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We study the polarization response of a vertical-cavity surface-emitting laser, driven simultaneously by noise
and two �or more� weak periodic signals. In the bistable regime, we observe experimentally the occurrence of
stochastic resonance at a frequency that is absent in the input driving signal. The presence of this so-called
ghost resonance is confirmed theoretically.
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I. INTRODUCTION

Subharmonic stochastic synchronization and resonance,
amiably referred to as ghost resonance, were first studied in
the framework of the auditory system �1,2�. This study origi-
nated from the search for the neuronal process by which the
brain fuses all the sound’s frequency components into a per-
ceived pitch that is not present in the original sound wave.
This ghost resonance �GR� is a form of stochastic resonance
�SR� whereby a frequency absent in the input shows up in
the system response. This is a type of phenomenon which of
course is not possible within the framework of linear signal
processing. Until now, GR has been observed theoretically in
an excitable system �1,2� and experimentally in a laser sys-
tem �3� and in a monostable Schmitt-Trigger electronic cir-
cuit �4�. Here, we demonstrate the occurrence of GR in a
bistable system.

SR has been shown both experimentally �5,6� and theo-
retically �7� in polarization-switching �PS� vertical-cavity
surface-emitting lasers �VCSEL’s�. VCSEL’s operating in the
fundamental transverse mode usually emit light in one of two
specific orthogonal linear polarizations states. In some de-
vices the emitted polarization changes at a specific switching
current. Around this switching current a small bistable re-
gion, where spontaneous mode hopping can be observed be-
tween the two modes, can exist. When the current is modu-
lated in this region, SR is observed �5,6�. In �7�, SR in
VCSEL’s was studied on the basis of a two-polarization-
mode rate equation model. By using a multiple-time-scale
analysis of these stochastic rate equations, the model is re-
duced to one stochastic differential equation. In that way,
semianalytical results are far more easy to attain.

In this paper we study the response of a VCSEL subject to
weak periodic input currents and a Gaussian white noise si-
multaneously. We will show that under appropriate condi-
tions we can observe the presence of GR, both experimen-
tally and theoretically, around the PS point of the VCSEL.

II. EXPERIMENTS

A. Measurements

The VCSEL’s used in the experiments are oxide-confined
devices with a circular surface relief intended to increase the
single-mode regime and emitting at 970 nm �8�. These de-
vices were fabricated by the Optoelectronics Department of
the University of Ulm. In our setup, the light emitted by the
VCSEL is collimated with a lens and sent through a linear
polarizer to select one of the two polarization modes �PM’s�.
The polarization-resolved intensity impinges on a
2-GHz-bandwidth detector whose output signal is visualized
on an oscilloscope. All optical elements are slightly mis-
aligned to prevent optical feedback, which could cause extra
instability in the VCSEL. The bias current generated by a
stabilized current source and the modulation signal from a
function generator are combined in a bias T and subsequently
sent through the VCSEL. We use a Gaussian white electrical
noise source with a bandwidth of 400 MHz. The temperature
of the VCSEL package is actively stabilized up to a few mK.
In all of our experiments discussed here we use a fixed tem-
perature of 22 °C. The overall amplitude response �from sig-
nal generator to laser current� was checked as being linear in
the modulation amplitude and frequency regime that is stud-
ied here.

The PI curve of the studied VCSEL is shown in Fig. 1.
The VCSEL used in the experiments has a threshold current
Ith of about 0.84 mA and a switching current Isw of 1.38 mA.
Usually, random mode hopping between the two orthogo-
nally polarized fundamental modes occurs within a bistable
region around the switching current. However, in our case
the mode hopping can only be observed close to the switch-
ing current, because the bistable region is too wide. From
comparison with theory we estimate the bistable region to lie
within IL� I� IH with IL=1.14 mA and IH=3.05 mA.

