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Maximally entangled mixed states and conditional entropies
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The maximally entangled mixed states of Murebal. [Phys. Rev. A64, 030302(2001)] are shown to
exhibit interesting features vis & vis conditional entropic measures. The same happens with the Ishizaka and
Hiroshima statefPhys. Rev. A62, 022310(2000 ], whose entanglement degree cannot be increased by acting
on them with logic gates. Special types of entangled states that do not violate classical entropic inequalities are
seen to exist in the space of two qubits. Special meaning can be assigned to theebMahspecial partici-
pation ratio of 1.8.

DOI: 10.1103/PhysRevA.71.024301 PACS nuntber03.67.Mn, 89.70tc

I. INTRODUCTION density matri13—15. It varies from unity for pure states to

Entanglement is one of the most fundamental issues di for totally mixed stategif p is represented by aNxN
quantum theony1]. It is a physical resource, like energy, Matrix). It may be interpreted as the effective number of pure
associated with the peculiar nonclassical correlations that af@ates that enter the mixture. If the participation ratigp o
possible between separated quantum systems. Recoursehigh enough, then its partially transposed density matrix is
entanglement is required so as to implement quantum inforPositive, which forN=4 amounts to separability fdR=3
mation processef2,3] such as quantum cryptographic key [9,14]. Notice also thaRR is invariant under the action of
distribution[4], quantum teleportatiof5], superdense cod- unitary operators.
ing [6], and quantum computatid]. Indeed, production of There are several entropfor informatior) measures that
entanglement is a kind of elementary prerequisite for anyan be useful in order to investigate the violation of classical
quantum computation. A state of a composite quantum sysentropic inequalities by quantum entangled states. Among
tem is called “entangled” if it cannot be represented as ahem, the von Neumann measure is important because of its
mixture of factorizable pure states. Otherwise, the state igelationship with the thermodynamic entropy, and the partici-
called separable. The above definition is physically meaningpation ratio is particularly convenient both for numerical and
ful because entangled stateslike separable statesannot  anpaytical calculation§13-15. The g entropies, which are
be prepared locally by acting on each subsystem individually,,nctions of the quantityw,=Tr(p%, provide one with a

[8,9]. A physically motivated measure of entanglement is

: . whole family of entropic measures. In the lingit— 1 these
provided by the entanglement of formati@iip] [10], that measures incorporate von Neumann's as a particular in-

auantfce the resources needd to ceate @ v etanfince on he ot hand, a2 theyare smpy rfated
p- 9 q Y$ {0 the participation ratiql). Most of the applications of

tems is given by Wootters’ expressioil], E[p]=h(1 . .- . A -
+\1-C2/2), whereh(x)=-x log, X~ (1-X)10g,(1 ~x), andC zzt:gp:g;i% g%ysrlec::; Ie:](\:/t?\l/\é? either the Rényi or the Tsallis
stands for theconcurrenceof the two-qubits state. The P -1, Tesp Y.

concurrence is given byC=max0,A{—Ay—A3=\y),\;, = In(w)/(1 - T (1-w)/(d-1). 2
(i=1,...4) being the square roots, in decreasing order, of the i (wg) i _Q)’ §=(1-0g (q- ) @
eigenvalues of the matrigp, with 7,:(Uy®gy)p*(gy® ay). In the g=2-case,S,, is often calledthe linear entropy

The above expression has to be evaluated by recourse to tie [15]._ Tsallis’ and Rényi's measures are related
matrix elements op computed with respect to the product through S§=F(§), where the functiorF is given by F(x)
basis. Another meaningful quantity is the fully entangled={e"9*-1}/(1-q). As an immediate consequence, for all
fraction Fer [12], that determines the range of possible con-nonvanishing values af, Tsallis’ measure; is a monotonic
currence values for a mixed stafg:e < C=(Fge+1)/2. For  increasing function of Rényi's measu. Considerable at-

an illustration of this last statement, the reader is referred t@ention has been recently paid to a conditional entropic mea-

F|g 2 Of. Ref[lZ], whose authors inVeStiga‘Ee the fraction Of sure based upon Tsallis’ functionaL and defined as
two-qubits mixed states that can be used in all quantum in-

formation processing applications usifgr. Still another SE(A| B) = {SE(AB) - SE(B)}/{l +(1 —q)Sg(B)}. (3)
important quantity is the participation ratio, ) ) .
Herep,g designs an arbitrary quantum state of the composite

— 2\7-1
R(p) =[Tr(p9]™, 1) systemA® B, not necessarily factorizable nor separable, and

is particularly convenient for calculations and can be re-ps=Tra(pag). The conditionalg-entropy Si(B|A) is defined
garded as a measure of the degree of mixture of a givein a similar way as(3), replacingpg by pa=Trg(pag). The
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conditionalq entropy (3) has been recently studied in con- Il. ENTROPIC INEQUALITIES AND MEMS
nection with the separability of density matrices describing
composite quantum systenj48,19. For separable states
(see for instancg20]),

