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Abstract

We review the main properties of two unidirectionally coupled single-mode semiconductor lasetertslaveonfigura-
tion). Our analysis is based on numerical simulations of a rate equations model. The emitter, or master laser, is assumed to be
an external-cavity single-mode semiconductor laser subject to optical feedback that operates in a chaotic regime. The receiver,
or slave laser, is similar to the emitter but can either operate in a chaotic regime, as the emitter (closed loop configuration), or
without optical feedback and consequently under CW whenuibéoupled (open loop configuration). This configuration is one
of the most simple and useful configuration for chaos based communication systems and data en€oygitethis article:
C.R. Mirasso et al., C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Un systéme cryptographique a laser & semi-conducteurs & courte cavité. Les principales propriétés de couplage
unidirectionnel entre deux laser a semiconducteurs monomodes (configuraite-esclavesont passées en revue. Cette
analyse s’appuie sur des simulations numériques du modélegdasans d’évolution du laser & semiconducteur. L'émetteur,
ou encore le laser maitre, est constitué d'un laser semictewtumonomode a cavité externe soumis a une contre-réaction
optique, et fonctionnant en régime chaotique. Le récepteur, ou laser esclave, est semblable a I'émetteur, mais il peut fonctionner
soit en régime chaotiqgue comme I'émetteur (configuration en boucle fermée), soit sans contre-réaction optique (configuration en
boucle ouverte), c’est-a-dire en régime continu lorsqu’il est non couplé. Cette derniére configuration est I'une des plus simples
et des plus communes dans le contexte des systémes de sécurisation des télécommunications optiquePpar ciberaset
article: C.R. Mirasso et al., C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

At the beginning of the last decade, Pecora and Carroll [1] published the first studies on the dynamical properties of two
coupled chaotic systems and reported that under certaintmmsdtwo chaotic systems calisynchronize [2]. Cuomo and
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Oppenheim [3] proposed in 1993 to use two synchronized chaatigits for encrypted communication purposes. After these
works, the possibility of using chaos synchronization to encode information has been receiving much attention. As already
mentioned, the first experiments were carried out using electronic circuits, such as Lorenz or Chua circuits. However, such
systems present two disadvantages: on the one hand the maximum frequency for the chaotic carriers is some tens of KHz
and, on the other hand, the dimensionality of the generated chaos is low (typically less than 3), and consequently message
confidentiality is not very high.

It was already clear in 1994 that the optical domain could overcome some of the previously mentioned disadvantages. The
first proposal was done using solid state lasers [4], although a breakthrough occurred when the use of semiconductor lasers
subject to delayed feedback was suggested. Semiconductor lasers are inherently non-linear devices, fast and easy to modulate
and under chaotic operation its broad spectrum can extend over some tens of GHz. Based on these ideas, it was numerically
shown that Gbits messages could be encoded and decoded within a highly dimensional chaotic carrier when using a pair of
unidirectionally coupled semiconductor lasers subject to coherent optical feedback or injection [5—7]. Experimental results were
later obtained for Erbium doped fiber ring lasers [8], semiconductor lasers [9-11] and microchip lasers [12]. More recently, it
was also shown that the system would also work when using incoherent optical feedback [13] or optoelectronic feedback
[14-17].

Many studies have already been carried out to check the robustness of the synchronized systems [18—22] in both the closed
and open loop configuration (i.e., when the receiver systems is subjected or not to its own feedback loop). Most of them indicate
that a mismatch in parameters up-+05% would still allow for synchronization and message recovery what confirms the
possibility of using these ideas in real systems where unavoidable fabrication mismatches occur.

In this work we numerically study the synchronization and the message encoding in both closed and open loop schemes, and
their performance is compared in order to determine the ddgar and disadvantages of each configuration. We can anticipate
that in most of the cases the closed loop scheme has a better performance than the open one, although the latter requires a
careful adjustment of both external cavities to operate correctly. In Section 2 we present the model; Section 3 is devoted to
the results concerning the characterization of the chaos while the synchronization properties of the system are reviewed in
Section 4. Section 5 collects a comparison of the different schemes regarding message recovery performance. A summary and
some conclusions are given in Section 6.