The VCSEL is modulated by the following current signal:

I = Ib +
Im

2
�sin�2�f1t� + sin�2�f2t�� , �1�

where

f1 = kf0 + �f , �2�*Electronic address: guy.van.der.sande@vub.ac.be
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f2 = �k + 1�f0 + �f . �3�

With this type of signal the ghost resonance is expected at
frequency �1�

fr = f0 +
�f

k + 1/2
. �4�

This resonance can be better understood, when assuming that
the nonlinear system acts as a thresholding device and
merely detects the position of the highest peaks produced by
constructive interference of the two sinusoidal signals with
equal amplitudes. In that case, Eq. �4� corresponds to the
time interval between two prominent peaks. Although ghost
resonance can be observed for a large combination of sine
functions, we choose to work with k=2 and only two input
frequencies. To ensure that only one resonance frequency fr
exists, we start with �f =0. Remark that for �f =0, the reso-
nance will occur, as expected, at the subharmonic frequency
f0 that is absent in the injected current signal. When �f �0,
the resonance does not occur simply at the frequency differ-
ence f2− f1, but at a slightly shifted frequency as follows
from Eq. �4�.

To set Ib, we have considered two situations: Ib lower than
the Maxwell point and Ib higher than the Maxwell point. The
Maxwell point is the value of the current at which the aver-
age residence times, due to the noise-induced mode hopping,
in both modes are equal. In both cases, we have observed
ghost resonance. The measurements with a bias current be-
low the Maxwell point are quite time consuming as the reso-
nance occurs at a time scale close to seconds, while in the
other case the involved time scale is closer to microseconds.
Taking into account that we have to measure the VCSEL’s
response during several thousand modulation cycles in order
to get statistically relevant data, it is clear that the second
case leads to easier and less time-consuming measurements.
That is why the focus of this paper is on the case with the
bias current above the Maxwell point.

Typical time traces for a fixed Ib and f0 and for different
modulation amplitudes can be found in Fig. 2. In Fig. 2�c�
the system is clearly very close to its resonance point. It
exhibits a spiked response with a repetition rate equal to f0.
Figures 2�a� and 2�e� are the two typical out-of-resonance
cases. In Fig. 2�e� some spikes are missed, which indicates
that the system is not always able to respond to the input
signal and some hops are missed. In Fig. 2�a� intermediate
spikes sometimes occur at a rate equal to the frequency of
one of the two sines of the input signal. Due to the asymme-
try in residence time distributions for the two polarization
modes, the ghost resonance can be better characterized by
measuring the histograms of the interspike intervals �ISI’s�
�9,10�. The interspike interval is defined as the time between
the rising edges of two consecutive pulses or spikes. In what
follows we will investigate ghost resonance, varying the am-
plitude, the frequency, and the noise level of the input signal.

B. Results

1. Amplitude resonance

We have measured the ISI distribution for a fixed fre-
quency f0=100 Hz, k=2, �f =0, and different modulation
strengths Im ranging from 0.17 mA to 0.30 mA. In Fig. 3 the
results are summarized. In Figs. 3�a�–3�c� the ISI histograms
are plotted considering different modulation strengths �Im
=0.19 mA, Im=0.22 mA, and Im=0.26 mA, respectively�.
Figure 3�a� corresponds to a modulation strength Im below

FIG. 1. Polarization-resolved PI scan of the VCSEL used in the
experiments. This VCSEL has a switching current Isw of 1.38 mA.
The threshold current Ith is about 0.84 mA.

FIG. 2. Time traces of the intensity in the polarization mode of
interest and their corresponding ISI histograms for a fixed Ib

=1.54 mA and f0=100 Hz �k=2,�f =0� and different modulation
amplitudes: Im=0.19 mA in panels �e� and �f�, Im=0.22 mA in pan-
els �c� and �d�, and Im=0.26 mA in panels �a� and �b�.
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the resonance where some spikes are occasionally missed
�see the time trace in Fig. 2�a��. In Fig. 3�b� the system is in
resonance and the ISI histogram shows a strong peak corre-
sponding to the missing fundamental. This case corresponds
to the time trace in Fig. 2�b�. For higher modulation
strengths �Fig. 3�c��, we see that spikes sometimes occur at
time scales related to the frequency present in the signal as in
Fig. 2�c�. To quantify the resonant behavior we use the indi-
cator proposed in Sec. III �5,11–15�:

IT =

�
T−T/4

T+T/4

Pm�t�dt

�
0

�

Pm�t�dt

, �5�

where the ISI histogram Pm is integrated around the peak
present in the vicinity of the period T=1/ f0. The result is
plotted as a function of the modulation strength in Fig. 3�d�.
This indicator reaches a maximum in the vicinity of Im
=0.22 mA. At that point GR is reached.

