we assume the chain to be a mathematical
self avoiding random walk in a lattice. Thus, showing the same universal
statistical properties of real chains in good solvents [95].

The temperature is a key factor in determining the net result of the monomer-
monomer and monomer-solvent interactions. Common solvents are in general
worse ”good solvents” at low temperatures because increases the weight of the
effective interaction of the attractive forces between monomers, whereas at high
temperatures monomers tend to repeal each other. By setting the solvent or the
temperature adequately, it is possible to cancel exactly the effects of the repulsion
and the attraction among monomers. At this point α = 1 and we say that we
have reached the θ-point. The temperature at which the θ-point is reached is
often called the θ-temperature. The θ-point constitutes the right place to test all
previous results for ideal chains because real chains behave at the θ-point as if
long-range interactions were not present.
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If the temperature is reduced below the θ-point, the monomer-solvent inter-
action becomes less attractive and monomers start to suffer an effective attraction
among them. A solvent in which monomers prefer to be in contact with other
monomers rather than with solvent molecules is called a bad solvent. The attrac-
tion among monomers leads the polymer to crunch in order to increase the number
of monomer contacts and reduce the interactions with the solvent. The contrac-
tion of the chain respect to the ideal size implies a value of α < 1. When the
chain (coil) becomes compressed, it forms a globular state (see Figure-2.12c).
Globular states are commonly observed in proteins, DNA and polyelectrolytes.
When polymer chains are large, the globules formed in a bad solvent consist
of a dense homogeneous nucleus and a thin surface layer. At equilibrium, the
globule reaches a size such that attractive and repulsive interactions (that depend
on monomer concentration) counterbalance, by means, the osmotic pressure in-
side the globule is zero. This condition sets the size of a globule to behave as
Ree ∼ N1/3. The transformation from a coil to a globule when the temperature
is reduced below the θ-point is a gradual process: the temperature-width of such
transformation is proportional to N−1/2, and becomes 0 in the limit N → ∞ as
in a true phase transition. The transformation process from coil to globule in stiff
chains is sharper and closer to a first-order transition than in flexible chains. If the
solvent is extremely poor, the polymer globule precipitates out of the solution to
minimize the interactions with the solvent. The solvent is called in this extreme
case a ”non-solvent”.

(a) (b) (c) (d)

Figure 2.12. The quality of the sol-
vent is a key parameter in determin-
ing the swelling parameter of a chain,
α: (a) in good solvents, chains tend
to be swollen; (b) at the θ-point the
chain exhibits and ideal behavior; (c)
in bad solvents the chain tend to com-
press and form a globule; (d) when
the solvent is extremely poor, poly-
mers precipitate out of the solution
(”non-solvent” conditions).

2.6 Polymer solutions

In the previous sections we have referred all the discussion to the properties of an
isolated chain, but generally we must deal with polymer solutions. In a polymer
solution the concentration of monomers c is a key parameter in order to determine
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the conformational properties of the individual chains in dissolution as well as the
general properties of the solution. The volume fraction of polymer in the solution
can be defined as φ = ca3 where a3 is the typical size of a monomer. When
φ = 1 our solution is really a polymer melt. On the other hand, the limit φ → 0

represents the limit of very diluted solutions.
In bad solvents, where monomer-monomer attractions prevail over monomer-

solvent attractions, the behavior of polymer solutions is rather easy to explain:
the addition of new chains to the solution results in a tendency of chains to stick
together. If the polymer concentration is high enough the polymers precipitate
out of the solution.

Polymers in good solvents exhibit a behavior by far more complex that poly-
mers in bad solvents. Although it can be surprising at first sight, the regime in
which is easier to describe the conformation of single chains is the concentrated
regime or melt φ → 1 (in three dimensions). In the concentrated regime all the
chains exhibit an structure similar to an ideal chain Ree ∼ N1/2. This behavior
was first understood by Flory, but only long time ahead was recognized by other
scientists. The ideal behavior of a polymer chain in a melt can be understood in
terms of the fact that the force that tends to self-swollen a chain is compensated
by an inward force created by the rest of chains in the melt. Besides, the proper-
ties of a single chain in the concentrated regime resemble those of an ideal chain,
the global properties of a concentrated solution (as the osmotic pressure) cannot
be described through an ideal system. The estimation of the global properties
in melts requires the use of realistic interaction potentials and the full theory of
liquids.

(a) (b)

�

(c)

Figure 2.13. When polymer molecules are added to a solvent, several regimes can be ob-
served: (a) diluted regime, (b) crossover from dilute regime to semi-dilute regime, and (c)
semi-dilute regime. In the semi-dilute regime, a polymer solution can be considered as a
quasi-network with an average mesh size λ.
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Unlike melts, diluted solutions display a more complex behavior, but the prop-
erties of the solution as a whole have a large degree of universality. When we
start to add polymers into a good solvent (suppose φ = 0 initially), chains be-
have as isolated chains and all the results derived in the previous section applies,
i.e. Ree ∼ N3/5. We call this regime the diluted regime (Figure-2.13a). As
we add more polymers to the solution we reach a boundary concentration φ∗ in
which polymer chains start to overlap their domains (Figure-2.13b). The addi-
tion of more polymers to the solution increases the overlaps and we enter the
so-called semi-diluted-regime (Figure-2.13c). The value of the boundary con-
centration φ∗ depends on the molecular weight of polymers. In good solvents
φ∗ ∼ N−3ν+1 ∼ N−4/5 whereas in the θ-point φ∗ ∼ N−1/2. φ∗ → 0 when
N → ∞, thus the semi-diluted regime φ∗ � φ � 1 is observed over a large
range of φ’s. As it is shown in Figure-2.13c, a semi-dilute polymer solution can
be considered as a quasi-network with an average mesh size λ called the cor-
relation length of the polymer solution. This length λ can be considered as a
mean distance between consecutive contacts of one polymer with another. The
dependence of λ with the polymer concentration in good solvents is given by
λ ∼ φ−3/4, whereas the number of monomers g contained in average in a volume
of size ∼ λ3 is g ∼ φ−5/4.

In the semi-diluted regime, if we have a segment of chain with a a typical
size smaller than λ, the segment is expected to behave as an isolated chain, but
as the length of the segment becomes of the order of λ the segment is affected
by the presence of other chains. Therefore, we can model a polymer chain in the
semi-dilute regime as a sequence of blobs of linear size ∼ λ, where each blob is,
in fact, statistically independent of the others. As a consequence, the semi-dilute
solution can be viewed as a very dense system of ideal chains formed by blobs
of size λ with R2

ee ∼ N
g λ

2 ∼ Nφ−1/4, where N
g is the number of blobs per

macromolecule. The previous picture of semi-diluted solutions was first derived
by Daoud [104, 105] and is often called the Scaling approach. The usefulness
of the results obtained with the Scaling approach has been verified by neutron
scattering experiments. The scaling approach is not the only approach that exists
to deal with polymer solutions.



60 Basic principles of polymer physics

2.6.1 Other theoretical approaches to polymer solutions: the virial
expansion, the Flory-Huggins theory, and the des Cloizeaux
Law

2.6.1.a The virial expansion

In a diluted solution, the interactions among monomers of different chains are
scarce and the global properties can be roughly described through the virial
coefficients of an equivalent gas of free monomers. The monomer-monomer
and monomer-solvent interactions can be represented though an effective pair-
potential V (r). The virial expansion for the pressure of a monomer gas of N
particles in a volume V is

p =
NkBT

V
(1 +

N

V
B + 2

N2

V 2
C + ...)

The second virial coefficient B can be computed as

B =
1

2

∫ ∞

0

(
1− e

− V (r)

kBT

)
d3r (2.21)

At temperatures T � θ-temperature, the contribution to the coefficient B of the
attractive part of the potential V (r) tends to zero, andB becomes almost constant
with temperature: B = ω. The constant ω is often called the exclude volume
of the particle. Close to the θ-temperature the dependence of B with T can be
written as,

B(T ) =

{
ω(T−θ)

θ , for T−θθ . 1,
ω, for T−θθ & 1.

(2.22)

In analogy with the Boyle point for a real gas, the second coefficient vanishes in
the virial expansion of the osmotic pressure when T equals the θ-temperature. It is
possible to show [106] that third and higher order virial coefficients for a polymer
system have a negligible contribution at the θ-point. For this reason when the
second virial coefficient becomes zero, the chain behaves as an ideal chain, and
the law of van’t Hoff is observed up to concentrations of several percent.

2.6.1.b The Flory-Huggins theory for polymer solutions

The former theory which dealt with molecular solutions and melts was developed
by Flory and Huggins [93] in the 1940’s. Since then, the theory has played a
significant role in polymer science and many experimental results have been in-
terpreted in the language of this theory. Flory-Huggins theory is based in a lattice
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formalism and assumes a mean field picture in which 〈c2〉 → 〈c〉2. The free
energy F for this model is:

F

T
=

c

N
ln(c) +

1

2
ωc2 + ... (2.23)

where c is the monomer concentration, and ω is the excluded volume that follows

ω = a3(1− 2χ) (2.24)

where a is the lattice size, and χ is the Flory-Huggins parameter. The χ parameter
is related to the energy of contact polymer-solvent. If χ < 0.5 the solvent is a
good solvent, and if χ > 0.5 the solvent is a bad solvent. At the θ-point χ = 0.5.
χ = 0 corresponds to an athermal solvent in which ω = a3. The osmotic pressure
predicted by the theory is,

a3 Π

T
=

φ

N
+ ln

(
1

1− φ

)
− φ− χφ2

Notice that for very diluted solutions (φ → 0) the ideal gas law Π/T ∼ φ/N is
recovered . If φ → 1 the pressure tends to diverge logarithmically. At interme-
diate concentrations Π can be expanded in powers of φ, being the square term
the leading one Π/T ∼ φ2 + ... This prediction does not agree completely with
experimental results where it is observed Π/T ∼ φ9/4.

2.6.1.c The des Cloizeaux law

Mean field theories are based on neglecting the fluctuations or monomer corre-
lations. The difference between the mean field exponent 2 and the experimental
exponent 9/4 in the power law behavior of the osmotic pressure is due to such cor-
relations. The first fluctuation theory was developed by J. des Cloizeaux in 1975
for a semi-diluted solution in athermal solvents. The formalism of des Cloizeaux
is based in the formal polymer-magnetic analogy, and predicts the following ex-
pression for the osmotic pressure:

Π

T
= a−dN−νdψ(φNνd−1) (2.25)

where ψ is an universal function with the asymptotic form

ψ(x) ∼
{
x for x� 1,
x

νd

νd−1 , for x� 1.
(2.26)

The Eq. 2.25 is often called the des Cloizeaux law. Notice that in 3d νd/(νd −
1) = 9/4 consistent with the experimental findings in the semidilute regime.
The des Cloizeaux law can be alternatively deduced using the scaling invariance
principle without resort to the polymer-magnetic analogy [102, 106].
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2.7 Polymers near surfaces. The adsorption process

Until now we have dealt with polymer chains in a free space in which no geo-
metrical constrains are imposed, but polymers are often in contact with surfaces:
the surfaces of the vessel that contain the polymer, the surfaces of particles also
present in the solution, etc.

When a polymer is close to an impenetrable surface its conformational prop-
erties are strongly modified with respect to bulk polymers. A surface can exert
an attractive, a neutral or a repulsive interaction onto a polymer close to the sur-
face. When the monomer-surface interactions are repulsive, the polymer tends to
be away from the surface. It is common to refer to such situation as a negative
adsorption because the density of monomers close to the surface is smaller than
in the bulk solution. A negative adsorption is also observed by the presence of
a neutral but impenetrable surface. In this case, the surface exerts an effective
repulsion on the polymer because of the smaller number of allowed chain con-
formations close to a surface that leads to a reduction of the chain entropy. This
phenomenon is known as depletion (see also Section 1.2.2.a).

If the impenetrable surface has an attractive interaction with the monomers
a competition between the depletion effect and the possibility of lowering the
internal energy arises. It is a well known fact that long polymers can stick more
easily onto surfaces than shorter chains even if the monomer-surface interaction
is scarcely attractive since long chains can stablish a large number of contacts
with the surface. When a polymer becomes adsorbed, the gain in energy due to
monomer-surface interactions is proportional toNkBT whereas the entropic cost
of having a chain close to a surface is only of order of kBT .

Nonetheless, polymer adsorbtion is by far more complex than an on-off state
where chains are either negatively adsorbed or fully adsorbed onto the surface. A
chain can become only partially adsorbed with adsorbed segments called trains,
whereas other segments remain unadsorbed forming the loops and tails (Figure
2.14).

The behavior of a polymer close to a surface is by no means trivial even in
the cases in which the enthalpy gained with the monomer-surface interactions
would be able to overcome completely the entropic contribution −TS. At very
low polymer concentrations, a chain under the above conditions spreads over the
surface leading to the so-called pancake conformations (Figure 2.15a). When the
polymer concentration increases, chains must compete for space onto the surface,
and the competition leads to the formation of self-organized structures such as
polymer brushes (Figure 2.15b). A special case of adsorbtion is related to het-
eropolymers in which a specific segment of the chain (usually few monomers or
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Trains

Loops

Tails

Figure 2.14. When chains
are only partially adsorbed
it is possible to distinguish
loops, trains, and tails.

a chemical group at one end of the chain) has an extreme affinity for the surface
whereas the remaining monomers in the polymer has no (or weak) affinity. In
such cases it is said that the chain is attached or grafted to the surface. At very
low solution concentrations, grafted chains tend to develop mushroom conforma-
tions (Figure 2.15c), whereas at high concentrations brushes are formed.

(a)  Pancake (b)  Brush (c)  Mushroom

Figure 2.15. Differ-
ent polymer conforma-
tions: pancake, brush, and
mushroom.

An even more complex adsorption behavior is observed for polymers that at-
tract each other (self-attracting polymers). These polymers can exhibit a collapse
transition in both the desorbed (coil-globule transition) and in the adsorbed states.
In turn, self-attractive polymers can also exhibit another state in which the poly-
meric globule gets attached onto the attractive surface without loosing its globular
state. This state is known as the surface-attached globular state.

The degree of flexibility of a polymer, and the range of the monomer-surface
interactions add extra degrees of complexity to the adsorption problem. For long
ranged monomer-surface interactions, an effective adsorbtion layer exists wherein
polymers have a favorable interaction with the surface. If the width of the adsorp-
tion layer is large enough new phases are expected [107] depending on the degree
of chain stiffness(Figure 2.16): Isotropic weak-adsorbed (IWA), Isotropic strong-
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adsorbed (ISA), Nematic weak-adsorbed (NWA), and Nematic strong-adsorbed
(NSA). The Nematic phases correspond to chains with a large degree of stiffness.

IWA ISA NWA NSA

Figure 2.16. When the
attractive monomer-surface
forces are long-ranged,
new possible adsorbed
states arise: IWA (isotropic
weak-adsorbed state), ISA
(isotropic strong-adsorbed
state), NWA (nematic
weak-adsorbed state), NSA
(nematic strong-adsorbed
state).

The study of polymers close to a surface far from being a pure academic
problem is a very important issue in several technological fields as well as in
medical sciences. Applications where polymer adsorption is involved ranges from
the classical uses in paints, inks, coatings, lubricants, ceramic processing and
adhesives, to the more recent applications for artificial implants, protenomics,
DNA separations and recognition chips. Another example of the importance of
polymer adsorption is found in the adsorption of proteins onto the walls of devices
used in contact with blood such as blood bags, catheters, artificial hearts, renal
dialyzers, etc. When fibrinogen or globulin is adsorbed onto the surface of clinical
devices becomes denatured. The denatured form activates clotting factors that
initiate a cascade of events leading to the formation of a thrombus. Nature also
uses polymer coatings in the human body, for instance, the red blood cells are
covered by a layer of macromolecules (glykocalix) that regulate their interactions
with the walls of blood vessels and with other cells present in the blood. Also in
biology is known that polymers interacting with membranes are known to disrupt
membranes and produce leaky walls. This is important in the outflow of drugs
from vesicles [108] or the inflow of encapsulated DNA into cells [109].



Chapter 3

Numerical Simulations: Basic
features of the Stochastic
methods

The aim of this chapter is to summarize the common features of the numer-
ical simulation methods used in our studies on polymers and colloids. The

use of numerical simulations in science is not a recent issue: history shows that as
early as 1777 Buffon [110] made use of random sampling to get an estimation of
the number π. Also Lord Kelvin [111] appears to have used stochastic methods
to evaluate some difficult integrals as soon as 1901. But it was not before the
advent of powerful digital computers that numerical simulations became of com-
mon and widespread use in science. Numerical simulations are useful in science
for several reasons: they allow to bypass some difficulties inherent to experiments
as, for instance, the effects of gravity. Simulations can also measure quantities or
behaviors difficult or even impossible to measure with current experimental tech-
niques as, for instance, the measure of forces between two isolated nanoscopic
particles without modifying their properties. Furthermore, numerical simulations
can provide a first guide to the study of complex systems in laboratory, saving
money and time. When compared with theoretical works, numerical simulations
can handle usually with less restrictive constrains and can be used to check under
which conditions a proposed theory will be valid. Therefore, simulations should
be regarded in its own way as a complementary tool to the experimental and the-
oretical studies.

Although one could be tempted to include all the known chemical and phys-
ical details in the numerical models for polymers or colloidal particles, unfortu-
nately the power of calculus of present computers is still rather limited. Usually,

65
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simulations deal with a simplified model of the system in which only the main
features are included. A rule of thumb is to include in a numerical model the
minimum set of interactions needed in order to describe correctly the properties
we want to measure with the level of accuracy required.

By fortune, many generic properties of colloids and polymers can be studied
adequately applying statistical methods in which the precise chemical and phys-
ical details of the particles can be omitted. Consider a Hamiltonian model H in
which the states of the system are denoted by ~x = (x1, ..., xn) where n is the
number of degrees of freedom, and the phase space is denoted by Ω. Assume
that the states are distributed accordingly to an arbitrary probability distribution
function f(H(~x)). Then the mean value of a quantity A is given by what we call
the ensemble average,

< A >=

∫
ΩA(~x) f(H(~x)) d~x∫

Ω f(H(~x)) d~x
(3.1)

The full enumeration of all possible configurations of the system is not generally
possible with present computers because the number of configurations is over-
whelming. If we assume that a polymer is modeled as a random walk ofN = 100

steps in a simple cubic lattice, then the number of possible states is about 1078. If
the polymer is modeled as a Self-avoiding random walk, then the number of states
is still of the order of 1050. Therefore, even in the simplest models the number of
states is far from the capacities of present computers which scarcely can generate
of the order of 109 conformations per hour in the best cases. Nonetheless, there
exist enumeration studies [112] in which the ensemble averages are exactly com-
puted. Present computer power limits the studies to lattice models of polymer
chains with N . 20.

A way to overcome the impossibility of computing exact ensemble averages
is the estimation of the value of our quantity < A > through the evaluation of A
along a representative path in the phase space Ω. In fact, laboratory experiments
also perform an average over a path in the phase space which involves a very tiny
portion of all the states of the phase space. As an example, a rough estimation
[113] of the number of states associated to a mol of gas inside a litter bottle at
room temperature leads to the formidable number of (1027)1022

statistical states
available to the gas. Lab instruments are estimated to sample about 1031 states
per second, so we must practically wait an infinity of time in order to perform the
whole ensemble average of our litter of gas.

Even if we accept the validity of this approach, a main problem arises: how
can we generate numerically paths in the phase space which are statistically rep-
resentative? The answer is that there are a few methods available for classical
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particle-based simulations. Some of these techniques are purely deterministic,
others purely stochastic, the remaining techniques can be considered as hybrids.
A rough classification of the main groups of techniques available to perform clas-
sical numerical simulations of particles could be:

• Molecular Dynamics (MD). Newton’s equations of motion are solved
mẍ = −∇U . Depending on the constraints we add to the system we can
distinguish between: Micro canonical ensemble MD in which energy is a
conserved parameter, Canonical ensemble MD with a constant temperature
instead of constant energy, and the Isothermal-Isobaric ensemble MD in
which both temperature an pressure are held constant. In all the MD vari-
ants, we use the intrinsic dynamics of the model to propagate the system in
the phase space.

• Stochastic dynamics (SD). Some degrees of freedom are represented only
by their stochastic influence on the degrees of freedom that are treated ex-
plicitly through MD. For instance the effects of the solvent molecules in a
colloidal solution can be mimicked by introducing a frictional force plus an
stochastic force into the equations of motion of the solute. As in MD, we
use the dynamics to propagate the system in the phase space. In this case,
the equations of motion of the particles are a set of Langevin equations.
Brownian Dynamics (BD) is a particular case of SD, in fact, it’s the most
simple case of Stochastic dynamics in which the stochastic force contains
no correlations in space or time.

• Monte Carlo methods (MC). Although there are many different MC meth-
ods, all of them have in common the use of a random sequence of numbers
to construct a set of states of the phase space. In most of cases, a straight-
forward sampling of the phase space leads to very poor results. Most suit-
able techniques perform an importance sampling, that is, the methods are
biased in order to select states that give the dominant contributions to the
average. As in the MD case, MC algorithms have been designed to work
under many formalisms: micro canonical , canonical, Isothermal-Isobaric,
grand canonical, biased Monte Carlo, etc.

A review in detail of all the above techniques and variants exceeds by far the
scope of the present chapter. In what follows we are going to summarize the main
topics related to the techniques used in our studies, namely: Monte Carlo in the
canonical ensemble and Brownian dynamics. Additional information on these
methods and their variants can be found in the following books: Newman [113],
Allen-Tildesley [114], Heermann [115], and Kalos-Whitlock [116].
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3.1 Monte Carlo simulations in the canonical ensemble

In the micro canonical ensemble all the sampled states have the same energy
and therefore all them must be sampled with an equal weight. However, in the
canonical ensemble we perform the simulation at constant temperature and no
restriction exists for the energy of the states. Therefore, in an ensemble average
the canonical states do not have equal weights; some states are expected to be
visited by the system more frequently than others. The objective is to generate
a path in the phase space such that the system visits the different states with the
correct probability. In the Monte Carlo method a succession of states is generated
through a Markovian process. This Markovian chain of states of the system is
designed in such way that when it is run for many steps, it will eventually produce
a succession of states which appear with a probability given by the probability
distribution function f(H(~x)). The asymptotic regime of the Markov process is
independent of the initial state chosen to start the chain. Once the Markov process
generates states with probability f(H(~x)), the simulation is said to have reached
the ”system equilibrium”. Before the Markovian chain reaches the ”equilibrium”,
statistical averages must not be performed because system states are sampled with
an unknown probability distribution which is surely different from f(H(~x)).

Several conditions must be satisfied in order to ensure the correct asymptotic
behavior of the Markovian chain. First of all, the process should satisfy the con-
ditions associated to whatever Markovian process: if we denote T (A → B) the
transition probability from a given state A to a state B, then T (A → B) should
not vary over time and should only depend on the properties of the states A and
B. In addition, the Markovian process should obey the conditions of ”ergodicity”
and ”detailed balance”1.

The condition of ergodicity refers to the possibility for the Markov process to
reach any state of the system from any other state in a finite sequence of steps.
The detailed balance ensures that the rate at which the system makes a transition
from A to B is the same than from B to A,

f(A) T (A→ B) = f(B) T (B → A) (3.2)

1In some cases the detailed-balance may be replaced by a less restrictive condition known as
the ”semi-detailed” balance condition. The semi-detailed balance condition implies that the rate of
movements to a given stateA, coming from any other state, should be equal to the rate of movements
out of A into other states. If one requires only the semi-detailed condition to be satisfied, one must
be aware of the fact that the ”semi-detailed” condition can lead the Markov chain to an asymptotic
limit cycle in which our desired distribution is only one of the many distributions we found to be
sampled during the limit cycle. In our simulations we have chosen the detailed-balance condition
to be satisfied.
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where f(A) and f(B) are the probabilities of the system being in A and B re-
spectively.

In summary, whatever Markov process obeying the above rules leads asymp-
totically to sample the phase space with the desired distribution function f inde-
pendently of the initial state of the system. It is worthwhile to remark that no
other conditions are needed for the Markovian chain to sample states from the
distribution f . A consequence of the above statement is that the type of move-
ments we propose to pass from one state to another are not required to mimic any
physical motion of the elements of the system. In many cases, the use of unphys-
ical movements to commute among states can be used advantageously to speed
up the process of convergence of a Markov chain.

3.1.1 The Metropolis algorithm: general scheme

The first scheme intended to find a suitable Markov process in order to generate
a representative path of states was suggested by Metropolis et al [117]. They
assumed that the transition probabilities T (A→ B) can be rewritten as,

T (A→ B) = a(A→ B) d(A→ B) (3.3)

where d(A→ B) is the probability of proposing a transition to the state B when
we are in the state A, whereas a(A → B) is the probability of accepting the
proposed transition A→ B. The detailed balance condition requires that

a(A→ B) d(A→ B) f(A) = a(B → A) d(B → A) f(B) (3.4)

The above equation has many solutions, an example is the so called asymmetrical
(or Metropolis) solution,

a(A→ B) = min(1, z) (3.5)

where z is defined as,

z =
d(B → A) f(B)

d(A→ B) f(A)
(3.6)

Another solution that satisfies the condition of detailed balance is the symmetrical
or Baker solution [118–120],

a(A→ B) =
z

1 + z
(3.7)

Both asymmetric and symmetric solutions can be used in the Metropolis Scheme,
but it has been found that the asymmetric solution given by Eq. 3.5 gives a
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Markov process with a more rapid convergence to the desired distribution func-
tion f in some cases [121]. In our Monte Carlo simulations, the asymmetric
solution Eq. 3.5 has been the implemented one.

If the n-step of the Markovian sequence of states Xn is known, then a general
algorithm to implement the Metropolis Scheme in a Monte Carlo simulation is:

• (a) Propose a possible state X∗n+1 as the next step in the Markovian
chain. The state X∗n+1 is proposed accordingly to the probability function
d(Xn → X∗n+1).

• (b) Accept the proposed state X∗n+1 with a probability a(Xn → X∗n+1)

given by equation 3.5. The use of the asymmetrical solution implies that:
if

d(X∗n+1 → Xn) f(X∗n+1)

d(Xn → X∗n+1) f(Xn)
> 1

we always accept X∗n+1 as the new step Xn+1 in the Markovian chain.
Otherwise, we accept the proposal only if

d(X∗n+1 → Xn) f(X∗n+1)

d(Xn → X∗n+1) f(Xn)
> ξ

where ξ is a random uniform number between 0 and 1. If X∗n+1 is not
accepted accordingly to the above criteria, we set the next step Xn+1 to be
the previous state Xn.

In the next chapters we will refer to the previous algorithm with its common
name: The Metropolis Algorithm. Up to now the forms of the density probability
function f , and the proposal function d remain unspecified. These functions must
be set up accordingly to the particular system we want to emulate.

3.1.2 The Metropolis algorithm applied to the canonical collectivity

In the Canonical equilibrium ensemble, we are interested on sampling the states
of the phase space accordingly to the Boltzmann probability function,

P (X) =
e−βH(X)

Z

where Z is the partition function,

Z =

∫

Ω

e−βH(X)dX
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Therefore we must set f(X) = P (X) in our Metropolis algorithm, and the ac-
ceptance probability is

a(A→ B) = min

(
1,

d(B → A)

d(A→ B)
e−β(H(B)−H(A))

)

It is remarkable that we do not need to know the value of the partition function in
order to compute the acceptance probability.

Now, the proposal function d(A → B) is the only issue that remains to be
specified. In fact, we have a complete freedom for selecting d, provided that er-
godicity is satisfied. The most simple and easy option is to use proposal schemes
of new states such that the condition d(A → B) = d(B → A) is guaranteed.
Here, we should point out that this may not be the most efficient way to proceed
in systems where the acceptance probabilities are very low 2. Nonetheless, in
the Monte Carlo simulations we have performed for polymer chains, the proposal
schemes always satisfy d(A → B) = d(B → A). Therefore the acceptation
probability can be written in our case as

a(A→ B) = min
(

1, e−β(H(B)−H(A))
)

As a consequence of using this acceptation probability, all the states B such
that have a minor energy than A will be automatically accepted, whereas all the
states B in which the energy is larger than in the state A are subject to a pos-
sible rejection. The probability of rejection increases with the energy difference
H(B) − H(A) between both states. Thus, our proposal scheme is expected to
have acceptance ratios very low for proposals in which H(B) − H(A) is very
large. In contrast, large acceptance ratios are expected for proposals in which the
difference H(B)−H(A) is minimum. This preference of the Monte Carlo algo-
rithm to better accept states with energies closer to the previous states implies that
Metropolis algorithm is expected to generate sequences of states that are strongly
correlated.

A sequence of correlated states is not the only problem we must face up on
dealing with Monte Carlo simulations. Another drawback of the Monte Carlo
methods is that the sequence of states we are generating is only guaranteed to
sample the desired Boltzmann distribution in the asymptotic regime. Thus be-
fore starting to average any physical quantity, we must ensure that the system
has reached ”the equilibrium”. The number of steps required to arrive at this

2Several proposal schemes in which d(A → B) 6= d(B → A) has been proposed for some
special applications [114] such as high density systems, or systems where directional interactions
exist like in proteins and hydrogen-bonded liquids.
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asymptotic limit depends on the features of the system as well as on the proposal
scheme we use. A common practice to check if the Markovian chain has arrived
to the asymptotic regime consists on tracing the evolution of a physical magni-
tude known to be constant in the equilibrium. As an example, in Figure 3.1, we
observe the evolution of the energy of a semiflexible AB-alternating copolymer
chain that adsorbs onto a homogeneous surface with the number of Monte Carlo
Steps (MCS). In this case, one MCS is equal to the number of monomers of the
chain, N . After approximately 15000 MCM’s, the energy of the chain reaches
a plateau , we can consider that after that point the system is in equilibrium and
subsequent steps are suitable to be included in statistical averages. The number
of steps needed to reach the equilibrium state is often called the ”thermalization
period” or the ”equilibration period”.
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Figure 3.1. Evolution of
the energy of a semiflexi-
ble AB-alternating copoly-
mer chain with the num-
ber of Monte Carlo Steps
(MCS’s). Chain length
N = 50, stiffness constant
κ = 1.0, and monomer-
surface energy interactions
εA = −1kBT , and εB =

0. Temperature is set to
1/T = 3 in kBT units.
For more details about the
meaning of this parameters
see Chapter 9.

3.1.3 Statistics from a sequence of correlated states

In the previous section we have seen that after the thermalization or equilibration
period the subsequent states produced by the canonical Monte Carlo algorithm
are adequate in order to perform physical averages at a constant temperature.
Unfortunately, we must accept that the states we obtain have a certain degree
of correlation among them. The degree of correlation is as larger as closer are
the states in the Markov sequence. In order to minimize the effects that such
correlations have on the statistical averages, some extra caution is needed.

Given a set of successive states X0, X1, X2, ..., Xn generated by a Monte
Carlo algorithm , an estimation of the degree of correlation among them can be
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obtained by computing the correlation function of a certain magnitude G(Xi),

C(α) = (G(Xα)− < G >)(G(X0)− < G >)

were < G > is the averaged value of G along the sequence. Generally C(α) has
very long decaying tails. A common practice is to assume the correlation function
to be an exponentially decaying function,

C(α) ∼ e−α/τ

where τ is called the correlation time. The Figure 3.2 shows a typical example of
a the correlation function for a semiflexible AB-alternating copolymer chain that
adsorbs onto a homogeneous surface. The magnitude used in order to compute
the correlation function C is the energy of the chain. Figure 3.2 shows that the
correlation function roughly decays as an exponential function, in which τ ∼ 3.3

MCS’s.
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Figure 3.2. Correlation
function for a semiflexi-
ble AB-alternating copoly-
mer chain. Parameters are
the same than in Figure 3.1.
The magnitude used in or-
der to compute C(t) is the
energy of the chain, where
t is measured in units of
Monte Carlo Steps.

The long decaying tails of the correlation function tells us that we must wait a
large amount of steps if we want two states to be perfectly uncorrelated. Usually,
waiting for so long is impractical so the usual procedure is pick another state of
the sequence after ∆t steps. The optimal value of ∆t can be estimated as follows.
Once < G > is obtained by averaging k-states separated each ∆t steps in the
Markov chain, it can be demonstrated [122] that the typical deviation of the mean
(σ(< G >))2 (do not confuse with (σ(G))2) is

(σ(< G >))2
correlated =

1 + 2τ/∆t

k − 1
(< G2 > − < G >2)
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It is a common practice in the Monte Carlo techniques to set ∆t ∼ τ in order
to avoid a waste of time in generating idle states, but, at the same time, obtain a
value of (σ(< G >))2 close to that we would obtain for uncorrelated data,

(σ(< G >))2
uncorrelated =

1

k − 1
(< G2 > − < G >2)

This is the criteria we have applied to our Monte Carlo simulations. In an initial
simulation we estimate the value of τ which is subsequently used as ∆t in the
remaining simulations of the system.

3.1.4 Monte Carlo simulations of polymer chains: basic features

We have applied the Canonical Monte Carlo method to mimic the behavior of
several systems in which polymer chains are the main element. Here we enumer-
ate the basic features these models have in common. Interactions or additional
constrains which are specific to each particular case will be considered in the
respective chapters.

3.1.4.a The polymer model

We model polymer chains with exclude volume interactions (see Chapter 2)
through the pearl-necklace model [123]. Each polymer chain is formed by a
sequence of N beads (monomers) of diameter σ. Each bead (monomer) usually
represents a set of ”chemical monomers”. We model the exclude volume interac-
tions among beads through a hard-core potential

Usteric =

N∑

i,j=1

V (rij), (3.8)

where rij = |~ri − ~rj |, and V (rij) is

V (rij) =

{
0, for rij > σ,
∞, for rij < σ.

(3.9)

3.1.4.b The proposal scheme for polymer chains

The initial state (conformation) of a polymer chain is generated randomly, but
preserving the exclude volume constraints. The generated state is introduced into
the Monte Carlo algorithm as the first step of the Markovian chain. In the fol-
lowing steps, the proposed conformations are generated from the last accepted



3.1 Monte Carlo simulations in the canonical ensemble 75

conformation in order to avoid extremely high rejection rates. The particular pro-
posal scheme we have used considers several types of chain movement (see Fig-
ure 3.3): the Kink-Jump movement involves an arbitrary rotation between 0 and
2π of a monomer along the axis connecting the previous and following monomer
in the chain. Obviously this type of movement is not well defined for the two-end
monomers. Chain ends just perform random wiggling motions: a free rotation of
the end-monomer around the previous monomer in the chain.

A monomer rotation of angle θ around an axis given by the unitary vector ~u
can be expressed mathematically as,

~rnew = ~rold cos(θ) + (1− cos(θ)) (~u · ~rold)~u− sin(θ)(~u× ~rold) (3.10)

where ~rnew and ~rold are the position vectors of the monomer that rotates referred
to the proposed and the previous monomer position.