2. Modédl and parameters

We study the synchronization between two single-mode semiconductor lasers in a master-slave configuration (see Fig. 1).
We model the feedback effect in the transmitter and receasart by using the well-known Lang—Kobayashi description [23]
for the complex slowly-varying amplitude of the electrical fidig, and the carriers number inside the cavNy ,. With
the assumption of a free link between both lasers and the introduction of the symmetric reference feaifeg + w,)/2,
Aw = w; — wr, these equations are written as [21]:
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where subscripts, r correspond to the transmitter or master laser (MLJ egceiver or slave laser (SL). The above model is
adequate for small amounts of feedback and injection. The tgren'™ E;(r — z.) only appears for the SL and accounts
for the amount of ML output power that is injected into the S, (r) = |E,,r(t)|2 is the optical intensity or number of

M M
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Fig. 1. Scheme of unidirecthally coupled lasers subject to coherent optical feedback.
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Fig. 2. At the top of the figure is represented a typical time trace opttmton number of the transmitter laser subject to optical feedback. At
the left and right bottom the power and optical spectra are plotted, respectively.

photons in the cavity. We consider both lasers very similar to etteér and consequently wek&initially the same parameter
values:a = 5 is the linewidth enhancement fact@r—= 1.5 x 1078 ps~1 is the gain parametes,=5 x 10~/ is the gain
saturation coefficienb:ph =2 ps is the photon lifetimer, = 2 ns is the carrier lifetimely, = 1.5 x 108 is the carrier number

at transparency, = 1.602 x 10~19 C is the electronic chargey , is the frequency of the free running las&rw = w; — wr
is the detuning between the optical frequencies of the laggrsis the feedback coefficient, is the coupling rater s is the
external cavity round-trip time andg}. is the time the light it takes to travels from the ML to SL. For this internal parameters,
the threshold current amounts &g ~ 14.7 mA.

We consider two possible situations for the system: one in which the ML is subjected to a coherent optical feedback and
operates in the coherence collapse regime while the Statggeunder CW (open loop scheme) when they are uncoupled. For
the second situation we consider both ML and SL subject to a coherent optical feedback (closed loop scheme). In both schemes,
only the light coming from the transmitter laser is injected into the receiver one.

In Fig. 2, we plot a typical time trace and the power and optical spectra of the output of the emitter laser for a typical situation.
The laser is biased at three times threshold, the feedback strength isB@hie the feedback delay time is set to 2 ns. For
this parameters the laser is operating in the coherence collapse regime, a dynamical state widely studied both numerically and
experimentally [24—26]. It can be clearly seen the irregular evolution of the optical power together with a wide spectrum, clear
signatures of a chaotic signal.

3. Characterization of the emitter chaos

Besides the codification scheme used to include a message in the chaotic carrier, the security of the data encryption using
chaos methods relies upon two important eleteristics: the unpredictgity of the carrier signal, ad the sensibility exhibited
by the dynamics of the chaotic systems under parameter mismatch. Due to the second, only a system very similar to the chaotic
transmitter can be used to decode the message in an efficient way. From a practical point of view an exhaustive study of the
first characteristic is required to guarantee the security of our transmission, since it is known that low dimensional chaos would
make easy the interception of the message.