2. Frequency resonance

Starting from the resonance point of the previous section
�Ib=1.54 mA, Im=0.22 mA, �f =0, and k=2�, we have made
a similar study, varying the fundamental frequency f0 from
2 Hz to 4 kHz. The results are summarized in Fig. 4 in
which we again plot the indicator IT as obtained from the ISI
histograms, now for different f0. We see that for low frequen-
cies we are in the case of occasional unwanted spikes �Fig.
4�a��, while the higher frequencies �Fig. 4�c�� lead to a sce-
nario of occasionally missed spikes. We have plotted the in-
dicator given by Eq. �5� as a function of f0 in Fig. 4�d�. One
can observe a resonance behavior in a wide region around
100 Hz.

3. Noise resonance

Finally, we have checked the dependence of GR on the
noise level of the input signal. Again, we can see a resonan-
celike behavior in Fig. 5�d�. In Figs. 5�a�–5�c� the corre-
sponding ISI histograms are plotted. The noise level indi-
cated in Fig. 5 corresponds to noise added on the input
current signal. The noise can be considered white up to fre-
quencies of about 400 MHz, which is much larger than all
the time scales involved in the experiment. The same sce-
nario as in �1� has been reproduced. For low noise levels, the
VCSEL sends out spikes at the wanted repetition rate, but
occasionally misses one or more of them, while at high noise
levels the frequencies present in the input signal are excited
as well and the VCSEL emits spikes at undesired repetition

FIG. 3. ISI histograms when the VCSEL is driven by a signal
with Ib=1.54 mA, f0=100 Hz, �f =0, and k=2. The modulation
strengths Im are, respectively, 0.19 mA �a�, 0.22 mA �b�, and
0.26 mA �c�. �d� The ghost resonance indicator is plotted as a func-
tion of modulation strength.

FIG. 4. ISI histograms when the VCSEL is driven by a signal
with Ib=1.54 mA, Im=0.22 mA, �f =0, and k=2. The fundamental
frequencies f0 are, respectively, 20 Hz �a�, 100 Hz �b�, and 1000 Hz
�c�. �d� The ghost resonance indicator is plotted as a function of the
fundamental frequency.

FIG. 5. ISI histograms when the VCSEL is driven by a signal
with Ib=1.54 mA, f0=100 Hz, Im=0.18 mA, �f =0, and k=2. The
noise levels are, respectively, Irms=0.020 mA �a�, 0.032 mA �b�,
and 0.046 mA �c�. �d� The ghost resonance indicator is plotted as a
function of noise level.
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rates. Again, one can observe a resonant behavior around an
“optimum” noise level of about Irms=0.032 mA.

The observation of a resonance both in frequency and
noise level indicates that the external modulation time scale
matches the internal stochastic time scales of the system
�5,11,16�. The stochastic time scales involved in this prob-
lems are the residence times of the polarization modes within
the bistable region, as will be discussed in Sec. III. The time-
scale matching condition for this problem is not straightfor-
ward and, as commented on in �10�, reduces to �T+�+ �T−�
=1/ fr, where �T±� are the mean residence times of the
modes.

4. Inharmonic resonance

In this section, we concentrate on inharmonic signals and
ghost resonance. In this case �f is no longer zero and the
resonance frequency fr does not correspond to the missing
fundamental f0. To study this type of signal we start from the
frequencies f1=200 Hz and f2=300 Hz and we shift these
two frequencies by the same amount. The bias current Ib and
the modulation strength Im are fixed at 1.54 mA and
0.22 mA, respectively. In Fig. 6 we plot the measured ISI
histograms for several values of f1. The line plotted in the ISI
vs f1 plane is the resonance repetition rate as a function of f1
given by Eq. �4� for the values of f0=100 Hz and k=2. At
the edges of the figure, one can see the appearance of a
second resonance repetition rate �because at those points two
sets of ��f ,k� can describe the signal�. One can also see that
the energy is evenly distributed between the two resonance
repetition rates. In the inset the maxima of the resonance ISI
and the theoretical prediction given by Eq. �4� are compared.
We find a perfect match.