When performing chain end wiggling motions, special care must be taken in
order to generate true isotropic rotations about the end monomer. A common er-
ror is to generate random angles θ (between 0 and π) and φ (between 0 and 2π)
and substitute them directly into the expressions that translate spherical coordi-
nates into Cartesian ones. The random distribution obtained in that way is non
isotropic. Direction cosines can be used to ensure a true isotropic spherical ran-
dom distribution for the new position of the n-monomer around the position of
the previous (n− 1)-monomer [116].

Another type of movement implemented in our simulations for polymer
chains is the reptation motion. Reptation implies a global movement of the chain
which seems to reptate like a snake. Reptation movements can be very useful in
order to help the chain to go out faster from pathological conformations like knots.
If a reptation movement is proposed (see Figure 3.4) we select randomly one of
the two end-monomers of the chain and we try to locate it in a nearest neighbor
position of the other chain end preserving the distance between monomers. Once
the motion is accepted all monomers are reenumerated accordingly.

3.1.4.c The link-cell method

In order to reduce the computer time spent in checking the interactions among
particles, a link-cell method [114] has been implemented. Basically, we divide
the space into control cells and keep an updated list of the particles inside each
cell. The optimal chose for the size of the control cells in our systems is found
to be 2.5σ when only exclude volume interactions among monomers are present.
When other interactions are take into account, we set the size of the control boxes
to be equal or larger than twice the largest cut off distance of the interactions. In
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Figure 3.3. Schematic representations of
two basic movements for polymer chains:
(a) the kink-jump movement for inner
monomers, (b) the wiggling motion of a
chain end.
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Figure 3.4. Schematic representation of
the reptation movement.

this way, instead of checking all pairs of particles, we check only the 26 cubic
cells that surround the control cell containing the particle we try to move.

3.1.4.d The boundary conditions

We use Periodic Boundary Conditions [114] (PBC) in those systems in which
chains can move beyond the limits of the volume controlled by the link-cell
method (box system). The use of virtual walls at the borders of the control volume
must be avoided because surfaces bias polymer conformations. In the PBC for-
malism, the space is filled with an imaginary lattice of replicas of the original box
system (see Figure 3.5), in all the boxes the molecules mimic the movements that
take place in the original box system. When a monomer leaves the original box
another monomer from a virtual box enters the original box through the opposite
side and takes the role of the former monomer in the system. In order to avoid
a polymer chain to interact artificially with itself through PBC and to minimize
finite size effects (see Figure 3.6), the length of the box system must be at least
twice larger than the full length of the polymer chain.

3.2 Brownian dynamics

Molecular and Stochastic dynamics use the intrinsic dynamics of the model to
obtain a sequence of representative states of the phase-space from which averages
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Control cell

Figure 3.5. When Periodic Boundary
Conditions are enforced, a monomer that
leaves the control cell is replaced by an
equivalent particle entering from a virtual
cell.

Figure 3.6. When the box length is too
small, a chain can interact with itself in an
unphysical way.

of physical quantities at the equilibrium can be obtained. In addition, Molecular
Dynamics and Stochastic Dynamics give us a natural way to study the relaxation
of a system (the dynamics) from an initial state to the equilibrium, as well as the
properties of intrinsically non-equilibrium processes 3.

In some systems like colloidal suspensions, we observe that some modes of
motion in the system are much faster than others. If we use Molecular dynamics to
model colloidal suspensions, the presence of these fast motions associated to the
solvent molecules would imply the use of very short time-steps and, consequently,
long time simulations. In fact, the fast dynamics of the solvent particles is not the
interesting part of the problem. To cap it all, the number of solvent particles in
a colloidal suspension is usually far larger than the number of colloidal particles.
Therefore, the use of direct Molecular Dynamics simulations to mimic colloidal
systems is not the optimal way to proceed.

An approach to the true problem may be adopted by representing the ele-
ments of the system that are not of fundamental interest through a combination of
random forces and frictional terms rather than put them explicitly in the model.
Newton’s equations of motion are thus replaced by Langevin type equations. This
technique is known as Stochastic Dynamics (SD).

3Monte Carlo methods can also be used to check behaviors out of equilibrium, although it is
usually harder to do because in non-equilibrium studies we cannot choose the type of dynamics to
pass from one state to the other.
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The Brownian Dynamics is the most simple case of SD in which no correla-
tions in time or space are associated with the stochastic force. The equations of
motion for a system of N colloidal particles can be approximated by the following
set of stochastic differential equations (i=1,...,3N),

mi
dvi(t)

dt
= −miγivi(t) + Fi(r1(t), ...r3N (t)) +Ri(t) (3.11)

where γi are the friction coefficients. In our calculations we will suppose all the
friction coefficients to be equal γi = γ. These equations are similar to ordinary
Langevin equations (see Section 1.1). We require the random force ~Ri(t) to dis-
appear on average,

< Ri(t) >= 0

We assume that colloidal particles follow a Brownian motion when the determin-
istic forces Fi are zero. The Brownian motion can be enforced by assuming the
stochastic forces to be stationary and Gaussian, i.e. their probability distribution
is

W (Ri) =
1√

2π < R2
i >

exp

( −R2
i

2 < R2
i >

)

Furthermore, we must require that the random forces satisfy the fluctuation-
dissipation relation,

< Ri(t)Rj(t
′) >= 2miγikBTδijδ(t − t′)

and that stochastic forces are not correlated with systematic forces or prior veloc-
ities:

< Ri(t)vj(0) > = 0

< Ri(t)Fj(0) > = 0

In our simulations, the interactions among colloidal particles have a twofold
contribution: a two-body depletion potential based on the Asakura-Oosawa(UAO)
(see Section 1.2.2.a) plus a repulsive steric interaction (Usc) given by the follow-
ing expressions,

UAO(rij)

kBT
=

{
3φP
2ζ3

(
(1 + ζ)2 rij − 1

3 r
3
ij − 2(1+ζ)3

3

)
, for rij < (1 + ζ)

0, for rij > (1 + ζ)

(3.12)
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φp |Um|/kBT
0.1768 2.000
0.2110 3.000
0.2262 3.125
0.2266 3.135
0.2314 3.250
0.2410 3.500
0.2610 4.000
0.2800 4.500
0.2980 5.000
0.3330 6.000
0.3670 7.000

Table 3.1. Relation between non-adsorbing polymer volume fraction, φp and the absolute
value |Um| of the minimum interacting potential U when ζ = 0.1.

and
Usc(rij)

kBT
= r−nij . (3.13)

In Eq. 3.12, ζ is the size-ratio between a polymer chain and a colloidal particle. In
our simulations we set ζ = 0.1 as in previous works [124], so the interactions are
short ranged with a cut off at rij = 1.1 in units of σc. φP is the reservoir polymer
packaging fraction which controls the strength of the depletion interactions in
the Asakura-Oosawa model. In the hard-core repulsive interaction given by Eq.
3.13, we have set n = 36. Exponents n < 36 are reported [125] to lead to
anomalies when a hard-core mimic is required in the potential. The total pair-
potential U = UAO +Usc passes through a minimum value (Um) which is related
to φP , (see Table 3.1).

In what follows, we will characterize the strength of the potential in terms of
the absolute value of the minimum potential depth, |Um|, instead of φp. Unless
another thing is specified, the friction coefficient of a single colloidal particle
is set to γ = 0.5, and the time step is ∆t = 0.005 in reduced time units of
σ(m/Um)1/2 with m = 1. Figure 3.7 shows tree examples of potentials used in
our simulations.

3.2.1 Algorithms for Brownian Dynamics simulations

Several algorithms have been used to solve the set of differential stochastic equa-
tions 3.11. A first family of algorithms are those [126, 127] that consider the
stochastic force Ri(t) as a constant during each time step ∆t. These algorithms
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Figure 3.7. Three differ-
ent examples of typical po-
tentials used in our Brow-
nian dynamics simulations
(kBT = 1).

are limited by the condition ∆t � γ−1 in order to ensure that the correlation
time of the stochastic force is much smaller than the velocity relaxation time γ−1.
Another family of algorithms [128–130] use in each time step an expansion of
the stochastic force in powers of γ∆t. In these algorithms the value of ∆t is
not limited by γ but it is limited by the rate of change of the deterministic force
Fi. Both families of algorithms deal with Fi up to second order in ∆t. In order
to to integrate Fi to higher order, several Runge-Kutta methods [128, 131, 132]
have been proposed, but, unfortunately, they are not suitable for large systems
due to the large amount of force evaluations required per step. In addition all
these Runge-Kutta methods are also to some extend constrained by the condition
∆t � γ−1, because they improve the treatment of the deterministic part of the
force but not the stochastic contribution.

Due to the problems associated to the previous algorithms, we have chosen
a different algorithm known as the Gunsteren-Berendsen algorithm [133]. It is
a third order algorithm in ∆t for the deterministic force Fi, and it is not limited
by the condition ∆t � γ−1. In the limit of γ → 0 the famous classical Verlet
algorithm is recovered [134]. The use of the Gunsteren-Berendsen algorithm
allows us to increase the value of ∆t up to 0.005 in reduced units of σ(m/Um)1/2

with mass m = 1. Large values of ∆t allow us to deal with larger systems, and
check larger periods of the colloidal dynamics.

3.2.1.a The Gunsteren-Berendsen algorithm for Brownian Dynamics

Eqs. 3.11 are a set of inhomogeneous first order differential equations. A formal
solution at time t can be easily obtained if we know the solution for a previous



3.2 Brownian dynamics 81

time tn,

vi(t) = vi(tn)e−γ(t−tn) +

e−γ(t−tn)

t∫

tn

e+γ(t′−tn)(Fi(t
′) +Ri(t

′))m−1dt′

(3.14)

The integral over the deterministic force is obtained by expanding Fi(t) in a
power series up to second order,

Fi(t) = Fi(tn) +
dFi(tn)

dt
(t− tn) +O((t− tn)2) (3.15)

After performing the integration we arrive at,

vi(t) = vi(tn)e−γ(t−tn) + (mγ)−1Fi(tn)(1− e−γ(t−tn))

+(mγ2)−1dFi(tn)

dt
(γ(t− tn)− (1− e−γ(t−tn)))

+m−1e−γ(t−tn)

t∫

tn

eγ(t′−tn)Ri(t
′)dt′

+O((t− tn)3) (3.16)

If we define ∆t = tn+1 − tn, and apply that

xi(tn + ∆t) = xi(tn) +

tn+∆t∫

tn

vi(t)dt (3.17)

it is possible to get an expression from which by eliminating v(tn) and replacing
∆t by −∆t we obtain the formula we use in the algorithm,

xi(tn + ∆t) = xi(tn)(1 + e−γ∆t)− xi(tn −∆t)e−γ∆t

+m−1Fi(tn)(∆t)2(γ∆t)−1(1− e−γ∆t)

+m−1dFi(tn)

dt
(∆t)3(γ∆t)−2[1/2γ∆t(1 + e−γ∆t)

−(1− e−γ∆t)] +X(i)
n (∆t) + e−γ∆tX(i)

n (−∆t)

+O((∆t)4) (3.18)
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where X(i)
n (∆t) is a random variable defined as,

X(i)
n (∆t) = (mγ)−1

tn+∆t∫

tn

(1− e−γ(tn+∆t−t))Ri(t)dt (3.19)

It can be demonstrated [135] that X (i)
n (∆t) is also stationary and Gaussian with

mean zero because it is the result of integrating a random variable with these
properties.

One could be tempted to try to simplify the previous formulas by operating
the stochastic integrals like in equation 3.19. However, we must remember that
stochastic integrals, like Eq. 3.19, are integrals over functions with infinite essen-
tial discontinuities, and one must be aware that usual rules for integral calculus
do not apply under such conditions. For instance, it would be a mistake to split
integral 3.19 in two terms as it would be usual in integral calculus. It is also an
error the assumption that < R(t) >= 0 implies Xn = 0 if we try, naively, to
compute the integral 3.19 numerically using a dt→ 0 inside an interval of time.

Another remark to be done before applying Eq 3.19 into the Brownian
Dynamics algorithm is that the two stochastic random variables Xn(∆t) and
Xn(−∆t) that appear in equation 3.18 are, in fact, correlated. The stochastic
values Xn−1(∆t) and Xn(−∆t) obey a bivariate Gaussian distribution [135],

W (Xn−1(∆t), Xn(−∆t)) = (4π2σ2
1σ

2
2(1− r2))−1/2

exp[−(σ2
2X

2
n−1(∆t)− 2σ1σ2rXn−1(∆t)Xn(−∆t)

+σ2
1X

2
n(−∆t))/(2σ2

1σ
2
2(1− r2))] (3.20)

where

σ2
1 = < X2

n−1(∆t) >=
kT

mγ2
C(γ∆t)

σ2
2 = < X2

n(−∆t) >= − kT

mγ2
C(−γ∆t)

rσ1σ2 = < Xn−1(∆t)Xn(−∆t) >=
kT

mγ2
G(γ∆t)

C(x) = 2x− 3 + 4e−x − e−2x

G(x) = ex − 2x− e−x (3.21)

From Eq. 3.18 it is easy to check that in the limit γ → 0 we recover the
classical Verlet algorithm. As in the Verlet algorithm we do not need to compute
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the velocities in order to solve the differential equations. If velocities are needed
for some measurements, then the velocity of the particles can be obtained with
accuracy by using,

vi(tn) =
H(γ∆t)

∆t
[xi(tn + ∆t)− xi(tn −∆t)

+m−1Fi(tn)(∆t)2(γ∆t)−2G(γ∆t)

−m−1dFi(tn)

dt
(∆t)3(γ∆t)−3G(γ∆t)

+X(i)
n (−∆t)−X(i)

n (∆t)] (3.22)

whereH(x) = x/(ex−e−x). The equation 3.22 can be obtained from eliminating
x(tn) after using equation 3.17, and changing ∆t by −∆t.

3.2.1.b Remarks to the implementation of the Gunsteren-Berendsen algo-
rithm in Brownian Dynamics

The Gunsteren-Berendsen algorithm can be implemented in a system of colloidal
particles if we know x(tn), x(tn−1), Xn−1(∆t) and F (tn−1) for all the particles.
If that is the case, then the next Brownian Dynamics iteration can be performed
as follows:

• (1) Evaluate F (tn) using the x(tn) positions. In our case, forces are ob-
tained through the derivative of the potentials given by equations 3.12 and
3.13.

• (2) Compute dFi(tn)
dt = Fi(tn)−Fi(tn−1)

∆t

• (3) Generate the random numberXn(∆t) from a Gaussian distribution with
mean zero and width given by σ1 (Eq. 3.21). In order to generate the Gaus-
sian random numbers we use a numerical table inversion method developed
by Toral and Chakrabarti [136] that is between 3 and 7 times faster than
the standard Box-Muller-Wiener algorithm, and has the advantage of being
easily vectorizable.

• (4) Generate X(i)
n (−∆t). This is the most tricky step of the algorithm be-

cause X(i)
n−1(∆t) and X(i)

n (−∆t) are correlated. The conditional distribu-

tion of X(i)
n (−∆t) given a specific value of X (i)

n−1(∆t) is

W (X(i)
n (−∆t)|X(i)

n−1(∆t)) =
1

(2πσ2
2(1− r2))1/2

exp[−(X(i)
n (−∆t)− rσ2σ

−1
1 X

(i)
n−1(∆t))2/(2σ2

2(1− r2))]

(3.23)
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Therefore, we must first generate a Gaussian random number Y (i), from a
Gaussian distribution with mean zero and width σY given by,

σY = σ2
2(1− r2) =

kT

mγ2

E(γ∆t)

C(γ∆t)
(3.24)

where

E(x) = 16(ex + e−x)− 4(e2x + e−2x)

−24− 4x(ex − e−x) + 2x(e2x − e−2x)

(3.25)

Once we have Y (i), we obtain the value of X (i)
n (−∆t) using

X(i)
n (−∆t) = X

(i)
n−1(∆t)

G(γ∆t)

C(γ∆t)
+ Y (i) (3.26)

• (5) Calculate the positions x(tn+1) using equation 3.18. If velocities are
required, compute them from equation 3.22.

In our simulations on colloidal suspensions, the particles are confined inside
a two-dimensional box, usually we use a square box of size 256 × 256. The use
of powers of 2 as typical lengths of the system will make easier the implemen-
tation of Fast Fourier Algorithms when structure factors are computed. Periodic
boundary conditions (PBC) are used in the simulations.

In order to obtain an initial condition ready to be used in the Gunsteren-
Berendsen algorithm we proceed as follows. We place N colloidal particles ran-
domly inside our two dimensional box; we use a short Monte Carlo simulation
with PBC to shake the particles and get rid of possible overlaps. In these initial
stages we consider two particles to overlap when they become closer than the cut
off associated to the pair-potential. During the shaking process the true poten-
tial is turned off. Once we get a set of non overlapping particles, the first step
is executed. The values of x(t−1), X−1(∆t), F (t−1)) are unknown so the first
algorithm is not applicable yet. The first step is computed as follows: we sample
X

(i)
0 (∆t) from a Gaussian with zero mean and width σ1, and the positions x(t1)

are obtained by applying,

x(t1) = x(to) + v(to)γ
−1(1− e−γ∆t)

+m−1F (to)γ
−2(γ∆t− (1− e−γ∆t)) +Xo(∆t) (3.27)

where the initial velocities v(to) are obtained through the Maxwell-Boltzmann
distribution.



3.2 Brownian dynamics 85

A final remark in the implementation of the BD Gunsteren-Berendsen algo-
rithm concerns to the numerical accuracy. If γ∆t� 0.05 it is advised to expand
in power laws the expressions G(x), G(x)/C(x), 1 − e−x, in order to enforce
a good numerical accuracy along the simulation. In our simulations typically
γ∆t ∼ 0.00025 so we have implemented in our codes the expansions in power
series recommended by Gunsteren-Berendsen in their work [133].





Chapter 4

Kinetics of phase
transformations in
depletion–driven colloids

Experience is the name everyone gives to their mistakes.
Oscar Wilde, (1854-1900).

An expert is a man who has made all the mistakes, which can be made, in a very narrow field.
Niels Henrik David Bohr, (1885-1962).

So, during these years I have got a lot of experience but I’m still far from being an expert . . .

The present and the next chapter are devoted to the study of 2d depletion-
driven colloidal systems. Results from a detailed numerical study using

Brownian Dynamics are presented and discussed. A transition from a single dis-
persed phase to a two-phase coexistence of single colloidal particles and crys-
talline cluster aggregates is obtained as the strength of the attractive interaction
between particles is increased. In this chapter we deal with the results related to
the morphology and growth kinetics of the colloidal aggregates obtained when a
system is quenched into the two-phase region. Next chapter will be devoted to the
study of the dynamical scaling hypothesis for the structure factor S(q) in colloidal
systems which in turn will give us opportunity to examine in detail the aggrega-
tion mechanisms present during the first steps in the aggregation processes.

4.1 Introduction

The general problem of how a dispersed phase, such as particles in a colloid or
molecules in a solution, come together, when destabilized, to form a condensed
phase, such as aggregates, gels or precipitated crystalline solids, is of fundamen-
tal importance for controlling the assembly of the dispersed phase into a useful

87
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material [137]. Parts of this grand problem have seen considerable previous re-
search such as irreversible aggregation [138] and the formation of fractal aggre-
gates [139], gelation, spinodal decomposition [140], nucleation and early studies
of growth during precipitation [141] . However, a general theory that encom-
passes all these related phenomena is lacking.

Colloidal solutions can display a rich series of phase transitions between gas,
liquid and solid phases [80, 142]. The liquid phase can be amorphous or liquid
crystalline and the solid phases can be crystalline, amorphous (perhaps fractal)
and gel. These possibilities are controlled by the potential between the disperse
components and the kinetics of the phase transition. A fluid to crystal transition
occurs if the potential is solely hard sphere. Addition of an attractive potential
brings on three phase equilibria. A key parameter that causes large changes in
the phase diagram is the relative range of the attractive interaction between the
colloidal particles. As the relative range of the attractive interaction lessens, the
system develops a gas-crystalline coexistence with a metastable liquid-liquid co-
existence region.

Theoretical understanding of the colloidal phase diagram leads to a better
control of colloidal growth kinetics. For example, colloidal aggregation which
is often irreversible, can be made reversible on experimental time scales by tai-
loring both the strength and range of interaction between colloidal particles. Re-
versible aggregation of colloids is known to exhibit various intriguing phenom-
ena [80, 142], such as transient gel formation, compactification, and crystalliza-
tion. Moreover, reversible aggregation has striking similarity with other phase
changes such as spinodal decomposition and the formation of precipitated crys-
talline solids from solutions. A quantitative understanding of reversible aggre-
gation is thus needed for a unifying description of the transition from a general
dispersed phase to clusters and for a greater control over the self-assembly and
material properties of various colloids.

As we have commented in Section 1.2, the manipulation of the interaction
potential between colloidal particles can be achieved in several ways. For a charge
stabilized colloidal solution, this can be done by the addition of salt or surfactant
solution so that a secondary minimum in the interaction potential forms. Another
way to control the interaction potential between colloidal particles is to induce
a depletion interaction by adding a non-adsorbing polymer (or a different sized
colloid [143]) in an otherwise stable colloidal solution. A major advantage of
the latter systems is that the strength and range of the depletion interaction can
be easily controlled by varying the polymer concentration and the length of the
added polymer chains.

Phase behavior of depletion-driven colloids has been studied extensively both
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theoretically and experimentally. The equilibrium behavior of these systems be-
ing reasonably well understood, much of recent work has been directed to under-
stand kinetics of phase transitions [143, 144] and colloidal gelation [145] (and its
relation to glass transition [146] and the more general jamming transition [147])
in these systems. Hobbie [143] has studied growth kinetics of the crystalliza-
tion process in depletion driven colloids and compared experimental results with
mean-field theories of aggregation-fragmentation. Direct observation of crystal-
lization and aggregation has been carried out more recently by de Hoog et al.
[144] by varying the polymer concentration hence the depth of the depletion po-
tential. Brownian dynamics simulations [124, 148–150] have also been carried
out to study transient gel formation and crystallization in these systems. In par-
ticular, Soga, Melrose, and Ball [124,148] (SMB) have observed a variety of non-
equilibrium behaviors in their simulations by varying the strength of the depletion
potential. Evidences of metastability, homogeneous nucleation, kinetically ar-
rested gel state and density instability were reported by SMB in their simulations.
The use of computer simulations to study aggregation kinetics in these systems is
particularly useful as one can avoid sedimentation related complications seen in
experiments.

In this chapter, we present results from extensive Brownian dynamics simula-
tions1. We assume that the depletion interaction can be approximately accounted
for by an effective two-body interaction between a pair of colloidal particles as
suggested by Asakura-Oosawa-Vrij (see Section 1.2.2.a). In contrast to SMB, we
focus on lower monomer concentration (far away from the percolation threshold)
and restrict ourselves to two-dimensions. This allows us to carry out a detailed
comparison of the cluster morphology and aggregation kinetics to traditional
models of aggregation and fragmentation. Clusters obtained in the simulations
range from dense, faceted crystals to fractal aggregates which shows ramified
morphology on large scales but hexagonally-packed crystalline morphology on
short length scales. Increasing the depth of the depletion potential well, a transi-
tion from dispersed phase to a coexistence of dispersed phase and solid phase is
found. Near the transition point, formation of clusters with a round shape is ob-

1In our Brownian dynamics simulations we consider a 2d system of linear size L = 256σ

containing Nm = 13, 107 colloidal particles of mass m and diameter σ. This sets the monomer
area fraction to be fv ≈ 0.157. We set m = 1 and σ = 1 and measure all distances in units of σ.
Periodic boundary conditions are enforced to minimize wall effects. Hydrodynamic interactions,
including lubrication forces are ignored in the simulation as they might not be of predominant
importance for a study of quiescent colloids [151]. All simulations start from a random initial
monomer conformation and the results for the kinetics are averaged over more than 100 runs. For
further details about our Brownian dynamics simulations, see Section 3.2.
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served. As the well depth is increased further, one first obtains elongated clusters
and then fractal clusters form for deep enough well depths. Our simulations also
show how growth kinetics evolves from the irreversible limits to systems which
come to equilibrium over the simulation time due to fragmentation.

In the following sections we present simulation results and compare them with
traditional aggregation, aggregation-fragmentation, and phase separation models.

4.2 Cluster Morphology

Transition from a single dispersed-phase to a state in which the solid phase
starts to develop in the two-phase region is observed in the simulations when
|Um| is larger than a critical value Uc. From our simulations, we estimate that
Uc ≈ 3.130kBT for our choice of monomer area fraction fv. For smaller val-
ues of |Um|, small fluctuating clusters in the dispersed phase form and dissolve
over some correlation time. The linear size of these fluctuations increases as one
approaches the transition. This is expected as the correlation length in the single
phase should increase as a power-law near a critical point. Phase diagram for the
model considered here is known accurately in three dimensions [152] but not in
two dimensions. For this reason, a quantitative identification of the quench points
chosen in our work on the 2D phase diagram is not possible.

For computing cluster properties, we consider two neighboring particles to
belong to the same cluster if the distance between their centers is less than or
equal to the range of the interaction, i.e., 1 + ζ (or, 1.1 for our choice of ζ) in
units of σ. Figure 4.1 shows a snapshot for a system with |Um| = 3.125kBT . In
this case the system is in the single phase as |Um| < Uc and the largest observed
fluctuating cluster has a size less than 100 particles. As shown in the inset of
Figure 4.1, these small clusters have amorphous structures. No evidence of crystal
formation is found in these clusters. If we set |Um| close to the critical value but
slightly deeper than Uc, nucleation and growth of round clusters occur. Growth
of only one round-shape cluster in our finite-sized simulation box is observed in
Figure 4.2 for |Um| = 3.135kBT . This value of |Um| puts the system barely in
the two-phase region.

Increasing the depth of the potential well |Um| further, nucleation becomes
more heterogeneous in our simulation box, as can be seen in the top-left snapshot
of Figure 4.3 for |Um| = 3.25 at an early time. For this value of |Um|, large round
shaped clusters in a sea of monomers (and small clusters) are observed at late
times (left column of Figure 4.3). The average coordination number per particle
inside such a cluster is close to six, and as shown in Figure 4.4 (c), hexagonal
packing of the particles is clearly present inside the cluster. In Figure 4.4, de-
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Figure 4.1. Snapshot of the simulated col-
loidal system at t = 10000. Here, well
depth is set to |Um| = 3.125. the system
is in the single-phase region and the dis-
persed phase is observed.
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Figure 4.2. Snapshot of the simulated col-
loidal system at t = 10000 for |Um| =

3.135. A single round shaped cluster is
growing in the simulated box surrounded
by the dispersed-phase.

tails of cluster shapes are shown for several values of the potential well depth.
Once two clusters collide with each other, the shape of the newly formed cluster
remains anisotropic for some time while it evolves toward a circular shape to re-
duce interfacial energy. During this course, the resulting cluster bears the history
of the collision in its shape (such as in the ordering of single crystal domains in-
side the cluster as in Figure 4.4e). The timescale for this shape evolution depends
critically on the potential well depth |Um| as we will see shortly.

Increasing the degree of quenching into the two-phase region by setting
|Um| = 4.0kBT , rather elongated clusters that grow with time are seen (Figure
4.3, central column). In this case, the potential well is deep enough to slow down
the movement of monomers on a cluster surface which is needed for a reduction
of interfacial energy. Therefore, new collisions are produced before anisotropic
clusters formed from previous collisions have enough time to reshape themselves
into circular clusters. As a result, the clusters seen in this case are elongated even
at very late times. For even larger well depth, such as |Um| = 7.0kBT (Figure 4.3,
right column), fractal clusters are obtained. We speculate that the interfacial ten-
sion driven surface reorganization of monomers is almost frozen in this case and
the cluster shape results mainly from random cluster-cluster collisions as in a tra-
ditional diffusion-limited cluster-cluster aggregation (DLCA) or reaction-limited
cluster-cluster aggregation (RLCA) models (see Section 1.3.3.d). However, even
for this deep well depth, the aggregates show hexagonal closed-packed crystalline
ordering at short length scales (Figure 4.4f) while displaying ramified fractal na-
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Figure 4.3. Temporal evolution for three different quenches. First column shows snapshots
at t = 3000, 6000, 23000, 40000 for |Um| = 3.25. Second column shows snapshots at
t = 3000, 20000, 43000, 84000 for |Um| = 4.0. Third column shows snapshots at t =

1000, 3000, 10000, 86000 for |Um| = 7.0. Cluster morphology shows a distinct change as
the depth of the potential is varied.
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ture at larger length scales. To be specific, this cluster morphology cannot be
reproduced by a traditional DLCA modeling for which the typical coordination
number of a particle in a cluster is approximately 2. Large-scale morphology
of the simulated clusters display close similarities with aggregates observed ex-
perimentally by de Hoog et al. [144], and Anderson et al. [153] in the earlier
stages of the aggregation in depletion driven colloids, before sedimentation be-
comes crucial. It should be noted here that such mixed morphology of aggregating
clusters was first observed by Skjeltorp [154] in two-dimensional aggregates of
polystyrene spheres attracting via a secondary minimum. In such a system, the
superposition of a screened electrostatic repulsion and a van der Waals attraction
leads to the formation of a secondary minimum [7, 155] in the potential with a
rather high energetic barrier between the primary and the secondary minima. The
barrier between these minima prevents irreversible aggregation and these charged
colloids can effectively interact through the secondary minima.
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Figure 4.4. Details of cluster morphology for several values of the potential well depth.
From top-left to bottom-right, we show results for |Um| = 3.125 (a), 3.135 (b), 3.25 (c), 4.0

(d), 5.0 (e), and 7.0kBT (f), respectively. Cluster morphology for |Um| = 3.125 shows a
dispersed phase with non-crystalline structures (a). For well depths larger than the transition
value Uc ' 3.130, particles are arranged hexagonally inside the clusters. When collision
between two clusters is recent, history of such a collision can be seen in the resultant cluster
shape.
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4.3 Comparison with Traditional Models of Aggregation
and Phase Separation

4.3.1 Fractal Dimension

The next step in our analysis is to carry out a quantitative comparison of the re-
sults from Brownian dynamics simulations with more traditional models such as
DLCA and RLCA. These limiting non-equilibrium models have been quite suc-
cessful in describing aggregation. In DLCA, the rate limiting step is the Brow-
nian diffusion by which the particles meet and stick irreversibly, and in RLCA,
the limiting step is the small probability of cluster sticking when they touch. A
general feature of such irreversible processes is that the resulting structures are
fractals with characteristic fractal dimensions. However, if the magnitude of the
interaction potential between colloidal particles is comparable to thermal energy
kBT , both rearrangement and fragmentation (hence reversible aggregation) of
clusters can take place. In such situations, one needs to compare results of cur-
rent Brownian dynamics simulations with models that consider both aggregation
and fragmentation.

The large length scale cluster morphology obtained in our simulations is
quantified by computing the cluster-ensemble averaged fractal dimensionDf (see
Sections 1.3.1 and 1.3.2). This is achieved by writing N ∼ RDf

g , where Rg is the
radius of gyration of an individual cluster containing N particles. Figure 4.5
shows the temporal evolution for fractal dimension in two representative cases.
Computation of the fractal dimension confirms a transition from compact clus-
ters with Df = 2 to fractal clusters when we increase the well depth. We find
that the fractal dimension for large potential well depth is given by Df ' 1.4.
Within the statistical error of our data, this value of Df is the same as the fractal
dimension obtained in 2d DLCA models. Thus, Brownian dynamics simulations
for a deep well depth reproduce the DLCA limit in terms of the large-scale fractal
dimension, even though the short length scale structure of the clusters are totally
different in these two models.

4.3.2 Growth Kinetics

Since the potential well depth dictates cluster morphology, it is expected to con-
trol cluster growth kinetics as well. We have studied three different regimes (or
‘quench depth’ using terminology of fluid-fluid phase separation) of growth ki-
netics: deep potential well depth (deep quench in the two-phase region), shallow
potential well depth (shallow quench in the two-phase region), and quenches in
the single-phase region.
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Figure 4.5. Time evolution of the cluster averaged fractal dimension, Df for well depths
|Um| = 3.25kBT , and 7kBT . For the lower value of |Um|, compact clusters are found for
which fractal dimension is close to 2. We have calculated the fractal dimension as a function
of time including only clusters with a size equal or higher than a 10% of the size of the largest
cluster in the system. Inclusion of too small clusters produces a slight bias of the slope which
results in Df being larger than 2. Increasing |Um| a gradual transition to fractal clusters is
observed. Fractal clusters for |Um| = 7kBT have a fractal dimension of Df ' 1.4, close to
2d DLCA result.

Deep Quench in the Two-Phase Region

We compute the mean-size of clusters s(t) (as number of monomers per clus-
ter) and the cluster-size distribution n(N). Kinetic theory based on Smolu-
chowski equation predicts that for irreversible aggregation at late times (see Sec-
tion 1.3.3.a),

s(t) ∼ tz (4.1)

where z is the kinetic exponent which depends on the homogeneity constant, λ,
of the aggregation kernel:

z = 1/(1 − λ). (4.2)

For the DLCA model with a Brownian coagulation kernel, a scaling argument
[156, 157] yields λ = (d − 3)/Df in the dilute limit (see also Eq. 1.30). In 3d,
this provides λ = 0 and z = 1 as expected [138]. In 2d, however, this leads to
λ = −1/Df = −0.7 with Df = 1.4 and hence z = 0.59 in the dilute limit.

Another factor that influences growth kinetics of fractal aggregates is the vol-
ume fraction occupied by the clusters, f cv . Since the fractal dimension Df of
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the clusters is less than the space dimension d, f cv increases throughout aggre-
gation, and evolution to a crowded state takes place. f cv can be computed in
terms of the perimeter radius of the clusters which is related to the cluster ra-
dius of gyration Rg. Thus, cluster crowding can be understood by considering
the ratio of the cluster center of mass to cluster nearest-neighbor center of mass
separation Rnn to the cluster radius-of-gyration Rg which scales with time as,
Rnn/Rg ∝ t−z(d−Df )/(dDf ). Note that, Rnn/Rg → 0 at late times indicating
gelation occurring in the system. In practice, however, the system gels well be-
fore this condition is reached as the clusters are ramified. It is known that the
kinetic exponent z increases as the system gets dense [158] i.e, as the cluster vol-
ume fraction, f cv , increases. For an intermediate value of f cv , scaling arguments
[156] yield z ' 1.28 in 3d and z ' 0.67 in 2d.

Our results for s(t) versus t for for deep potential wells (such as with |Um| =
6.0kBT , and 7.0kBT ) are presented in Figure 4.6 as a log-log plot. The measured
kinetic exponent is z = 0.74± 0.05 in each case. This value of z is rather similar
to the 2d scaling result in the intermediate regime mentioned above [156] and
also to the kinetic exponent obtained in large-scale 2d DLCA simulations [159]
with a fair degree of cluster crowdedness. This agreement strongly indicates that
fragmentation does not play an important role over the simulation time for these
choices of the potential well depth.
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Figure 4.6. Log-log plot
for time evolution of the av-
eraged cluster size for deep
well depths. The kinetic
exponent, z, obtained from
linear fits is given by 0.74±
0.05 in each case.

