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ABSTRACT

Dissipative localized structures, also known as cavity solitons, arise in the transverse plane of several nonlinear
optical devices. We present two general mechanisms for their formation and some scenarios for their instability.
In situations of coexistence of a homogeneous and a pattern state, we characterize excitable behavior mediated
by localized structures. In this scenario, excitability emerges directly from the spatial dependence since it is
absent in the purely temporal dynamics. In situations of coexistence of two homogeneous states, we discuss
localized structures either due to the interaction of front tails (dark ring cavity solitons) or due to a balance
between curvature effects and modulational instabilities of front solutions (stable droplets).
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1. INTRODUCTION

Localized structures in the transverse plane of nonlinear optical cavities, the so called cavity solitons (CS), have
a great potential for application in optical storage and processing of information which have motivated both
theoretical and experimental research in the last years.1–5 CS share a number of fundamental properties with
localized structures found in different systems, such as chemical reactions, gas discharges, fluids or granular
media.6–10 In optical cavities these structures appear due to the interplay between diffraction, nonlinearity,
external driving, and dissipation. Dissipative solitons have to be distinguished from conservative solitons found
for example in propagation in fibers, for which there is a continuous family of solutions depending on their energy.
Instead, dissipative solitons are unique once the parameters of the system have been fixed. This uniqueness
together with the fact that cavity solitons can be individually written or erased with the help of an additional
addressing beam is what makes them useful in optical (i.e., fast and spatially dense) storage and processing of
information.2, 5, 11, 12

In optical cavities the mechanisms that lead to the formation of stable localized structures can be, very
generally, classified in two large groups: i) those that appear in regimes where a homogeneous and a spatially
modulated steady states coexist, and ii) those associated with the existence of two homogeneous steady states
(also refereed as phases). In the first case, the cavity solitons are solutions connecting the homogeneous steady
state with the modulated solution and back to the homogeneous.13–15 In the second case localized structures are
formed by shrinking domains of one phase embedded in the other. The shrinkage is determined by the different
stability of both phases and by curvature effects.16 The walls separating the two phases (domain walls) are
typically narrow spatial features whose transverse spatial profile presents damped oscillations due to diffraction.
These oscillatory tails may stop the shrinkage leading to the formation of a localized structure which typically
appears as a bright spot surrounded by a dark ring and therefore the name of dark ring cavity solitons. They have
been described in the optical parametric oscillator where the two homogeneous solutions are equivalent except
for a π shift the phase of the electric field17–20 or in the vectorial Kerr resonator where homogeneous solutions
differ in the polarization direction.21 Within the frame of case ii) where two homogeneous solutions coexist,
another kind of stable localized structure has been recently described: the stable droplet.22, 23 It arises as a
balance between curvature driven shrinking of a domain and the growth due to the instability of tightly curved
fronts. In contrast with dark ring cavity solitons, whose size is typically of the order of a domain wall width
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and which can exist both in 1-dimensional and 2-dimensional systems, stable droplets are large stable circular
domain walls separating the two homogeneous solutions which can only exists in systems whose dimensionality
is at least two.22, 23

Here we analyze two different phenomena of interest for applications of CS to all-optical processing and
storage of information. For the sake of simplicity we will consider both phenomena in the same system, a cavity
filled with a nonlinear Kerr medium. The appropriate model to describe these cavity is introduced in section 2.
In the self-focusing regime, this system displays localized structures of the type i) described above. In section 3
we will consider the instabilities that this kind of structures may develop and in particular we will discuss the
existence of an excitable regime. Excitability is a concept arising originally from biology, and it has been found
in a variety of systems,24, 25 including optical systems.26–29 Typically a system is said to be excitable if while it
sits at a stable fixed point, perturbations beyond a certain threshold induce a large response before coming back
to the rest state. In addition, excitability is also characterized by the existence of a refractory time during which
no further excitation is possible. This is the dynamical regime in which cells in the cardiac tissue or neurons in
the brain work. Such a regime, associated to CS, provides a potentially useful tool to process optical information
in a way similar to assemblies of neurons.