We compute the Lyapunov exponents, the Kaplan—Yorke dimension and the Kolmogorov—Sinai entropy [27—-29] from the
Lang—Kobayashi description of the dynamics of semiconductor lasers with coherent optical feedback [30]. A chaotic behavior
can be characterized by the geometrical structure of the ass@titactor. There are several ways to measure the dimension
of these chaotic attractors. The most common is the Hausdianénsion, which can be measured using a box counting method
[27-29]. The information dimension is a measure of the degree of disorder of the points on the attractor. More precisely,
it accounts for the amount of information needed to locate the system in the phase space with infinitesimal accuracy [28].
The Hausdorff dimension is at least as large as the information dimension. A direct measurement of the Hausdorff, or the
information, dimension becomes impractical for high dimensional attractors, as is the case for the systems considered here.
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Therefore, we measure the Kaplan—Yorke dimension, which is conjectured to be identical to the information dimension [28],
and can be calculated directly from the Lyapunov exponents. Finally, the Kolmogorov—Sinai entropy measures the average
loss of information rate, or, equivalently is inversely proportional to the time interval over which the future evolution of the
system can be predicted. The Kolmogorov—Sinai entropy can be related to the sum of the positive Lyapunov exponents through
the Pesin’s identity [28]. For the purpose of using a chaotic carrier for encoding a message, a large value of the entropy, and
therefore a short carrier predicthity time, should yield a better maskirend an improvement of the security.

In the following, we will analyze the dependence of these chaos quantifiers on the feedback parameters, namely, the feedback
strength, the delay timer and the feedback phage= 2t mod(2r). This phase can be changed from 0 io I changing
the round-trip cavity length within one optical wavelength, which practically implies a negligible changeTtrerefore, in
practice the feedback phase and the cavity length can be adjusted independently. As a general comment we can say that the effect
of the phase on the gnéties under stdy is only relevant in the short cavitggime (external cavity frequencs relaxation
oscillations frequency) wheré¢ Lyapunov exponents depend in a irregulay wa the specific phase value, while they are
insensitive for cavities ranging in the long cavity regime (external cavity frequenoglaxation oscillations frequency).

For the computation of the Lyapunov exponents we have applied the ideas of Farmer [29] to our case, integrating the
corresponding delay differential equations with an Adams—Bashforth—Moulton fourth order predictor-corrector method.

3.1. Information dimension

As it was above mentioned, the computation of the information dimension will be estimated from the Kaplan—Yorke formula

2{21 Ai

Al

dgy =j+ (4)

where the integey, that represents the number of degrees of freedom, meets the con@i{gq&i >0 andZ{;rll A <0
when the Lyapunov exponents are ordered by their magnitude from positive to negative values.

We first analyze the value of the information dimension as function of the feedback stkeagthdelay timer. In Fig. 3
are represented the information dimension as function foir = = 200, 300 and 1000 ps in the case where the pump is set to
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Fig. 3. Information dimension as a function of the feedback for pdrepl.5/,. From left to right,r =200, 300 and 1000 ps.
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Fig. 4. (Left) Kolmogorov—Sinai entropy as furman of the feedback strength for delay times= 200 ps (crosses), 300 ps (asterisks) and
1000 ps (diamonds). (Right) Kolmogorov—8irentropy as function of the delay time for= 10 ns1,

1.5 times the threshold. Note that at this pump, the frequehttyeaelaxation oscillations iseut 4.1 GHz and therefore, with

the former range of values considered for the delay time, we are both exploring the situations of short and long cavity regimes.
We have also checked that for very short external cavities {00 ps) the behavior of the information dimension as function

of the feedback strength is quite irregular and at most only one positive exponent is obtained. In this regime there is also a strong

dependence on the phase of the feedback. However, for loagities as we can observe in Fig. 3, the behavior is much more

regular. After a critical value of where the fixed point solutiorlky = 0) loses its stability, a rapid growing of the dimension is

observed before a linear growth with the feedback strength is achieved. In terms of the Lyapunov spectrum, what it is observed

is that although more positive Lyapunov exponents arise as the feedback strength is increased, their magnitude decreases leading

to a linear growing of the information dimension for feedback and delay values large enough. This behavior will have significant

consequences in the Kolmogorov—Sinai entropy.