The kinetic exponent z can be alternatively obtained by measuring the tempo-
ral evolution of the mean cluster radius of gyration, 〈Rg〉. In the scaling descrip-
tion of DLCA, 〈Rg〉 ∼ ta with a = z/Df . Therefore, if fractal dimension Df is
known, z can be deduced from a log-log plot of 〈Rg〉 versus time t. In Figure 4.7
we show such a log-log plot for various values of |Um|. For computing 〈Rg〉, we
only use clusters containing more than four particles. For both |Um| = 6.0kBT ,
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and 7.0kBT we obtain a = 0.52 ± 0.04 which yields z = 0.73 for Df = 1.4.
Thus, both methods of measuring the kinetic exponent z show good agreement
with each other for deep well depths.
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Figure 4.7. Log-log plot of radius of gyra-
tion vs time for deep well depths. The expo-
nent, a = z/Df , obtained from linear fits is
given by 0.52 ± 0.04 in each case.
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Figure 4.8. Log-log plot of radius of gy-
ration vs time for shallower well depths in
the two phase region. The solid line is a
guide to the eye with a slope of 1/4. Clus-
ter growth at intermediate times is consistent
with Rg(t) ∼ tn with n ≈ 0.25.

Shallow Quench in the Two-Phase Region

For shallower well depths in the two-phase region, fragmentation of clusters can
take place. However, it is expected that fragmentation predominantly occurs at
the surface of the cluster; this is the celebrated evaporation-condensation mecha-
nism behind Ostwald ripening [87]. In addition, surface reorganization of clusters
can take place to reduce interfacial tension. One of the most important charac-
teristics of cluster growth under spinodal decomposition is that the clusters are
compact and, as a result, both cluster nearest-neighbor separation Rnn and the
cluster radius-of-gyration Rg grow with the same temporal exponent. In other
words, there is only one length scale in the system. The growth law in these cases
can be generally written as Rg(t) ∼ tn. It is well established [140] that n = 1/3

at late times in both 2d and 3d, while at intermediate times, dominated by surface
diffusion and coalescence of diffusing clusters, the growth law exponent can be
characterized [87, 160] by n = 1/4. We have plotted a log-log graph of 〈Rg〉(t)
versus t in Figure 4.8 for two shallower well depths inside the two-phase coex-
istence. In each case, at intermediate times (when the average radius of gyration
of clusters ' 5 or bigger), we observe growth of clusters characterized by an
exponent close to 1/4. We have checked that both Rg and Rnn do increase pro-
portionately with each other at these times. For |Um| = 3.5kBT , we also observe
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a nucleation induction time at the very beginning, after which cluster growth and
coarsening take place. These last issues will be addresed in more detail in the
next chapter.

Quench in the Single-Phase Region

In the presence of fragmentation, as it has already been pointed out in Section
1.3.4.a, Sorensen, Zhang, and Taylor (SZT) arrived at a general expression for
the evolution of the mean cluster size in terms of reduced variables s∗ = s/so,
and t∗ = t/to,

ds∗

dt∗
= s∗λ − s∗α+2 (4.3)

where so is the steady-state value of s(t) at long time, and to a characteristic
time scale for the approach to equilibrium. The exponents λ and α stand for
the degree of homogeneity of the aggregation and fragmentation kernels, respec-
tively. It is clear from our discussion above that SZT description of aggregation-
fragmentation is not applicable in the two-phase region where the cluster size
increases indefinitely in the thermodynamic limit. However, in the single-phase
region, where the clusters grow only up to the size of the correlation length, SZT
equation might have a limited validity. We numerically solve this first order SZT
differential equation (Eq. 4.3) with the initial condition s∗(t = 0) = 1/so. It is
not immediately clear what are the values of λ and α in Eq. (4.3). As we have
discussed before, in the dilute limit of DLCA model z = 0.59 hence λ = −0.7,
while for a moderate value of cluster crowdedness, z increases to 0.74 in the
simulations and the corresponding λ becomes −0.35. We choose α = 1/2 in
the mean field model of SZT to roughly incorporate the possibility that cluster
fragmentation happens mostly at the surface. As mentioned earlier, we consider
two neighboring particles to belong to the same cluster if the distance between
their centers is less than or equal to the range of the interaction. A comparison
with the SZT prediction in the single-phase is carried out in Figures 4.9 and 4.10
for |Um| = 2kBT , and |Um| = 3.125kBT , respectively. In these figures we
show SZT predictions along with our simulation results for both λ = −0.35 and
λ = −0.7 and ω = 1/2. It is clear that λ = −0.7 shows excellent agreement with
the simulation data. This is perhaps due to the fact that the average cluster sizes
are relatively small throughout the simulation time and cluster crowding does not
substantially modify the dilute limit values of z and λ. Thus, it is appropriate to
substitute dilute limit value of λ = −0.7 in the SZT model for a better comparison
with these simulation results.
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Figure 4.9. Comparison between simulation
results for growth kinetics in the single phase
and SZT prediction for two sets of parameter
values. Here, |Um| = 2.0kBT .
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Figure 4.10. The same as in Figure 10 ex-
cept |Um| = 3.125kBT here.

4.3.2.a Cluster Size Distribution

To characterize the cluster size distribution2, we invoke a standard scaling ansatz
applicable in many physical situations (see Section 1.3.3.b) where cluster distri-
butions are assumed to obey a scaling law given by

n(N, t) =
Nm

s(t)2 φ

(
N

s(t)

)
(4.5)

where Nm stands for the total number of particles (monomers) in the system, and
φ(N/s) is a general scaling function. The scaling form assumed for the cluster
size distribution, (Eq. 4.5) is tested in Figures 4.11 and 4.12 for |Um| = 7kBT

and |Um| = 3.5kBT , respectively. Results are averaged over more than 100 runs.
The prescribed scaling form seems to work well for |Um| = 7kBT . For such
a deep well depth, one would expect that fragmentation of clusters will be rare
and a comparison with DLCA simulations will be meaningful over the simulation
time. For irreversible aggregation the scaling function can be expressed as (see
Eq. 1.29, and [36])

φ(x) = Ax−λ e−ηx (4.6)

for large values of the scaling variable x = N/s. Here, λ = 1−z−1, and η = 1−λ
. If we consider z = 0.74 appropriate for this deep well depth (see Figure 4.6),

2The cluster distribution n(N, t) is normalized as usual

Z
n(N, t) ·N · dN = Nm (4.4)

where Nm is the total number of particles in the system.
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we find λ = −0.35 and η = 1.35. Figure 4.11 shows that Eq. 4.6 with these
values of λ and η fit the scaled cluster size distribution quite well for large values
of x.
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Figure 4.11. Scaling of the cluster size dis-
tribution for |Um| = 7.0kBT . Results are
averaged over 150 runs. The solid line is
fit to the data according to Eq. 4.6 with
λ = −0.35 and η = 1.35 for scaling vari-
able N/s ≥ 1.
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Figure 4.12. Scaling of the cluster size dis-
tribution for |Um| = 3.5. Results are av-
eraged over 100 runs. A solid line of slope
−1.5 is added to guide the eye.

Scaling does not seem to work so well for |Um| = 3.5kBT (Figure 4.12).
For small values of the scaling variable and at earlier times, a power law with
an exponent close to −1.5 is found in the scaling function. Such power law
decay of scaling functions are reminiscent of a RLCA behavior. We should point
out that a similar exponent of −1.5 has been observed by Hobbie [143] in the
scaling function for a binary colloidal mixture in which depletion forces arise
from difference in size between two colloids. The origin of the RLCA type power-
law behavior for this shallow well depth is perhaps due to the fact that clusters
do not stick the first time they approach each other. There is also a hint of an
exponential decay in the size distribution for large x as seen by Hobbie. At later
times, the ‘scaling function’ changes appreciably displaying the presence of a
broad maximum at an intermediate value of N/s.

4.4 Concluding remarks

To provide a unifying description of the transition from the dispersed phase to
the solid phase (which includes both fractal and crystalline aggregates), we have
carried out a detailed study of the kinetics of phase transformations in a two-
dimensional colloidal system. The interaction among colloidal particles in this
work arises from the depletion effect due to the addition of a non-adsorbing poly-
mer and is modeled as an effective two body potential. Although the depletion
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force is assumed to be instantaneous in this work, recent work [26] shows that the
depletion force will have a time dependence which will in general affect colloidal
kinetics. However, this time dependence is quite weak for the size parameter ζ
used in our work. Thus, we do not expect this to substantially change our conclu-
sions.

Large-scale morphology of clusters obtained in the simulation show good
agreement with those observed by Hoog et al [144] in their experimental work on
depletion-driven colloids. We characterize the morphology of clusters for various
values of the magnitude of the potential well depth |Um|. There exists a critical
value of this well depth (Uc) in the model. When |Um| < Uc ' 3.130kBT , the
system remains in a single phase (for our chosen value of monomer area frac-
tion f ) characterized by a dispersed phase of monomers and small clusters. A
transition from this dispersed-phase to a two-phase coexistence takes place when
the system is quenched such that |Um| > Uc. In the two phase region, dispersed
and hexagonally packed crystal phase can coexist. Gradual transition from round
cluster growth to the formation of elongated clusters is observed as the well depth
is increased. Increasing the well depth even more, fractal clusters are observed
in the simulation. These fractal clusters have a hybrid nature in the sense that
the aggregates show hexagonal closed-packed crystalline ordering at short length
scales and a ramified fractal nature at larger length scales. For sufficiently deep
potential wells, the large-scale fractal dimension of the clusters are close to those
obtained in simulations of DLCA model in 2-dimensions,Df ' 1.4.

Further quantitative comparisons with the DLCA model are carried out next
in the limit of deep potential well depths. Kinetic exponents obtained from both
mean number of particles in a cluster, and average cluster radius of gyration
provide strong support that the DLCA limit in the kinetics can be achieved for
deep potential wells. In addition, the scaling function for cluster size distribution
matches the DLCA scaling form for deep potential well depths. For shallower
well depths in the two-phase region, growth kinetics is compared with early-time
theories of phase separation. In the single-phase region, comparison of simulation
results with a mean-field aggregation fragmentation model shows good agree-
ment.

Our work clearly demonstrates the importance of Brownian dynamics simu-
lations in the study of colloidal aggregation and more generally for studying the
transition from a dispersed phase to a solid phase. Past theoretical studies of frac-
tal aggregates in colloids, for example, typically started from the DLCA model
which turns out to be the irreversible limits of our simulation and are recovered for
a deep well depth. In contrast, aggregates that crossover from fractal to compact
crystalline morphology can be easily studied in Brownian dynamics simulations
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by changing a simple parameter of the model. More importantly, growth kinetics
and aggregate size distributions that evolve from non-equilibrium to equilibrium
limits can be accessed in a reasonable amount of computer time.



Chapter 5

Structure factor scaling in
colloidal phase separation

I
n this chapter we continue with the study of the phase separation in depletion-
driven colloidal systems. After the study of the morphology and cluster growth

kinetics done in the previous chapter, now we focus on the study of the dynamical
hypothesis of the structure factor S(q), which in turn will offer us the possibility
to discuss the nature of the aggregation mechanisms present in the early stages of
the aggregation processes.

5.1 Introduction

Dynamics of phase separation in a quenched system is the subject of many theo-
retical and experimental investigations in diverse systems [87, 140, 161] such as
binary alloys, liquid mixtures, and polymer blends. Subsequent evolution of the
quenched system is determined by the location of the quench inside the phase
diagram. In the classical picture, a spinodal line divides the phase diagram into
two kinds of instabilities that might govern the dynamical processes: nucleation
and spinodal decomposition. If the system is quenched between the spinodal and
the coexistence lines (nucleation regime), it becomes unstable against localized,
strong amplitude concentration fluctuations. In this situation, nuclei of the mi-
nority phase are formed. These nuclei evolve with time in the following way:
they grow if their size is larger than a certain critical size, otherwise they dis-
solve. In the spinodal decomposition regime, the system is unstable against long
wavelength, small amplitude concentration fluctuations, which generate an inter-
connected pattern that coarsens with time. Although this simple picture is of gen-
eral validity, one can not sharply separate the two regimes and the spinodal line
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merely serves as a guideline to distinguish which process dominates [162, 163].
The late stages of the phase separation process can be described by a dynam-

ical scaling form with a time-dependent characteristic length, R(t). The funda-
mental assumption of dynamical scaling is that, in the late stages of the process,
only one length scale is relevant. This characteristic length represents a measure
of the typical domain size and increases with time. A major feature of this de-
scription is that the pair correlation function g(r, t) and the structure factor S(q, t)

depend on time through R(t) only, that is,

g(r, t) = G(r/R(t)) (5.1)

and
S(q, t) = R(t)dF (qR(t)), (5.2)

where d is the dimensionality of the system and G and F are time-independent
universal scaling functions.

Several years ago, small-angle light scattering experiments in moderately
dense colloidal solutions [90, 91, 164, 165] showed a dynamical scaling behavior
surprisingly similar to that observed in binary mixtures undergoing phase separa-
tion. In particular, the scattered intensity distribution in a concentrated colloidal
solution shows a pronounced peak at a finite value of the wavenumber, qm. Fur-
thermore, the position of the peak moves to smaller values as the aggregation
proceeds, while the peak intensity increases. In the later stages of the colloidal
aggregation process, the dynamical structure factor, S(q, t), is found to scale ac-
cording to the following form:

S(q, t) = q−Dfm F ∗(q/qm), (5.3)

where F ∗(x) is a time-independent scaling function, andDf is the fractal dimen-
sion of the colloidal clusters. This scaling form is characteristic of the physical
systems undergoing phase separation (Eq. 5.2), except that, q−1

m is considered a
characteristic length in the system, and the spatial dimension d of the system is
replaced by Df , the fractal dimension of the colloidal clusters.

Dynamical scaling of the structure factor in an aggregating colloidal solution
is quite unexpected since colloidal aggregation in these experimental systems is
irreversible and leads to the formation of fractal aggregates, in contrast to the
phase separation processes in binary mixtures. The dynamical evolution of such
irreversible colloidal aggregation is well understood in terms of the diffusion-
limited-cluster-cluster aggregation (DLCA) model [137], where the initial col-
loidal monomers execute a Brownian motion until small clusters are formed, and
then the clusters themselves diffuse and aggregate to form even larger clusters.
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Thus, it is not clear why dynamical scaling with only a single length scale will be
appropriate for colloidal aggregation. In fact, Huang, Oh, and Sorensen (HOS)
[166] have argued that irreversible colloidal aggregation is characterized by two
different length scales, namely the mean cluster radius of gyration Rg(t) and
the mean nearest-neighbor cluster-cluster separation distance Rnn(t). Generally
speaking, one can write

Rg(t) ∼ tn1 and, Rnn(t) ∼ tn2 , (5.4)

where n1 and n2 are the respective growth exponents. HOS have demonstrated
that these two length scales grow with time with two different temporal exponents
(n1 6= n2) and thus, there is no dynamical scaling of the structure factor in an
aggregating colloidal system. This is a direct consequence of the fractal nature of
the clusters with a fractal dimension smaller than the space dimension (Df < d).
HOS have further concluded that for monodisperse systems the total structure
factor S(q, t) may be written as the product of two different structure factors, each
with its own characteristic lengths. The first component, Scc(q, t), is the cluster-
cluster contribution to the total structure factor, for which the cluster nearest-
neighbor separation Rnn(t) is the associated characteristic length. The second
component, Ssc(q, t), is contribution from particles inside a single cluster with the
cluster radius of gyration Rg as its characteristic length. HOS have claimed that
when clusters are compact, as in the case of phase separation in a binary mixture,
both characteristic lengths evolve in a same way with time (n1 = n2). Thus,
there would be a single effective length in the system and dynamical scaling will
be satisfied. But when clusters are fractals, dynamical scaling might be satisfied
at most over a limited window of time when Rg(t) ≈ Rnn(t), but scaling as a
general principle must break down.

In the previous chapter we have shown that a transition from dispersed-phase
to a coexistence of dispersed-phase and solid-phase takes place as one increases
the depth of the depletion potential well. Near the transition point, formation
of clusters with a round shape is observed. As the well depth is increased fur-
ther, one first obtains elongated clusters and then fractal clusters (with fractal
dimension Df ' 1.4) form for deep enough well depths. Our simulations also
show how growth kinetics and resulting cluster size distributions evolve from
the irreversible limit to systems which come to equilibrium over the simulation
time due to fragmentation. Thus, depletion-driven colloids, provide us a unique
opportunity to study dynamical scaling of time dependent structure factors in a
colloidal system which produces both fractal and compact clusters as a function
of the strength of the depletion potential. Such a study might provide important
insight into the validity and applicability of dynamical scaling for various cluster
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morphologies. This is one of the motivations behind the work presented in this
chapter.

We carry out a detailed simulation of the evolution of the structure factor
in depletion-driven colloidal systems, for both shallow and deep quenches into
the two-phase region1. Our results show that true dynamical scaling is reached
in a shallow quench (which produces compact clusters) after an initial transient
regime. The scaling of the structure factor is confirmed by studying various length
scales and by conclusively showing the existence of a single length scale in the
system after such transient time. In contrast, the apparent structure factor scaling
for a deep quench (which produces long-lived fractal clusters) is found to be only
approximate. Two different length scales are found in the system which grow with
two different power-law exponents with time. We further study the origin of the
peak in the structure factor in this case and compare with theoretical predictions
of HOS derived for monodisperse solutions.

5.2 General Features of the Structure Factor

The structure factor S(~q, t) for a system of Nm monomer particles is defined as
(see Section 1.4)

S(~q, t) =

Nm∑

i

Nm∑

j

exp [ i~q · (~ri − ~rj) ]. (5.5)

The pair-correlation function g(~r, t) can be obtained from the inverse Fourier
transform of S(~q, t). In order to compute the above quantities we have discretized
the system into a L× L grid of lattice points. We have then calculated the circu-
larly averaged quantities S(q, t) and g(r, t) by using standard fast Fourier trans-
form (FFT) routines.

Figures 5.1a) and 5.1b) show time-dependent structure factors for shallow
(|Um| = 3.5) and deep quenches (|Um| = 6.0), respectively. The computed
structure factors have been normalized by a factor L2, where L = 256 is the
linear size of system. In each case, we observe a peak in the structure factor.
The position of the peak moves to smaller q-values as time progresses and the
intensity of the peak increases. In contrast, at short length scales (large q-values),
the structure factor does not evolve much at late times. For this reason, the scaling
behavior of the structure factors must be examined carefully over appropriate q-
values.

1The numerical model used in this study is similar to the one used in the previous chapter. For
further details the reader is referred to Section 3.2 and Chapter 4.
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Figure 5.1. Structure factors at several times
for (a) shallow |Um| = 3.5, and (b) deep
quenched systems, |Um| = 6.
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For the case of |Um| = 6.0, the overlapping of S(q) data for large q-values at
different times is clearly noticeable. This almost frozen structure at short length
scales is directly related to the way in which clusters aggregate after the initial
transient time (see previous chapter). After an initial period, the small clusters
present in the system do not go through any large change of shape or internal re-
arrangement due to the strong interaction potential. Then, clusters start to collide
among themselves and stick in a way similar to the DLCA model without much
internal rearrangements. Therefore the main changes in the system should occur
at length scales larger than the former cluster size at that time. As the clusters ag-
gregate and increase their size, the overlap of S(q, t) is expected to start at smaller
q-values.

Figure 5.2 shows log-log plots of the structure factors. Porod regime of
S(q) ∼ q−(d+1) is observed in the case of |Um| = 3.5 for large q-values (see
Section 1.4.1). For deep quenched systems, |Um| = 6, the fractal nature of the
clusters (with Df ≈ 1.4) exhibit a power law regime at intermediate q−values,
S(q) ∼ q−Df . With |Um| = 6, we also observe a Porod’s regime for larger q
values, originating from the short-range crystalline packing of the monomers.

5.3 Scaling of the Structure Factor and Various Length
Scales in the System

5.3.1 Growth of Compact Clusters

The time evolution of the structure factor can be characterized by using the stan-
dard scaling ansatz, Eq. 5.2. Several quantities can be proposed as representative
characteristic length scales of the system: the average cluster radius of gyration
Rg(t), the cluster-cluster nearest-neighbor distanceRnn(t), the first zeroR0(t) of
the connected part of the pair-correlation function (a measure commonly used in
numerical studies of phase separation in binary mixtures [160]), and the inverse
of the location of the peak of the structure factor, q−1

m (t). In order to distinguish
the growing clusters from the background sea of monomers and small clusters,
our calculations of Rnn(t) and Rg(t) are carried out considering only clusters of
size > 4.

Figures 5.3 (a),(b),(c) show scaling plots for time-dependent structure factors
for shallow quenched systems (|Um| = 3.5) using Rg, R0 and (qm)−1 as charac-
teristic length scales, respectively. The three scaling plots show the same trend:
after an initial transient period, ti ∼ 103 − 2 × 103, the data scale nicely onto a
master curve. As shown on Figure 5.3(c), the shape of the scaling function agrees
quite well with the form predicted by Furukawa [167] for shallow quenches
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Figure 5.3. Scaling plots of the structure
factor for |Um| = 3.5 . Characteristic
lengths used are : (a) the mean cluster gy-
ration radius Rg , (b) the first zero of the con-
nected part of the correlation function R0,
and (c) the inverse of the peak position qm
of the structure factor. Filled symbols are
used for times at which scaling holds. In (c)
the solid line is the scaling form predicted by
Furukawa [167] for shallow quenches.

Since scaling seems to work well at late times with various representations of
the characteristic length scale, one might conclude that a single effective length
scale must exist in the system for the growth of compact clusters. Still a detailed
look at the evolution of various length scales is important for a stringent test of
the scaling behavior. We must add that we do not expect any deviation from
scaling for the evolution of compact clusters at late times, but characterization
of the various length scales for this relatively simpler system will provide insight
into a more complicated case analyzed later.

In order to make sure of the existence of a single, characteristic length scale in
the system, we have plotted in Figure 5.4 the temporal evolution of several ratios
of various length scales mentioned previously. The behavior of these various
ratios is similar in all cases: after the initial transient period ti, all the length
scales in the system evolve in a similar way, and are proportional to each other. In
addition, Figure 5.5 shows individual temporal evolution of Rnn(t) and Rg(t) in
a log-log plot where only clusters of size > 4 are considered. At late times, both
quantities are observed to evolve with the same power law exponent (see Eq. 5.4),
with n1 = n2 ≈ 0.25. A power-law exponent of 1

4 indicates that cluster growth at
these times is dominated by collisions among large clusters and a corresponding
reduction in the interfacial energy by surface diffusion [87].

Now we return to the origin of the breakdown of scaling at earlier times for
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compact cluster growth. To understand this we need to look at the temporal evo-
lution of Rg andRnn carefully. From Figure 5.5, we note that at very early times,
t < t1 ≈ 300, Rg grows very slowly. In the next stage, t > t1, cluster growth
is very fast. This enhanced growth rate lasts up to a second characteristic time
t2 ≈ 1000 after which a power-law growth of Rg with an exponent n1 ' 0.25

is observed. Similarly, three different regimes seem to exist for the growth of
the nearest-neighbor cluster distance, Rnn. For t < t1 , Rnn actually decreases
before reaching a plateau. For t1 < t < t2, Rnn grows very fast and then, beyond
t2, a power-law growth of Rnn with an exponent n2 ' 0.25 is observed. It is
in this later time regime, t > t2, (i.e., the initial transient time ti ≈ t2) that the
system shows scaling behavior with a single, characteristic length scale.
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for |Um| = 3.5. After an
initial transient period ti ∼
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time as ∼ t0.25 . A line
of slope 0.25 has been in-
cluded to guide the eye.

The three regimes observed in Figure 5.5 can be explained as follows. During
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the first stage t < t1, cluster nuclei are formed, and during this initiation period,
the mean radius of gyration of clusters remains approximately constant. This
value of Rg is expected to be close to the mean critical nucleation radius. Dur-
ing this period, the formation of nuclei leads to a decrease of the mean distance
between clusters. This is clearly demonstrated in the observed decrease of Rnn

at this early stage. Thus, the first regime t < t1 can be identified as a nucleation
period in which nucleation of small aggregates takes place. Given the different
behavior of Rg and Rnn in this first stage, no scaling with a single length scale is
possible.
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Figure 5.6. Temporal evo-
lution of the fraction of the
total number of particles
present in clusters of size
N < 5 for |Um| = 3.5 and
|Um| = 6.0.

By plotting the total mass of the small clusters (of size < 5) versus time
(Figure 5.6), we find that the characteristic time t2 of the second stage coincides
with the time when the total mass of the population of single particles and small
aggregates (i.e. clusters containing less than 5 particles) reaches a steady state.
This simulation result suggests that beyond this time t2, the net flux of small
aggregates becomes roughly zero i.e., the number of small aggregates entering
large clusters equals the number of small aggregates leaving large clusters. Thus,
for t > t2, the predominant mechanism of cluster growth is due to collision
among large clusters and a subsequent reduction of the total interfacial energy
as surface area minimizes. On the other hand, at least two different mechanisms
contribute to the cluster growth in the intermediate regime t1 < t < t2. It is easy
to show that the mechanism of collision among large clusters leads to the same
growth law exponent for Rg and Rnn if the clusters are assumed to be compact:
the free space that surrounds the new cluster after the collision grows linearly
with the new size of the cluster. In contrast, a growth mechanism based on a net
flux of single particles and small aggregates towards the large clusters leads to
a different temporal evolution of Rnn and Rg. This is due to the fact that the
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distance between the center of masses of the large clusters remains constant on
average, but the radius of gyration grows due to the incorporation of new particles.
Therefore, when both growth mechanisms are present in the system as in the
intermediate stage t1 < t < t2, dynamical scaling cannot be expected, even for
compact clusters, as Rnn and Rg would evolve differently in time. Only beyond
a characteristic time t2, when the the net flux of small aggregates becomes zero,
the evolution of Rnn and Rg becomes proportional to each other and dynamical
scaling of the structure factor holds.

5.3.2 Growth of Fractal Clusters

The scaling behavior of the structure factor for a deep quench into the two-phase
region, |Um| = 6.0, is showed in Figures 5.7 a,b,c with Rg, R0, and q−1

m being
used as measures of the characteristic length scale of the system, respectively. For
fractal aggregates, the spatial dimension d in the scaling form [Eq. 5.2] is replaced
by the fractal dimensionDf ; such a form has been expressed in Eq. 5.2 . We note
that a scaling description is meaningful only for intermediate values of q since at
small length scales (large q-values) an almost frozen hexagonally-packed crystal
structure is observed and the structure factor does not evolve much for large q-
values at late times [see Figure 5.1b)]. At late times, data for intermediate values
of q seems to fall on a master curve indicating a dynamical scaling behavior.
Scaling seems to be particularly good whenR0, and q−1

m are used as characteristic
length scales. Such a scaling behavior was observed previously in 2d aggregation
of polystyrene colloids [164] and in numerical simulations of the DLCA model
[168]. However, as we present shortly, a detailed study of the various length
scales in the system suggests that this apparent scaling of the structure factor is
not a signature of dynamical scaling in a strict sense.

In Figure 5.8 we show the evolution of Rg and Rnn versus time t in a log-log
plot. It is clear that these two length scales evolve differently in time with growth
exponents n1 = 0.52±0.03 and n2 = 0.36±0.03, defined in Eq. 5.4 . How does
one understand these values of the growth exponents?

As mentioned in the previous chapter, the interfacial tension driven by the
surface reorganization of monomers is almost frozen for deep quenches, and the
cluster shape results mainly from random cluster-cluster collisions as in a tradi-
tional DLCA model. Then, scaling arguments of Ref. [156, 158] for the DLCA
model should be applicable here. For DLCA model with a Brownian coagulation
kernel one finds that the homogeneity constant, λ, of the aggregation kernel is
given by λ = (d − 3)/Df in the dilute limit. The kinetic exponent z, which
describes how the mean cluster size s(t) scales with time t, is in turn, related to λ
as z = 1/(1 − λ). In 3d, this provides λ = 0 and z = 1 as expected [138]. In 2d,
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Figure 5.7. Scaling plots of the structure
factor for |Um| = 6.0 . Characteristic
lengths used are : (a) the mean cluster gy-
ration radius Rg , (b) the first zero of the
connected part of the correlation function
R0, and (c) the inverse of the peak position
qm of the structure factor. Fractal dimen-
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however, this leads to λ = −1/Df = −0.7 with Df = 1.4 and hence z = 0.59

in the dilute limit. However, it is known that the kinetic exponent z increases as
the system gets dense [158] i.e, as the volume fraction occupied by the clusters,
f cv , increases. For an intermediate value of f cv (0.1 < f cv < 1), scaling arguments
yield z ' 1.28 in 3d and z ' 0.67 in 2d. In the previous chapter we have seen
how the AO model yield a z-value rather similar to the 2d scaling result in the in-
termediate regime mentioned above and also to the kinetic exponent obtained in
large-scale 2d DLCA simulations with a fair degree of cluster crowdedness [159].

The kinetic exponent z is related to the growth exponent n1 for the temporal
evolution of the mean cluster radius of gyration, Rg. In the scaling description
of DLCA, n1 = z/Df . Following results depicted in the previous chapter, if
we consider z = 0.74 and Df = 1.4 in 2d, we obtain n1 = 0.53 in excellent
agreement with the observation of Figure 5.8. On the other hand, Rnn scales
as N−1/d

c where Nc is the number of clusters at time t. Since the total number
of monomers is constant in the system, one can write Rnn ∼ s1/d where s is
the mean cluster size at time t. As s ∼ tz, one obtains Rnn ∼ tz/d. Thus,
n2 = z/d = 0.37 in 2d, again in good agreement with the value obtained in
Figure 5.8.

Since n1 6= n2, it is clear that a single characteristic length does not exist
in the system. This is a consequence of the fractal nature of the clusters [166].
The breakdown of scaling is further demonstrated in Figure 5.9 by plotting ratios
of various length scales in the system. As expected, Rg/Rnn is not a constant
in time but rather grows with an exponent given by n1 − n2 = 0.16. Similarly,
the ratio R0/Rg shows clear time dependence. It is interesting to note that both
q−1
m /Rnn andR0/Rnn show weak dependence on t. This indicates that, both q−1

m

and R0 are closely related to one of the characteristic length scale of the system,
namely, Rnn. We will address this point further in the next section.

Now that we clearly demonstrate the existence of more than one length scale
in the system, why does the structure factor shows scaling as illustrated in Figure
5.7? Note that, as shown in Figure 5.8, the two length scalesRg andRnn approach
each other as time progresses. Since their ratio Rnn/Rg grows weakly with time
t, the relative difference between these two length scales tend to decrease as time
increases. This opens up a window in time where these two length scales are of
similar magnitude, and scaling over this limited time interval seems to satisfy.
Dynamical scaling as a general principle fails to describe the growth of fractal
clusters.
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5.4 Origin of the Peak in the Structure Factor

HOS has explained the presence of a peak in the structure factor by writing the
total structure factor for monodisperse systems as a combination of two structure
factors: the single-cluster structure factor Ssc, which involves the cluster radius
of gyration Rg as the characteristic length, and the cluster-cluster structure factor
Scc, which involves the mean nearest-neighbor distance Rnn as the characteristic
length.

Accordingly to HOS, Figure 5.10(a) shows an sketch of the single-cluster
structure factor (i.e. as if the cluster was isolated, or the system was very diluted).
At low q there is a q−independent Rayleigh regime in which the characteristic
length scale of the scattering q−1 is much larger than any characteristic size in
the cluster, therefore monomers scatter coherently and the structure factor is pro-
portional to the square of the number of monomers contained in the cluster N 2.
This Rayleigh regime ends about q ∼ R−1

g because the characteristic length scale
of the scattering q−1 becomes comparable to the characteristic size of the cluster.
When q > R−1

g Porod scattering occurs with a slope of −(d+ 1) if the cluster is
compact and therefore have a definite surface or with a slope −Df if the cluster
has a fractal nature (see Section 1.4.1). Figure 5.10(b) shows an sketch of the
cluster-cluster structure factor Scc. For very low q-values, q < L−1, where L
is the size of the system, the characteristic length scale of the scattering q−1 is
much larger than any characteristic size in the system and the clusters are consid-
ered to scatter coherently. In this regime Scc is expected to be a constant equal
to the square number of scatters Nc (the number of clusters in the system). For
L−1 ≤ q < R−1

nn the system exhibits the Porod regime of the scattering vol-
ume, Scc ∼ q−(d+1). When q � R−1

nn we will have a incoherent addition of Nc
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waves that will result in Scc ∼ Nc. The most tricky regime is the zone in which
q ∼ R−1

nn . If the system of clusters were not structured at all, we would also have
in this zone Scc ∼ Nc. In contrast, if the system of clusters were perfectly struc-
tured, we would have for q > R−1

nn an oscillatory behavior with minima at πR−1
nn ,

3πR−1
nn , . . . , and maxima at 2πR−1

nn , 4πR−1
nn ,. . . When clusters are neither random

positioned nor perfectly correlated, damped oscillations are expected. HOS have
shown that in moderately structured systems what remains of the oscillations is a
dip below a shoulder near 4.5R−1

nn which is in the middle of the first minima and
the first maxima of the hypothetical oscillations.

Figure 5.10(c) shows the regimes that emerge from the product of Ssc and
Scc. In moderately structured systems, a peak is expected in the structure factor.
But notice that the peak location does not represent any new length scale of the
system. HOS claim that q−1

m is not an independent characteristic length scale,
but rather can be expressed as a linear combination of Rg and Rnn. In addition
HOS conjectured that previous explanation applies not only to dense aggregating
colloids, but also to other systems like spinodal decomposing fluids. Thus, the
use of q−1

m in these systems to infer kinetic information may be dangerous.

Figure 5.11 shows the comparison of the total structure factor with the product
Scc × Ssc for deep quenches at t = 5000. The inset of Figure 5.11 shows Scc
and Ssc separately in a log-log plot. The cluster-cluster structure factor Scc, has
been computed by considering the centers of mass of the clusters as scattering
points. The single cluster structure factor Ssc has been obtained by computing the
individual cluster structure factors and averaging over all clusters. As it is shown
in Figure 5.11, the product Scc × Ssc is a reasonably good approximation for the
total structure factor for large q-values. The inset of the Figure 5.11 shows the
two power-law regimes for Ssc: a regime in which Ssc(q) ∼ q−Df and at larger q-
values, a regime in which Ssc(q) ∼ q−(d+1) according to Porod’s Law, originating
from the short-range crystalline order in the aggregates. Scc on the other hand,
flattens out at a q value around 4.5R−1

nn , in good agreement with HOS.