When the polarization of the electric field is taken into account, in the self-defocusing regime the Kerr cavity
shows the formation of localized structures of the type ii). In section 4 we will discuss the regimes for which
dark ring cavity solitons appear and the regimes where stable droplets are formed.

2. MODEL

We consider an optical cavity filled with a Kerr medium. In the paraxial and mean-field approximations, the
evolution of the slowly varying envelopes of the plus and minus circularly polarized components of the electric
field E± are described by30–32:

∂tE± = −(1 + iηθ)E± + i∇2E± + E0 +
1

4
iη[|E±|

2 + β|E∓|
2]E± (1)

where E0 is the input pump which we will consider as linearly polarized along the x-axis, θ is the cavity detuning,
∇2 is the transverse Laplacian which models diffraction in the paraxial approximation, β is proportional to the
strength of the susceptibility tensor, and η = +1(−1) indicates the self-focusing (defocusing) regime. In the
scalar case (E+ = E−), after an appropriate rescaling of the field, Eq. (1) can be reduced to

∂E

∂t
= −(1 + iηθ)E + i∇2E + E0 + iη |E|2 E. (2)

3. EXCITABILITY MEDIATED BY LOCALIZED STRUCTURES

Eq. (2) has an homogeneous solution, given implicitly by Es = E0/(1 + i(θ − Is)), where Is = |Es|
2. The

homogeneous solution becomes unstable at Is = 1 leading to the formation of an hexagonal pattern. The
bifurcation starts subcritically and the pattern coexists with the homogeneous solution.30, 33 As a result, a
stable-unstable pair of CS associated to the periodic solution is formed at a saddle node bifurcation.14, 15 The
region of existence of these CS, also known as Kerr cavity solitons, has been characterized in,13, 34 and is partially
shown in Fig. 1. Below the solid line there are no CS. At the solid line a pair of CS (one stable and one unstable)
are created through a saddle-node bifurcation. In the grey region the soliton is stable. In the honeycomb region
the soliton becomes azimuthally unstable leading to an hexagonal pattern. If the dot-dashed line is crossed, either
increasing the input intensity or the cavity detuning, the stable CS undergoes a supercritical Hopf bifurcation
and starts to oscillate autonomously.13, 34, 35 Oscillatory CS exist for parameter values within the region shown
with vertical lines in Fig. 1.

The oscillatory regime is shown in detail in fig. 2. Although the amplitude of the soliton oscillates, this
regime can still be useful for the purpose of information processing since the amplitude is always significatively
larger than background so that the soliton can always be distinguished.34

The CS oscillation is such that it approaches the lower-branch CS, which is a saddle point in phase space. As
a control parameter is increased, for instance θ, part of the limit cycle moves closer and closer to the lower-branch
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Figure 1. Phase diagram: Is vs. θ showing the different regimes. CS are stable in the shaded region and oscillate in the
dashed one. The solid line indicates the saddle-node bifurcation where the CS are created, the dot-dashed the Hopf, and
the dashed the saddle-loop where the oscillation is destroyed.

Figure 2. Temporal evolution of the cavity soliton maximum (top) and spatial soliton profile at different times.



Figure 3. Left: CS maximum intensity as a function of time for increasing values of the detuning parameter θ. From top
to bottom θ = 1.3047, 1.30478592, 1.304788. Is = 0.9. Right: Sketch of the phase space for each parameter value. The
thick line shows the trajectory of the CS in phase space.

CS, as illustrated in Fig. 3.36 On the left column we plot the time evolution of the CS maximum obtained from
numerical integration of Eq. (2), the dashed line shows for comparison the maximum of the lower-branch CS.
On the right column we sketch the evolution on phase space projected on two variables. At a certain critical
value a global bifurcation takes place: the cycle touches the lower-branch CS and becomes a homoclinic orbit
(Fig. 3b). This is an infinite-period bifurcation called saddle-loop or homoclinic bifurcation.37–39 For θ > θc,
the saddle connection breaks and the loop is destroyed (Fig. 3c). After following a trajectory in phase space
close to the previous loop the CS approaches the saddle point (dashed line) where the evolution is dominated by
its slow stable manifold (see the long plateau between t = 15 and t = 60 in Fig. 3c). Finally the CS decays to
the homogeneous solution (dotted line). For larger values of θ the trajectory moves away from the saddle and,
therefore, the decay to the homogeneous solutions takes place in shorter times.