We begin here with the presentation of our results. A few
of them are of an analytical nature. For instance, in the case
of all states of the form&6) and/or(5), the partial tracepug

SE(A|B) >0, SE(B|A) =0. (4)  over one of the subsystens or B are equal, i.e., for the
reduced density matrices we hayg=pg, Which entails
On the contrary, there are entangled states that have negatiggA|B)=S,(B|A) for both the Rényi and the Tsallis entro-
conditional g entropies. That is, for some entangled stategies. Notice that this is a particular feature of these states.
one (or both of the inequalities4) are not verified. Now, As for the form (6), we establish a lower bound to its
since Tsallis’ entropy is a monotonous increasing function ofktates’ concurrence for a consideraBeange(see Fig. 3,
Rényi’s, it is plain that(3) has always the same sign as namely,

S{(A|B)=S(pap) - Si(pe). The positivity of either the Tsal-

JE—
lis’ conditional entropy or the Rényi conditional entropy are Cirmin =[V3R(4 -R) - RJ/(2R). (7
known as the classicaj-entropic inequalitie$20]. In the case of MEMS, and in the vicinity d2=1, we can

In practice, one will more often have to deal with mixed 4naivtically relate entropic changes with concurrence

states than with pure ones. From the point of view of €Nchanges, in the fashiofremember that for MEMSC
tanglement exploitation, one should then be interested in-c )

maximally entangled mixed statdMEMS) pyems Which
are the basic constituents of all quantum communication pro- A$(A| B) = -[2g/{In(2)(g—- 1)}]AC. (8)
tocols. The MEMS states have been studied, for example, i

Refs. [15,21,23 for the two-qubits instance of twgone : .
qubit-subsystemsA and B. For MEMS, the relations be- Equat|on(8) expresses the fa_ct that, for MEMS' s_ma_ll devia-
tions from pure stateffor which theg-entropic criteria are

tween (i) von Neumann's and linear entropies, on the onenecessar and sufficient separability conditiort® not
hand, andii) concurrence and von Neumann entropy, on the y P y

other, have been exhaustively investigated2a]. MEMS change the_ criteria’s validity, that becomes tleatendedo a

states have been recently experimentally encountere%’aSS of mixed states.

[23,24]. We will focus attention on these kind of states here. _

MEMS for a givenR value have the following appearance in A. Numerical results

the computational basig00),(01),|10),|11)) [15]. We will randomly generate states in the spag® of
mixed statep (N=4 in our casg This can be regarded as a

The caseq— @ is the strongest-entropic criterion[20].

9 0 0 X2 product spaceSN=Px A, where P stands for the set of

1 0 1-29(x) 0 0 (5) orthonormal projector(;Ei'\ilﬁi:I) andA is the set of all real

PMEMS™ L 0 0 o N-uples({\}, 0=\;<1, SN,\;=1). All statesp are gener-
x/2 0 0 g(x ated according to the Zyczkowski, Horodecki, Sanpera, and

Lewenstein(ZHSL) [14] measurer X Ly_;. Here, v is the
with g(x)=1/3 for 0=x=<2/3, andg(x)=x/2 for 2/3<x  measure induced oR by the Haar measure on the group of
<1. The change of thg(x) regime ensues foR=1.8. We  unitary matricedJ(N) and £y, is the Leguesbe measure on
will reveal below some physical consequences of this regimeéhe simplex of eigenvalues [25,26.
change. Of great importance also are the mixed states whose As stated above, we deal in this paper with two kinds of
entanglement degree cannot be increased by the action nfaximally entangled stateMEMS, and Ishizaka and Hi-
logic gateq 21] that, again in the same basis, are given by roshima ones We call the class that comprises both kinds

the ME one. Figure 1 depicts the overall situation. In the

P2 0 0 0 upper part we plot the ME-states’ concurrerCg versus.
Ps3+p1 Ps—P1 the participation ratioR ranges in the interval $R<1.8
0 2 2 0 (the latter figure corresponds to the above-mentioned transi-
Pin = , (6) tion point for MEMS). (a) The upper line gives MEMS states
0 Ps~P1  Ps*P1 and the inferior one the lower bourt@). (b) The lower part
2 2 of the figure gives the conditional entropy of the ME states
0 0 0 Pa S;*(A|B) for g—o (the solid curve corresponds to the