Unfortunately, the measured value of Scc × Ssc does not reproduce the ob-
served peak in the total structure factor from the simulation. Instead, this product
shows a monotonically decreasing function. One possible reason for this dis-
agreement at small q-values is a larger polydispersity of cluster sizes for deep
quenches. In contrast, in shallow quenched systems (|Um| = 3.5) one finds poly-
dispersity to be smaller if we do not take into account the sea of small aggre-
gates and single colloidal particles that surround the large clusters. Figure 5.12
illustrates this point by comparing the mass fraction of monomers associated to
clusters of size N for |Um| = 3.5 and |Um| = 6.0 when t = 1000. Therefore,
|Um| = 3.5 seems to be a more suitable system for testing HOS predictions (in-
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Figure 5.10. Sketch of the different structure factors as a function of wave vector q according
to HOS work. (a) Structure factor of an isolated single cluster Ssc, (b) cluster-cluster structure
factor Scc in which only the centers of masses are considered as scatters, (c) total structure
obtained when Ssc and Scc are multiplied.
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tended to monodisperse systems). Figure 5.13 shows a comparison of the total
structure factor for |Um| = 3.5 at t = 5000 with the product Scc × Ssc where
only clusters larger than N > 30 are taken into account. The inset of the Figure
5.13 shows the behavior of Scc and Ssc in this case. The dashed line shows the
predicted Porod regime for Ssc in the case of compact clusters: Ssc(q) ∼ q−(d+1).
Scc again flattens out at a q value around 4.5R−1

nn , in good agreement with HOS.
In this case, we observe that the product Scc × Ssc reproduces the peak of the
total structure factor. Thus it is quite possible that the absence of the peak in the
product Scc × Ssc for |Um| = 6 is due to the polydispersity in the cluster size.
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Figure 5.11. The structure
factor obtained for |Um| =

6.0 at time t = 5000 is
compared with HOS pre-
diction S = Scc × Ssc.
The inset depicts the behav-
ior of Scc and Ssc sepa-
rately in log-log plots. In
the inset two lines are plot-
ted to guide the eye for
Ssc: dashed line stands for
a slope equal to−(d+1) =

−3, and solid line stands for
a slope equal to −Df =

−1.4. Scc flattens out at a
q value around 4.5R−1

nn .
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Figure 5.12. Compari-
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associated to clusters of
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for |Um| = 3.5 and
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in chapter 4.

In our simulations for both shallow and deep quenches, the peak position q−1
m

is found to be closely related to the nearest neighbor cluster-cluster separation
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Rnn. For compact cluster growth, there is only one length scale in the system
and thus q−1

m can also be expressed in terms of the mean radius of gyration of
the growing clusters. For fractal cluster growth, there are two independent length
scales but over the simulation time, q−1

m is found to be proportional to Rnn.
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Figure 5.13. The structure
factor obtained for |Um| =

3.5 at time t = 5000 is
compared with HOS pre-
diction S = Scc × Ssc
where only clusters larger
than N > 30 has been
taken into account for the
calculation of Scc and Ssc.
The inset depicts the behav-
ior of Scc and Ssc sepa-
rately. A dashed line with
a slope equal to−(d+1) =

−3 is shown to guide the
eye. Scc flattens out at a q
value around 4.5R−1
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5.5 Concluding remarks

An important result of this chapter is the demonstration that aggregating colloids
exhibit a true structure factor scaling only when the growing clusters are com-
pact. This can be achieved for shallow quenches into the two-phase region of
a depletion-driven colloid. For such quenches, true scaling occurs after an ini-
tial transient time. This transient period covers nucleation of clusters and growth
mainly by incorporating monomers and small clusters in the growing nuclei. In
this regime, Rnn and Rg grow differently with time and scaling does not work.
After the transient period, the predominant mechanism of cluster growth is col-
lision among large clusters and the subsequent surface reorganization of clusters
to reduce the interfacial tension. This process leads to a similar temporal evo-
lution of Rnn and Rg, and a single length scale can be observed in the system.
Dynamical scaling is thus satisfied.

For deep quenches, the magnitude of the interaction potential between col-
loidal particles is much larger than thermal energy kBT . Thus, both rearrange-
ment and fragmentation of clusters are practically frozen and the growing clusters
are fractals over long periods of time. Simulation results show that cluster growth
in this regime is controlled by two characteristic lengths Rnn and Rg that evolve



120 Structure factor scaling in colloids

differently with time. True dynamical scaling is thus not possible although an
apparent scaling of the structure factor is observed when these two length scales
are comparable in magnitude.

Another important result of this study is to understand the shape of the total
structure factor. In this respect, our results are compared with the predictions of
HOS. HOS predict that the total structure factor for a monodisperse system can
be described as a product of the cluster-cluster and the averaged-single-cluster
structure factors, each with its own characteristic length. In the HOS formulation,
the peak in the total structure factor arises due to the overlap of these two con-
tributions. Simulation results show that this description works for monodisperse
systems but seems to break down for polydisperse cluster size distributions.



Chapter 6

Spherical polymer brushes I:
The pair-wise interaction

Spherical polymer brushes (see Figure 6.1) are a particular but extremely in-
teresting case of colloidal particles. The present and the next chapter are

intended to increase the knowledge we have about the statistical properties of
such colloidal particles. In this chapter we characterize the pair-wise interaction
of spherical polymer brushes in the almost unexplored regime in which polymer
chains and the brush-core have sizes roughly of the same order of magnitude.
Next chapter will focus on the interactions associated with encapsulated spheri-
cal polymer brushes.

The objective of this chapter is two fold. First, to check, compare and de-
termine the range of validity of the existing theories; and second, to obtain the
interaction profile in the whole range of distances for systems where the curva-
ture effects are relevant. As we have pointed out in previous occasions, besides
many applications have been found for spherical polymer brushes, the nature of
their interactions is still partially understood. We will show in this chapter, when
two particles are brought to a very close distance, the interaction is well described
by the Witten and Pincus theory [169], whereas when the particles are far enough
apart, the behavior is reproduced by an extension of the Flory theory for dilute
polymer solutions. We will compare the overall behavior with the predictions
of the phenomenological Doroszkowski and Lambourne theory [170]. In addi-
tion we will show that the characteristic size of an unperturbed spherical brush
follows the same scaling found in the star polymer systems approximation.

121
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6.1 Introduction

The structure and dynamics of polymer brushes have been the subject of consid-
erable experimental and theoretical activity in the last years. Polymer brushes are
characterized by a high concentration of end-grafted polymers onto a non adsorb-
ing surface. The constrained geometrical environment limits the available space
the polymers can occupy forcing the chains to stretch out, normal to the surface,
forming a brush (see Section 2.7). The introduction of curved geometries results
in polymer brush structures whose properties differ significantly from those at
flat surfaces. This is mainly due to the increased volume available to the stretched
polymer as it moves away from the interface. The geometry of the surface deter-
mines the particular properties of a curved-brush. Nature, as well as man made
objects, offer multiple examples of curved-brush structures that can be roughly
approximated by simple geometries like inward/outward cylindrical or spherical
brushes as well as onion-skin structures1 (see Figure 6.2).

Spherical brushes are a case of special interest which have been found to be
particularly relevant in many aspects of polymer science and technology [171–
176], just to mention:

• The stabilization of colloidal systems2. An effective way of stabiliza-
tion can be achieved by end-grafting polymer chains to colloidal particles
(spherical brushes), see Figure 6.3. Polymer adsorption is another alterna-

1There are many examples of curved-brush structures, just to mention: nanotubes with grafted
polymers, and amphiphilic brushes made of poly(acrylic acid)-b-poly(n-butyl acrylate) are exam-
ples of outward cylindrical brushes. Membrane pores with grafted polymers are examples of inward
cylindrical brushes. In reference to spherical brushes, many examples of outward brushes have
been given in Chapter 1, in turn the molten liquid core of diblock micelles are examples of inward
spherical brushes. Onion-skin structure can be achieved for instance by mixing diblock PVP-PEO
molecules with diblock micelles (hydrophobic core plus a PVP outer shell) at moderate and high
pH values.

2Stable colloidal systems are desired in a wide range of areas such as paints, glues, food emul-
sions, and pharmaceuticals. In a paint, for example, a controlled level of aggregation is important
in both the application of the paint and its storage in the container. In the case of the application
of the paint, the level of aggregations controls the degree of thixotropy of the fluid and permits the
paint to ”thin” under the shearing influence of the paintbrush or spray gun. Once applied, it thick-
ens, preventing the drip or sag of the paint on the surface. In the case of storage before and during
the application, is important that pigments do not sediment eliminating the need to stir the paint
continuously. The dispersion and stabilization of small particles in nonionizing media is a question
relatively old. As early as 1900, Spring [Spring, M. W. Recl. Trav. Chim. Pays-Bas, 19, 204,
(1900)] speculated that hydrophobic particles are prevented from flocculating by solvated shells on
their surfaces.
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Figure 6.1. Schematic representation of
two spherical brushes separated a distance R.
Each brush consists on f polymers of length
N grafted to an spherical surface of radius rc.

(a) (b)

(d)(c)

Figure 6.2. Several types of curved-brush
structures: (a) outward spherical brush, (b)
inward spherical brush., (c) outward/inward
cylindrical brushes, and (d) onion-cell brush
structure.

tive but as we commented in Chapter 1 it may not have the desired effect of
repulsion, indeed, adsorbed polymers can easily produce strong attraction
between them [171,177,178]. When spherical brushes are used, the chains
are chosen to repel both the surface and other chains. This requirement
is fulfilled in the presence of a good solvent with a lower surface energy
compared to the one of the polymer with the surface. Thus, the effective
repulsion between two polymer brushes provides the force required to over-
come van der Waals attractive forces.

• Potential drug carriers. Sterically stabilized liposomes are used for drug de-
livery [176,179]. Recent experiments have shown that by grafting polymers
on liposomes, the circulation time of liposomes in the blood stream can be
substantially increased resulting in enhanced drug delivery properties.

• The use of the light-scattering properties of coated spherical particles has
been found to be a useful and non-destructive way to probe and size systems
ranging from blood cells to paper whiteners [180].

• Chromatography: Alkyl grafted silica particles have been used for gas
phase chromatography mainly as stationary phases for high performance
liquid chromatography, and it represent about the 80 % of separations.

• Biotechnology: spherical polymer brushes have been found to be useful
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in the immobilization of enzymes and antibodies minimizing the adverse
effects in their functionality [181].

• Spherical brushes formed by colloidal poly-(methyl methacrylate) spheres
with a grafted layer of poly-(12-hydroxy stearic acid) (PMMA-PHSA) has
served as a model to emulate hard-spheres minimizing the effect of van der
Waals forces [182].

Figure 6.3. Electronic micrograph of steri-
cally stabilized silica. Grafted chains are made
from TEPA-terminated polyisobutene (TEPA =

tetraethylenepentamine). Polymers are attached
to the silica surface that is covered with silanol groups,
via its TEPA end group. Taken from H. De Hek
and A.Vrij, Journal of Colloids and Interface Science,
79,1,1981.

In addition, spherical polymer brushes are found to display a rich physical
behavior, for instance, colloidal silica spheres with grafted alkane chains has been
observed to suffer aggregation and cluster formation [183] as well as a sol-gel
transition in hexadecane solution [184].

Therefore, the understanding of interactions between brush-polymers are es-
sential for tailoring polymer additives and polymer-induced forces in chemical,
medical and materials sciences applications.

From a theoretical point of view, polymer chains anchored onto planar sur-
faces (flat brushes) were the first type of grafted polymers whose properties were
studied in detail by physicists. The scaling properties of planar brushes were
initially worked out by de Gennes and Alexander [185, 186]. Immediately after,
Semenov [187], Milner-Witten-Cates [188,189] and Zhulina-Priamitsyn-Borisov
[190,191] developed a self-consistent field theory, predicting a parabolic form for
the density profile and obtained an expression for the free energy of two interact-
ing flat brushes. Their predictions were well supported by Monte Carlo [192–195]
and molecular dynamics [196] simulations.

Whereas for concave grafting surfaces (a surface that curves towards the poly-
mers) Semenov found that it was possible to use the same interacting potential
used for flat brushes, for convex surfaces it was not possible to obtain a self con-
sistent solution under melt conditions [187] that gave a physical distribution of
free-ends near the grafting surface. Since then, there have been several attempts to
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determine the rheological properties and the effective interaction between spher-
ical brushes. However, the validity of the results obtained were restricted to spe-
cific limiting cases.

The monomer concentration profile given by Daoud and Cotton [197] was
derived assuming a star shaped polymer. Witten and Pincus [169] (to be referred
as WP) derived an expression for the effective interaction potential in the regime
where the chains extend far beyond the diameter of the colloidal particles. More
recently, Borukhov and Leibler [198] studied the interaction between spherical
brushes in the Derjaguin approximation [12], whose validity is limited to systems
with small curvature effects.

Numerical models can help us in studying the properties of these systems and
test the validity of previous theories. Simulations have been proved to be of con-
fidence in the case of flat brushes, thus, they are expected to be also useful in the
case of spherical brushes. But, before presenting our results and the methods used
to obtain them, let us review in some detail which theories have been formulated
describing those systems and some of the relevant experiments done up to the
present. This knowledge will provide a good insight into the topic of spherical
brushes and will allow us to better understand the intrinsic difficulties in the study
of these systems and to clarify what still remains unclear.

6.2 Theoretical review

In this section we will review in detail the theoretical developments and for-
malisms designed to deal with end-grafted polymers onto spherical particles.
Namely, we shall focus on self-consistent and scaling based theories. The latter
will cover the Flory theory for diluted polymer solutions and the phenomenolog-
ical theory of Doroszkowski and Lambourne.

6.2.1 Self-Consistent Field theories

Self-consistent field (SCF) theories are based on mean field approximations, that
is, monomer interactions are emulated by a background potential that depends
on the monomer concentration. The mean-field model is known to fail for very
dilute solutions [95] and must be corrected when there are strong spatial fluc-
tuations. These fluctuations are expected to be produced near the chain-end of
the brush, and also probably near the grafting surface due to the so called wall
effects. As a consequence, if the distance between two brushes is large enough,
fluctuations in density around the interacting region will turn important, and the
force profiles obtained might be erroneous. Furthermore, SCF methods have an
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inherent problem. Due to the accumulation of monomers in the space between the
two brushes, non linear dependences on the concentration may turn important and
change the mean-field potential, this effect will increase as the relative distance
between the two brushes decreases.

Basically, all the self consistent field theories and methods applied to spherical
brushes can be considered following one of the next development-layouts:

• Taking, as starting point, the flat geometry and apply the Derjaguin approx-
imation.

• On the basis of a lattice model.

• Using analytical approaches (the genuine mean-field).

• On the basis of a diffusion type equation.

• Minimizing the brush free-energy.

6.2.1.a SCF: a flat surface as a starting point

SCF theories have been applied to curved surfaces based on simple corrections to
the flat case. One of the most extended corrections is the Derjaguin approximation
[12]. This approximation applies when the radius of the colloidal particles is
much larger than their relative distance. Let’s consider two spheres of radii R1

Z

D

x

z2z1

R1

R2

dx

Figure 6.4. Schematic plot of the
Derjaguin approximation for the in-
teraction between two colloidal par-
ticles.

and R2 separated a distanceD between their surfaces, such as, D � R1, R2 (see
Figure 6.4). The force between the two spheres can be obtained by integrating the
force between small circular regions of area 2πx dx, (0 < x < Ri), perpendicular
to the axis that join the two core-centers. The small circular regions have their
centers located at a distance z1 and z2 from R1 and R2 respectively. Thus, their
relative distance is Z = D + z1 + z2. At this distance, both circular regions are
taken locally flat, thus:

F (D) =

∫ Z=∞

Z=D
2πx f(Z) dx (6.1)
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where f(Z) is the normal force per unit area between two flat surfaces. Since
x2 ≈ 2Rizi, Z = D+ (x2/2)(1/R1 + 1/R2) and we can approximate F (D) as:

F (D) =
2πR1R2

R1 +R2
W (D) (6.2)

where W (D) is the energy per unit area of two flat surfaces at a distance D.

By means of the Derjaguin approximation, Ekaterina et al. [199] found an an-
alytical expression for the interaction of two spherical brushes in the case of cores
with radius larger than the polymer layer length. However, only in the case of very
weak and very strong compression they found tractable analytical expressions. A
mean-field analytical theory was then developed for the interaction between two
colloid end-grafted particles. Ekaterina assumed that the equilibrium structure of
the grafted polymer is determined by the minimization of its conformational en-
ergy. This energy contains volume interactions and elastic chain stretching terms.
Ekaterina applied this formalism to the calculus of the density profiles and the
conformational free energies of flat brushes. Their results were extended to the
case of interacting spherical brushes by making use of the Derjaguin expression.
As themselves pointed out, the use of Derjaguin approximation neglects possi-
ble chain redistributions from the interaction region to other brush zones (lateral
redistributions).

It is also worth to mention the work of Milner and Witten [189] that obtained
the mean and Gaussian bending moduli for spherical and cylindrical brushes by
expanding in powers of the curvature the free energy of a brush on a curved
surface. We might be tempted to use that expansion of the free energy in order
to calculate the repulsion between two spherical brushes in the way like Milner
Witten and Cates did for two flat brushes. In such case, they first deduced the
free energy of a single flat brush and then measured the interaction between two
flat brushes. Unlikely, a new problem nonexistent in the flat case arises. In a flat
brush all the chains of a brush interact with chains belonging to the other brush
due to the flat geometry. But in the spherical case, chains placed in the opposite
side of one brush, may weakly interact with the chains of the other brush (and
this effect is more relevant when the number of monomers per chain decreases). If
calculations are done following this formalism, the force profile of two interacting
spherical brushes might differ, at least, in two orders of magnitude from other
SCF and Monte-Carlo simulations. Thus, the approximation derived from the
free-energy expansion in powers of the curvature gives, in general, very poor
results.
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6.2.1.b SCF: lattice models

Originally, polymers were modeled with the free-joined step chain model on a
lattice, where the generated conformations were weighted with the mean field
potential. In these models nor the stiffness nor the correlations among neigh-
bor monomers were taken into account. Chain stiffness was incorporated later in
the rotational isomeric state model [200], and correlations between the nearest-
parallel-neighbor-bonds were also included in the self-consistent anisotropic field
[201]. They found that the chain stiffness effect and the bond correlation effect
partly compensate and this fact explained why simple freely-jointed-chains-SCF
methods were in a relatively agreement with Monte Carlo and molecular dynam-
ics simulations [202].

These models were first developed for a flat lattice geometry. More recently
Wijmans, Leermajers and Fleer [203] developed a lattice SCF for two polymer-
coated particles. As it uses a formalism based on a diffusion type equation, we
will refer to it in the next section.

6.2.1.c SCF: analytical approaches

The first analytical approaches for flat brushes were developed, independently, by
Zhulina et al [190, 191] and Milner et al (MWC) [188, 189]. In their formalisms,
polymer chain conformations, under the assumption of strong stretching, are ap-
proximated by a set of the most likely trajectories. This assumption allows to
neglect chain conformation fluctuations about the most probable path between its
end points. An exception to the previous assumption may occur at the end of
the brush where the concentration is small, and several chain conformations may
contribute to the partition sum. In the MWC formalism [188] the action for a
grafted chain is analogous to a system in which a particle is forced to follow the
path described by the polymer chain from the end-segment to the grafted segment.
This particle is supposed to be subject to an equal time potential, (i.e. harmonic
potential). Monte Carlo simulations on flat brushes are found in good agreement
with the SCF predictions except near the surface and the zone where the brush
ends [204].

When these theories were tested on non planar surfaces, Semenov [187] found
that the flat-potential no longer gives a self-consistent solution under melt condi-
tions. Thus, for convex surfaces, the flat-potential leads to an unphysical distribu-
tion of free-ends (near the grafting surface the density of free ends owe be negative
in such case). Semenov suggested that in these geometries, the free chain-ends
should be excluded from a zone near the grafting surface in order to keep self-
consistency. Following Semenov’s suggestions, Ball, Marko, Milner and Witten
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(BMMW) [205] developed a quantitative theory under melt conditions introduc-
ing an exclusion zone near the grafting surface. By allowing this exclusion zone
in their calculus, that increases linearly with the brush thickness, BMMW were
able to relate the chain configurations with the free energy in a closed form for
convex cylindrical surfaces. However, for the spherical case, BMMW deduced a
very complex set of equations that, to our knowledge, still remain unsolved.

Li and Witten [206] have also considered the problem of the exclusion zone in
the regime of a marginal solvent. They have implemented a variational approach
in order to minimize the free energy with respect to the density of free ends and
respect to the polymer trajectories. Their results provide a reasonable density
profile, but the free end density is qualitatively different when it is compared with
numerical simulations.

6.2.1.d SCF: diffusion type equations

This formalism was first developed by Edwards [207]. In his model a polymer is
described as a chain of freely-jointed segments of constant length in the presence
of a potential field, where the segment probability distribution function obeys a
Schrödinger type equation.

For spherical and cylindrical brushes without external constrictions, Dan and
Tirrell [208] solved the Schrödinger equation finding the segment-chain density
and the end-chain density profiles for several radius and grafting densities. They
also found evidences of an exclusion zone near the interface. Particularly, the
results for cylindrical interfaces are in good agreement with the theoretical pre-
dictions of BMMW and the exclusion zone seems to change linearly with the
brush thickness in the limit of strong curvature. The same result is found for
spherical brushes, however, no predictions on the exclusion thickness is done
in the BMMW theory. Molecular dynamics simulations for cylindrical brushes
under good solvent conditions [209] showed a narrow exclusion zone near the
interface, comparable to the theoretical predictions, but only in the case of high
surface density of grafted chains.

More recently, another SCF based on the Edwards formalism was applied by
Lin and Gast (LG) [210] to calculate the steric repulsion between two spherical
particles. To obtain the interaction potential, the density profile for the interacting
brushes was calculated assuming a total density equal to the sum of the individ-
ual density brushes. Afterwards, volume fraction profiles were calculated self
consistently with a mean field potential:

U(z) =
ρ0S

ρ0A
− lnφS(z) + χ(φS(z)− φA(z)) (6.3)
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where ρ0S and ρ0A stands for the bulk number density of solvent molecules and
chain segments respectively. χ is the Flory-Huggins interaction parameter. φS(z)

and φA(z) are the volume fraction of the solvent and polymer segments in the
layer z respectively.

Thus, the free-energy per pair of interacting chains F (r) follows,

F (r)

kBT
= −2 ln(W )− 2ρ0S

f

∫ r/2

Rcore

− lnφS(z′)− χφ2
A(z′)dz′ (6.4)

where f is the number of chains tethered to the surface and W stands for

W =

∫ ∞

Rcore

dz′ G(z′, Rcore;N) (6.5)

being G(z′, Rcore;N) the probability of finding the segment N at the position
z′, given that the chain started at the position Rcore. G(z′, Rcore;N) was, in
turn, calculated by solving the diffusion equation taking U(z) as the mean field
potential. At this point it is worth to note that Lin and Gast used an expression
for the Helmholtz free energy with an extra term in addition to the usual term
−f ln(W ). It was argued that this second term corrects partially for an over
counting of the segment–segment interaction that arise in mean field theories.

The Helmholtz free energy obtained in this way is measured along the line
that joins the two brush centers. Thus, it is possible to determine the free energy
per unit area at the midpoint at different relative distances. Afterwards, the total
interaction potential can be obtained by integrating over the area of overlap at the
midpoint by using the classical Derjaguin approximation,

u(r)

kBT
= 2π

∫ Rcore+D/2

D/2
(Rcore − h+D/2)

∆Fmid(h)

kBT
dh (6.6)

whereD stands for the core surface to surface separation in the direction that joins
the two center cores, and 2h stands for the separation between the two circular
regions.

As Lin and Gast pointed in their article, by making this approximation, they
neglected all possible lateral redistributions of polymer segments. As a conse-
quence, their calculation may overestimate the interaction potential specially for
small separation of the cores.

On the other hand, Wijmans, Leermajers and Fleer (WLF) [203] developed
a lattice SCF based on the Edwards formalism for two polymer-coated particles.
WLF proposed a model for particles whose radii is of the same order as the poly-
mer layer thickness. They adopted a cylindrical coordinate system where the
z-axis is the axis that links the center of two particles, and the radial coordinate
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gives the distance from a point to that axis. This model is a 2d–lattice model in
contrast with the 1d–Lin and Gast model.

In their model, the lattice consists in parallel layers of z=cte, separated a
distance of one polymer segment, each layer being divided in concentric rings of
radius R, again separated by one polymer segment. A step probability is defined
in order to connect a segment of coordinate (z,R) to a nearest-neighbor point on
the lattice:

λ(z,R; z,R − 1) = 1
6(1− 1

2R−1 )

λ(z,R; z,R + 1) = 1
6(1− 1

2R−1 )

λ(z,R; z,R) = 1
3

λ(z,R; z − 1, R) = λ(z,R; z + 1, R) = 1
6

λ(z,R; z′, R′) = 0

Assuming the potential energy of a polymer segment u(z,R) to depend on the
translational entropy of the solvent molecules, in athermal conditions, it can be
written as:

βu(z,R) = − ln(1− φP (z,R)− φ(z,R)) (6.7)

where φP (z,R) is the polymer volume fraction profile, and φ(z,R) the core vol-
ume fraction. WLF results were obtained by solving the composition law recur-
sively using lattice approximations described before and the assumed potential
energy. As in the case of Lin and Gast, WLF also obtained predictions about
the interaction between two grafted–chains particles. Both SCF results will be
compared later with our numerical results.

6.2.1.e SCF: minimizing the brush free-energy

Carignano and Szleifer [211] extended the formalism developed by Ben-Shaul et
al. [212], originally devoted to study the micelle formation, to the case of spher-
ical or cylindrical brushes. In the paper of Carignano the probability distribution
function of chain conformations is calculated as a function of the local osmotic
pressure by minimizing the Helmholtz free energy per unit area of the system,
subject to the constraint of the incompressibility of the fluid. In this formalism,
the osmotic pressure was introduced as a Lagrange multiplier. They derive a sys-
tem of nonlinear coupled equations which solution gives the osmotic pressure. In
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order to solve such equations, a representative set of chain-configurations allow-
able to the system has to be generated. Despite Carignano and Szleifer obtained
an expression for the free-energy they did not studied the interaction between
spherical brushes. Figure 6.5 shows the density profile for a single spherical
brush. In this figure we compare our Monte Carlo numerical results (see also
[213]) with the Carignano and Szleifer SCF method.
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r
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Figure 6.5. Radial
monomer density profiles
vs. the distance to the core
center for different chain
lengths N and number of
grafted chains f . In this
plot we compare the results
of our MC simulations
with the outcome of the
Cariagno-Szleifer self
consistent field method
(CS).

6.2.2 Other related theories to the study of spherical brushes

6.2.2.a The Daoud and Cotton approach

Daoud and Cotton [197] proposed a model for star-polymers. A star-polymer
corresponds to the limiting case of a spherical brush in which the core has the
size of a monomer. They considered that any given branch of the star can be
modeled as a blob which size depends on the local concentration of monomers.
Inside the blob the polymer segments are treated as a free self-avoiding chain.
Whereas previous theories assumed an uniform swelling of the molecule, i.e. the
blobs have all the same size, Daoud and Cotton suggested that the blobs are much
more expanded in the outside brush zones than in the region near the core.

Daoud and Cotton defined blobs of increasing size as one goes from the core
to the surface of the molecule through a local swelling parameter. They found
that, for an isolated star containing f branches and N monomers per branch with
a lb monomer-length and an excluded monomer-volume ν, the variation of the
monomer concentration c(r) follows a c(r) ∼ (r/lb)

−1 variation for f 1/2lb <

r < f1/2ν−1lb, and c(r) ∼ (r/lb)
−4/3 for r > f1/2ν−1lb.

Daoud and Cotton found within an accuracy of 10% that their predictions
agree with experimental data for star shaped polystyrene. Unfortunately, when
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one compares these theoretical predictions for star polymers with the rescaled
density profiles for star polymers obtained from Monte Carlo simulations the
agreement is much worse [213].

6.2.2.b Witten and Pincus theory

Witten and Pincus [169] (WP) proposed a scaling model in which the effective
interaction potential of two brushes containing each f long polymers grafted to
them, depends logarithmically on the separation between the particles multiplied
by an universal coefficient that depends on f . For f � 1 they calculated the free
energy of one spherical brush by using the hypothesis of Daoud and Cotton. Next,
they assumed that bringing the two brushes within a close distance, the bulk of the
system is similar to a single brush with 2f chains. By making that assumption,
WP found that the variation of the free-energy when the two brushes are brought
from an infinite distance to a very short distance is approximately equal to the
free-energy of an isolated brush. Then, by applying scaling arguments, WP found
that de interaction potential between two spherical brushes is given by:

U(r) ≈ νf 3/2 ln

(
R0

r

)
(6.8)

where R0 is the characteristic size of an isolated brush and ν ∼= 3/5. This loga-
rithmic dependence is found to be valid in the limiting cases of f � 1, but also
for f = 1 or 2. For intermediate values of f , WP do not provide any expression.

6.2.2.c The theory of Flory for diluted polymer solutions

The theory of Flory for dilute polymer solutions [93] was developed originally
for polymer chains without any core or branching point (see the Flory-Huggins
theory on Section 2.6.1.b). We will see later in this chapter, that this result can be
used in order to estimate the interaction between two spherical brushes when they
are separated a distance large enough. In such case, the effect of the hard-core
spherical particle can be neglected, and only the interaction between monomers
is of relevance.

A very dilute polymer solution can be regarded as a dispersion of a ”clouds”
of monomers. Each ”cloud” corresponds to a polymer molecule, and the space
among those clusters is filled by pure solvent particles. Each polymer chain may
be approximated by an spherical object with a density that diminishes with the
distance to the center. When we bring two of such molecules close enough; a
superposition of their domains takes place. In a good solvent, monomer-solvent
interactions are preferred to the pure monomer-monomer interactions. Thus, the
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molecules will tend to avoid the overlapping of the domains. Flory calculated the
variation of the free energy δF when two of such molecules are brought from the
infinity to a distance R. In an overlapping volume δV it is given by:

δF = 2kBTψ1

(
1− θ

T

)
ρkρl

V 2
m

V 2
s

δV (6.9)

where ψ1 stands for the entropy parameter, θ is theta-temperature, Vm is the vol-
ume of a monomer, Vs is the volume of a solvent molecule, ρk and ρl are respec-
tively the monomer density of the brushes labeled k and l in that δV .

Integrating over all the overlapping region, assuming a Gaussian-like monomer
density profile in each ”cloud”, the total free energy is

F = kBTψ1

(
1− θ

T

)
v2
p

Vs

(
β′m2/3

π1/221/6

)3

e−R
2β′2/2 (6.10)

where vp stands for the specific molecule volume, β ′ = 3/
√
〈r2〉 with 〈r2〉 the

mean square of end-to-end distance, and m is the mass of the molecule. v2
p

Vm
m2

is proportional to the number of monomers in the chain and R stands for the
distance between the center of mass of the molecules. ψ1(1 − θ

T ) = 1/2 − χ1,
being χ1kBT the difference between the energy of a solvent molecule immersed
in pure polymer and the energy of that solvent molecule when it is surrounded
by other solvent molecules. By differentiation one obtains the repulsive force
between that two molecules,

f(R) = −∂F
∂R

= kBTψ1

(
1− θ

T

)
v2
p

Vs

(
β′m2/3

π1/221/6

)3

β′2 R e−R
2β′2/2 (6.11)

6.2.2.d The Doroszkowski and Lambourne phenomenological approach

A complete different approach to the study of the interaction between two spher-
ical brushes was given by the phenomenological theory of Doroszkowski and
Lambourne (DL) [170]. They assumed that as the two spherical brushes ap-
proach, the polymer chains do not interpenetrate resulting in an increase of the
local monomer concentration and, as a consequence, in the osmotic pressure.
The originated repulsive force is given by the change in the osmotic pressure
multiplied by the contact area between the two brushes:

f
DL

(R) = ∆Π π

(
R0 −

R

2

)(
R0 +

R

2

)
, (6.12)
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where R is the distance between the centers of the cores of both brushes. R0 is
the characteristic radial size of an unperturbed brush measured from the center
of its core. ∆Π is the change of the osmotic pressure and it is given by a rather
complicated function of the size of the interacting region. In units of kBT it reads:

∆Π =
1

v1

(
v∗22 − v2

2

2
+
v∗32 − v3

2

3
+O(v4

2)

)
, (6.13)

where v2 is the volume fraction occupied by the Nf monomers in an isolated
brush:

v2 =
aNf

τ
, (6.14)

being a the volume of a single monomer and τ the volume occupied by the
monomer chains:

τ =
4π

3
(R3

0 − r3
c ). (6.15)

and v∗2 , defined by
v∗2 = v2(VR + VH)/VH , (6.16)

is the volume fraction occupied by the monomers in the compressed state.
Monomers initially located inside VR (half of the overlapping region between the
two brushes) are redistributed into the volume VH since chains are not allowed to
interpenetrate (see Figure 6.6). Finally, v1 is a constant giving the molar volume
of the solvent.

The detailed expressions for the geometrical factors VR and VH can be easily
obtained as:

VR =
1

3
π

(
R0 −

R

2

)2(
2R0 +

R

2

)

VH =
1

3
π

(
R0 −

R

2

)(
R0 +

R

2

)
R

2
− 2π

3

(
1− R

2R0

)
r3
c

The DL theory is, in principle, valid over all relative distances between the
two brushes. However, a quantitative analysis of this model involves a truncated
expansion of the change in the osmotic pressure and requires the determination of
the unperturbed radial size of the brush R0 which is usually difficult to measure
with precision.

6.3 Previous experimental findings

Several papers about the physical properties of terminally attached homopoly-
mer chains on colloidal particles have been published. Experiments on spherical
brushes can be classified in three main areas:
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R0 

VR VH 

rc 

R 

Figure 6.6. Schematic represen-
tation of two interacting spherical
brushes in the DL model. R0 is the
radial size of an isolated brush; rc is
the core radius. The shadowed re-
gions represent VH and VR.

• Determination of structural properties of a single brush. Structural prop-
erties like density profiles have been elucidated using SANS [214, 215],
ESR [216, 217] and NMR [218] experimental techniques. A detailed re-
view can be found in the work of Cohen, Cosgrove and Vincent [219].
For instance, SANS technique has been recently applied to block copoly-
mer micelles [220]: Block copolymer micelles have been found to exhibit
a well-defined corona structure, and some close analogies to the Daoud-
Cotton model seems to exist.

• Global properties of solutions containing spherical brushes. Dispersions of
spherical brushes has been observed to exhibit several interesting phenom-
ena: Order-disorder transitions [221], flocculation [222], cluster formation-
aggregation processes [183], sol-gel transitions [184], and polymer-driven
phase separations [223].