III. TWO-MODE STOCHASTIC RATE EQUATION
MODEL

We model the polarization behavior of VCSEL’s using a
two-mode rate equation description where we study the evo-

lution of charge carriers and the photon densities of the two
polarization modes. This approach has proven to be success-
ful in explaining the stationary polarization characteristics
�17�, the mode hopping phenomenon �18�, and also the phe-
nomenon of stochastic resonance in VCSEL’s �7�. In reduced
form, these equations read

dpx

dt
= px�n − �sxpx − �xypy� +

1

2
Rsp + F̃x, �6�

dpy

dt
= py�n + G�J� − �sypy − �yxpx� +

1

2
Rsp + F̃y , �7�

dn

dt
=

J − px − py

�
− px�n − �sxpx − �xypy�

− py�n − �sypy − �yxpx� + F̃n, �8�

with

�F̃x,y�t�F̃x,y�s�� = 2Rsppx,y��t − s� , �9�

�F̃x�t�F̃y�s�� = 0. �10�

The equations need to be interpreted in the Stratonovich
sense. Here, the time has been rescaled to the carrier lifetime
and � is the ratio of the photon and carrier lifetimes �
�1 ns�, which is typically 10−3. The photon densities px,y are
reduced such that px�y�=J if the x�y� mode is lasing, respec-
tively, J being the reduced current. n is the deviation from
the value of the carrier density at threshold. The parameters
�sx,sy,xy,yx and G�J� are gain saturation coefficients and
current-dependent linear gain difference, whereas Rsp is the
noise strength.

Experimentally, it is only possible to increase the noise
level on the injection current. From our experiments we
know that the effect of increasing the noise on the current is
to decrease the stochastic time scales. Theoretically, we are
able to do the same by increasing the spontaneous emission
noise. So, at least at a qualitative level, both types of noise
have the same effect on the stochastic residence time scales.
We will choose to neglect the noise in our model on the
current, because in this case we will be able to obtain semi-
analytical results. If we were to put the noise on the current
in the model, we can only obtain results by numerically in-
tegrating the stochastic differential equations �6�–�8�, which
is very time consuming and does not lead to more physical
insight into GR. We have therefore limited our work to the
presented analytical approach. So, neglecting carrier noise
and considering time scales slower than the relaxation oscil-
lations, Eqs. �6�–�8� can be further reduced to a single dy-
namical equation �7� of the form

dpy

dt
= C�py� + F̃�py� , �11�

with a deterministic drift term

FIG. 6. Several ISI histograms plotted for different f1 �and f2

= f1+ f0�. The rest of the parameters are Ib=1.54 mA and Im

=0.22 mA. The solid line in the �ISI-f1� plane is the theoretical
predicted resonance repetition rate. In the inset the measured reso-
nance frequency �points� and the theoretical prediction �line� are
compared.
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C�py� = py�J − py�	2�

J
py − � +

G

J

 +

Rsp

2J
�J − 2py� �12�

and a stochastic term

F̃�py� = F̃y −
F̃x + F̃y

J
py , �13�

where � is defined as

� = �xy − �sx = �yx − �sy �14�

and where we have taken the symmetry of a VCSEL into
account. The equation for the x mode can be found by inter-
changing x and y and by changing the sign of G. This reduc-
tion is only valid on time scales slower than the relaxation
oscillations. The validity of the reduction from Eqs. �6�–�8�
to Eq. �11� was proven in Ref. �18�. As the modulation fre-
quencies considered here will never exceed 10 MHz, we can
safely adopt this approach.