The saddle-loop bifurcation has a characteristic scaling law that governs the period of the limit cycle as the
bifurcation is approached. Close to the critical point the system spends most of the time close to the unstable CS
(saddle). The period of the oscillation T can be then estimated by the linearized dynamics around the saddle37–39

T ∝ −
1

λ1

ln(θc − θ), (3)

where λ1 is the unstable eigenvalue of the saddle point. We have verified that this scaling law is verified in our
system. Fig. 4 shows the period of the CS limit cycle as a function of the control parameter θ.36 As expected,
the period of the l imit cycle diverges logarithmically as the bifurcation is approached. We then evaluate λ1 with
arbitrary precision from a semi-analytical stability analysis of the unstable CS as in.34 The lower-branch CS has
one single positive eigenvalue λ1 = 0.177. In Fig. 4 (right) we plot using crosses the period of the oscillation CS
as a function of ln(θc−θ) obtained from numerical simulations of Eq. (2). Performing a linear fitting we obtain a
slope 5.60, in excellent agreement with the theoretical prediction 1/λ1 = 5.65, proving the existence of a saddle-
loop bifurcation for the oscillating CS. We should note that the theory was developed for planar bifurcations,
therefore, as the phase space is a plane, the saddle has one unstable direction and one attracting direction.37–39

The stable manifold of the unstable CS is, however, infinite dimensional. The success of the planar theory to
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Figure 4. Period of the limit cycle T as a function of the detuning θ for Is = 0.9. The vertical dashed line indicate the
threshold of the saddle-loop bifurcation θc = 1.30478592. The inset shows T as a function of ln(θc−θ). Crosses correspond
to numerical simulations while the solid line has a slope 1/λ1 with λ1 = 0.177 obtained from the linear stability analysis
of the lower-branch CS.

describe our infinite dimensional system can be attributed to the fact that, somehow, the dynamics of the CS is
effectively two-dimensional with a single unstable manifold and an effective stable manifold.

In systems without spatial dependence it has been shown that an scenario composed by a saddle-loop bifur-
cation and a stable fixed point leads to a excitability regime (class-I excitability in which the response time is
unbounded).29, 40, 41 In our infinite-dimensional system CS does indeed show en excitable behavior: the homo-
geneous solution is a globally attracting fixed point but localized disturbances (above the lower-branch CS) can
send the system on a long excursion through phase space before returning to the fixed point.36

Fig. 5 shows the resulting trajectories of applying a perturbation in the direction of the unstable CS with
three different intensities: one below the excitability threshold (dotted line), and two above: one very close to
threshold (dashed line) and the other well above (solid line). In the first case the system relax exponentially
to the homogeneous solution, while in the latter two cases it perform a long excursion before returning to the
stable fixed point. In the case of a near threshold excitation the refractory period is appreciably longer due to
the effect of the saddle. The spatial profile of the localized structure is shown in Fig. 6. The peak grows to a
large value until the losses stop it. Then it decays exponentially until it disappears. A remnant wave is emitted
out of the center dissipating the remaining energy.

Figure 5. Time evolution of the soliton maximum starting from the homogeneous solution (Is = 0.9) plus a localized
perturbation of the form of the unstable CS multiplied by a factor 0.8 (dotted line); 1.01 (dashed line) and 1.2 (solid line).



Figure 6. Soliton profile at different times for the trajectory shown as dashed line in Fig. 5

Figure 7. Distance between the saddle-node and the Hopf lines.

There is an important point to notice. Without spatial dependence Eq. (2) does not show any excitable
behavior while the localized structures that appear in the spatially dependent system do. Thus excitability
appears as an emergent property mediated by localized structures.36

In the limit of large detuning, the saddle-node, Hopf and saddle-loop bifurcation lines meet asymptotically
at Is = 0 as shown in Fig. 7, with the frequency of the Hopf bifurcation going to zero.36 It is known that
such intersection of a saddle-node line with a Hopf line is a Takens-Bogdanov (TB) codimension-2 bifurcation
point.42, 43 The unfolding around a TB point leads to a saddle-loop bifurcation line.42, 43 So, this unfolding
fully explains the observed scenario, where once again our formally infinite-dimensional system appears to be
perfectly described by a dynamical system in the plane.