• Determination of forces among spherical brushes. There are very few ex-
perimental measurements of the force among spherical brushes. These
measurements are based on disjoining pressure methods. Disjoining pres-
sure (osmotic pressure) methods are experiments mainly designed to deter-
mine the steric interaction between two approaching surfaces. Using such
methods it is possible to determine the steric interaction between colloidal
particles under compression conditions, or the thickness of a film inside an
spherical shell. The compression studies need that particles are packed in
some regular array. These arrays may be 2d or 3d. In the case of 2d-arrays,
generally a Langmuir surface balance method is used. Particles are spread
on a water/organic compound interface and the compression force is usu-
ally mechanical, hydraulic, or centrifugal. For 2d arrays, Doroszkowski and
Lambourne [170, 224] introduced the Langmuir surface balance technique
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for latex particles carrying anchored hydrocarbon-miscible polymer chains.
They found that, after several cycles of compression-decompression, the
particles packed into a 2d hexagonal array on the hydrocarbon side of the
interface (see Figure 6.7). In the work of Doroszkowski and Lambourne
the core radius is approximately seven times the brush height when the
brushes do not interact. The experimental data shows that the repulsion
energy increases as the system is compressed, but it does not diverge when
the spheres are close to each other, indicating that the maximum packing of
the system is not reached.

For three-dimensional arrays of polymers adsorbed onto spherical latex par-
ticles, Cairns et al. [225] and Homola et al. [226] measured the particle
volume fraction as a function of the applied pressure.

Later on, Evans and Napper [227] assuming an hexagonal array and addi-
tive pair potentials, showed how the theoretical free energy can be written
in terms of disjoining pressures Pd. The assumption that pair potentials are
additive ignores any non additive effect in the many-particle interactions.
Nonetheless, there is a way to transform experimental disjoining pressures
into pair potentials:

Pd =
−1

√
2
(
a+ do

2

)2
∂VT
∂do

(6.17)

where VT is the total potential energy between pairs of particles, a is the
particle radius and do is the minimum separation distance between the sur-
faces of two adjacent particles. The preceding expression does not take
into account the disjoining pressure coming from the configurational en-
tropy of the particles, by means the disjoining pressure due to the motion
of the centers of mass of the particles. An approximation to that value is
done applying the Percus-Yevick equation. Usually this contribution to the
disjoining pressures is an order of magnitude smaller than the repulsive
pressures, and only in the case of weakly repulsions the configurational
entropy of the particles is of relevance.

It is also worthwhile to comment that spherical brushes have been used to
emulate specifically hard-spheres [182, 228–232]. Generally, these studies use
spheres of colloidal poly-(methyl methacrylate) with grafted chains of poly-(12-
hydroxy stearic acid) (PMMA-PHSA) with ratios Core − radius/Brush −
heigth ranging from 25 to 60. The core diameter is about 1µm and the grafted
layer about 10nm thick. The short grafted layer neutralizes the attractive van
der Waals forces among colloids and in turn it provides a short-ranged strong
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Figure 6.7. Electronic micrography showing the
hexagonally close packed particles. The holes are due
to the surface friction that suffers the particles that
arises from the solvated barriers, which attract one to
each other. Taken from [224].

repulsion among particles that mimics the hard-sphere potential. If the ratio
core− radius/chain− length < 5, then severe deviations from the hard sphere
behavior are evident, even selecting properly the chains. When curvature in-
creases, the brush properties change dramatically as for instance the repulsive
force they are able to exert.

6.4 Interaction between two spherical brushes

In the previous sections we have reviewed the state of the art of the research on
spherical brushes. We have also seen that for convex surfaces the mean field po-
tential used in planar surfaces leads to unphysical results. In cases where the chain
extent is much smaller than the core diameter, Ekaterina et al. [199] showed that
is possible to obtain tractable expressions for the interaction between two spher-
ical brushes by using the Derjaguin approximation. However, this approxima-
tion turns out to be wrong as the core diameter reduces and curvature increases.
On the other hand, in the limit of very long chains in comparison to core size
core− radius/chain− length� 1 , it has been shown that a good description
of such brushes can be done in terms of a star polymer.

None of the previous theories or formalisms has been proven to give a suc-
cessful description of the interaction in intermediate cases in which the chain
extent is of the same order of the core radius. To our knowledge, just the work of
Wijmans-Leermakers-Fleer [202] (WLF) studied this intermediate regime. Their
results based on lattice SCF calculations have not been contrasted with other re-
sults up to now, and we should keep in mind that SCF formalism does not account
for the monomer correlations, and therefore, possible deviations from the WLF
results can be expected.

In the theoretical review we have presented some promising theories that
could model properly the interaction between spherical brushes in the interme-
diate regime in which the chain extent is of the same size of the core. Namely,
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the Witten-Pincus theory (WP) based on the Daoud-Cotton formalism for star
polymers, and the Flory theory for diluted polymer solutions. Particularly, the
Flory theory, giving the interaction between two globular polymers, is previous
to 1953, and no one has previously tried to use these results to study the inter-
action of spherical brushes. The hypothesis involved in the WP and the Flory
theories basically imply that one expects the WP to give a good representation of
the interaction profile at short distances, whereas an extension of the Flory theory
could work in the case that the two brushes are separated enough that the dilute
monomer concentration criteria can be applied. A question that raises is to de-
termine the range of validity of both theories. An answer to this question will be
presented here. Worth to consider is the theory of Doroszkowski and Lambourne
(DL). The DL theory has been in the forgetfulness for about thirty years, partly
due to its complex formalism. However, it has the advantage respect to the WP
and Flory theories, to be valid in the whole range of distances separating the two
brushes. DL performed in the same work four experiments measuring the interac-
tion between four chemically different kinds of spherical brushes. Unfortunately,
DL only reported data at two distances between brushes: at a small separation
where the cores were nearly in contact, and at large distances beyond the average
brush thickness.

It is convenient for the sake of the comparison with our Monte Carlo results
to rewrite the key expressions of Flory and WP theories as follows:

• WP proposes an interaction potential between the two brushes that depends
logarithmically on their separation,

V
WP

(R) = A ln

(
R0

R− 2rc

)
. (6.18)

being R is the distance between the centers of the colloidal particles, and
rc the core radius. Thus, the force is simply given by:

F
WP

(R) =
A

R− 2rc
. (6.19)

The constantAwas found to follow a power-law dependence with the num-
ber of grafted chains f ,

A ∼ f3/2. (6.20)

• Flory assumed that for very dilute polymer solutions, each polymer can be
seen as a collection of monomers forming a rather spherical object charac-
terized by a Gaussian-like monomer density profile. Bringing together two
of such polymers might eventually result in an overlapping of the domains.
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Hence, in the presence of a good solvent, a repulsive force appears between
them. The derived expression for the force in units of kBT takes the form:

F
F
(R) = CRe−DR

2

, (6.21)

where C and D are constants described by:

C ∼ M2

〈r2〉5/2 , (6.22)

and
D ∼ 1

〈r2〉 . (6.23)

M is the mass or the total number of segments inside the globular polymer,
and 〈r2〉 is the averaged end-to-end square distance of a polymer of length
N . We can apply this result to the case of two interacting spherical brushes
provided that they are sufficiently apart not to feel the presence of the inner
core of the brush. Under these circumstances, we can take M = Nf in
the above expression, and 〈r2〉 can be defined as twice the averaged square
distance of the monomer chain-ends forming the brush to the core,

〈r2〉 = 2

∞∫

0

r2ε(r) d3~r

∞∫

0

ε(r) d3~r

, (6.24)

where ε(r) is the chain-end monomer concentration.

In this chapter, we shall present the results of extensive three-dimensional off-
lattice Monte Carlo simulations of two interacting spherical brushes. We have fo-
cused our attention in the systems more poorly understood: the interacting forces
have been measured in systems where the chain extent is approximately of the
same order than the core size and curvature effects are important. The findings
we have obtained will be presented after brief descriptions of the numerical model
and the formalism used to compute the force between brushes.

6.4.1 Numerical Model

The interaction between two spherical brushes has been simulated by using 3d
off-lattice Monte Carlo method (see Section 3.1). A brush is generated by ho-
mogeneously distributing f polymer chains onto a colloidal particle modeled by



6.4 Interaction between two spherical brushes 141

an impenetrable sphere of radius rc. Each polymer is represented by the pearl-
necklace model containing N beads of diameter σ.

Initially, the two spherical brushes are kept sufficiently far away to ensure that
during the equilibration process they do not interact. The simulation box is taken
to be large enough to avoid any possible boundary effects.

We define one Monte Carlo Step (MCS) as 2 × N × f trials to move the
chains. Initially each individual spherical brush has been equilibrated typically
during 106 MCS.

6.4.2 Computing the force between spherical brushes

In order to compute the force between the two spherical brushes we have used the
numerical technique developed by Toral, Chakrabarti and Dickman [194]. It is
worth to remark that this method has no free parameters. We briefly review here
this algorithm.

The main idea consists in computing the change in the free energy F due to
an infinitesimal change in the relative positionsR of the two interacting spherical
brushes. The force, in units of kBT is given by,

F (R) ≡ ∂ lnZ(R)

∂R
, (6.25)

where Z(R) = exp(−F/kBT ) is the partition function of the system. Due to the
hard–core structure of the potential, the partition function

Z(R) =

∫ 2×N×f∏

i=1

dri exp


−

2×N×f∑

j=1

V (rij)/kBT


 (6.26)

is equal to the volume Ω(R) of all possible polymer chains configurations com-
patible with the two spherical colloids separated a distance R.

Let ΩC(R) ⊂ Ω(R) be the subset of configurations compatible with a move-
ment of one of the spherical brushes towards the other by an amount δR. Sim-
ilarly, let ΩE(R − δR) ⊂ Ω(R − δR) be the set of polymer configurations of
Ω(R − δR) in which it is possible to shift the brushes a distance δR apart with-
out overlapping monomers of the two brushes. The compression probability is
just PC(R) = ΩC(R)/Ω(R), and the probability that the expansion can be done
is PE(R − δR) = ΩE(R − δR)/Ω(R − δR). Since the subsets ΩC(R) and
ΩE(R − δR) are in one to one correspondence, we have,

Z(R)

Z(R− δR)
=

Ω(R)

Ω(R− δR)
=
PE(R− δR)

PC(R)
. (6.27)
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In order to span Z(R− δR)/Z(R) two methods are available. First, by direct
measurement of the probabilities PE(R − δR) and PC(R). This can be done by
checking whether a virtual displacement ±δR of one brush respect to the other
can be carried out preserving the monomer excluded volume criteria. A sec-
ond method is based on the evaluation of the monomer density pair-correlation
function. In the case of two interacting brushes, this second method has been
proved to require less computer effort and is the one we have used here. A di-
rect evaluation of probabilities PE(R− δR) and PC(R) was only performed in a
few cases to ensure that the results obtained by computing the monomer density
pair-correlation function were correct. Let us to denote the monomer density pair-
correlation function as gij(r, θ). Thus, gij(r, θ)drdθ is the probability of finding
a monomer i of a polymer belonging to brush A and a monomer j of brush B
within a distance (r, r + dr) and an angle (θ, θ + dθ), measured respect to the
line that joins the two colloids. After compression, particles i and j overlap if
r′2 = r2 + (δR)2 − 2rδR cos θ < σ2 (see Figure 6.8).

Figure 6.8. Representation of a virtual compression
of the two brushes, approaching monomer i belonging
to brush A and monomer j of brush B.

In the limit δR→ 0 the overlap condition becomes r < σ+ δR cos θ. There-
fore, the probability per MCS that a compression is not allowed is given by

PC(i, j) =

π/2∫

−π/2

σ+δR cos θ∫

σ

gij(r, θ)drdθ (6.28)

≈ δR

π/2∫

−π/2

gij(σ, θ) cos θdθ (6.29)

and the compression probability can be obtained as:

PC(R) =

N×f∏

i=1

N×f∏

j=1

[1− PC(i, j)]. (6.30)
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In the approximation δR→ 0 we obtain:

∂ lnZ(R)

∂R
≈ 1

δR
ln

Z(R)

Z(R− δR)
, (6.31)

and taking the logarithm in Eq. (6.30), expanded up to order δR,

ln(PC(R)) = −δR
π/2∫

−π/2

N×f∑

i=1

N×f∑

j=1

gij(σ, θ) cos θdθ. (6.32)

By defining

G(σ, θ) ≡
N×f∑

i=1

N×f∑

j=1

gij(σ, θ), (6.33)

we can rewrite Eq. (6.32) as

ln(PC(R)) = −δR
π/2∫

−π/2

G(σ, θ) cos θdθ, (6.34)

where G(r, θ)drdθ represents the averaged density of monomers belonging to
brush A, separated a distance (r, r + dr) from monomers of brush B, within an
angle in the interval (θ, θ + dθ).

In the same way, the expansion probability is given by

ln(PE(R − δR)) = −δR
−π/2∫

π/2

G(σ, θ) cos(π − θ)dθ. (6.35)

Introducing previous expressions in Eq. (6.27) and Eq. (6.31), the force is given
by

F (R) =

2π∫

0

G(σ, θ) cos θdθ. (6.36)

This final expression gives the force between the two brushes, separated a distance
R apart due to the self-avoid interactions between the monomers of the brushes.
Numerically the above integral has been computed by replacing it by the limit
when r → σ of the following averaged sum

〈
1

∆r

N×f∑

i=1

N×f∑

j=1

r<rij<r+∆r

cos θij

〉
, (6.37)
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with ∆r = 0.001. The procedure starts by placing the two equilibrated free
brushes at distanceR far enough to ensure small perturbations to the brush struc-
ture. After the force has been computed by using the above expression, the dis-
tance R is reduced by an amount ∆R = 1 and the system is let to equilibrate
further by 105 MCS, before computing the force again. The whole process is
repeated until the desired minimum value of the distance R is achieved. Addi-
tionally, a similar expression for the interactions between the monomers and the
colloidal particle cores has to be considered to compute the whole force between
the two brushes. This additional term turns out to be important when the grafted
chain density is small and brushes are rather close to each other.

6.4.3 Results and Discussion

The force between two spherical brushes has been computed as a function of their
relative distance for different sets of parameters (N, f). The core radius of the
colloidal particle where polymers are grafted is taken to be rc = 5σ and is kept
constant throughout all the simulations. The diameter of the monomers is set to
σ = 1. We have varied the number of grafted chains from f = 5 to f = 90 and
we have taken polymer chain lengths in the range N = 30 to N = 100.

In order to compare the numerical results with the theoretical predictions of
the DL theory we need to determine the characteristic radial size of an unper-
turbed spherical brush R0. This quantity is defined as the value of r where the
monomer radial density profile φ(r) drops to zero. φ(r) is defined as usual:

φ(r) =
ν(r)

4πr2dr
, (6.38)

being ν(r) the number of monomers located within a distance between r and
r + dr from the center of the sphere (to this purpose we have taken dr = σ/2).
As an example, in Figure 6.9 we have plotted the volume fraction occupied by
the monomers v(r) = 4π/3(σ/2)3φ(r) for different values of chain length N
and number of grafted chains f .

In agreement with the results of Toral et al. [213], we have found that
R0(N, f) behaves as in the star-polymer approximation, i.e. it scales as

R0 ∼ N3/5f1/5. (6.39)

This result supports the previous findings of Daoud and Cotton [197] expected to
be valid for large polymer chains (N � rc), and a large number of grafted chains.
In Figure 6.10 the brush height R0 is represented as a function of x = N 3/5f1/5.
Observe that all the data fall reasonably well on a straight line of unitary slope.



6.4 Interaction between two spherical brushes 145

0.0 10.0 20.0 30.0
 r-rc

0.00

0.05

0.10

0.15

0.20

v(
r)

f=25, N=30

f=25, N=50

f=90, N=50

10.0 20.0 30.0
 r-rc

0.000

0.005

0.010

v(
r)

Figure 6.9. Volume
fraction occupied by the
monomers v(r) plotted
against the distance to the
surface core r − rc for
different values of the chain
length N and number of
grafted chains f . Inset:
zoom of the region where
v(r) drops to zero, defining
the characteristic size of the
brush R0.

As a consequence, since the WP free energy was derived under the assumption
of star polymer monomer density profile, we can expect the WP theory to work
properly when the two brushes are in close proximity.
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Figure 6.10. Brush height
R0 as a function of x =

N3/5f1/5. The straight
line of unitary slope corre-
sponds to the star polymer
approximation.

The computed force between the two brushes versus their relative distance
is represented in Figure 6.11. We have taken a chain length of N = 50, and
varied the number of chains f = 5, 25, 40, 90. At short distances the interacting
profile can be fitted according to the WP theory (dashed curve), whereas at larger
distances the measured data can be adjusted with the Flory theory introduced
above for dilute polymer solutions (solid curve). Figure 6.12 shows the results
for f = 25 and chains lengthsN = 30, 50, 100. Notice that at small distances the
force profile becomes rather independent of N as expected from the WP theory.
As it can be seen in the previous plots, and in all the cases studied, it is remarkable
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that with the WP and Flory theories, in principle valid in the limiting cases of
small and large relative distance between the brushes, we can adjust the whole
interacting profile.

0.0 10.0 20.0 30.0 40.0
R-2rc

0.0

10.0

20.0

30.0

F(
R

)

f=25, N=50

f=40, N=50

f=90, N=50

0.0 10.0 20.0 30.0

R-2rc

0.00

0.20

0.40

F(
R

)

f=5, N=50

Figure 6.11. Force between two interacting
spherical brushes for N = 50 and f = 25,
40, 90. Inset plot: Case N = 50, f = 5.
At small relative distance the data is fitted
according to the WP theory (dashed curves),
whereas at larger distances the force profile is
reproduced by the Flory theory (solid lines).
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Figure 6.12. Same as Figure 6.11 for f = 25

and N = 30, 50, 100.

The best fit to the numerical data determine the values of the adjustable con-
stants A, (Eq. 6.19), and C and D (see Eq. 6.21 ) that appear in the WP and
Flory theories respectively. The behavior of A, for N = 50, as a function of the
number of grafted chains f is represented in a log-log plot in Figure 6.13. The
best fit to the data gives a slope of 1.50 ± 0.02 in agreement with the expected
power-law dependence A ∼ f 3/2 (Eq. 6.20). We should remark that the WP
theory was derived in the limiting cases of f = 1, f = 2 and f � 1. This fact
explains the small deviations observed from the expected theoretical behavior for
the intermediate values of f (15 ≤ f ≤ 25). In Figure 6.14 we show in a log-log
plot of the scaled force F (R)/f 3/2 as a function of the relative distance between
the brushes. We can observe all the data falling into a master curve for small
distances where the WP theory is expected to work. Deviations appear as soon
as we enter in the Flory regime. For the sake of clarity we have drawn a line of
slope −1 that is followed by the numerical data in the WP regime.

In order to analyze the behavior of parameters C and D, we need to compute
the averaged square distance of the chain-end monomers 〈r2〉 which is obtained
through the chain ends concentration ε(r) (see Eq. 6.24). ε(r) is defined similarly
to Eq. 6.38 as:

ε(r) =
µ(r)

4πr2dr
, (6.40)
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Figure 6.13. Log-log plot
of the parameter A vs. the
number of grafted chains
f . The best fit to the data
gives a slope of 1.50± 0.02

in agreement with the ex-
pected power-law behavior
of 3/2 (Eq. 6.20).

with µ(r) the number of chain-end monomers within a distance between r and
r + dr.

The behavior of D as a function of 1/〈r2〉 for all the sets (N, f) studied is
shown in Figure 6.15. The best fit to the data gives a slope of 1.06 ± 0.05 in
agreement of the expected linear relationship (Eq. 6.23).

Similarly, we have plotted in Figure 6.16 in a log-log scale C/(Nf)2 vs.
1/〈r2〉. For the sake of clarity we have included a solid line of slope 5/2 cor-
responding to the theoretical prediction of Flory (Eq. 6.22). Deviations from
this behavior are found in systems with large f and small N values, precisely
where the assumption of a Gaussian monomer density profile fails. In the first
case, large f values force the chains to be strongly stretched, whereas small chain
lengths are out of the asymptotic regime where the Gaussian distribution for a
globular polymer is found.
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Figure 6.14. Log-log plot
of F/f3/2 as a function
of the relative distance be-
tween brushes R − 2rc. A
solid line of slope -1 is in-
cluded to guide the eye and
identifies the WP regime.
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the expected linear relation-
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There are two main reasons for the Flory theory to break down. First, the
density profile of end grafted polymer chains is not Gaussian, in general, ex-
cept for highly curved surfaces. The latter case corresponds to the star polymer
approximation where the center-to-end distance is found to reproduce a Gaussian
distribution [233]. Furthermore, the theory does not consider the changes induced
in the density profile as the polymers interact. Second, when two brushes are far
enough the only interaction between them is through the polymer chains, as de-
scribed by Flory but, as the two brushes approach the interaction of the chains
with the core of the colloidal particle becomes relevant and it is not taken into
account.
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Figure 6.16. Log-log plot
of C/(Nf)2 vs. 1/〈r2〉. A
solid line of slope 5/2 in in-
cluded to guide the eye (Eq.
6.22).

Next, we compare the computed interacting force between the two brushes
with the theoretical predictions of the DL theory. In Figure 6.17 we show the
results for a fixed chain length (N = 50) and different number of grafted chains
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f . We separately represent in the inset plot of the figure, the results for a fixed
f = 25 and different polymer lengths. In all the cases studied, systematic de-
viations from the DL theory are observed at small separating distances between
the two brushes. Whereas the DL theory assumes the interacting polymer chains
to recoil and keep inside the domain of its own brush VH , at small distances this
requirement cannot be fulfilled together with the excluded volume criteria, thus
chains are forced to interpenetrate. Besides that, we should note that the DL
model is an osmotic model, neglecting the change in the free energy associated
to the available chain configurations. DL expected the osmotic term to be much
larger in comparison with the configurational one as it happens in planar surfaces.
The qualitative agreement found with our Monte Carlo simulations confirms this
result for spherical and high grafting densities.

Monte Carlo results differ from previous numerical studies based on the self
consistent field lattice formalism of Lin and Gast [210] and Wijmans, Leermak-
ers and Fleer [202] (to be referred as WLF). WLF developed a two-dimensional
SCF-lattice for an athermal system. Their results for N = 50 and f = 31, using
the same core radius as the one used in our simulations (rc = 5), are reproduced
in Figure 6.17 (open triangles), and compared with our results for f = 25 and
f = 40. Although the results are of the same magnitude, the WLF model overes-
timates the interaction at short distances. In Figure 6.18 we compare the results
derived from the 1d-SCF method of Lin-Gast with our results. As in the case of
WLF, although the results are of the same magnitude, the SCF method of Lin-
Gast overestimates the interaction. Since SCF-lattice formalisms do not account
properly for monomer correlations, there is a higher monomer concentration in
comparison with the one found in Monte Carlo simulations [234]. This higher
monomer concentration is responsible for a higher repulsive force.

6.5 Concluding remarks

In this chapter we have presented the results of extensive three-dimensional off-
lattice Monte-Carlo simulations of two interacting spherical brushes. We have
calculated the force for different values of the chain length N and number of
grafted chains f . We have found that the force profile can be divided into two
regimes. When the brushes are located within a relative close distance, the mea-
sured force is well described by the WP theory, whereas as the separation between
the brushes increases, the force is reproduced by extending the theory of Flory for
dilute polymer solutions. The overall behavior is qualitatively well adjusted, ex-
cept at short distances, with the phenomenological DL theory for high density of
grafted chains. Finally we should notice that the characteristic radial size of an
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Figure 6.17. Force between two interacting spherical brushes for a fixed chain lengthN = 50

and different number of grafted chains f . Inset plot: Force profile for f = 25 and different
chain lengths. The solid lines correspond to the theoretical predictions of the DL theory. The
open triangles in this figure correspond to the force derived by the WLF SCF-lattice model
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Figure 6.18. A comparison between MC results and the SCF results of Lin-Gast. The open
squares represent the force obtained from our MC simulations between two interacting spher-
ical brushes with f = 38 (grafting density σ ≈ 0.1), and N = 200. The open circles
represent the results obtained through the SCF of Lin-Gast for an athermal chain χ = 0, with
N = 200, σ = 0.1, and rc = 5 (taken from Lin-Gast [210]).
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isolated brush is found to reproduce the scaling relationship for the star polymer’s
case.

Our results also differ from previous numerical studies based on SCF lattice
formalisms of Lind and Gast and Wijmans Leermakers and Fleer. This mismatch
can be explained by the fact that SCF formalisms cannot account properly for
monomer correlations.

It is worth to comment that the Flory theory for dilute polymer solutions and
the osmotic theory of DL could be also applied to predict the interaction profile for
the case of flat grafted layers. In the case of Flory theory, the Gaussian monomer
distribution should be replaced by the characteristic monomer density profile of
a flat grafted layer. In the DL theory, expressions for volumes and areas should
be rewritten accordingly to the planar geometry and a measurement of the typical
height of a free planar brush is also needed.

Finally, as mentioned in the section devoted to the experimental findings, the
measure of disjoint pressures by using the expressions derived by Evans and Nap-
per [227], can become a very useful tool in doing further studies towards the
understanding of the behavior of sterically stabilized colloidal particles in sus-
pension.





Chapter 7

Spherical polymer brushes II:
Encapsulated brushes

Suspensions of colloidal spherical brushes are a complex and interesting prob-
lem only studied partially [235–238]. Particularly, in the limiting case of high

densities, the colloidal brushes are subject to an isotropic pressure. In such case,
the interaction of a colloidal particle with the rest of the system can be modeled,
in a first approximation, by a single spherical brush confined inside a spherical
cavity. This model has the advantage of reducing the high computer cost. On the
other hand, this model turns out to be relevant to the study of the properties of en-
capsulated dendrimers, liposomes, vesicles containing nanoparticles with grafted
chains, and might be of relevance in the synthesis of polymer-grafted metal nan-
oclusters inside small material cavities or molecular cages.

The purpose of the present chapter is to present the results of extensive MC
and SCF simulations of a single colloidal brush confined inside a spherical cavity
wall of variable radius. Polymer chains have an extent of the same order of the
core size of the colloidal particle such that curvature effects are important. We
have measured the monomer density profile and the cavity pressure at different
cavity radius. The results using MC and SCF methods have been compared at
low and high compression regimes, discussing the advantages of each method.

7.1 Numerical models

7.1.1 Monte Carlo method

In order to simulate the interaction between a spherical brush confined inside a
spherical cavity wall, we have used a 3d off-lattice Monte Carlo method (MC)
similar to the one used in the previous chapter. We have generated the brush

153



154 Encapsulated spherical brushes

by homogeneously distributing f polymer chains grafted onto an impenetrable
spherical surface of radius rc. The cavity wall is also impenetrable with a variable
radius R (see Figure 7.1).

Figure 7.1. Schematic representation of a spherical
brush with an impenetrable core of radius rc inside a
spherical cavity of radius R.

Initially, the radius of the cavity wall is set to be larger than the usual extent
of the brush to ensure that during the equilibration process no interaction between
the brush and the cavity wall occurs. We define one Monte Carlo Step (MCS) as
N × f trials to perform monomer moves. The spherical brush has been equili-
brated typically during 5× 105 MCS. After this initial equilibration time, magni-
tudes of interest are recorded every 10 MCS. In what follows, the expression for
the force and interacting potential are given in units of kBT .

The force that the system exerts to avoid compression is estimated accord-
ingly to Section 6.4.2. In the case of encapsulated brushes the compression proba-
bilities are obtained by spanning directly the probabilities PE(R−δR) andPC(R)

for a given cavity size R. Then, we force to compress the system to a new cav-
ity size R −∆R. The system is equilibrated again during 105 MCS before new
measurements are taken.

The monomer radial density φ is defined as usual:

φ(r) =
ν(r)

4πr2dr
, (7.1)

being ν(r) the number of monomers located within a distance between r and
r + dr from the center of the sphere. The definition of φ(r) is such that the
following normalization holds:

∫ ∞

0
d3r φ(r) = Nf (7.2)

In a similar way, we also define the chain-ends monomer density, ε(r), where
ν(r) takes only into account the number of free chain ends.
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7.1.2 Self Consistent Field method

In order to compute the probability density function (pdf) for polymer systems, it
is customary to deal with a Schrödinger-like equation for the pdf for a single chain
[95]. The use of this formalism is a valid approximation for spatial scales much
larger than the polymer blob size. However, for encapsulated polymer brushes,
and mainly at moderate and high compressions, the spatial scale of the cavity is
comparable to the blob size. Thus, the use of the precedent formalism to compute
the pdf becomes inadequate. Instead, we compute the pdf of a polymer chain
using directly the recurrence law for the pdf from which the Schrödinger-like
equation derives [95]. We must be aware that the use of the recurrence law still
implies some approximations. It is assumed that on each monomer of the polymer
chain acts a potential that only depends on the position of the monomer in the sys-
tem, U = U(r), therefore, bond correlations are not taken into account. It is also
assumed that the potential is a function of the local monomer density, U(φ(r)),
ignoring particle density correlations. Finally, the properties of the whole ensem-
ble of chains are deduced from the pdf of a single chain.

Under the above assumptions, the spherical cavity is discretized in concentric
shells of thickness dr and all monomers inside a shell are assumed to be equiv-
alent. A polymer chain composed by N monomers is represented as a path of
N segments of length σ. Each segment is labeled by an index τ associated to
the spherical shell at which it belongs. The pdf associated to all possible paths
composed by n segments, being the first segment inside the shell h′ and the last
one inside the shell h, is defined as

Gn(h′,h) ≡
∑

A e−
Pn
i=1 U(τi) (7.3)

in which
∑

A stands for a sum over all the hypothetical n-paths that join the
shells h′ and h. This function verifiesGn(h′,h) = Gn(h,h′). Therefore, the pdf
associated to a path of n+ 1 segments may be written as

Gn+1(h′,h) =
∑

A
(

e−
P
n
i=1 U(τi) e−U(τn+1)

)
(7.4)

Assuming U(τn+1) to be independent of rest of the segments in the chain and of
the starting point of the sequence, the precedent equation reads:

Gn+1(h′,h) =

(∑

h′′

D Gn(h′,h′′)

)
e−U(h) (7.5)

where
∑

D implies a sum over all the h′′ shells from which we can get into shell
h using a single segment, therefore, shells h′′ and h are at a relative distance
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less or equal to σ. The above equation stands for the recurrence law needed to
calculate the chain pdf once the potential U(h) is given.

We have set the interaction potential U(i) to be proportional to the monomer
concentration in shell i, φ(i):

U(i) = ω φ(i) (7.6)

where w is the excluded volume parameter defined as [207]:

ω = 4π

∫ ∞

0
(1− e−V (r))r2dr (7.7)

and V (r) is in our case the hard-core potential between monomers. For a value
of σ = 1, we obtain ω = 4π/3 ≈ 4.2

The monomer concentration φ(i) and the free-end-chain concentration ε(i)
are defined as:

φ(i) =
f

4πr2
i dr

eU(i)
∑n=N

n=0

∑iR
j=irc

Gn(irc , i)GN−n(i, j)
∑iR

j=irc
GN (irc , j)

(7.8)

ε(i) =
f

4πr2
i dr

GN (irc , i)∑iR
j=irc

GN (irc , j)
(7.9)

where f is the number of chains and irc and iR are the shell indexes with radius
equal to the brush core surface and the cavity wall respectively. The factor eU(i)

in the monomer concentration is introduced to avoid double counting of the inter-
action term e−U(i) at shell i that comes from splitting the pdf into two terms, one
that ends at shell i and the other starting at the same shell.

The change in the free energy when we reduce the cavity size, ∆F(iR), is
given by

∆F(iR) = ln

(
Ω(iR)

Ω(∞)

)
(7.10)

being

Ω(i) = f

i∑

j=irc

GN (irc , j). (7.11)

We have set the reference state as a system with a cavity wall at a distance far
enough so that no chain can reach this wall. Therefore, the force to compress the
brush, given a cavity size R, is:

F (R) = −∂(∆F(R))

∂R
(7.12)
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Given R, N and f, an iterative process is used to obtain the pdf and the density
profiles. We have iterated the process until self-consistency is reached. We set
the condition for self-consistency such that the sum of the square differences in
the density profiles coming from two consecutive iterative steps is less than 10−8.

The SCF method has the great advantage of being three to four orders of
magnitude less expensive in computer time than the MC method. In the next
section we will show that SCF and MC calculations give similar results for the
density profiles φ(r) and ε(r) in the case of free polymer brushes. However, SCF
predictions for the cavity pressure worsen for highly compressed systems.

7.2 Results and discussion

7.2.1 Density profiles

We have performed extensive numerical calculations for free and encapsulated
spherical polymer brushes in order to computed the monomer density profiles
and the compression forces for different sets of parameters (R,N, f). The core
radius of the colloidal particle where polymers are grafted is taken to be rc = 5σ

and is kept constant through all the simulations. The diameter of the monomers
is set to σ = 1. We have taken polymer chain lengths in the range of N = 30 to
N = 70, and we have varied the number of grafted chains from f = 5 to f = 75.
The range of parameters (N, f) has been chosen in order to obtain chain extents
roughly of the same order than the diameter of the core where curvature effects
are important. For the SCF method we have used a shell thickness dr = 0.1σ.

We have first studied the monomer density profiles φ(r) for an unconstrained
spherical brush using our MC simulations and the SCF formalism. In Figure
7.2 we present the results for two different values of the chain length N and
number of grafted chains f that correspond to representative values for soft and
densely packed brushes. We can observe a good agreement between the MC and
SCF calculations. The density oscillations observed at small r, close to the core
of the colloidal particle, are originated due to wall-effects of the impenetrable
core. For a free spherical polymer brush Cariagno and Szleifer [211] computed
the monomer density profile derived from a single-chain mean field theory. A
comparison between the Cariagno and Szleifer data (CS) and our results is also
included in Figure 7.2. The better agreement of the CS predictions with our MC
simulations, in contrast to the SCF calculations, can be understood in the sense
that the Cariagno and Szleifer formalism requires a representative sample of chain
configurations as an input data to solve the equations that we have generated using
our MC method.
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Figure 7.2. Comparison
between the monomer den-
sity profile φ(r) for free
or uncompressed spherical
polymer brushes obtained
from our MC simulations
(lines) and SCF calcula-
tions (symbols) for different
values of the chain length
N and number of grafted
chains f . The results are
compared to the predictions
of Cariagno and Szleifer
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In Figure 7.3 we compare the monomer and chain–end density profiles for un-
constrained polymer brushes obtained from our MC and SCF calculations. Figure
7.3(a) stands for N=30 and f=25, whereas Figure 7.3(b) and Figure 7.3(c) show
the results for (N=30,f=75) and (N=50,f=75) respectively. In all cases the pro-
files are roughly similar. In particular, both methods agree very well in the case
of the chain-end density profile ε(r) for short chains in a densely packed brush
(see inset of Figure7.3(b)). This is mainly due to the fact that the chains are
forced to be mostly fully stretched out and density correlations, not present in the
SCF formalism, are not relevant. On the other hand, the results for the monomer
density profiles φ(r) show systematic differences, although small, between the
MC and SCF calculations. Close to the core of the colloidal brush, SCF results
display density profiles slightly smaller than those obtained via MC simulations.
And vice versa, in an intermediate region, the SCF method gives densities slightly
larger than in the MC simulations. The same systematic behavior was found by
Cosgrove et al. [239], when comparing MC and SCF density profiles for flat
brushes. Cosgrove attributed these differences to the fact that MC simulations
accounts explicitly for the excluded volume effect, whereas SCF accounts only
approximately for this effect.