In this work, we assume that G is positive at threshold and
linearly drops with the injected current. At a certain current
Js, the switching current, it changes sign. So the current de-
pendence of the gain difference is expressed as

G�J� = g	1 −
J

Js

 . �15�

In that case, keeping in mind that �	0, the y-polarized
mode will start lasing at threshold, but the device will transit
through a bistable region �around J=Js� and eventually
switch to the x-polarized mode.

In the bistable region we can expect stochastic mode hop-
ping to occur �18�. From now on, we will call py �J mode
the “
” state and py �0 the “�” state. The residence times,
being the mean times the system dwells in a certain state
before switching to the other state at �a fixed current�, of
these two states are given by �18�

t± =
2J��

J2�2 − G2erf	 G ± J�

2�Rsp�

erfi	 G ± J�

2�Rsp�

 . �16�

These residence times depend strongly on current, not only
directly, but also through the current dependent gain G�J�.
The scaling of the residence times t± with J is shown in Fig.
7. The parameters used in Fig. 7 are extracted from a quan-
titative comparison between the theoretical predictions and
measurements in the mode hopping regime for the VCSEL
used in the experiment. These parameters will be used in the
remainder of this paper. In Fig. 8 we have plotted three re-
alizations of py�t� for different values of Rsp as obtained nu-
merically from Eq. �11�. A similar behavior as in the experi-
mental time traces can be observed.

To investigate the ghost resonance, we need to look at the
statistical properties of the inter spike intervals. These can of
course be obtained from time traces as in Fig. 8 �see, e.g., the
numerically obtained ISI distribution in Fig. 9�. Generating a
statistically relevant amount of events from a numerical in-
tegration of Eq. �11� is quite time consuming, because Eq.
�11� is governed by two very different time scales. The first
is the period of the pulses �which is, e.g., 10 ms�. The second

time scale is the switching time �the rising edge and falling
edge of each spike, which is around 1 ns�. Therefore, we
have opted for a semianalytical approach. Also, the param-
eter space in a ghost resonance problem can be quite big
�bias current, modulation amplitude, frequency, etc.�. That is
why an automated semianalytical approach can be a more
practical tool compared to experimental trial-and-error based
measurements.

The ISI distributions can be retrieved from the statistics of
the residence times. When the injected current is kept con-
stant, the residence times are exponentially distributed, but
when the current is modulated at a slow time scale, the resi-
dence time distribution becomes

Pm±�t
t0� =
1

t±�t�
exp	− �

t0

t0+t du

t±�u�
 . �17�

This distribution function represents the probability that the
VCSEL switches at a time t0+ t when at t0 the VCSEL is in

FIG. 7. The average residence times t+ �solid lines� and t−

�dashed lines� as a function of the injected current J ��=3.9, g
=3.8, Js=0.64, Rsp=0.021�.

FIG. 8. py as obtained numerically from Eq. �11� for different
noise strengths. �a� Rsp=0.023, �b� Rsp=0.021, and �c� Rsp=0.019.
The modulation signal is defined as J=Jb+Jm /2�sin 4�f0t
+sin 6�f0t� ��=3.9, g=3.8, Js=0.64, Jb=0.70, Jm=0.12, f0

=100 Hz�.
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the � mode. In practice, t0 will be chosen at the point where
a switch occurs to the � mode. From the knowledge of the
residence time distributions Pm±�t 
 t0�, we can find the prob-
ability density function of the interspike intervals. The spikes
in the experiment represent a jump from the � mode to the

 mode and back. The time interval between the rising
edges of consecutive peaks is called the interspike interval.
The conditional ISI distribution, when the last spike occurred
at �T, is then given by

PISI��
�T� = �
0

�

Pm+�s
�T�Pm−�� − s
�T + s�ds . �18�

In Fig. 10, one realization of an interspike interval is

shown. At �T, the VCSEL switches to the 
 mode, and after
a time s it drops back to the � mode. The probability for this
to occur is Pm+�s 
�T�. The VCSEL is lasing in the � mode at
�T+s and switches to the 
 mode at a time �−s later, com-
pleting the interspike interval. The probability for this event
to happen equals Pm−��−s 
�T+s�. The multiplication of both
probabilities will give the probability for this realization of
an interspike interval of � to occur. Integration over all real-
izations �integration over s� gives the conditional ISI distri-
bution PISI�� 
�T�.