3.2. Kolmogorov—Sinai entropy

The computation of the Kolmogorov—-Sinai entropy is again obtained from the Lyapunov exponents, through the so-called
Pesin identity that states

hks= Y A, (5)

i|A;>0

i.e., the Kolmogorov-Sinai entropy is equal to the sum of all the positive Lyapunov exponents. To be precise, the sum of the
positive Lyapunov exponents is an upper bound to the Kolmag@imai entropy but the equality (5) seems to hold in very
general situations and it is usually the only way to obtain a good estimatiogpf

Fig. 4(left) shows the Kolmogorov-Sinai entropy as function of the feedback strength for a pumping ©6/,. The
different symbols correspond to different delay times (200, 300 and 1000 ps). The three curves basically coincide, what indicates
the saturation of the entropy with the delay time, as it is clearly shown in Fig. 4(right). As happens in the case of electro-optical
feedback [31,30], longer delays increase the information dimension (we have more positive Lyapunov exponents); however, as
their value becomes smaller, the Kolmogorov—Sinai entropy remains basically constant.

Thus, the conclusion here is that it is not easy to increase the value of the entropy. For a given pump value, increasing
the feedback level beyond an optimal value leads to a decreasing entropy. On the other hand, for a given feedback strength,
increasing the delay time leads to a saturation value for the entropy.

Therefore, although the system has a larger dimensionaligniricreasing the delay, its behaviour does not become more
unpredictable. Consequently, for the purpose of using this chaotic output as a carrier for encoding a message, these results
suggest that increasing the delay time or feedback strength beyond the value at which the entropy saturates will neither yield a
better masking nor improve the security.

4. Synchronization properties

4.1. Open versus closed loop configurations

In this section, we numerically studhe synchronization quality of the systein terms of the coupling strength and
feedback rates; , for both the open and closed loop configurations, maintaining the same parameters for both transmitter and



618 C.R. Mirasso et al. / C. R. Physique 5 (2004) 613-622

—
N
S e
e
e,
e

@ o

Correlation

SPecoococank
MW ooy g

50

&0 Feedback ns™?

Fig. 5. Synchronization regions in the coupling—feaclb parameter space for the generalized solution.

receiver lasers. The measurement of thgrde of synchronization and the lag timetlveen the time series is accomplished
with the computation of the cross-correlation function
F(s)= (P () = (P)(Pr(t +5) = (Pr))) . ©)

VAP = (P2 (P (1) — (Pr))?)

Different types of synchronization have been found in coupled chaotic systems: identical synchronization, generalized
synchronization, phase synchronizatianlag synchronization [32]. Recently, two tifese kinds of synchronization have been
identified in unidirectionally coupled chaotic external-cavity semiconductor lasers [19]. The first type is related to the so called
isochronous or generalized synchronizati®nt) = a P;(t — t.) [20] while the second is related to the lag synchronization
Py (t) = Pr(t — 7 + T¢) (in this case it is also known as the anticipating solution) [33-35]. These two types of synchronization
have been studied recently in terms of parameters mismatches between emitter and receiver [36].

In this work we concentrate in the generalized synchronization. It happens that the anticipating synchronization, although
it is an exact solution of Egs. (1)—(3), is hard difficult to findberimentally since even tiny parameter mismatch prevents
that solution being observed. Consequently, it is less useful for chaos communications since it would require very similar
components for emitter and receiver, difficult to ohtaven when choosing devices grown on the same wafer.