7.2.2 Cavity pressure and force profiles

We have measured the force profile exerted by an encapsulated spherical poly-
mer brush onto the external cavity wall through the evaluation of the changes in
the free energy due to an infinitesimal change in the radius of the cavity. Within
the MC simulations, the force can be calculated by directly measuring the com-
pression probabilities; whereas in the SCF approach, once we have reached self-
consistency, we use the pdf in Eqs. 7.10 to 7.12.
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Figure 7.3. Comparison between the monomer density profiles φ(r) for uncompressed spher-
ical brushes obtained with MC (◦) and SCF (dashed lines) calculations. Inset: chain–end
density profiles. From top to bottom: (a) N = 30, f = 25; (b) N = 30, f = 75; (c)
N = 50, f = 75.
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Alternatively, we propose another way to compute the force profile and the
cavity pressure that is derived from the Flory theory for polymer solutions [93].
This method has the advantage of being computationally inexpensive, and their
predictions will be compared with the MC and SCF calculations.

An extension of the Flory theory for polymer solutions

In the Flory theory the osmotic pressure in a polymer solution can be written as
(see Section 2.6.1.b):

Π(R) =
−1

V

(
ln(1− v) + (1− 1

N
)v + χv2

)
(7.13)

where V is the molar volume of the solvent, v is the volume fraction of solute,
N is the degree of polymerization or chain length, and χ is the Flory parameter.
We set χ = 0 which is the condition of a dry-brush. Under this assumption,
the contributions to the free energy come only from the entropy associated to all
possible configurations of the system. We suppose that the volume of the solvent
and the volume fraction of the solute are given respectively by:

V ∼ (τ − aNf) (7.14)

v =
aNf

τ
(7.15)

a is the volume of a single monomer. τ is the total available cavity volume be-
tween the inner wall, represented by the core of the colloidal particle where chains
are grafted and the cavity wall, thus:

τ(R) =
4π

3
(R3 − r3

c ) (7.16)

At variance with the original Flory treatment, the molar volume of the solvent
V refers to the remaining space in the system once we have subtracted the volume
occupied by the monomers, thus, it is no longer a constant value.

The force to compress the cavity will be proportional to the area of the cavity
wall and to the change in the osmotic pressure, thus:

F (R) ∼4πR2∆Π(R) (7.17)

In Figures 7.4 to 7.6 we present in log-log plots the force profile F (R) vs. the
cavity size R computed for different values of the polymer chain length N and
number of grafted chains f . In each figure we include the results coming from
the MC simulations (circles), the predictions of the SCF theory (dashed lines) and
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results derived from the application of the extended Flory theory (crosses). Figure
7.4 concentrates on the results derived for short polymer chains (N = 30); Figure
7.5 for intermediate chain lengths (N = 50); and Figure 7.6 for long polymers
(N = 70). In all the cases studied we have used the same fitting constant to
adjust the predictions of the extended Flory theory (see Eq. 7.17), and we have
taken, as a reference state, a cavity size R∗ at which ln(F (R∗)) → −∞ in the
MC simulations.

A direct comparison between SCF and MC force profiles shows a rather good
agreement for weakly compressed systems. However, systematic differences are
observed for intermediate and high compression values. In the intermediate re-
gion we found the SCF forces to be larger than the ones derived from the MC
simulations, whereas for high compressions it is the MC force the one that be-
comes larger than the SCF outcome.

The mismatches observed between the SCF and MC results are due to a
twofold effect. For small cavity sizes or highly compressed systems, the assump-
tion in the SCF model of a linear dependence of the mean field potential with
the monomer density (see Eq. 7.6) breaks down. In fact, under this assumption,
the SCF formalism allows a cavity size smaller than the volume occupied by the
polymers without requiring an infinite force. On the other hand, for intermedi-
ate compression values, the larger forces obtained with the SCF formalism are
originated in an overestimation of the monomer interactions. The SCF method
does not include the effect of monomer correlations, thus it allows higher average
densities in the system than the ones found in the MC simulations. As a conse-
quence, stronger repulsions between the polymers take place and a higher force
is required to compress the brush.

The predictions of the extended Flory theory are found, remarkably, despite
its simplicity, to be in a very good agreement with the results of the MC sim-
ulations in the intermediate and high compression regimes. However, the force
is overestimated for weakly compressed systems. This result is easily explained
since the Flory theory was formerly developed for free polymer chains. As the
cavity size grows, the difference between a system of grafted chains and a poly-
mer solution becomes evident and, as it is expected, the interaction of the grafted
chains with the outer surface is much weaker than the one coming from a polymer
solution.

It is worth to notice that the MC data can be fitted remarkably well with the
extended Flory theory for intermediate and high compression values, and with the
SCF formalism for weakly compressed systems.

We have analyzed the relationship between the monomer volume fraction v
(see Eq. 7.15) and the pressure exerted on the cavity wall P defined as the force
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Figure 7.4. Log-log plot of the force pro-
file of an encapsulated spherical polymer
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chains of length N = 30. MC results are
represented by filled circles; SCF data by
dashed lines; and the predictions coming
from the Flory theory by crosses. Differ-
ent figures stand for different number of
grafted chains f . From top to bottom: (a)
f = 25; (b) f = 50; (c) f = 75.
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to compress the system divided by the area of the cavity. The results for the MC
and SCF calculations are shown in log-log plots in Figure 7.7 and Figure 7.8
respectively. In both cases, we find a complex behavior of the monomer volume
fraction with the cavity pressure for weakly compressed systems that depends
on the different values of the polymer chain length N and number of grafted
chains f . But, for increasing values of the cavity pressure v and P follow a
power-law of the form P ∼ vα independent of N and f . The best fit to the
numerical data gives a slope of α = 2.73± 0.04 for the MC simulations and α =

2.15 ± 0.05 for the SCF results. The exponent obtained for the SCF data is very
close to the des Cloiseaux power law (α = 9/4) found in semi-dilute polymer
solutions [95]. For large monomer concentrations the polymer theory predicts
that all thermodynamic properties must reach values that are independent of the
degree of polymerization, as we have observed in both MC and SCF methods.
We must be aware that des Cloiseaux law is deduced from scaling arguments that
neglects non-linear dependences on the concentration. This fact might explain
the agreement between SCF and des Cloiseaux law, whereas MC results follows
a power law in which a larger exponent can be expected due to large monomer
density correlation effects.

Differences between force profiles derived from SCF formalisms, and those
obtained from other methods that account for chain interdigitation and correla-
tions between the nearest neighbor bonds are also referenced in several works.
For instance, Ruckenstein-Li [240] (to be referred as RL) compared the experi-
mental force profile of two interacting crossed cylinders bearing grafted polymer
chains, with the numerical data obtained with a generator matrix formalism and
from SCF methods. RL found the matrix formalism to provide a better agreement
with the experimental data than the SCF results. In most cases, the force profiles
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derived by RL with the matrix formalism and the SCF method are rather similar
to the ones we found comparing the MC simulations and the SCF calculation.
This reinforces our presumption that interdigitation and monomer correlations
are responsible of the observed differences between the MC and SCF data. Ad-
ditionally, the fact that mean field calculations over counts the segment-segment
interactions in the evaluation of the free energy, as mentioned above, has already
been noticed by Lin and Gast [210].

7.3 Summary and concluding remarks

In this chapter we have studied the behavior of an encapsulated spherical brush
inside a spherical cavity. This system is a first approximation to model the inter-
actions in a dense solution of colloidal particles bearing grafted polymer chains
onto their surface when chain interdigitation is not favoured. This model is partic-
ularly relevant for moderate and high density values where the colloidal brushes
are subject to an isotropic pressure, and might be of relevance to the behavior
of encapsulated dendrimers, liposomes or vesicles containing polymer brushes as
well.

We have measured the monomer density profile and the cavity forces through
extensive 3-dimensional off-lattice Monte-Carlo simulations and using a Self-
Consistent Field formalism. In the latter case, we have used directly the prob-
ability density function recurrence law for the propagator GN (r, r′), avoiding
the length scale approximation involved in self-consistent field methods that uses
Schrödinger-like equations. Alternatively, we have proposed a theoretical de-
scription based on an extension of the Flory theory for polymer solutions to com-
pute the pressure inside the cavity.

A comparison of the predicted forces exerted by the polymer brush onto the
cavity surface among the different methods reveals the following: i) For weakly
compressed systems, MC and SCF data show a rather good agreement. However,
the force is overestimated in the extended Flory theory. This difference arises
since the Flory theory was developed for free polymer chains and not for polymer
brushes, thus, its prediction is not physically relevant when the cavity wall is lo-
cated at a distance larger than the typical brush extension. ii) For intermediate and
highly compressed systems the MC data agrees reasonably well with the results
derived from the Flory theory. In the intermediate regime, it is the SCF formalism
that overestimate the force. This behavior can be easily explained since the SCF
method does not account for monomer correlations, allowing higher monomer
densities and thus, higher forces are required to compress the brush. On the
other hand, for highly compressed systems, the linear dependence of the mean
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field potential with the monomer density turns out to be inadequate (the repulsion
between monomers allows a volume reduction of the system beyond the own ex-
cluded volume of the monomers at a finite energy cost) leading to lower forces
than the ones derived from MC simulations.

We have found a power law relationship between the monomer volume frac-
tion and the cavity pressure, P ∼ vα. SCF data gives a slope of α = 2.15, very
close to the des Cloiseaux law derived for semi-dilute polymer solutions. On
the other hand, the MC simulations provide a larger exponent α = 2.73 that is
originated in the monomer correlations not present in the previous models.



Chapter 8

Polymer chains confined to
spherical surfaces

I
n previous chapters we have focused on colloidal systems in which polymers
are non-adsorbing or they are grafted chemically by one end onto the surface of

the colloidal particles. In the present and the following chapters we will focus on
polymers that tend to adsorb onto surfaces. Particularly, in this chapter we study
the behavior of semiflexible homopolymer chains fully adsorbed onto spherical
colloidal particles. We will see that non-flat geometries induce non trivial behav-
iors even for simple polymer structures.

8.1 Introduction

Polymers restricted to move on a non-planar surface are a subject of great interest
in physics and biology for their exciting fundamental science as well as for their
novel technological applications. Adsorption of polyelectrolytes onto colloidal
particles [241] and micelles [242] leads to a restricted motion of the polymers on
the surface in the limit of strong attractions. Such chain adsorption onto various
non-planar surfaces has been studied recently by several authors, both theoreti-
cally [243–247] and numerically [248–253]. Polymer adsorption is closely re-
lated to the problem of macro ion complexation formation with polyelectrolytes.
In particular, formalism used to study adsorption has recently been applied to the
study of interesting DNA complexation with proteins like histones [251].

Chain motion onto curved surfaces is also relevant to the problem of a poly-
mer confined inside a cavity [254,255]. Due to entropic effects, flexible polymers
tend to fill the available space with the highest concentration in the center of the
cavity. Instead, very stiff chains tend to circle near the surface in order to min-
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imize the bending energy. Therefore, rigid polymers behave as chains with an
effective restricted motion close to the cavity surface. The problem of confined
stiff chains turns out to be relevant for DNA packaging into virus capsids and
vesicles and its release through nanopores [256–260]. Cryoelectron microscopy
experiments for several viruses have shown that DNA molecules arrange within
viral capsids in concentric circles involving an helical pitch [261–263]. For in-
stance, Olson et al [263] have observed that T4 bacteriophage genome forms a
highly condensed series of concentric layers, spaced about 2.36 nm apart, that
follow the general contour of the inner wall of the protein capsid.

Not only DNAs but proteins also can be found encapsulated into nanometer
sized vesicles [264, 265]. Encapsulation of proteins in reverse micelles dissolved
in low viscosity fluids is found to improve NMR protein studies by increasing
the relaxation times [266]. Again, if a protein is highly confined, an effective
restricted motion will take place.

Several recent theoretical works attempt to characterize properties of polymer
chains enclosed in shells. Gaussian polymer chains on various types of surfaces in
a D-dimensional space are studied by Mondescu and Muthukumar (MM) [267].
For spherical surfaces, the averaged mean square end-to-end distance 〈R2

ee〉 for
large polymer chains has been found to reach a constant value in that study, inde-
pendent of the space dimensionality. On the other hand, for short chains, a linear
dependence with persistence length and chain length has been predicted. Re-
cently, Spakowitz and Wang (SW) [268] have developed a formalism to describe
the statistical behavior of a semiflexible worm-like chain confined to a spherical
surface and derived a closed expression for 〈R2

ee〉. Their model predicts different
behaviors for the polymer chain depending on the relative size of the sphere and
the chain persistence length.

While the predictions of MM and SW are strictly valid for ideal polymer
chains, the study presented in this chapter focuses on confinement of more real-
istic polymer chains, interacting via excluded volume interactions, onto spherical
surfaces. Our results are compared with previously mentioned theoretical pre-
dictions and serve as a check on the range of applicability of the ideal chain
formalisms. In addition, our study provides insight into new chain conformations
not described by the existing theories. To this end, we have performed exten-
sive off-lattice Monte-Carlo (MC) simulations for both flexible and semiflexible
chains. For various degrees of rigidity of the chain, we have analyzed confined
chain conformations as a function of the chain length and the radius of the sphere.
We show that excluded volume chains behave similar to ideal chains and hence,
reproduce most of the SW predictions when chains are smaller than the perimeter
of the sphere and its degree of stiffness is large enough. For certain choices of the



8.2 Theoretical Review 169

parameters, however, excluded volume chains show distinctly different behavior
from ideal chains. For example, excluded volume chains undergo a disordered to
helix transition within a particular range of parameters. This transition is totally
absent in the ideal case.

8.2 Theoretical Review

8.2.1 The Mondescu-Muthukumar Theory

Brownian motion and polymer statistics on curved interfaces embedded in a D-
dimensional space were studied in detail by Mondescu and Muthukumar [267].
Their work focused on the properties of polymer chains confined to spherical sur-
faces, cylinders, cones and torus of dimensionD− 1. Polymers were assumed to
behave as Gaussian chains containingN beads. By solving the diffusion equation
for the probability distribution function, they derived an expression for the mean
square end-to-end distance for a chain confined to a spherical surface:

〈R2
ee〉 = 2R2

[
1− exp

(
− Ll

2R2

)]
. (8.1)

Here,R is the radius of the sphere,L is the chain length, and, l is the Kuhn length.
This expression in independent of the dimensionality of the system. In the limit
of Ll�R2 the mean square end-to-end distance is approximately 〈R2

ee〉 ≈ Ll,
similar to an ideal random walk. On the other hand, for Ll�R2, we get 〈R2

ee〉 ≈
2R2. Small chains are expected to increase their mean square end-to-end distance
linearly with their size and Kuhn length, whereas long chains are expected to
reach a constant value closely related to the radius of the surface.

8.2.2 The Spakowitz-Wang theory

In a more recent work, Spakowitz and Wang [268] introduced a novel representa-
tion of the differential geometry of an inextensible curve confined to a spherical
surface, and derived a precise description of the chain kinematics for a worm-like
chain model. This formalism allows the evaluation of the mean square end-to-
end distance in a closed form in a system where the interactions between chain
segments are ignored.

In the SW theory, a chain of length L with a persistence length lp, confined to
a spherical surface of radius R has a mean square end-to-end distance given by:

〈R2
ee〉 = 2R2

{
1− e−a

[
cosh(ab) + b−1sinh(ab)

]}
(8.2)
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where a = L
4lp

and b =
(

1− 16l2p
R2

)1/2
. An oscillatory behavior is expected for

〈R2
ee〉 for R < 4lp, whereas for R > 4lp, different scaling regimes are expected

depending on relative values of the sphere radius, the persistence length, and, the
chain length. Rigid rod scaling behavior is expected for chains with L < 2lp,
yielding 〈R2

ee〉 ∼ L2. On the other hand, ideal random walk behavior is found
for polymer chains that verify 2lp < L < R2/(2lp), yielding 〈R2

ee〉 ∼ Llp. For
large enough chains, L > R2/(2lp), SW theory predicts an asymptotic behavior
towards the uncorrelated end-to-end value, 〈R2

ee〉 ≈ 2R2.
Both Mondescu-Muthukumar and Spakowitz-Wang theories predict similar

behaviors for large stiff chains. For small chains as well, both theories predict
a linear growth of the mean square end-to-end distance with the persistence and
chain lengths. For very short chains (L�2lp), however, SW predicts, in addition,
a rigid rod regime.

8.3 Numerical model

In order to check the range of validity of previous theories when excluded volume
interactions are included in the model, we have performed extensive off-lattice 3d
Monte Carlo simulations (see Section 3.1). In our model a single homopolymer
chain interacts with an impenetrable spherical surface of radius R. The chain
contains N beads of diameter σ = 1. The distance between consecutive beads
along the chain is set to 1.1σ. Therefore the chain length L is equal to L =

1.1σN . The total energy of the chain Utotal is given by

Utotal = UB + Uads +
N∑

i=1

N∑

i<j

V (rij) (8.3)

Here, V is a hard sphere potential:

V (rij) =

{
0 for |ri − rj | > σ,
∞ for |ri − rj | < σ.

(8.4)

UB is a bending energy term that accounts for the chain stiffness,

UB =
∑

θ

κ (1 + cos(θ))2 , (8.5)

θ being the bond angle between any two consecutive bonds, and κ is the stiffness
parameter. Uads stands for an attractive interaction with the spherical surface:

Uads = nadsε (8.6)
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where ε is the adsorption energy per monomer and nads is the number of adsorbed
monomers onto the surface. We consider a monomer to be adsorbed when the
center of the monomer lies within a distance (R,R + σ) from the center of a
sphere of radius R. In order to ensure a confinement i.e. a total adsorption of the
chain on the spherical surface we need to consider a high adsorption energy. We
have found that ε = −10κBT allows such a confinement.

The initial configuration of the self-avoiding polymer is randomly generated
onto the surface of the sphere of radius R. One Monte Carlo Step (MCS) is
defined, as usual, asN trials to move the chain. The system has been equilibrated
for 2 × 106 MCS. Subsequently, chain properties have been evaluated every 10
MCS and averaged over 105 measurements.

8.4 Results and discussion

8.4.1 Mean square end-to-end distance

In order to compare MM and SW predictions with the MC results for exclude
volume chains, we have focused on the mean square end-to-end distance 〈R2

ee〉,
as a function of the chain length L and stiffness parameter κ for several values of
the sphere radius R.

In order to be consistent with the SW work, we first relate the persistence
length lp to a free polymer chain in 3d. The bond-angle correlation function [269]
(BAC) has been used in order to calculate lp (see Section 2.3.4). We have com-
puted the BAC function for free 3d polymer chains composed ofN monomers and
a stiffness parameter κ, and we have measured the persistence length lp(κ,N).
These results are presented in Figure 8.1. We observe that the persistence length
is independent of chain length, i.e., lp(κ,N) = lp(κ) as expected. The limiting
case of flexible chains corresponds to κ = 0. In this case, the persistence length
is given by the bond length lp = 1.1σ.

We have focused, first, on the behavior of flexible polymer chains. The mean
square end-to-end distance 〈R2

ee〉 as a function of chain lengthL is studied for dif-
ferent sphere radius R. The results are shown in Figure 8.2. Note that for small
enough L/R, 〈R2

ee〉 ∼ L1.5. This exponent is nothing but twice the Flory expo-
nent (ν = 3/4) for a planar 2d self-avoiding random walk (SAW). The observed
SAW breaks down for polymer chains that are long enough to feel the curvature
of the sphere. This happens when the end-to-end distance becomes of the order
of the sphere radius, then a maximum value for 〈R2

ee〉 is reached. In between, a
transient linear regime is observed due to possible crossover effects. In compar-
ison with the predictions of the SW formalism, a linear regime for chains with
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Figure 8.1. Persistence
length lp for a free 3-D
polymer chain vs. the stiff-
ness parameter κ and the
number of monomers N .
The results indicate that the
persistence length is inde-
pendent of the chain length.

length satisfying L < R2/(2lp) is found corresponding to our SAW regime but
for ideal chains (ν = 1/2). Once the maximum in 〈R2

ee〉 is reached, some amount
of oscillations appear in the data before we enter the limit of uncorrelated chain
ends where 〈R2

ee〉 = 2R2.
A comparison between the MC data for flexible polymer chains with the pre-

dictions of the MM and SW theories for small sphere radius (R < 10) is presented
in Figure 8.3. We find MC results to be in better agreement with SW theory (solid
lines) than with MM predictions(dashed lines).

For R = 5, due to a very small sphere radius, we reach the limit lpL�R2

even for very short chains, and 〈R2
ee〉 ≈ 2R2 = 50 as predicted by SW and

MM theories. An oscillatory behavior is observed in the MC data for all the
radius studied for small L. However, the SW theory predicts such oscillations
only for R < 4lp. This upper limit is below the range of radius considered for
flexible chains (lp = 1.1) and thus, no oscillations can be expected. Finally, the
SW and MM formalisms predict, in all the cases studied, a mean square end-to-
end distance smaller than MC results. The origin of this disagreement is in the
excluded volume interactions between monomers which promote a stretching of
the chain and cause an extra degree of orientational bond correlations.

In order to measure such orientational bond correlations we have used the
bond orientational correlation function BOC (see Chapter 2.3.5).

In Figure 8.4 we plot the BOC function for short polymer chains (N = 20)

confined to the surface of a sphere of radiusR = 10 for several values of the stiff-
ness parameter κ. A comparison between chains with excluded volume interac-
tions (symbols) and ideal chains (lines) is presented. The degree of orientational
correlation between bonds decreases as their distance in the chain sequence in-
creases. The largest differences between short ideal and excluded volume chains
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are observed for flexible chains (κ = 0, lp = 1.1σ). In such a case, the excluded
volume effect causes an extra orientational correlation between monomers up to
several positions in the chain sequence, whereas an ideal flexible chain looses
its bond orientational correlation when bonds are separated more than two posi-
tions in the chain sequence. The excluded volume effect is particularly relevant in
flexible chains since chain crossovers become banned. The chain monomers act
as a steric barrier for other monomers forcing the chain to stretch out and 〈R2

ee〉
increases. For ideal chains crossovers take place easily and the monomer distribu-
tion is rather isotropic. As the stiffness of the chain increases, the BOC function
for both ideal and excluded volume chains display a similar behavior (see Figure
8.4). It is worth to mention that the stiffness contribution to the orientational bond
correlations is larger than the excluded volume one for small polymer chains.
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Figure 8.4. Bond orien-
tational correlation function
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sition for chains of length
N = 20 confined to a
sphere of radius R = 10. A
comparison between ideal
(lines) and excluded vol-
ume chains (symbols) is
shown for several values of
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persistence length is lp =

1, 4.4, 18.1, respectively.)

Above results indicate that for increasing value of the chain stiffness, a better
agreement between SW theory and MC simulations should be observed. In Fig-
ure 8.5 we plot 〈R2

ee〉 vs. the chain length L for stiff chains with a persistence
length lp = 10 in the regimeR≤2lp. We can observe a rather good agreement be-
tween the MC data (symbols) and the predictions of the SW theory (solid lines),
specially for small L values. The position of the local maxima and minima of
the oscillatory behavior can be explained in the following way. Local minima
appear approximately when the chain length is a multiple of a full revolution
around the sphere, that is, L ≈ 2nπR. The conformation of a rather stiff polymer
chain merely fluctuates from the one that is fully stretched and follows a maxi-
mum circle onto the sphere. On the other hand, the maxima are observed when
L ≈ (2n + 1)πR. In fact, chain fluctuations cause the maximum distance to be
smaller than the diameter of the sphere 2R and the minimum distance to be larger
than zero.
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As L/lp increases, the polymer structure can be rescaled to a flexible chain
composed of blobs of size lp. Thus, fluctuations around the conformation that oc-
cupies the maximum circle increases and the position of the chain ends become
uncorrelated. At this stage 〈R2

ee〉 → 2R2 for ideal chains. From Figure 8.5 we
can observe that the presence of the excluded volume interactions leads to higher
asymptotic values for 〈R2

ee〉 when compared to the ideal case. Furthermore, when
the chain is large enough to complete a full revolution around a maximum circle
onto the sphere, the excluded volume leads to an additional separation between
successive revolutions. As a consequence, just after the first minimum, the differ-
ences between the SW predictions and the MC data are observed to increase.
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end-to-end distance 〈R2

ee〉
vs. the chain length L,
for stiff chains with persis-
tence length lp = 10 (κ =

9.8) and for small values of
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are for our MC data; solid
lines correspond to the SW
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stands for MM solution for
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The effect of increasing the surface radius is depicted in Figure 8.6. Polymer
chains of size such that L < 2lp exhibit a rigid-rod behavior so that, in the limit of
highR/lp ratio, 〈R2

ee〉 ∼ L2 (dashed line). The asymptotic value corresponds to a
flat surface (R→∞). For L > 2lp, the polymer behaves as a flexible chain when
rescaled by lp. In this case, and for large R values, we recover the characteristic
2d-SAW regime with 〈R2

ee〉 ∼ L1.5 (solid line). This result is consistent with the
previous simulations for flexible chains shown in Figure 8.2. By increasing the
chain length, a transient regime, compatible with possible crossover effects, is
observed (dotted line). Finally, a plateau is reached for L > R2/(2lp). The size
of the chain at which the end-to-end distance reaches its saturation value agrees
with the limit predicted by the SW theory in the random walk regime.

For R/lp > 4, the role of the excluded volume interactions is evident in
the presence of a maximum in 〈R2

ee〉 and subsequent oscillations in it, as shown
in Figure 8.7. Such behaviors of 〈R2

ee〉 are not predicted by either SW or MM
theories. Nonetheless, the comparison shows that the SW results (solid lines)
are in much better general agreement with the MC data than the MM predictions
(dashed lines).
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The behavior of 〈R2
ee〉 with the persistence length lp has been examined for

small and large sphere radius in Figure 8.8 and Figure 8.9 respectively. Our MC
data has been compared to the SW formalism for a polymer chain of length
L = 110. Figure 8.8 shows increasing differences in lp between the SW pre-
dictions and the MC results for various R between R = 7 and R = 15. These
differences have their origin in the transition from disordered to helicoidal poly-
mer conformations (studied in detail in the next section) as the chain stiffness is
increased. Such transition is not observed in ideal chains, and thus, are absent in
the SW formalism. Nevertheless, SW formalism is still able to qualitatively re-
produce the behavior of 〈R2

ee〉 with lp which increases or decreases depending on
the value of the sphere radius. It is interesting to mention that the MM formalism
predicts a monotonous increase of the mean square end-to-end distance with the
persistence length in all cases (see Eq. 8.1). This result does not agree with either
SW theory and or with our MC data.

For large sphere radius (Figure 8.9), when the helicoidal state becomes im-
possible, a gradual recovery of the agreement between the SW predictions and
the MC results is observed as lp increases. In the limit of large lp values, both SW
and MC results match almost perfectly. This agreement is consistent with the fact
that BOC functions of ideal and excluded volume chains are observed to be very
similar for rigid chains confined to large spheres. Under such conditions, the be-
havior of an excluded volume chain will approach that of an ideal chain when the
probability of contact among non-consecutive monomers decreases and a similar
chain stretching is expected in both cases. For lpL�R2 a linear dependence of
〈R2

ee〉 with lp is observed, particularly for large R (see data for R = 30 in Figure
8.9). This linear regime agrees with the predictions of the SW and MM theories
for lpL�R2.
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At first sight, it may seem rather striking that by changing the radius of the
sphere only slightly the mean square end-to-end distance changes its tendency to
increase or decrease with lp. This apparent paradox can be easily understood by
taking into account the asymptotic value of 〈R2

ee〉 in the limit lp → ∞. When a
polymer has a large degree of stiffness it tends to expand as much as possible and
the most favorable energetic configuration is the one that occupies a maximum
circle onto the sphere. Thus, the distance between chain ends depends on the
ratio between the chain length L and the length of the maximum circle 2πR.

The number of integer circles nc covered by the polymer is,

nc = Int

(
L

2πR

)
,

and the arc length that joins the two chain ends is larc = L − 2πRnc. It can be
easily seen that the distance between such ends dee, is given by

dee = 2R sin

(
larc
2R

)
(8.7)

In Figure 8.10 we plot the behavior of 〈R2
ee〉 with the radius of the sphere. We

present a comparison between the data obtained in the MC simulations for several
lp value, and for a polymer chain of length L = 110, with the geometrical predic-
tions (Eq. 8.7) derived for a chain that follows a maximum circle onto the sphere.
We observe that the agreement improves when the chain stiffness is increased,
as expected. An almost perfect match between the location of local maxima and
minima are obtained. Any residual small differences, are due to the wiggling of
the chain and the deviation from the large circle trajectory.
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8.4.2 Transition from disordered to helicoidal conformations

Although both ideal and excluded volume chains tend to occupy a maximum cir-
cle in the limit of lp → ∞, a fundamental difference between them arises due
to the excluded volume interactions: chains with exclude volume effects are ob-
served to exhibit a transition from a disordered to an helicoidal conformation by
increasing the chain stiffness, whereas no such transition to the helicoidal state
has been observed for ideal chains. This different behavior between ideal and ex-
cluded volume chains as a function of chain stiffness can be probed by measuring
the bond orientational correlation function (BOC).

In Figure 8.11(a) and Figure 8.11(b) we have plotted the BOC function for
excluded volume and ideal chains, respectively. The polymer chain length has
been selected to be L = 110 and it is confined to a sphere of radius R = 10. We
can observe a rather different behavior between them as the stiffness parameter
κ is increased. For ideal chains the BOC function decreases monotonically, in-
dependent of κ, whereas for excluded volume chains the BOC function displays
a local maximum when the beads are separated in the chain by approximately
2πR/σ bond positions. The position of this local maximum is consistent with the
fact that approximately 2πR/σ bonds are needed to complete a revolution around
the sphere. Figure 8.11(c) shows the subtraction between the BOC function for
excluded volume and ideal chains. The differences become evident for a stiff-
ness parameter k ≥ 40. It is precisely at this point where the transition from a
disordered to an helicoidal state takes place. The results for a sphere of radius
R = 7 are presented in Figure 8.12. The presence of a second maximum (see
Figure 8.12(c)) at i ≈ 2πR/σ indicates that the polymer chain, following an heli-
coidal structure, has completed two revolutions around the sphere (κ ≥ 20). It is
worth to note that increasing the L/R ratio the helicoidal state appears at smaller
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κ values. Typical conformations for L = 110 and R = 7 are shown in Figure
8.13. Figure 8.13(a) stands for an excluded volume chain with κ = 2, below the
transition value. In Figure 8.13(b) we have plotted a typical conformation of an
excluded volume chain with κ = 50, where a clear helicoidal structure can be
seen. In Figure 8.13(c) a characteristic conformation of an ideal chain with iden-
tical rigidity (κ = 50) is plotted. Observe how, in the latter case, the helicoidal
shape is lost and many chain crossovers take place. Such conformations have
a smaller entropic penalty than the more ordered helicoidal conformations and,
therefore, are preferred. We can conclude that excluded volume interactions are
needed for the polymer chain to develop an helicoidal structure.
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Figure 8.11. Bond orientational correla-
tion function (BOC) as a function of bond
position for chains of length L = 110 con-
fined to a sphere of radius R = 10. (a) ex-
cluded volume chains;(b) ideal chains; (c)
subtraction (a)-(b). The onset of the heli-
coidal state is reflected by the appearance
of a local maximum at large values of bond
position (κ ≥ 40).
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Figure 8.12. Same as Figure 8.11 for a
polymer of length L = 110 confined to a
sphere of radius R = 7.
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(a) (b) (c)

Figure 8.13. Snapshot of a typical conformation of a polymer chain of length L = 110

confined to a spherical surface of radius R = 7. Figures (a) and (b) correspond to excluded
volume chains with a stiffness parameter: (a) κ = 2, below the transition point; (b) κ = 50

where the helix is formed. Figure (c) stands for an ideal chain with the same stiffness as in
(b). In contrast to the excluded volume chain, no helix structure is found.

To characterize the transition to a helical state, one can try various ways of
defining an order parameter [251]. Such effort was unsuccessful in our case where
the chain is confined to the surface and did not allow us to probe the change
from one configurational state to the other. In contrast, we have found the BOC
correlation function to be an extremely useful tool. In fact, one can define an order
parameter [249] by integrating the value of our bond correlation function BOC,
and normalizing it by the number of monomers. However, it can be deduced
from Figures 8.11 and 8.12 that this order parameter will increase for both ideal
and exclude volume chains, and the difference between these two cases will be
difficult to quantify. In contrast, the complete BOC correlation function contains
details of the presence of strong correlations at large distances for exclude volume
chains and this information allows us to show the presence of the transition. It also
allows one to know whether the new helix state performs one or more revolutions
around the sphere.

We should remark that L > 2πR is needed to ensure that the chain will circle
the sphere at least once. On the other hand, there is also a minimum value of
R that makes it possible to accommodate a stable helix. Thus, there is an upper
limit to the L/R ratio where helix structures can develop. By increasing L/R
we have seen the transition from disordered to helix structures to take place at
smaller values of the stiffness parameter κ. For instance, for L = 110 the helix
forms on a sphere of radius R = 10 at a critical stiffness parameter κc = 40, for
R = 7 at κc = 20 and for R = 5.5 at κc = 5. This fact can be easily understood
in the following way. A small displacement of a monomer on the surface of the
sphere induces a change in the (1 + cos(θ))2 term of the bending energy UB (see
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Eq. 8.5) that increases with decreasing the sphere radius. Thus, a smaller value
of κ is needed to get the same ∆UB .

The width of the surface potential that confines the chain to the surface is
also expected to play a role in the helicoidal transition [249]. If the range of
the attracting potential is large enough, a chain with excluded volume will be
able to cross itself at different levels inside the adsorption layer. Eventually, this
entails to a situation rather similar to what we observed for an ideal chain. In that
case, the chain prefers a disordered conformation in which the entropic penalty is
smaller than in an helicoidal state. We thus expect that the helicoidal transition
to disappear if the width of the potential is large enough to allow the chain to
self-cross at different levels. Note that entropically it is always favorable to have
conformations that crosses itself rather than the helical conformation. And if the
energetics also allow chain crossings, the helicoidal state must vanish at some
point.

Next, we would like to comment on a work by Sakaue et al. (Ref. [249])
who have studied the adsorption of a stiff chain onto a spherical core particle. A
direct comparison with these results is not possible as the radius of the spherical
surface is only 1.3 times the radius of the monomers in Ref. [249]. In contrast,
we have studied systems with a radius of at least 5 or more times the monomers
radius. This is necessary in our case since we are considering a totally adsorbed or
confined chain and a sphere of too small a radius cannot keep all the monomers of
the chain trapped onto the surface. In fact, as we will see shortly, there is a lower
limit of a critical radius for the existence of stable helical conformations for a
given a chain length. In Ref. [249] a longer range potential is used which allows
monomers to fly around without being confined onto the surface. This entails
the possibility of having helicoidal conformations that do not affect all the chain.
Helicoidal conformations under such conditions of small sphere radius and large
width of potentials are not stable and one must speak in terms of a probability for
a chain to adopt an helicoidal conformation.