It should be noted that PISI�� 
�T� is still not the ISI distri-
bution that is experimentally recorded. Indeed, Eq. �18� de-
pends on the spike time �T, the time where the first rising
edge occurs. In this discussion, we will temporarily limit
ourselves to a periodic modulation with period T �i.e., �f
=0�. Then, �T can be limited to within one modulation period
�0
�T�T�. In this sense, �T connects an event �a rising
edge� to a point within one period of the modulation signal
��T can be considered as the “phase” of the periodic signal�.
To get the measured ��T-independent� ISI distribution, we
need to include in our description the spike time distribution
P��T�, being the probability density of a spike starting at �T.
The �T-independent ISI distribution PISI��� is then given by

PISI��� = �
0

T

PISI��
�T�P��T�d�T. �19�

Even if one could solve Eq. �18� analytically, it would be
hard �if not impossible� to deduce the distribution PISI��� or
P��T� analytically. In the Appendix, we show that from the
analytical formulation of the residence times in Eq. �16� it is
possible to calculate P��T�, and consequently PISI���, semi-
analytically.

We use Eq. �19� and the approximate way of determining
the spike time distribution P��T� as described in the Appen-
dix to confirm the presence of ghost resonance theoretically.
We concentrate on the noise-induced ghost resonance and the
frequency resonance. As indicator to identify the presence of
GR, we use

IT = �
T−1/4T

T+1/4T

PISI���d� . �20�

This indicator is based on the indicators defined in �5,11–15�
with the difference that the background distribution �i.e., the
distribution in the absence of current modulation� is ne-
glected and not subtracted from Eq. �20�. We can safely ne-
glect the contributions from the background, as the probabil-
ity level of the background is much lower than that of the
spiked ISI distributions. To quantify the out-of-resonance be-
havior, we propose the indicators

IL = �
0

T−1/4T

PISI���d� , �21�

IH = �
T+1/4T

+�

PISI���d� . �22�

FIG. 9. Comparison between the ISI distribution obtained by
numerical integration of Eq. �11� �solid line� and the ISI distribution
as predicted by the semianalytical theory presented in the Appendix
�dashed�. Parameters as in Fig. 8�b�.

FIG. 10. A typical realization of an interspike interval. At �T, the
VCSEL switches to the 
 mode, and after a time s drops back to
the � mode. The VCSEL is lasing in the � mode at �T+s and
switches to the 
 mode at a time �−s later, completing the inter-
spike interval.
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In Fig. 11, we plot IT �solid lines�, IL �dotted lines�, and IH
�dashed lines� as a function of the noise strength and as a
function of the frequency. The indicator clearly shows a reso-
nant behavior both as a function of the noise strength and as
a function of the frequency. In Fig. 12, the ISI distribution is
plotted for three different values of the noise strength to-
gether with the corresponding spike time distribution func-
tions. For low noise, the spike time distribution is clearly
localized. This results in an ISI distribution with peaks at
multiples of the period. At high noise, the spike time distri-
bution shows two additional concentrations of probability.
The new smaller peak corresponds to spikes which occur at
intermediate times. The last very small peak is close to the
dominant spike time and hints at a probability that, immedi-
ately after a spike has occurred, a second is emitted, resulting
in a very small ISI. In all cases, we find a qualitative agree-
ment with the experimental results. In Fig. 9, we have made
the comparison between the numerically obtained ISI distri-
bution and the semianalytical results. The two ISI distribu-
tions match nicely, showing the validity of the semianalytical
theory.

IV. SUMMARY

We have presented an experimental and theoretical inves-
tigation of the ghost resonance phenomenon in a bistable
system: namely, a polarization bistable VCSEL. Experimen-
tally, we have shown that ghost resonance indeed occurs in
such VCSEL’s. The resonance is threewise: in amplitude, in
frequency, and in the noise level. GR has been observed for
many different combinations of modulation frequency and
bias current. On the other hand, we have also shown that in
the case of inharmonic signals the resonance can be found at
the repetition rates derived by Chialvo et al. �1� from a much
simpler model.