MEMS case. It is always negative, so that here the entropic
whose eigenvalues are thg (i=1,...,4) andp;=p,=p; inequalities provide the correct answer in order to detect en-
=p,. We call these states the Ishizaka and Hiroshithl  tanglement.
ones and their concurrence red@g=p;—pP3—2VP,P,, a re- Figure 2 is a plot of the concurrend@y VS .y the
lation valid for ranks<3 that has numerical support also if maximum eigenvalue of our ME bipartite statps The
the rank is fou21]. Of course, all MEMS belong to the IH dashed line corresponds to MEMS. The graph confirms the
class. Our goal is to uncover interesting correlations betweestatement made ifiL5] that the latter are not maximally en-
entanglement and mixedness that emerge when we studsingled states if mixedness is measured according to a crite-
these states from the viewpoint of conditional entropies.  rion that is not theR one. Three separate regiotisll, IIl)
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FIG. 3. Same as in Fig. 1, but for an extendedange. The

entangled states: Ishizaka and Hiroshima stadess and MEMS Iowe_r curve(with crosses on jtrepresents, for eacR Vall.Je’ the .
maximum concurrence for those states that obey classical entropic

vs R (upper solid curvg for a sample set. Their corresponding . " - . .
(upp P P P v inequalities. The curve exhibits a maximumRst 1.8 and it van-

$(A| B) values are also shown. Contour lines can be found analyti: S
cally. See text for details. ishes aR=1 andR=3, where the entropic criterion is necessary and

sufficient. That this curve does not exactly match the MEMS qua-

can be seen to emerge. The maximum and mininfcom- sidiagonal curve above it, for the rande8,3, is due to the relative

tinuous contour lines are of an analytical character as Seerqcarcity of the pertinent statégenerated randomly according to the
in the following: ZHSL measurg See text for details.

FIG. 1. Plot of the concurrend@, for two kinds of maximally

I. First zone:

(@ CiF"=Nmax for Amax€[1/2,1],

(b) Cl{"=2\ a1 for Bell diagonal states.
Il. Second zone:

(@) CP=3\max—1 for \pa&[1/3,1/2,

mixedness. The extension made here\tg, as a proper
degree of mixture confirms in Fig. 2 the discussion given in
[22] that asserts that MEMS are sensitive to the form of
mixture employed.

Figure 3 is aCy vs R plot similar to that of Fig. 1, but for

(b) ﬂqﬂmzo- _ B an extended range(1<R<3). The pertinent IH bipartite
IIl. Third zone: all states are separalilg,=0. states fill a “band” with dotga sample of 19state$. In Fig.
Our three zones, 11, Il ) can be characterized according 3 we focus attention on a special type of bipartite states:

to strict geometrical criteria, as extensively discussd@. those that, being entangled, do fulfill the inequali{i&s For

In point of fact, the paper by West al. [22] exhaustively these statedet us call them entangled states with “classical”

studies MEMS for different measures of entanglement andonditional entropic behavio(ESCRH, the quasitriangular
solid line depicts, for eaclR, the maximum degree of en-

tanglement attainable. For each valudRafcrosses we gen-

erate 10 states according to the aforementioned ZHSL mea-

. sure, keeping only the ESCRE ones with maxin@l

Interestingly enough, the maximum degree of entanglement

for ESCRE obtains aR=1.8, which signals the change of

regime for MEMS|cf. (5) and commentaries immediately

below that equatioh This fact gives an entropic meaning to

i that particularR value. We can state then th@} whenever

the entropic criterium turns out to constitute a necessary and

sufficient condition for separabilityat R=1 andR=3), the

] ESCRE degree of entanglement is null, diglthe ESCRE

degree of entanglement is maximal at the Mureb al.

change-of-regimé value of 1.8.

1 T T T T T T

I

0.6 [
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04

02

0.3

max

IIl. CONCLUSIONS
FIG. 2. Plot of the concurrendgy for the class of maximally . ) . )
entangled states vs their maximum eigenvalyg,for a sample set For entangled states with classical conditional entropic
of states. The dashed line correspondsygys states. Notice the behavior (ESCRHE, the maximum degree of entanglement
fact that these states are not maximally entangled if the mixednesiftainable obtains &=1.8. Even though the entropic criteria
is not given byR. Maximum and minimum contour lines f@;,, are ~ are not universally valid for all two-qubits stat@gelding
found in analytical fashion. See text for details. only a necessary condition for separabijlitthey have been
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shown here to preserve their full applicability for an impor- before, can be correctly described by the entropic inequali-
tant family of states, namely, those states for which theities as far as this criterion is concerned. One may argue that
entanglement cannot increase under the action of logic gatésthe quantum correlations are strong enougreater than
for participation rations in the intervéRe[1,1.8)). This, in Rers OF CU™ o), there s still room for entropic-based
turn, gives an entropic meaning to this spe@aValue en-  separability criteria to hold.

countered by Munret al. [15]. We find explicit boundaries

to Cy when we express the degree of mixture using the ACKNOWLEDGMENTS
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