The transition point to the helix state can be roughly estimated if we consider
a balance between the bending energy of a polymer chain, that wants to wrap
around the sphere along the large circle, and the excluded volume interaction that
prevents the chain segments to overlap. On one hand, the bending free energy in
the case of a chain forming a helix structure can be written as [270] Fbending ∼
lpL/R

2. On the other, in order to estimate the steric free energy we have to
evaluate the possible number of contacts among monomers that is proportional
to the number of monomer units per circle, thus, Fsteric ∼ L/(2πR). At the
transition point, Fbending ≈ Fsteric, from which a characteristic persistence length
lpc is derived that follows a linear relationship with the sphere radius, lpc ∼ R.



8.5 Concluding remarks 183

In Figure 8.14 we have plotted lpc as a function of the radius of the sphere R for
different chain lengths. In all the cases studied (L � R) we have found lpc to
grow roughly linearly with the radius of the sphere as predicted.
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Figure 8.14. Character-
istic persistence length lpc
for which the helix structure
appears vs. the radius of
the sphere for several chain
lengths. The upper bound
and lower bound values of
the radius where the helix
forms are depicted by filled
symbols. The dashed line
is a guide to the eye and
points out the linear rela-
tionship between lpc and R
when L� R.

8.5 Concluding remarks

We have characterized the behavior of excluded volume chains with restricted
motion on spherical surfaces using off-lattice Monte Carlo simulations. A com-
parison with the Mondescu-Muthukumar and Spakowitz-Wang theories devel-
oped for non-excluded volume chains has been presented.

We have found that the Spakowitz-Wang theory to be in better agreement with
MC results than the Mondescu-Muthukumar formalism. However, we should
bare in mind that the MM theory was not intended to account for the stiffness of
the chain and deviation from our simulations are expected for large persistence
length. This is true for the whole range of parameters studied. We have observed
that our numerical data match almost quantitatively with the predictions of the
SW formalism when: i) chain length is smaller than the length of the maximum
sphere circumference; and ii) the chain is stiff enough, that is, in the regime
L/(2π) < R < 2lp. Within this regime, the measurement of the bond orienta-
tional correlation function (BOC) for ideal and excluded volume chains provides
very similar results. Thus, the behavior of excluded volume chains can be de-
scribed, in this context, roughly as ideal chains, and the predictions of the SW
formalism are reproduced.

The main difference between the SW theory and the MC results, for chains
such that L < 2πR, is found in the measurement of the mean square end-to-end
distance 〈R2

ee〉. The MC data is characterized by the presence of a maximum and
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subsequent relaxation oscillations towards the asymptotic value 2R2 for R/lp >
4. The SW theory claims such oscillatory behavior to disappear for sphere radius
larger than four times the persistence length, but excluded volume chains are
observed to show such damped oscillations in all the cases we have examined.

MC data has shown that both, flexible and stiff excluded volume polymer
chains exhibit, in a range of chain lengths, a self-avoiding random walk (SAW)
behavior for R/lp > 2 in contrast to the expected ideal random walk predicted by
the SW formalism for R/lp > 4. A rigid rod regime is found for L < 2lp. For
long polymers, beyond the SAW regime, 〈R2

ee〉 reaches a maximum plateau value
for L ≥ R2/(2lp), in agreement with the predictions of the SW formalism.

One exciting feature observed in our MC simulations, is the transition from
a disordered to helicoidal polymer conformation. This transition does not exist
for ideal chains models, and thus, was not predicted by either MM or SW for-
malisms. This transition has been studied in detail through the measurement of
the BOC function. In the helicoidal state, long-range correlations are observed
between bonds displaying local maxima at bond positions that complete a full
revolution around the sphere. For a given a chain length, the transition is only
found within a particular range of sphere radius. There is a lower bound of per-
sistence length which provides the minimum rigidity required to stretch the chain
along the spherical surface. This value decreases with the radius of the sphere.
The relation between the characteristic persistence length and the radius of the
sphere at the transition point is observed to be consistent with a balance between
the bending energy due to deviations of the chain from the large circle trajectory
and the excluded volume interactions. Similar behavior has been observed in the
study of stiff polyelectrolytes adsorption on an oppositely charged spherical par-
ticles. In particular, the simulations carried out by Stoll and Chodanowski [250]
show that by increasing the chain stiffness, solenoid conformations at the particle
surface are progressively achieved at small or zero values of the ion concentra-
tion. The latter corresponds to the case of strong polymer-surface interaction,
in agreement with the assumption of polymer confinement implemented in our
model.



Chapter 9

Adsorption of stiff copolymers
on homogeneous flat
surfaces

The adsorption of heteropolymers onto surfaces is a complex problem of the
upmost importance. Besides its inherent complexity, many coarse properties

of heteropolymers can be obtained through statistical studies. The present chapter
is devoted to the study of copolymers, the simplest heteropolymers that exist. In
particular, we focus on the role that chain stiffness and chain structure play on the
adsorbtion process of copolymers. We will see that even when only two different
types of monomers exist along the chain, the behavior of such polymers exhibit a
rich and complex behavior.

9.1 Introduction

Polymer adsorption has been a topic of great experimental and theoretical inter-
est due to its enormous number of applications in science and technology. These
applications cover the stabilization of colloidal suspensions, adhesion, gel per-
meation, chromatography, etc. It is a characteristic feature of all these systems
that their physical properties are mediated by the interaction between polymer
molecules and an impenetrable surface. The bulk conformational properties of
these polymer chains are strongly modified in contact with the surface due to
a subtle competition between the lose of entropy at the surface and the gain of
internal energy.

In the last decade, a large number of theoretical studies have been devoted to
the adsorption of flexible homopolymers [271–277], diblock copolymers [278–

185



186 Stiff Copolymers

280], AB-type alternating copolymers [281–283] and random copolymers [284–
286]. In turn, the adsorbing surface has been considered as flat and homogeneous
[271–275,278–286] or heterogeneous [276,277,287,288], including regions with
a random distribution of adsorption energies.

However, many polymers are rigid up to a certain extent due to steric and
electronic delocalization effects. Few important examples of such stiff chains
are found in synthetic macromolecules and specially in biology, just to mention,
DNA, collagen, microtubules and actin filaments. On a local length scale, the
stiffness is very prominent and it is expected to produce significant changes in the
macromolecular properties. Among the many significant phenomena induced by
the polymer stiffness we can mention the nematic liquid crystalline ordering of
semiflexible polymer segments.

The constrained rotational motions of the monomers about the chain back-
bone makes inadequate the use of conventional models developed for flexible
chains. The statistical mechanics of such chains was first formulated by Kratky
and Porod [100], about 50 years ago, and it is still considered as a non trivial prob-
lem. In contraposition to flexible chains, the number of studies devoted to stiff
polymer chains is scarce and focused on the behavior of homopolymer structures
[289–293].

Copolymer adsorption onto surfaces has become recently a topic of great in-
terest. For instance, some copolymers (PLL-g-PEG) are found to spontaneously
adsorb from aqueous solutions onto metal oxide surfaces (TiO2), reducing the
adsorption of blood serum and individual proteins, such as fibrinogen, that are
known to play a major role in the coagulation process and thrombosis [294–296].

The adsorption of copolymeric chains has also found applications in nan-
otechnology. For instance, pluronic triblock copolymers is used in order to active
external wall carbon nanotubes and, at the same time, to prevent non specific
bounding of molecules onto nanotubes surfaces [297]. Such coated nanotubes
are the basis for the design of highly specific electronic biosensors. Furthermore,
copolymer absorption plays an important role in the design of dynamic polymeric
wall coatings for capillary electrophoresis [298]. Polymer properties help to cre-
ate an ideal wall coating with a notorious impact on the electro-osmotic flow
capabilities.

The purpose of the present chapter is to study how the adsorption properties
of stiff polymers are modified when the chain structure is changed and to exam-
ine whether the universal scaling laws apply in these systems. Besides the block
size, we will characterize the adsorption process as a function of the chain rigid-
ity and the chain length. Our simulations are single-chain. Although applications
usually involve many interacting chains at the surface, the adsorption of isolated
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chains provide a valuable benchmark for studies of many-chain systems and is di-
rectly relevant to a number of emerging single-molecule approaches to molecular
genomics [299, 300].

9.2 Numerical Model

We have studied the adsorption of a semiflexible block-copolymer chain onto
an homogeneous surface using off-lattice Monte-Carlo simulations (see Section
3.1). We have considered the polymer chain to be confined in a box with periodic
boundary conditions in the x − y domain. The length of the cell is chosen to be
at least twice the chain length N , and an impenetrable planar surface is set at the
plane z = 0. Chain stiffness is introduced through the bending potential Ubend
given by:

Ubend =
∑

θ

κ(1 + cos θ)2, (9.1)

where θ is the bond angle between any three consecutive beads and κ is the bend-
ing constant.

Monomer units can be of type A or B and are distributed along the chain
of length N according to the selected polymer structure. A diblock copolymer
will be denoted by (AN/2BN/2) and, in general, a block copolymer formed by α-
monomers of typeA followed by α-monomers of typeB, repeating this sequence
along the entire chain, by (AαBα)N/2α.

Monomers of type A and B interact with the impenetrable surface at z = 0

with adsorption energies εA and εB , respectively. Thus, we define an adsorption
potential Uads as,

Uads = nAεA + nBεB, (9.2)

where nA and nB are the number of A-type andB-type monomers such that their
z-coordinate verifies 0 < z < σ. The total energy of the system will contain the
above contributions and is written as:

U = Uads + Ubend + Usteric (9.3)

where Usteric stands for a hard core potential (Eq. 3.9).
The initial configuration of the self-avoiding polymer is randomly generated

with one monomer attached to the surface z = 0. At very high temperatures, or
equivalently at low adsorption energies, the chain has a tendency to diffuse into
the bulk. We prevent this by forcing the polymer to have at least one monomer
attached to the surface. However, one does not expect any significant change in
the statistical properties of the adsorbed chain at low temperatures. We define
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one Monte-Carlo Step (MCS) asN trials to move the chain. The system has been
equilibrated for 5 × 105MCS. Subsequently, statistical properties of the chain
are evaluated every 10 MCS. The results have been finally averaged over 106

measures. For the rest of the chapter we have taken σ = 1.0. The temperature is
given in units of 1/kB , hence T ≡ kBT .

9.3 Results and Discussion

9.3.1 Diblock chains

In this section we will focus in the study of the behavior of stiff diblock polymer
chains adsorbing onto a planar surface. A diblock chain of length N consists in
two segments of equal size N/2, the first one composed of monomers of type
A, followed by a second block containing monomers of type B. Monomers A
and B interact with the surface with energies εA and εB , respectively. A nega-
tive adsorbing energy stands for an attractive interaction whereas a positive value
implies repulsion. Through the simulations we have set εA = −1 and we have
studied the transition towards the adsorbed state as a function of the chain length
N , the stiffness parameter κ and the interaction energy εB .

In Figure 9.1 we have plotted the change in the absolute value of the averaged
adsorbing energy per monomer E/N = 〈nAεA + nBεB〉/N as a function of the
inverse of the temperature 1/T , for different values of the stiffness κ, and for a
fixed adsorbing energy εB = −0.5. Figure 9.1(a) stands for short polymer chains
(N = 20), while Figure 9.1(b) is devoted to long chains (N = 300).

The behavior observed for stiff diblocks is very similar to the one found for
semiflexible homopolymers [290,291]. Stiffed chains adsorb more easily onto the
surface with increasing κ and, therefore, they are characterized by a higher critical
adsorption temperature Tc. The limiting values observed for T →∞ corresponds
to a chain completely adsorbed onto the surface with |E|/N = 1/2|εA + εB |.
A remarkable difference with respect to the homopolymer adsorption becomes
notorious for increasing chain lengths: the adsorption process becomes a two
step process. Since A-type monomers interact more strongly with the surface
than the B-type monomers, |εA| > |εB |, block-A adsorbs onto the surface at a
higher characteristic temperature than the block-B, TcA > TcB , as can be seen
in Figure 9.1(b). For comparison, we have also included in Figure 9.1(b) the
averaged adsorption energy of an homopolymer of equal length, composed with
A-type monomers only, and with rigidities κ = 0 (flexible) and κ = 30. We can
observe that for stiff chains, the characteristic temperature at which the transition
to the adsorbed state takes place for the homopolymer (A-type), is very similar to
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the one found for the A-type block in the diblock chain.
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Figure 9.1. Averaged
adsorption energy per
monomer in diblock chains
vs. the inverse of the tem-
perature for different values
of the stiffness parameter
κ. The interaction energies
are set to εA = −1 and
εB = −0.5. (a) for a short
chain N = 20; (b) for a
long chain N = 300. For
comparison we include the
results for an homopolymer
composed of monomers of
type A for flexible (κ = 0)
and stiff chains (κ = 30).
Note how for increasing the
chain length the adsorption
becomes a two step process.

The effect of changing εB on the adsorption process is shown in Figure 9.2.
The rest of parameters are set to N = 200 and κ = 30. Observe that for εB ≥
0 the adsorption becomes independent of εB . This fact is due to the repulsive
interaction with the surface in addition to the entropic effect. In these cases, the
block-B does not adsorb at all. On the other hand, for an attractive interaction
(εB < 0) the block-B adsorbs onto the surface at a characteristic temperature that
increases with the intensity of the interaction, as expected.

The characteristic adsorption temperatures at which the chain adsorbs onto the
surface can be determined from the position of the maximum in the specific heat.
The results for N = 150 and κ = 30, for different values of εB , are presented in
Figure 9.3. A single peak appears for εB > 0 corresponding to the characteristic
adsorption temperature of block-A alone. For an attractive interaction we can
observe two maximums related to TcA and TcB . It is also clear that the adsorption
transition becomes sharper as |εB | increases. We should remark that at a constant
chain length and stiffness, the characteristic adsorption temperature for the block-
A is practically unaffected by tuning εB . To make clear the dependence of the
transition temperature with the chain stiffness and the intensity of the interaction
with the surface, we have plotted in Figure 9.4 Tc(N,κ, ε) as a function of the
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chain length N . The characteristic adsorption temperature is found to increase
with the chain length and rigidity, as expected, and specially with the interaction
with the surface, where the differences between TcA for εA = −1 and TcB with
εB = −0.5 are remarkable even for the same stiffness κ.
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In order to examine the critical adsorption properties of semiflexible block-
copolymers, we will assume initially the scaling ansatz proposed by Kramarenko
et al. for flexible homopolymers [291]. We have determined the critical adsorp-
tion temperature for N → ∞, Tc(∞, κ, ε), and using these values we have done
a scaling analysis of the data for the fraction of adsorbed monomers χ ≡ n/N as
a function of the scaling variable τNφ. n is the number of adsorbed monomers;
N the chain length; and τ = (T − Tc(∞, κ, ε))/Tc(∞, κ, ε) is the temperature
distance to the critical temperature. For a given value of the stiffness and the in-
teraction energy, the crossover scaling for the fraction of adsorbed monomers can
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be expressed as:
χ/Nφ−1 = h(τNφ) (9.4)

In order to test our Monte-Carlo method, we have derived first the results for flex-
ible homopolymers. In this case, we found an exponent φ = 0.59±0.02 in agree-
ment with the well known scaling exponent predicted by Kramarenko et al. [291].
This result is shown in the inset plot of Figure 9.5. However, for homopolymers
with a large degree of stiffness we were unable to find the same scaling expo-
nent. The best scaling exponent we have found for κ = 30 is φ = 0.85 ± 0.05

(Figure 9.5), far from the expected value for flexible chains. The fact that there
is a range of values of φ that do not change appreciably the scaling has been ob-
served in the paper of Moghaddam et al. [282] studying the behavior of a SAW
copolymer onto a cubic lattice, thus, for small values of κ one could even scale
the data with φ ≈ 0.59 with no appreciable differences [290]. The situation
changes completely for large κ. In this sense, Kuznetsov and Sung [275] showed
that the transition deadsorbed-adsorbed for semiflexible polymers is an outcome
of the interplay between the shape of the surface attraction, including the thick-
ness of the adsorption layer, the thermal fluctuations, and the chain stiffness. This
non-universal scaling behavior has been also evidenced in the work of Gompper
[301], where three distinct sub-regimes were expected due to the dependence of
the scaling exponent φ with the potential shape acting on the monomers. Thus,
a good scaling relation for semiflexible polymer chains must be a function of
stiffness parameter κ, and the adsorption energy ε. In general, in our simulations
we observe that as the degree of stiffness increases, the best value for the critical
exponent φ in order scale the data also increases.

For diblock copolymers we were unable to find a single exponent φ for the
whole chain, however, we observed that we could scale the data separately for
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Figure 9.5. Scaling func-
tion χ/Nφ−1 vs. the scal-
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each block introducing two different exponents, φA and a φB , corresponding to
the blocks with adsorbing energies εA and εB , respectively. In Figure 9.6 we show
the scaling of stiff diblock chains (κ = 30) with εA = −1 and εB = −0.5. For
the A-block we found an exponent φA = 0.80± 0.05 similar to the one found for
an homopolymer of the same rigidity and adsorbing energy. This result indicates
that there is a small effect of theB-block as long as the difference in the adsorbing
energies is not too large. For the B-block we found a rather worse scaling with
an exponent φB ≈ 0.1 (inset of Figure 9.6).
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chain with adsorption ener-
gies εA = −1 and εB =

−0.5. The chain stiffness
is set to κ = 30. The
best scaling exponent for
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similar to the one found for
semiflexible homopolymers
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adsorption energy. Inset
plot: Same as before for the
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In comparison to our results, a recent study of Whittington [281] deduced an-
alytically for a lattice-flexible SAW, in the limit N → ∞, that an homopolymer
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of NA monomers has the same critical adsorbing temperature Tc than a block
copolymer of NA monomers in which the B-type monomers interact with the
surface with an energy εB = 0. This result is in agreement with the outcome
of Figure 9.2. Moreover, the value of TcA is practically unaffected by the pres-
ence of the B-block in any case, and it is very close to the corresponding Tc for
an homopolymer composed of A-type monomers (see Figure 9.3). As a result,
Whittington et al. expected a same value of φ for these chain structures, only
AB-alternating chains were an exception. This result is also in agreement with
our findings (Figure 9.6). Thus, our numerical results suggest that the findings
of Whittington et al., derived for flexible chains, could be extended to stiff poly-
mer chains, with a scaling exponent that depends on the interaction parameters,
φ(κ, ε), even in the case where εB 6= 0.

In order to characterize the behavior of semiflexible polymer chains, another
magnitude of interest is the radius of gyration. In Figure 9.7 we show the compo-
nents of the radius of gyration parallel and perpendicular to the adsorbing surface
for chains with different rigidities. The adsorbing energies have been selected to
be εA = −1 and εB = −0.5. It is clear from the picture that increasing κ, the
parallel component reaches to its maximum value and, accordingly, the perpen-
dicular component drops to zero (the polymer is fully adsorbed), at earlier times,
that is, at a higher temperature. The two different blocks also display a differ-
ent behavior due to the different adsorbing energies. The higher |ε| the higher
is the temperature at which the block adsorbs. In Figure 9.8 we show the ef-
fect of εB on the components of the radius of gyration associated to the A-block
for a fixed chain stiffness. The less adsorbing B-block hampers the A-block to
be completely adsorbed at its characteristic adsorbing temperature. A complete
adsorbtion of the A-block only takes place when the whole chain is adsorbed.

The behavior of the radius of gyration with the chain stiffness can be easily
explained. Assume that a semiflexible diblock chain has a persistence length
given by:

lp∼
( κ
T

)α
(9.5)

where α → 0.5 in the limit κ/T → ∞ [290]. Thus, we can model the chain as
an ideal rod-like polymer of N/lp units which radius of gyration is proportional
to

Rg ∼ lp
(
N

lp

)ν
∼ Nν

( κ
T

)α(1−ν)
(9.6)

where ν = 3/(d+ 2) is the Flory exponent that depends on the space dimension-
ality d. In Figure 9.9 we analyze the scaling of RgN−ν vs κ/T . For semiflexible
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diblock chains in the unadsorbed state, a slope of α(1 − ν) = 0.2 is expected;
whereas in the adsorbed state (inset of Figure 9.9), the system becomes 2d, and
α(1 − ν) = 0.125. Both regimes have been confirmed by our numerical data.
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Figure 9.9. Scaling plot for
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9.3.2 Block copolymer chains

In this section we shall study the adsorption process of block copolymers formed
by a repeated sequence ofN/(2α) unitsAαBα. In Figure 9.10 we have plotted the
averaged adsorbed energy per monomer for different stiff copolymer structures
generated by changing the value of α. The rest of the parameters for this figure
are fixed to κ = 10, N = 200, εA = −1 and εB = −0.5. In order to compare
with previous results, the diblock structure and an homopolymer formed by A-
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type monomers are also included. As in the diblock case, |E|/N → 1/2|εA + εB |
in the limit 1/T →∞, corresponding to a fully adsorbed chain. It is remarkable
to note that the two-step adsorbing process observed in the diblock case, that
determines the existence to two characteristic adsorbing temperatures TcA and
TcB , vanishes for small values of α. As a result, a single peak in the specific heat
data is expected.

The corresponding specific heat for the same polymer structures analyzed in
Figure 9.10 is shown in Figure 9.11. For A100B100 (diblock) we can clearly
observe two peaks which location identifies the characteristic adsorbing tempera-
tures of blocks A and B. Particularly, TcA > TcB since |εA| > |εB |. By reducing
the value of α, TcA becomes smaller and, at the same time, TcB increases. For
α = 20 the peak associated to TcB is residual, and for the A5B5 copolymer
structure there is only a single peak which location is clearly dominated by the
monomers with higher adsorption energy. The adsorption becomes then a single
step process like the one observed in homopolymers. At this stage, the block
structure is lost and the polymer chain could be replaced by a collection of blobs
containing each 2α monomers with an adsorbing energy ε = (εA + εB)/2.

The characteristic adsorption temperature for the A-block, TcA, as a function
of the block size α for different chain rigidities is plotted in the inset of Figure
9.11. As expected, TcA increases with the chain stiffness κ and with α. The
position of the arrows indicate the value of TcA for an homopolymer of the same
length, composed of A-type monomers with the same rigidity. For completeness,
we have also included the results for random AB-copolymers (we have assigned
to them, arbitrarily, α = −5 in the inset of Figure 9.11). We can conclude that
random AB-copolymers behave similarly as A1B1 copolymers.
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Another magnitudes of interest in order to characterize the behavior of block-
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copolymers are the number and length of chain trains (see Section 2.7). The
typical train length, Lt, is obtained as the averaged number of monomers within
a train; and the number of trains, Nt, is the averaged number of trains within a
chain. In Figure 9.12 we have plotted Lt vs. 1/T for different block-copolymer
structures and rigidities. The rest of parameters have been fixed to N = 200,
εA = −1 and εB = −0.5. As expected, a reduction in temperature increases the
train length. In addition, as it was pointed out by Kramarenko [291] in his study
on homopolymer chains, a stiffed chain has high disadvantage of bending, thus,
the neighboring monomers of an adsorbed monomer increase their probability of
being adsorbed. Therefore, we must expect that stiff chains will contain less num-
ber of trains but of major length (see Figure 9.12). At fist sight, the change in Lt
is apparently barely affected by the chain structure and it seems to be dominated
only by the stiffness. However, if we look in detail into what happens within the
deadsorbed-adsorbed transition region (see inset of Figure 9.12), we realize that
the chain structure does matter. The fact is that by increasing the block size α, the
length of the train, at a given temperature, is also increased.

Whereas, Lt is a monotonous increasing function of 1/T , Nt must display
a completely different behavior. At high temperatures (1/T → 0) the chain is
nearly deadsorbed and Nt → 0. Below the characteristic adsorption tempera-
ture (T � Tc) the chain becomes almost fully adsorbed and Nt → 1. Thus,
Nt must have a maximum value. This maximum takes place at T = Tc as it is
shown in Figure 9.13. Thus, while cooling the system the number of adsorbed
monomers increases generating new trains of small length. The number of trains
becomes maximal at the characteristic adsorbing temperature and, a further re-
duction in temperature, promotes the new adsorbed monomers to link trains rather
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than generating new ones, thus reducing its number but increasing their length.
Figure 9.13 also shows that the maximum number of trains at Tc increases for
copolymers with smaller block size α. This result is expected to be even more
pronounced as the difference in the adsorbing energies |εA − εB| increases. In
Figure 9.13 we can observe clearly two peaks in the curve corresponding to the
copolymer A50B50 in agreement with the two maximums found in the specific
heat data (Figure 9.11). This result is another indication that the adsorption pro-
cess takes place in two steps. The inset plot of Figure 9.13 shows the behavior of
Nt for a given structure (A1B1) but with two different rigidities. The maximum
for the stiffer chain shifts to higher temperatures and smaller values in agreement
with the previous results. This maximum in the number of trains has been also
observed in the case of flexible homopolymers [284].
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If we set one of the adsorbing energies to be repulsive, for instance, εB ≥ 0,
the polymer does not adsorb completely for a temperature small enough. In fact,
B-type monomers are repelled from the surface and trains are composed basically
by A-monomers. As a result, for copolymers with a small block size, Nt reaches
a plateau value that depends on α and the chain stiffness κ. Results for εB = 0,
and copolymer structures A1B1 and A5B5 with different rigidities, are shown in
Figure 9.14. This behavior is similar to one found by Zheligovskaya et al. [284]
for flexible A1B1 copolymers.
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9.4 Concluding remarks

In this chapter we have presented the results of extensive off-lattice Monte-Carlo
simulations of the adsorption of semiflexible block copolymers onto flat homoge-
neous surfaces.

The adsorption process has been analyzed under different chain lengths (N ),
degrees of stiffness (κ), adsorption energies for the two types of monomers
(εA,εB), and sizes of the block structure (α).

We have focused first in the adsorption of diblock structures. As expected,
stiffer chains adsorb at a higher temperatures onto the surface, similarly to what
is observed for semiflexible homopolymers [290]. However, long diblock chains
are found to exhibit a well defined two-step adsorption transition, characterized by
two typical adsorption temperatures that depend on the corresponding adsorption
energies Tc(κ, ε). The critical adsorption properties have been analyzed assum-
ing the scaling ansatz proposed by Kramarenko et al. [291], originally developed
for flexible homopolymers. The scaling works nicely when applied to each bock
separately, but the critical exponent is no longer φ = 0.59. This non-universal
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behavior was already expected by Kuznetsov and Sung [275] and Gomper [301],
suggesting φ = φ(κ, ε). The adsorption behavior of each block is barely dis-
turbed by the presence of the other, independently of the adsorption energies.
This result indicates the possibility to extend the analytical predictions of model
of Whittington [281] to stiff diblock chains even in the case where none of the
adsorbing energies is equal to zero. The radius of gyration has been computed
in the adsorbed and non-adsorbed state and we have verified that it follows the
expected scaling behavior (Eq. 9.6).

For stiff block-copolymer structures we have found that the separation be-
tween the two peaks in the specific heat data, identifying the characteristic ad-
sorption temperatures, narrows for smaller values of the block size α. For α small
enough we found a single peak and adsorption becomes a single step process like
in homopolymers. We have measured the length and the number of chain trains
during the adsorption transition. The train length is found to increase monotoni-
cally with the the block size α and with 1/T , whereas the number of trains has a
maximum value (previously observed in the adsorption of flexible homopolymers
[285]) located at T = Tc. We found the maximum number of trains to decrease
with increasing α. The observed effects of the chain stiffness over the chain trains
may be of interest for further studies related to pattern recognition.





Chapter 10

Stiff polymer adsorption onto
striped surfaces

The study of polymer adsorption onto heterogeneous surfaces is at present a
challenging issue which is directly related to the pattern recognition prob-

lem. As in the case of copolymers, beside the enormous complexity of the general
problem, many coarse properties of these systems can be derived through the use
of statistical methods. In this chapter we study the adsorption and the pattern
recognition processes of semiflexible homopolymers onto striped surfaces. We
will see that it exist an optimal stripe width that maximizes the chain stretch-
ing in the adsorbed state. Furthermore, adsorption and recognition processes are
observed to occur at different temperatures generally.

10.1 Introduction

Polymers physically adsorbed onto solid surfaces has found a wide range of appli-
cations such as, protective coatings of electronic devices, lubricants, stabilization
of colloidal suspensions, adhesion and, more recently, for biological and medical
purposes. Particularly, the generation of surfaces that are able to withstand pro-
tein adsorption is a major challenge in the design of blood-contacting materials
for medical implants and bio-affinity sensors. It is also of great interest the study
of the polymer adsorption onto heterogeneous surfaces that are characterized by
a fluctuating polymer-surface interaction [288]. Real biomolecules carry a pat-
tern encoded in their sequence distribution, and a properly chosen functionalized
surface may be able to recognize this information and adsorb it strongly [287]. In
this sense, a major effort is concentrated in adsorption of flexible polyelectrolytes
onto heterogeneously charged surfaces [302–304].

201
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Random heteropolymers are known to be the simplest physical models for
proteins or DNA and, like many biological macromolecules, are rigid to a certain
extend due to electronic delocalization and steric effects. Since the free rotations
about the chain backbone are restricted, the chain statistics cannot be described
accurately by conventional models for flexible polymer chains, and only few re-
cent developments have been done in the area of semiflexible polymers at surfaces
[290, 291, 305].

The purpose of the present Chapter is to investigate the role of the polymer
structure in the adsorption process onto a patterned surface consisting in stripes
of variable width. Such structure has been found particularly relevant to the DNA
adsorption on charged membranes [306].

By measuring the fraction of monomers adsorbed onto the surface, the de-
gree of stretching and the non-sphericity, as a function of the system temperature,
we have analyzed the adsorption characteristics in terms of the chain length and
rigidity. We have found that a higher degree of stiffness and an increasing chain
length enhances the surface pattern recognition. Our results also indicate that
the adsorption transition foregoes the surface recognition and that chains, in the
adsorbed state, find an optimal stripe width that maximizes their stretching.

10.2 Numerical Model

We have simulated the adsorption of a semiflexible polymer chain made of N
beads onto a planar surface using off-lattice Monte-Carlo methods. The chain
model is identical to the one used in the previous chapter (see Sections 3.1 and
9.2). In this case, the surface is composed of heterogeneities in the form of stripes
oriented along the y-axis with a characteristic width ω. The polymer has an at-
tractive interaction with alternate stripes and a neutral one with the others. A
schematic view of the system is presented in Figure 10.1. We must note that for
ω � 1.1σ the polymer will not feel the heterogeneities of the surface and will
not be relevant for pattern recognition. All the monomer units have an attractive
interaction with the stripes on the surface with adsorption energy ε < 0. We again
define one Monte Carlo Step (MCS) as N trials to move the chain. The system
has been in this case equilibrated for 106MCS. Subsequently, measurements are
taken every 10 MCS. The results have been finally averaged over 105 measures.

10.3 Results and Discussions

We have studied the adsorption process of a stiff homopolymer chain onto an
attractive striped surface. We have investigated the behavior for different chain
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Figure 10.1. Schematic representa-
tion of a striped surface. Dark stripes
have an attractive interaction with the
polymer chain whereas clear ones are
neutral.

lengths N ∈ [25, 250] and chain rigidities κ ∈ [0, 30] for several values of the
stripe width ω. The flexible chain limit corresponds to κ = 0.

In previous studies it has been clearly established that a polymer chain adsorbs
strongly onto a planar homogeneous surface at a characteristic temperature that
increases with the chain length and stiffness [290]. Thus, we are interested to
see how the adsorption process is influenced by structure of an heterogeneous
attractive surface that, in our case, is controlled by the stripe width. In Figure 10.2
we have plotted the fraction of monomers adsorbed onto the surface χ ≡ nc/N

vs the inverse of the temperature 1/T for N = 250 and κ = 30. The results
for different widths are compared with those corresponding to an homogeneous
attractive surface. We can observe that the transition towards a complete adsorbed
state takes place at higher temperatures with increasing the stripe width ω, and
that the highest characteristic adsorbing temperature is found for an homogeneous
surface. This result can be easily understood since for an homogeneous surface
the polymer chain does not need to accommodate to a particular surface pattern
once it has been adsorbed.

The transition temperatures to the adsorbed state, Tc(N,κ, ω), are determined
from the temperature corresponding to the maximum of the specific heat data, that
is directly derived from the measure of the fluctuations of the internal energy. The
characteristic temperatures Tc as a function of the stripe width ω, for κ = 30 and
for different chain lengths N , are represented in the inset plot of Figure 10.2. We
can observe that for a given chain length Tc increases with increasing ω, and that
at a particular stripe width Tc also increases with N , as expected. Data repre-
sented at ω = 0 corresponds to an homogeneous attractive surface from which
the highest values of Tc are obtained. This characteristic temperature provides a
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Figure 10.2. Fraction
of monomers adsorbed onto
the surface χ vs 1/T for
different values of the stripe
width ω. The chain length
is set to N = 250 and
its bending parameter κ =

30. Inset: Characteristic
adsorbing temperatures as a
function of ω for different
chain lengths (κ = 30).

valuable information in order to identify the transition point towards the adsorbed
state, however, does not account for pattern recognition yet. One expects that,
once the chain is adsorbed onto the surface, then it has to accommodate to the
specific pattern, and this process may take place at a lower temperature than Tc.

10.3.1 Degree of stretching

Since our pattern is composed of stripes oriented along the y-axis we introduce a
parameter that will measure the degree of stretching of the polymer chain, in its
adsorbed state, along the y-axis.

A fully stretched chain of length L = Nσ has a radius of gyration respect to
its center of mass equal to Rg = L/

√
12, thus, we define the degree of stretch-

ing of a polymer chain Q, as the ratio between the y-component of its radius of
gyration (computed as refered in Eq. 2.6) and the radius of gyration of a fully
stretched chain:

Q =

√
12

Nσ
〈R2

gy〉1/2 (10.1)

The degree of stretching Q as a function of the stripe width ω for different chain
lengths is plotted in Figure 10.3. The chain rigidity is set to κ = 30 and measures
are taken at a temperature of 1/T = 4 where the chain is almost completely ad-
sorbed. For the sake of comparison, the results corresponding to an homogeneous
attractive surface are included in the ω = 0 data. Remarkably, we can observe
that, independently of the chain length, there is an optimal value for the stripe
width (ω = 2) that maximizes the stretching Q. The introduction of an attractive
striped pattern onto the surface increases notably the degree of stretching, and this
stretching is enhanced by the introduction of even small quantities of chain stiff-
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ness. The existence of an optimal stripe width is due to a competition between
the entropy, that tends to spread the chain over the surface almost isotropically,
and the internal energy that accounts for the bending energy and the interaction
of the polymer with the surface, that tends to concentrate all the monomers along
the major axis of a single stripe.
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Figure 10.3. Measure of
the degree of stretching Q

vs. the stripe width ω for
different chain lengths. The
stiffness of the chain is set
to κ = 30. Q has been eval-
uated for a completely ad-
sorbed chain 1/T = 4.