Our theoretical description starts from a set of intensity
rate equations for a semiconductor laser which takes nonlin-
ear gain effects into account. Using a multiple-time-scale
analysis this model has been reduced to a one-dimensional
system. From this reduced model an analytical expression for
the average residence times was found. We have shown that
it is possible to calculate numerically the interspike interval
distribution function from the average residence times, effec-
tively reproducing the experimental results in a semianalyti-
cal way. Moreover, as this procedure only requires as input
the knowledge of the average residence times for different
currents, it enables us to predict the ghost resonance point for
the VCSEL under study �or any other bistable system�. We
find a good qualitative agreement between experimental re-
sults and theory.
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APPENDIX: SPIKE TIME DISTRIBUTIONS AND ISI
HISTOGRAMS

In this appendix, we will show that from the analytical
formulation of the residence times in Eq. �16� it is possible to
calculate P��T�, and consequently PISI���, semianalytically.

Before studying the statistics of the time interval between
two consecutive rising edges, we take a look at the related
statistics of this time interval reduced to within one modula-
tion period. In Fig. 13, we explain the procedure.

Take t0 as the time of the rising edge of the first spike. For
the realization shown in Fig. 13 the interspike interval equals
�. So the rising edge of the second spike is at t0+�. At this
point, we have skipped one period of the modulation and are
at a different point in the next modulation cycle �albeit only
slightly different from t0�. This point is equal to �T
=modT�t0+��, where modT is the modulus function. The dis-
tribution of �T can then be found to be the conditional ISI
distribution folded to one modulation period:

P�T
��T
t0� = �

0

�

PISI��
t0��„�T − modT�t0 + ��…d� . �A1�

We will refer to �T as the spike time and to P�T
��T 
 t0� as the

transition probability of the spike times.

Let us now define the distribution of the kth spike time
��k���T� as the probability that the kth spike in a realization
will be at �T. This probability then transforms from one spike
to the next as follows:

��k+1���T� = �
0

T

P�T
��T
u���k��u�du . �A2�

This spike train will approach a stationary Markov process
with relative spike time distribution

��s���T� = lim
k→�

��k+1���T� = �
0

T

P�T
��T
u���s��u�du . �A3�

The stationary spike time distribution ��s���T� will be the
eigenfunction to eigenvalue 1 of the kernel P�t

��T 
u�. Due to
the fact that P�t

��T 
u� is a conditional probability density
function, this eigenfunction should exist �19�. Equation �A3�
cannot be solved analytically, but we can solve it numerically
by using a binning procedure as described in �20�. The rela-
tive spike time is discretized using a number of bins with
fixed width ��T. The relative spike time distribution is then
�= ��0 ,�1 , . . . ,�N−1�tr with

� j = �
j��T

�j+1���T

��s��u�du . �A4�

The relative spike time transition matrix becomes

P�T,jk = �
j��T

�j+1���T

P�T
�u
k��T�du , �A5�

where j ,k=0,1 , . . . ,N−1. For a given set of parameters, it is
now possible to construct numerically Eq. �A5� and then find
the corresponding stationary spike time distribution P��T�
=��s���T�.

To summarize the procedure, using Eq. �16�, it is possible
to calculate the conditional ISI distributions in Eq. �18�. By
folding the conditional ISI distribution into one period T, we
find the transition probability of the spike times �Eq. �A1��
from which we can construct the transition matrix P�T,jk �Eq.
�A5��. The eigenvector with eigenvalue 1 of this matrix is the
corresponding spike time distribution P��T�. The ISI distri-
bution is then

PISI��� = �
0

T

PISI��
�T�P��T�d�T. �A6�

FIG. 13. A typical realization of the spike train for the given
modulation signal. The first spike occurs with a spike time t0, while
the second occurs at a time interval � later. The second spike’s
corresponding spike time is modT�t0+��. To obtain P��T�, we will
study the statistics of these spike times.
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