The TB point occurs asymptotically in the limit of large detuning θ and small pump E0. This limit corre-
sponds to the case in which Eq. (2) becomes the conservative non linear Schrodinger eq..35, 44 Excitable behavior
is, then, an intrinsic property of 2D solitons in this equation and therefore has implications in a wide variety of
physical systems, in particular in nonlinear optics.

4. STABLE POLARIZATION DROPLETS AND CAVITY SOLITONS

We consider the case of a vectorial Kerr cavity described by Eq. (1). For E0 < Eth ≈ 0.95, Eq. (1) has a stable
homogeneous symmetric solution I+ = I− (where I± = |E±|

2).32 In what follows we will consider θ = 1 and
β = 7. Above this threshold, a y-polarized stripe pattern is formed. For pump values above a second threshold,
E0 ≈ 1.5, the system has two bistable homogeneous solutions, namely Ea

± and Eb
±, which are asymmetric

(Ia,b
+ 6= Ia,b

− ) and therefore elliptically polarized. These two solutions are equivalent in the sense that Ea
± = Eb

∓,
so that they have the same total intensity, polarization ellipticity and stability properties for all values of the
control parameter. They differ in the orientation and in the direction of rotation of the polarization ellipse. A
domain of one of these homogeneous solutions embedded in the other can therefore be identified as a polarization



Figure 8. Profile of the d = 1 front connecting the two equivalent homogeneous solutions of the VKR for E0 = 1.6.

domain. A d = 1 front connecting these two solutions is narrow spatial feature presenting damped oscillations
in the tails due to diffraction (see Fig. 8). The shape of these fronts has been obtained by solving numerically
the d = 1 stationary form of Eq. (1) and imposing zero derivative as boundary conditions.

For one transverse dimension d = 1, a front connecting the two states does not move since they are equivalent.
However for d = 2 these fronts may move due to curvature effects.22 For simplicity let us consider the movement
of a domain with circular symmetry where the curvature κ is the inverse of the radius R. It turns out that the
radius of a circular domain of one solution embedded in the other evolves in time as

Ṙ(t) = −γ(E0)/R (4)

where E0 is a the control parameter. From the d = 1 front profile and following the procedure indicated in 22
we determine the value of the growth coefficient for a circular domain γ. Since the front profile depends on the
pump strength E0, the value of γ will also be dependent on E0 as shown in Fig. 9.

The coefficient γ may changes sign upon variations of the control parameter.21–23 We identify the value

I II IVIII

E
0

E0

E0,1 E0,2

Figure 9. Growth rate γ versus the pump E0 for the vectorial Kerr resonator. The vertical solid line indicates the
modulational instability threshold for the flat front E0,1 = 1.550 and the vertical dashed line indicates the upper limit of
existence of localized structures E0,2 = 1.703. Stable droplets exist in region II and dark ring cavity solitons in region III



Figure 10. From left to right, snapshots of typical configurations of the total intensity I+ + I
−

in the labyrinthine,
localized structures and coarsening regimes.

E0 = E0,1 of the control parameter for which γ vanishes, and γ > 0 (γ < 0) for E0 > E0,1 (E0 < E0,1).
When γ is positive and large, any circular polarization domain with large radius shrinks. It is observed that
arbitrarily shaped domains also shrink and the typical domain size decreases as in Eq.(4). If γ is negative, any
circular domain will grow due to curvature effects. In addition, any perturbation of a wall grows so that in this
regime a flat wall is modulationally unstable and a generic initial condition evolves into labyrinthine patterns.
Thus E0,1 signals the place at which a flat wall connecting the two equivalent states becomes modulationally
unstable. Therefore, depending on the value of γ, three dynamical regimes can be identified when increasing the
control parameter E0 (see Fig. 10)21, 23: a regime of labyrinthine pattern formation for E0 < E0,1 (region I),
a regime of formation of localized structures for E0,1 < E0 < E0,2 (regions II and III) and a regime of domain
coarsening for E0 > E0,2 (region IV). These three regimes have been experimentally observed in a four wave
mixing resonator.45