The polymer chain avoids costly jumps between neighboring stripes by pass-
ing over non-adsorbing zones that will rise the internal energy of the system.
However, if the stripe width is small enough, the chain can spread over many
different stripes without exposing too many monomers to the non-adsorbing re-
gions. A clear snap-shot of this situation is shown in Figure 10.4. We have plotted
a typical conformation of a flexible polymer chain (κ = 0) of length N = 200 at
1/T = 4 adsorbed onto a striped surface of width ω = 1 (left picture) and ω = 2

(center picture). However, by increasing the stiffness of the chain it will align
along the y-axis as it is shown in the right picture of Figure 10.4, where a typical
conformation of a rigid chain at its optimal stripe width is plotted.

From Figure 10.3 we can also observe that for narrow stripes (ω ≤ 2) the
higher degree of stretching is obtained for short chains, whereas, for increasing ω
long chains are the ones that provide the bestQ values. This behavior can be eas-
ily explained since short chains, even for small values of the bending parameter
κ, tend to behave rod-like and can easily adjust to thin stripes, furthermore, jumps
among neighboring attractive stripes will expose a large percentage of monomers
to non-adsorbing zones. On the other hand, as ω increases, short chains find more
lateral space to try to accommodate more isotropically and thus, reducing the
value of Q.

In Figure 10.5 we have plotted the behavior of the degree of stretching as a
function of the chain stiffness κ for different values of the stripe width. The chain
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Figure 10.4. (a)Snap shot of a typical configuration of a flexible polymer chain adsorbed
onto a striped surface with a stripe width ω = 1. The chain length is set to N = 200. (b)
same as before for a stripe width ω = 2. (c) Same as (b) for a stiff chain with κ = 30.

length is selected to be N = 150 and the measures are done at 1/T = 4. We can
observe that increasing the chain rigidity the degree of stretching increases and,
at the same time, the optimal stripe width switches to smaller values. Under these
circumstances, the bending energy dominates the entropic contribution.
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Figure 10.5. Degree of
stretching Q vs. the chain
stiffness κ for different val-
ues of the stripe width at
1/T = 4 and N = 150.
For the sake of comparison
we include the results cor-
responding to an attractive
homogeneous surface (◦).

The behavior of the y-component of the radius of gyration of the polymer
chain 〈R2

gy〉1/2 with the temperature for different stripe widths is shown in Figure
10.6. The chain length is chosen to beN = 100 and the bending parameter κ = 1.
The initial values of 〈R2

gy〉1/2 (at high temperatures) correspond to a free non-
adsorbed polymer chain. By reducing the temperature, the polymer adsorbs onto
the surface and 〈R2

gy〉1/2 grows until it reaches a plateau value that depends on ω.
For homogeneous surfaces or wide attractive stripes this plateau is reached earlier
(meaning at higher temperatures) but has a smaller value. The maximum value for
an almost completely adsorbed chain (1/T → 4) is obtained at the optimal stripe
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width. While reducing the temperature the maximum degree of stretching shifts
from wider to narrower stripe widths as an indication that the polymer needs a
further reduction of the entropic contribution in order to adjust to thinner attractive
stripes. By increasing the chain stiffness the transition towards the plateau value
becomes sharper suggesting the existence of a characteristic temperature Tr at
which the surface pattern is recognized by the polymer chain. Tr is expected
to be lower than the characteristic adsorbing temperature, Tc, since the polymer
chain first adsorbs onto the surface rather isotropically, and a further reduction
in the temperature will reduce the number of jumps between neighboring stripes
until the chain aligns along the major axis of a single stripe.

0 1 2 3 4

1/T

0

5

10

15

20

25

30

(<
R

y2 >)
1/

2 
 

w=1
w=2
w=4
w=8
homogeneous

Figure 10.6. Variation of
the y-component of the ra-
dius of gyration 〈R2

gy〉1/2
vs. 1/T for several stripe
widths. N = 100 and κ =

1.

10.3.2 Non-sphericity

In order to identify the characteristic temperature at which the recognition takes
place Tr we measure the non-sphericity of the polymer chain (see Section 2.3.3).
Since the polymer adsorbs onto the surface before it adjusts to the specific pattern
we assume 〈R2

gz〉 = 0. We define the characteristic recognition temperature, Tr,
as the temperature at which the chain adjusts to an specific pattern. Thus, if the
stripe width is ω, the polymer chain must adjust to the stripe width and then align
along the major axis of the stripe.

Given a chain of length N with a bending parameter κ, it is easy to estimate
the expected non-sphericity valueAth of chain adsorbed onto a single stripe. The
polymer will form blobs of diameterω, containing eachNb monomers. The radius
of gyration of a blob with radius r = ω/2 is Rgb = r/

√
2 that, for an excluded-

volume chain, is related to Nb through the Flory expression [93]:

Rgb = lp(κ)1/4N
3/4
b
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where lp(κ) is the persistence length of a stiff polymer chain. It has been found
that lp = γκ1/2 [290]. Our best fit to the data gives γ = 0.55 ± 0.01. Now, it is
possible to know the number of monomers containing each blob:

Nb(ω, κ) =

[
ω

2
√

2

(
1

γκ1/2

)1/4
]4/3

The total number of blobs is nothing but N/Nb, and the polymer will cover an
extension along the major axis of the stripe of Ly = ωN/Nb. Then, the radius
of gyration along the y-axis follows: 〈R2

gy〉 = L2
y/12, and in its perpendicular

direction: 〈R2
gx〉 = ω2/12.
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Figure 10.7. Characteris-
tic pattern-recognition tem-
peratures Tr vs. the stripe
width ω for different values
of the chain rigidity. N =

250.

We have evaluated the non-sphericity of the polymer chain A(T ), and its
value has been compared to the expectedAth(N,κ, ω). We have defined the tem-
perature at which the pattern recognition takes place when the following criteria
is satisfied:

T = Tr(N,κ, ω) /
A(T )

Ath
≥ 0.99

In Figure 10.7 we have plotted 1/Tr as a function of the stripe width ω for dif-
ferent chain rigidities. The chain length is selected to be N = 250. Observe how
wider stripes are recognized earlier (at higher temperatures) than narrower ones,
and that by increasing the stiffness parameter κ, Tr is also raised. The dependence
of Tr on the chain lengthN is shown in Figure 10.8. In this case we have selected
κ = 30. Observe how Tr increases with increasing the chain length. For the sake
of comparison, we have over plotted the corresponding characteristic adsorbing
temperatures Tc for N = 25 and N = 250. Note that Tc > Tr in all the cases
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studied supporting the assumption that the polymer first adsorbs onto the surface
and then the chain adjusts to the specific pattern.
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Figure 10.8. Characteris-
tic pattern-recognition tem-
peratures Tr vs. the stripe
width ω for different chain
lengths. The stiffness is set
to κ = 30. For the sake
of comparison we include
the characteristic adsorbing
temperatures Tc for N =

25 and N = 250.

10.4 Summary and Conclusions

In this Chapter we have presented extensive numerical off-lattice Monte-Carlo
simulations of a stiff polymer chain adsorbing onto a structured surface consist-
ing in alternated attractive and neutral stripes. We have analyzed, in terms of the
chain length and rigidity, the adsorption and the pattern recognition process as a
function of the stripe width. We have seen that this process is twofold. During
the cooling sequence, the polymer chain first adsorbs onto the surface at a charac-
teristic temperature Tc, and then, a further reduction in the temperature is needed
for the chain to reorganize and adjust to the specific pattern. The characteristic
adsorbing temperature Tc is found to increase with the stripe width ω.

In order to study the pattern recognition process we have evaluated the degree
of stretchingQ and the non-sphericityA of the polymer chain. We have found an
optimal value of the stripe width that maximizes Q. This optimal width reduces
with increasing the chain stiffness. The measure of Q also indicates that short
chains accommodate better to narrow stripes at low and moderate chain rigidities,
however this fact does not necessarily implies recognition. We have defined a
criteria to estimate the characteristic temperature at which the chain recognizes
the pattern Tr . We have verified Tc > Tr in all the cases studied and that Tr
increases with the stripe width and the chain length and rigidity.

Despite the simplicity of this model, it might serve to extract useful informa-
tion on the most relevant chain and surface parameters that are able to enhance the
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polymer adsorption onto specific patterns. Furthermore, lateral heterogeneities
might require the proper selection of lengths scales, including the chain length
N and its persistence length lp, that must be commensurate quantities with the
domain size of the pattern. At the same time, heterogeneous surfaces represent
a unique means of manipulating the size and the orientation of polymer mor-
phologies over a large range of length scales that are of great interest in bio and
nanotechnologies.



Chapter 11

General conclusions

This thesis has focused on the study of particularly interesting aspects con-
cerning the kinetics and phase transformation of depletion driven colloids

and the polymer-surface interaction under complex structures, from the interac-
tion of spherical micelles or colloids with grafted polymer chains, to the polymer
adsorption on patterned surfaces and polymer packaging in capsids. Numerical
simulations based on Brownian Dynamics and off-lattice Monte-Carlo techniques
are compared to mean field and self-consistent field theoretical approaches, as
well as scaling analysis. The main results we have obtained are summarized in
the following lines.

Depletion driven colloids

The study of 2d-depletion-driven colloidal systems presented in Chapters 4 and
5 shows a transition from a single dispersed phase to a two-phase coexistence of
monomers and clusters as the depth of the interaction potential among the col-
loidal particles is changed. Increasing the well depth further, fractal clusters are
observed in the simulation. These fractal clusters have a hybrid structure in the
sense that they show hexagonal closed-packed crystalline ordering at short length
scales, and a ramified fractal nature at larger length scales. For sufficiently deep
potential wells, the diffusion-limited cluster-cluster aggregation (DLCA) model
is recovered in terms of the large-scale fractal dimension Df of the clusters, the
kinetic exponent z, and the scaling form of the cluster size distribution. For shal-
lower well depths inside the two-phase coexistence region, a comparison of the
kinetics of cluster growth with intermediate-stage phase separation in binary mix-
tures shows close similitude between both phenomena. In the single phase region,
growth kinetics agrees well with a mean-field aggregation-fragmentation model

211



212 General conclusions

of Sorensen, Zhang, and Taylor (SZT) [71].

The study of the dynamical scaling hypothesis for the structure factor, S(q),
in depletion-driven colloidal phase separation presented in Chapter 5 shows that a
true dynamical scaling is observed for shallow quenches into the two-phase gas-
solid coexistence region. Our results show that for shallow quenches, after an
initial transient period, there is only one characteristic length scale in the system
and, therefore, conditions required for dynamic scaling to hold are satisfied. The
initial transient period covers nucleation of clusters and growth mainly by incor-
porating monomers and small clusters in the growing nuclei. In this regime, the
cluster-cluster nearest-neighbor distance, Rnn, and the average cluster radius of
gyration, Rg, grow differently with time and the scaling does not work. After the
transient period, the predominant mechanism of cluster growth is the collision
among large clusters and the subsequent surface reorganization in order to reduce
the interfacial tension. The processes that remain after the transient period leads
to a similar temporal evolution of Rnn andRg , and therefore a single length scale
can be observed in the system.

In deep quenches the growth process leads to fractal clusters and the system
is controlled by two characteristic lengths that evolve differently in time. True
dynamical scaling thus cannot be expected to hold. However, an apparent scal-
ing for the structure factor is observed over some period of time when these two
characteristic length scales become comparable to each other. A partial agree-
ment is observed when results are compared with the theoretical predictions by
HOS [166]. HOS assume that in monodisperse systems the structure factor can
be write as a product of cluster-cluster and the averaged single-cluster structure
factors, each with its own characteristic length. Simulations point out that HOS
can account for the origin of the peak for shallow quenches in the two-phase re-
gion. In contrast, HOS fails to explain the origin of the peak for deep quenches in
the two-phase region. A plausible explanation for the breakup of HOS theory is
the fact that large clusters are observed to be more polydisperse in deep quenches
than in shallow quenches.

The studies done along Chapters 4 and 5 for depletion-driven colloids clearly
demonstrate the importance of Brownian dynamics in the study of colloidal ag-
gregation, and more generally, for studying the transition from a dispersed to a
solid phase. Aggregates that cross over from fractal to compact crystalline mor-
phology can be easily studied in Brownian Dynamics simulations by just chang-
ing a parameter.
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Polymer-surface interactions

Spherical polymer brushes

In Chapters 6 and 7 we have focused on the study of a particular kind of colloidal
particles known as spherical polymer brushes. Simulations have focused on sys-
tems in which curvature effects are important. In Chapter 6 we have measured the
interacting force between two spherical brushes. Our results support a descrip-
tion of the force profile divided into two regimes. At short separating distances
between the brushes the force is well described by the theory of Witten and Pin-
cus [169], whereas at larger distances the interaction is reproduced by extending
the theory of Flory for dilute polymer solutions. The overall behavior is qualita-
tively well adjusted, except at short distances, with the phenomenological theory
of Doroszkowski and Lambourne [170] for a high density of grafted chains. The
characteristic radial size of an unperturbed brush is found to follow the same scal-
ing relationship with the chain length N and number of grafted chains f as in the
star-polymer systems R0 ∼ N3/5f1/5. Results have been also compared with
SCF formalisms of Lin-Gast [210] and Wijmans-Leermakers-Fleer [202]. Strong
discrepancies are found between SCF and MC formalisms for systems with large
curvature. SCF methods are observed to overestimate the interactions at short
distances between spherical brushes because they cannot account adequately for
monomer correlations.

In Chapter 7 we have studied the behavior of a spherical brush confined onto a
spherical cavity. The monomer density profile and the cavity pressure have been
measured. In addition to MC technique we have used a Self-Consistent Field
formalism in which we have used directly the probability density function recur-
rence law for the propagator GN (r, r′), avoiding the length scale approximation
involved in self-consistent field methods that uses Schrödinger-like equations. A
direct comparison between the SCF and MC methods reveals the SCF calculation
to be a valuable alternative to MC simulations in the case of free and softly com-
pressed brushes. In the case of strongly compressed systems we have proposed an
extension of the Flory theory for polymer solutions, whose predictions are found
to be in good agreement with the MC simulations and has the advantage of being
computationally inexpensive. In the range of high compressions, we have found
the monomer volume fraction v to follow a scale relationship with the cavity pres-
sure P , P ∼ vα. SCF calculations give α = 2.15 ± 0.05, close to des Cloiseaux
law (α = 9/4), whereas MC simulations lead to α = 2.73 ± 0.04. We conclude
that the higher value of α obtained with MC comes from the monomer density
correlations not included in the SCF formalism.
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Polymers confined onto spherical surfaces

Results for flexible and semiflexible excluded-volume polymer chains confined
to impenetrable spherical surfaces have been presented in Chapter 8. Results
are compared with the theoretical predictions for ideal chains by Mondescu and
Muthukumar (MM) [267], and Spakowitz and Wang (SW) [268], respectively.
The SW prediction is found to be in better agreement with our simulation results
than the MM prediction in all the cases studied. Conformation of chains of length
L, and persistence length lp restricted to move on a sphere of radiusR, can be rea-
sonably described by the SW formalism in the regime L/(2π) < R < 2lp. For
R/lp > 2, the mean square end-to-end distance, as a function of the chain length,
evolves from a two-dimensional (2d) self-avoiding random walk behavior to a
saturation value. A rigid rod behavior is recovered in the limit of short and stiff
chains. Unlike ideal chains, excluded volume chains confined to a spherical sur-
face of large enough radius display a transition from a disordered to an helicoidal
state as chain stiffness is increased. We have characterized this transition through
the bond orientational correlation function and the Monte Carlo results reflect a
balance between the bending energy and the excluded volume interactions.

Polymer adsorption

The adsorption processes of semiflexible polymers onto flat surfaces have been
studied in Chapters 9 and 10. Chapter 9 presents the results for the adsorption of
block-copolymers onto homogeneous surfaces. The behavior of several copoly-
mer chain structures, such as homopolymers, diblocks, (AαBα) block copoly-
mers, and random heteropolymers have been compared. In all the cases stud-
ied, we have found the adsorption process to be favored with an increase of the
chain rigidity. Particularly, the adsorption of diblock structures becomes a two-
step process characterized by two different adsorbing temperatures that depend
on the chain stiffness, the chain length and the adsorbing energies εA and εB .
This twofold adsorbing process changes to a single one for copolymers of re-
duced block size α. Each block of the stiff copolymer chain is found to satisfy,
independently, the classical scaling laws for flexible chains, however, we found
the scaling exponent φ to depend on the chain stiffness and the adsorbing en-
ergies. The measurement of the radius of gyration exhibits a typical behavior
of a polymer chain composed of N/lp blobs which persistence length follows
lp ∼ (κ/kBT )0.5 for large stiff chains.

Chapter 10 presents the results for the adsorbtion process of homopolymer
chains onto a sticky periodic stripe like pattern of variable width. We have an-
alyzed, in terms of the chain length and rigidity, the adsorption and the pattern
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recognition process as a function of the stripe width. We have seen that this
process is twofold: i) the chain adsorbs rather isotropically onto the surface at
a characteristic temperature Tc and, ii) a further reduction in the temperature is
needed for the chain to reorganize and adjust to the specific pattern. Such poly-
mer reorganization has been studied through the evaluation of the chain degree
of stretching Q and the non-sphericityA. We have found an optimal stripe width
that maximizes the stretching. We have introduced a criteria to estimate the char-
acteristic temperature at which the pattern recognition takes place Tr < Tc and
we have studied its dependence with the chain and surface relevant parameters.
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4, (1777).

[111] Lord Kelvin, Phil. Mag., series 6, 2, 1, (1901).

[112] Kremer, K.; and Binder, K., Comput. Phys. Rep., 7, 259, (1988).

[113] Newman, M. E. J.; and Barkema, G. T., Monte Carlo Methods in Statistical
Physics. Clarendon Press: Oxford, 1999.

[114] Allen, M. P.; Tildesley, D. J., Computer simulation of liquids. Clarendon Press,
Oxford, 1999.

[115] Heermann, D. W., Computer simulation methods. Springer-Verlag, New-York,
1990.

[116] Kalos, M. H.; Whitlock, P. A., Monte Carlo Methods, volume 1: basics. Wiley,
New York, 1986.

[117] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; and Teller,
E., J. Chem Phys., 21, 1087-92, (1953).

[118] Wood, W. W.; and Jacobson, J. D., Monte Carlo simulations in statistical me-
chanics. Proceedings of the Western Joint Computer Conference, pp 261-9. San
Francisco, (1959).

[119] Flinn, P. A.; and McManus, G. M., Phys. Rev., 124, 54-9, (1961).

[120] Barker, A. A., Aust. J. Phys., 18, 119, (1965).

[121] Valleau, J. P.; and Whittington, S. G., A Guide to Monte Carlo for Statistical Me-
chanics, Modern Theoretical Chemistry Series, vol. 5, B. Berne, Ed., Plenum, New
York, 1976.

[122] Müller-Krumbhaar, H.; and Binder, K., J. Stat. Phys., 8, 1, (1973).
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5460, (2000).

[152] Dijkstra, M.; Brader, J. M.; and Evans, R., J. Phys:Conden. Matter., 11, 10079,
(1999).

[153] V. J. Anderson, V. J.; de Hoog, E. H. A.; and Lekkerkerker, H. N. W., Phys. Rev.



224 Bibliography

E, 63, 011403, (2001).

[154] Skjeltorp, A. T., Phys. Rev. Lett., 58, 1444, (1987).

[155] Victor, J. M.; and Hansen, J. P., J. Phys. Lett., 45, L -307,(1984).

[156] Chakrabarti, A.; Fry, D.; and Sorensen, C. M.; Phys. Rev. E, 69 (3), 031408,
(2004).

[157] Kolb, M., Phys. Rev. Lett., 17, 1653, (1984).

[158] Fry, D.; Sintes, T.; Chakrabarti, A.; and Sorensen, C. M., Phys. Rev. Lett., 89,
148301, (2002).

[159] Fry, D., PhD Thesis, Kansas state University, (2003).

[160] Huse, D. A., Phys. Rev. B, 34, 7845, (1986).

[161] Binder, K.; and Fratzl, P. in Phase Transformations in Materials, G. Kostorz (ed.),
Wiley-VCH, Weinheim (2001).

[162] See, for example, Binder, K. in Materials Science and Technology, Vol. 5: Phase
Transformations in Materials, P. Haasen (ed.), Wiley-VCH, Weinheim (1990).

[163] Chakrabarti, A., Phys. Rev. B, 45, 9620, (1992).

[164] Robinson, D. J.; and Earnshaw, J. C., Phys. Rev. Lett., 71, 715, (1993).

[165] Earnshaw, J. C.; Harrison, M. B. J.; and Robinson, D. J., Phys. Rev. E., 53, 6155,
(1996).

[166] Huang, H.; Oh, C.; and Sorensen, C. M., Phys. Rev. E, 57 (1), 875, (1998).

[167] Furukawa, H., Phys. Rev. B., 33, 638, (1986); Physica A, 123, 497, (1984).

[168] Sintes, T.; Toral, R.; and Chakrabarti, A., Phys. Rev. E (Rapid Commun.), 50,
R3330, (1994).

[169] Witten, T. A.; and Pincus, P. A., Macromolecules, 19, 2509, (1986).

[170] Doroszkowski, A.; and Lambourne, R., J. Poly. Sci: Part C, 34, 253, (1971).

[171] Napper, D. H. Polymeric Stabilization of colloidal dispersion; Academic: London,
1983.

[172] Russel, W. B.; Saville, D. A. ; and Schowalter, W. R. Colloidal Dispersions; Cam-
bridge University Press: Cambridge, 1989.

[173] Meyer, R. A., Appl. Opt., 18, 585, (1979).

[174] van Zanten, J. H.; and Monbouquette, H. G., J. Colloid Interface Sci., 146, 330,
(1991).

[175] Hsu, W. P.; Yu, R.; and Matijevic, E., J. of Colloid Interface Sci., 156, 36, (1993).

[176] Kuhl, T. L.; Leckband, D. E.; Lasic, D. D.; and Israelachvili, J. N., Biophys. J., 66,
1479, (1994).

[177] Yethiraj, A.; Hall, C. K.; Dickman, R., Journal of Colloid and Interface Science,



225

151, 102,(1992).

[178] Scheutjens, J. M. H. M.; and Fleer, G., J. Colloid Interface Sci., 16, 361, (1982). de
Gennes, P.-G., Macromolecules, 15, 492, (1982). Klein, J.; and Pincus, P., Macro-
molecules, 15, 1129, (1982). Israelachvili, J.N.; Tirell, M.; Klein, J.; Almog, Y.;
and Klein, J., J. Colloid Interface Sci., 106, 33, (1985).

[179] Woodle, M.; and Lasic, D. D., Biochim.Biophys.Acta, 171, 1113, (1992).

[180] Quirantes, A.; and Delgado, A. V., J. Phys. D: Appl. Phys, 30, 2123, (1997).

[181] Wittemman, A; and Ballauff, M., Analytical Chemistry, 76, (10), 2813, (2004).

[182] Phan, S.; Russel, W. B.; Cheng, Z.; Zhu, J.; Chaikin, P. M.; Dunsmuir, J. H. ; and
Ottewill, R. H., Phys. Rev. E, 54, 6633, (1996).

[183] Hansen, P. H.; and Bergstrom, L., J. Colloid Interface Sci., 218, 77, (1999).

[184] Grant, M. C. ; and Russel, W. B., Phys. Rev. E, 47, 2606, (1993).

[185] de Gennes, P. G., J. Phys.(Paris), 37, 1443, (1976). Macromolecules, 13, 1069,
(1980). C. R. Acad. Sci. (Paris), 300, 839, (1985).

[186] Alexander, S. J., Phys.(Paris), 38, 983, (1977).

[187] Semenov, A. N., Sov. Phys. JETP, 61, 733, (1985).; Zh. Eksp. Teor. Fiz., 88, 1242,
(1985).

[188] Milner, S. T.; Witten, T. A.; and Cates, M. E., Macromolecules,21, 2610, (1988).
Europhys. Lett., 5, 413, (1988); Macromolecules, 22, 853, (1989).

[189] Milner, S. T.; and Witten, T. A., J. Phys.(Paris), 49, 1951, (1988).

[190] Zhulina, E. B.; Priamitsyn, V. A. ; and Borisov, O. V., Polym. Sci. USSR, 31, 205,
(1989).

[191] Zhulina, E. B.; Borisov, O. V.; and Priamitsyn, V. A., J. Coll. Interf. Sci., 137, 495,
(1990).

[192] Chakrabarti, A.; and Toral, R., Macromolecules, 23, 2016, (1990).

[193] Lai, P. Y.; and Binder, K., J. Chem. Phys., 95, 9288, (1991).

[194] Toral, R.; Chakrabarti, A.; and Dickman, R. Phys. Rev. E, 50, 343, (1994).

[195] Chakrabarti, A.; Nelson, P.; and Toral, R. Phys. Rev. A, 46, 4930, (1992); J. Chem.
Phys., 100, 748, (1994).

[196] Murat, M.; and Grest, G. S., Macromolecules, 22, 4054, (1994). Phys. Rev. Lett.,
63, 1074, (1989).

[197] Daoud, M.; and Cotton, J. P., J. Physique, 43, 531, (1982).

[198] Borukhov, I.; and Leibler, L., Phys. Rev. E, 62, R41, (2000).

[199] Zhulina, E. B.; Borisov, O. V.; and Priamitsyn, V. A., Journal of Colloid and inter-
face science, 137, 495, (1989).



226 Bibliography

[200] Leermakers, F. A. M.; and Scheutjens, J. M. H. M., J. Chem. Phys., 89, 3264,
(1988).

[201] Leermakers, F. A. M.; and Scheutjens, J. M. H. M., J.Chem.Phys., 89, 6912,
(1988).

[202] Wijmans, C. M.; Leermakers, F. A. M.; and Fleer, G. J., J.Chem. Phys., 101, 8214,
(1994).

[203] Wijmans, C. M.; Leermakers, F. A. M.; and Fleer, G. J., Langmuir, 10, 4514,
(1994).

[204] Lai, P-Y; and Zhulina, E. B., J. Phys (II), 2, 547-560, (1992).

[205] Ball, R. C.; Marko, J. F.; Milner, S. T.; and Witten, T. A., Macromolecules, 24,
693, (1991).

[206] Li, H.; and Witten, T. A., Macromolecules, 27, 449, (1994).

[207] Edwards, S. F., Proc. Phys. Soc., 85, 613, (1965).

[208] Dan, N.; and Tirell, M., Macromolecules, 25, 2890, (1992).

[209] Murat, M.; and Grest, G.S., Macromolecules, 24, 704, (1991).

[210] Lin, E. K.; and Gast, A. P., Macromolecules, 29, 390, (1996).

[211] Carignano, M. A.; and Szleifer, I., J.Chem.Phys, 102, (21), 8662, (1995).

[212] Ben-Shaul, A.; Szleifer, I.; and Gelbart, W. M., J.Chem.Phys., 83, 3597, (1985).

[213] Toral, R.; and Chakrabarti, A., Phys. Rev. E, 47, 4240, (1993).

[214] Cosgrove, T.; Crowley T. L.; Vincent, B.; Barnett, K. G.; and Tadros, Th. F., Fara-
day Discussions, 16, 101, (1982).

[215] Beaufils, J. P.; Hennion, M. C.; and Rosset, R., J. de Physique, 44 ,497, (1983).

[216] Hommel, H.; Legrand, A. P.; Balard, H.; and Papirer, E., Polymer, 24, 959, (1983).

[217] Hommel, H.; Legrand, A. P.; Courtier, J.; and Desbarres, J., Eur. Polym. J., 15,
993, (1979).

[218] NMR experiments are based on the assumption that monomers far from the surface
have smaller relaxation times than segments near the surface. By grafting 13C labels
at a location of interest in the polymer chain, is it possible to estimate the monomer
concentrations at various distances from the surface. For NMR technique applied
to spherical brushes see for instance Cosgrove, T.; Vincent, B.; Cohen Stuart, M.;
Barnett, K. G.; and Sissons, D. S., Macromolecules, 14, 1018, (1981); and Gilpin,
D. K.; and Geindoga, E., J. Chromatogr. Sci., 21, 352, (1983).

[219] Cohen Stuart, M. A.; Cosgrove, T.; and Vincent, B., Advances in Colloid and
Interface Science, 24, 143, (1986).

[220] Forster, S.; Wenz, E.; and Linder, P., Phy. Rev. Lett., 77, 95, (1996).



227

[221] McConnell, G. A.; Gast, A. P.; Huang, J. S.; and Smith, S. D., Phy. Rev. Lett., 71,
2102, (1993).

[222] Edwards, J.; Everett, D. H.; O’Sullivan, T.; Pangalou, I.; and Vincent, B., Journal
of the chemical Society. Farady Transactions, 80, 2599, (1984).

[223] de Hek, H.; and Vrij, A., Journal of Colloid and Interface Science, 84, 409, (1981).

[224] Doroszkowski, A.; and Lambourne, R., J.Colloid Interface Sci., 43, 97, (1973).

[225] Cairns, R. J. R.; Ottewill, R. H.; Osmond, D. W. J.; and Wagstaff, I., J.Colloid
Interface Sci., 54, 45, (1976).

[226] Homola, A.; and Robertson, A. A., J.Colloid Interface Sci., 54, 286, (1976).

[227] Evans, R.; and Napper, D. H. J., Colloid Interface Sci., 63, 43, (1978).

[228] Pusey, P. N.; and van Megen, W., an Exxon Monograph: Physics of Complex and
Supermolecular Fluids, edited by S.A.Safrar and N.A.Clark; Wiley-Interscience,
New York, 1987, p.673.

[229] Paulin, S. E.; and Ackerson, B. J., Phys. Rev. Lett., 64, 2663, (1990).

[230] Mewis, J.; Frith, W. J.; Strivens, T. A.; and Russel, W. B., AlChE J., 35, 415,
(1989).

[231] Underwood, S. M.; Taylor, J. R., and W. van Megen, Langmuir, 10, 3550, (1994).

[232] Pusey, P. N., Liquids, Freezing, and the Glass Transition edited by J.P. Hansen, D.
Levesque, and J.Zinn-Justin; Elsevier, Amsterdam, 1991.

[233] Wijmans, C. M.; and Zhulina, E. B., Macromolecules, 26, 7214, (1993).

[234] Cosgrove, T.; Heath, T., van Lent, B.; Leermakers, F.; and Scheutjens, J. Macro-
molecules, 20, 1692, (1987).

[235] Nommensen M. H. G. D.; van den Ende, D.; and Mellema, J., Phys. Rev. E, 59,
3147, (1999).
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ERRATUM

This section is intended to enumerate and correct the errors made when the
thesis manuscript was written. We thank very much people who has con-

tributed to point out some of the errors and we encourage everybody who has read
the thesis and found other mistakes to contribute to this section. The last update
of this section is October, 2005.

• Page 3, first paragraph In the manuscript we say ’In 1905, Einstein [1]
proposed the following theory to explain the Brownian (colloidal) motion:
...’. This lines are inaccurate and could be misleading in the sense that they
only gives credit to Einstein and neglects Langevin’s contribution who is
in fact responsible for equation (1.1) on the same page. These lines should
be replaced as follows: ’ In 1905, Einstein [1] applied both thermody-
namics and statistical mechanics to a collection of Brownian particles and
related the diffusion constant D to: (a) the mean square displacement in
time 〈(x(t) − x(to))

2〉 = 2Dt, and (b) the viscosity η, and temperature T ,
6πηrpD = RT/NA where NA is the Avogadro Number, R is the ideal gas
constant, and rp is the radius of the particle. The above formula constituted
one of the former ways to measure the Avogadro number accurately. In
1908, Langevin [∗1] presented a different approach to the Brownian move-
ment by writing an equation of motion for an individual Brownian particle:
the displacement ~x(t) of a colloidal particle of mass m is governed by the
equation

m
d2~x

dt2
= − 1

µ

d~x

dt
−∇U + ~frandom(t)

that assumes ...’ , where [∗1] refers to 1908 Langevin paper: ’Sur la théorie
du mouvement brownien’, Comptes Rendus de l’Academie des Sciences
(Paris), 146, 530-533, (1908).

• Page 25, after eq. (1.29) Where it says ’For ω < 0’ should be replaced
with ’For λ < 0’.

• Page 36, eq. (1.63) Notice that the function g(~r) defined in eq. (1.63) and
related to the structure factor S(~q) through eq. (1.65) is not the pair corre-
lation function which is usually depicted as g(~r). Equation (1.63) defines
the ’space density-density correlation function’ which is usually depicted
as G(~r) instead of g(~r) as we did. In fact, if we use as notation G(~r)

to refer to the ’space density-density correlation’ function, and g(~r) for
the pair correlation function, it is possible to write the following relation:
G(~r) = δ(~r) + Φg(~r), where Φ = 〈Φ(~r)〉 is the average density.
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• Page 188, in the last paragraph The sentence ’The limiting values ob-
served for T → ∞ correspond to a chain ...’ should be replaced by ’The
limiting values observed for 1/T →∞ correspond to a chain ...’.

• Page 193, after eq. (9.5) The sentence ’Thus, we can model the chain as
an ideal rod-like polymer ...’ should be replaced by ’Thus, we can model
the chain as a flexible rod-like polymer ...’.



ADDENDA

This section is intended to include comments, cites, and reviews about issues
which were not included formerly in the manuscript, but are very close re-

lated to the topics reviewed in the thesis. We encourage everybody who has read
the thesis and knows interesting information about issues related to the thesis to
contribute to this section. The last update of this section is October, 2005.

• About the Brownian motion: it seems that Brownian motion was ob-
served before Robert Brown studied it in 1828. In 1785, the scientist Jan
Ingenhousz reported the movement of carbon dust particles on alcohol.

• About EPID’s, e-paper, and REED’s: additional information about Elec-
trophoretic Image Displays, and the so called e-paper can be found for in-
stance in the following web-pages: http://www.sipix.com/technology/epaper.htm,
http://www.eink.com/index.html . Information about REED’s, Reverse Emul-
sion Electrophoretic Crystals, which could be an alternative to EPID’s, can
be found on http://zikon.com/reed.htm.

• About other applications of spherical brushes: Magnetic nanoparticles
with grafted antibodies onto their surface have made available an ultrasen-
sitive method for detecting proteins. Conventional assays for detecting the
same proteins are reported to be six orders of magnitude less sensitive than
this method. For more information, see Jwa-Min Nam, C. Shad Thaxton,
and Chad A. Mirkin, Science, 301, 1884, (2003).

• Encapsulated polymer brushes (Chapter 7): the study of encapsulated
brushes can be also of relevance for the behavior of polymer brushes (like
sterically stabilized liposomes) when trapped by macrophages in the body.
For more information, see for instance S.M. Moghimi, A.C. Hunter, and
J.C. Murray, Pharmacological Reviews, 53, 283, (2001). The study can
be also relevant for polymer nanoparticle-brushes encapsulated into com-
posite materials, see for instance: M.Z. Rong, M.Q. Zhang, H.B. Wang,
H.M. Zeng, J. of Poly. Sci. B, 41, 1070, (2003); A. Pucci, N. Tirelli, E.A.
Willneff, et al., J. of Materials Chemistry, 14, 3495, (2004).
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