We now discuss the different CS that appear in this system. Figure 11 shows the radius and the typical profile
of the CS as function of the pump strength. It has been calculated by numerically solving the stationary radial
equation with zero derivative at the origin and at the external boundary.20 The solid (dotted) line corresponds
to the radius of stable (unstable) localized structures. Two kinds of stable CS can be clearly distinguished, the
dark ring cavity solitons and the stable droplets. The unstable localized structures which have a shape similar
to that of the stable dark ring cavity solitons but with smaller amplitude.

Dark ring cavity solitons appear in region III since the shrinking of a domain is halted by the interaction of
the front oscillatory tails. This interaction, which is stronger for larger oscillation amplitudes, is precisely what
provides stability to these structures. For a certain class of d = 1 systems, and under some approximations,
it has been shown that the interaction of two distant fronts can be described by a potential with several wells
which become progressively deeper the shorter the distances between the fronts.46 The wells of the interaction
potential are located at the distances where the extrema of the oscillations of the tails aver lap with each other.
Typically nonlinear optical cavities such as the one considered here does not belong to this class of systems, but
equilibrium distances are also found whenever the extrema of the local oscillations of the domain wall overlap
with each other.20 For the vectorial Kerr cavity we found that only the locking at the first maxima of the
oscillations is effective to counterbalance the shrinking. In this respect we should notice an important difference
between the d = 1 and d = 2 cases. In d = 2, increasing the pump there is a threshold (E0 = E0,2, see Figs. 9,
11) for the interaction of the local oscillations to counterbalance the shrinking of the circular domains due to the
local curvature of the walls. It may appear counterintuitive that dark ring cavity solitons lose their stability for
increasing pump intensities where one would expect diffraction to be more effective. The amplitude of the local
oscillations at the tails of the fronts however, has a complex dependence on the parameters of the system and
decreases for increasing input energies. Furthermore, it is clear from Fig. 9 that the coefficient γ grows with the
pump; therefore the shrinking force due to front curvature becomes more important, overcoming the interaction
of the tails at E0 = E0,2. In terms of stationary solutions, this threshold corresponds to a saddle-node bifurcation
where the stable and the unstable branches of the dark ring cavity solitons collide (Fig. 11). No CS are observed
for pump values larger than E0,2, indicating that this is the threshold for domain coarsening.
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Figure 11. Radius of the cavity solitons as a function of the pump parameter E0. Solid (dotted) lines correspond to
stable (unstable) CS. The vertical solid line indicates E0,1, the vertical dashed line indicates E0,2 and the vertical dotted
line indicates E0,3, the transition from dark ring cavity solitons to stable droplets. The figures on the top show the
profile of a stable droplet (E0 = 1.55238) (left) and a dark ring cavity soliton (right) (E0 = 1.6). The solid (dashed) line
corresponds to the real part of E+ (E

−
) along a central section.

We focus now on the region close to the modulational instability of the flat domain wall but for E0 > E0,1.
Close to the point E0,1 where γ vanishes, higher order corrections to Eq. (4) must be considered.22, 23 An
amplitude equation for the curvature κ of gently curved fronts can be derived for a rather general class of
systems which include the nonlinear optical cavities considered here.22 One obtains that the dynamics of a
circular domain of radius R, is given by the equation22

Ṙ = −c1(E0 − E0,1)
1

R
− c3

1

R3
, (5)

where the coefficients c1 and c3 can be calculated from the profile of the d = 1 front connecting the two
equivalent solutions at E0 = E0,1 following the procedure indicated in Ref. 22. For the nonlinear Kerr cavity
model considered here, c1 = 0.591 and c3 = −0.393, therefore Eq. 5 predicts just above E0,1 the existence of
stable stationary circular domains (the stable droplet) with a radius R0 given by

R0 =
1

√

E0 − E0,1

√

−c3

c1

. (6)

For E0 larger than but close to E0,1 an initially small (very large) domain grows (shrinks) until a stable droplet is
formed. Note that the radius of the stable droplet diverges at E0,1. Furthermore it can be shown on rather general
grounds22 that domains of arbitrary shape evolve first to circular domains and then to stable droplet, making
the stable droplet an attractor and the most relevant localized structure for values of the control parameter just
above the modulational instability of the flat domain wall.
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Figure 12. The linear dependence of 1/R2
0 with the control parameter E0 for the SD in VKR. The dotted line corresponds

to Eq. (6) with c1 = 0.591 and c3 = −0.393, while the crosses are from the numerical determination of the SD as steady
states of Eq. (1).

Figure 11 shows the radius and the profile of the stable droplets found in our system obtained solving
the stationary radial equation. The stable droplet is in fact an elliptically polarized domain embedded in a
background with opposite elliptical polarization and therefore it constitutes a cavity polarization soliton. At
the center of the stable droplet, the field takes the value of one of the homogeneous solutions. Depending on
the value of the pump, the radius of the stable droplet can be extremely large. In fact, the radius diverges
at E0,1 as R0 ≈ 1/

√

E0 − E0,1 . Figure 12 shows a comparison of 1/R2
0 between the theoretical prediction

given by Eq. (6) (dotted line in Figure 12) and numerical results (crosses) in the vicinity of E0,1 (vertical solid
line). The agreement is excellent thus demonstrating that stable droplets are a universal feature of systems with
modulational instability of the flat front.

Moving now in the direction of increasing E0, we find that the stable droplet branch has a change of behavior
at E0 = E0,3 (see Fig. 11). This particular point corresponds to the value of the pump for which the interaction
of the tails becomes of the same order as the nonlinear correction of Eq. (5). We note that the transition from
dark ring cavity solitons to stable droplets is continuous and that the last nucleates out of the former. Such a
transition is, however, marked by a sudden change in the size of the CS. While the radius of the dark ring cavity
soliton changes very little with decreasing control parameter E0, the radius of the stable droplet changes rapidly
with (E0 − E0,1) as shown in Eq. (6). For E0,3 < E0 < E0,2 the interaction of the oscillatory tails is dominant
and the CS is a dark ring cavity soliton. For E0,1 < E0 < E0,3 the nonlinear curvature effects (including the
growth which leads to the SD) dominate over the interaction of the oscillatory tails and a stable stationary
circular domain wall is formed.

5. CONCLUSIONS

We have identified two general mechanisms for the formation of localized structures (cavity solitons) in models
of nonlinear optical devices. In the first one, coexistence between a homogeneous and a pattern state leads to
the formation of peaked cavity solitons of size comparable to the pattern spatial wavelength. By changing appro-
priate control parameters, these CS solutions first become unstable to periodic oscillations and then approach a
homoclinic bifurcation that lead to their disappearance. Once the homogeneous solution remains the only stable
solution, the presence of the unstable CS solution leads to a novel regime of excitability that is localized in space
and has no counterpart in the purely temporal dynamics of the systems where spatial effects have been removed.

The second general mechanism of formation of CS requires the simultaneous presence of two homogeneous
solutions. In these systems, solitary walls connecting the two homogeneous solutions are commonplace. A
peculiar feature of diffraction is to introduce local oscillations in the vicinity of the wall solutions. In two
transverse dimensions, these local oscillations interact and lock spatially localized solutions known as dark
ring solitons because of what remains of the original circular wall. Under appropriate changes of the control



parameters, we have approached the modulational instability of a flat domain wall. Before reaching the critical
parameter values, stable droplets can be found. These are circular domains whose radius is unstable to curvature
effects if too large and to the incipient modulational instability of the flat front if too small. It is interesting
to note that in systems such as optical parametric oscillators dark ring cavity solitons can nest inside a stable
droplet (see Ref. 23).

Finally we note that for excitability, stable droplets and dark ring cavity solitons we have derived analytical
and exact scaling laws. It is our belief that excursion from these predicted values (see several references in 47)
maybe artefacts due to finite size of the numerical simulations.
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4. B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, “Interaction of localized structures in an optical
pattern-forming system”, Phys. Rev. Lett. 85, pp. 748-751, 2000.

5. S. Barland, J.R. Tredicce, M. Brambilla, L.A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli,
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