We start our study by looking at the generalized synchronized solution and its dependence with the feedback rate and
coupling strength. In the numerical simulations, theand, coefficients are varied in the range 0—60"hsat intervals of
2.5 ns1, while the rest of the external parametels,, wy,,, k;) are fixed. Fig. 5 shows the results obtained for the correlation
coefficientI"(—t. + 7) in the parameter space «,). The synchronization domain extends over the kpe- «, and a high
injection rate is needed to guarantee the stability of the solution. It has to be noted that the length of the external cavities (external
cavity round-trip times) have been perfectly matched to obtain a high degree of correlation. Even for lengths that differ in a
fraction of the emission wavelength, the synchronization can be completely lost, remarking the necessity of a careful control
of the cavities size [37]. When the systeperates out of the optimal conditions & «,, k¢ > «;,,), & strong degradation
of the synchronization occurs. From the inspection of the cross-correlation function we can also confirm that there are no lag
solutions other than the isochronous and the identical one in the regions of the parameter space we have studied. It is important
to note that the isochronous solution, the one usually observed experimentally, also occurs for the open loop case (when the SL
feedback coefficient is zero in Fig. 5). However, even for the maximum coupling considered in Fig. 5 t§@hesvalue of the
' (—z.) is only around 0.7 for this case. We have checked that a larger coefficient is necessary to reach a good synchronization
degree, in agreement with other studies [36].

We have also computed the minimum coupling coefficient necessary to reach a correlation coefficient of 0.9 in both the open
and closed loop as a function of the feedback delay time and feedback strength of the transmitter laser. The feedback strength of
the receiver laser is fixed to e = «; for the closed loop and, = O for the open loop. Fig. 6 shows the results of the numerical
simulations. The upper surface correspond to the open loop regime while the lower one is obtained for the closed loop case. We

observe that this minimum coupling is in all cases independent of the delay time and it increases with the feedback strength. In
general, the coupling needs to be very large although it is clearly smaller in the closed loop case.
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Fig. 6. Minimum coupling necessary to get a ctatien value of 0.9 as function of the delay feedback time and the feedback strength in the
transmitter. Upper and lower surfaces stand for the open and closed loop schemes, respectively.

4.2. Parameter mismatch

In Figs. 5 and 6, it has been shown that the degree of synchronization approaches to 1, in both open and closed loop
configurations, beyond a given couplingestgth for an identical pair of emitter-reger lasers. However, this situation is
unrealistic since any two lasers, even obtained from the same wafer, have a certain mismatch. Consequently, we need to study
the degree of synchronization for a certain mismatch betwedétegiaind receiver. In the following, we show how the correlation
coefficient between the two laser outputs varies, as function of some parameter mismatches for the generalized synchronization,
in both open and closed loop configurations. The receiver [zm@meters have been changed with respect to the values given
in the text by multiplying them by a factdd + §/100) beingé the relative percentage of change. The left and right panels in
Fig. 7 represent the results of the maxima of the cross correlation coefficient for the close and open loops, respectively.

In this case, we have chosen the long cavity regime= 1 ns,«y = 30 ns! and«. = 180 ns! for the open loop
configuration while the coupling strength is fixed to 60 hdor the closed loop configuration. It can be immediately noticed
that the generalized synchronization, either within the open or closed loop, is not extremely sensitive to parameter mismatches.
Correlation coefficients close to 1 can be obtained for a range of parameter missma@¥% for the open loop while a
smaller range is obtained for the closed loop. These results ariitative agreement with th&gerimental observations that
synchronization within the closed loop scheme is only obtained for very similar lasers. For the operation regime here considered
(3 times threshold and long cavity limit), it seems that the photatitife, differential gain and saation are the most critical
parameters for the closed loop scheme. In general, there is a tendency, more noticeable for the closed loop scheme that tells us
that the synchronization quality exhibits an asymmetric behavior with respect to the sign of the parameter mismatch. Part of
this asymmetry can be explained by the compensation that some parameter mismatches are able to perform on the increase of
optical power in the receiver laser due to the injection term.

5. Encoding/decoding schemes

In this section we briefly study the performance of the message encoding/decoding process when using two of the most
widely used techniques: chaos shift keying (CSK) and chaos modulation (CM). Although other methods have been also proved
successful such as chaos masking (CMA), on-off chaos shift keying (OOCSK) or on-off phase shift keying (OOPSK), the
two schemes we study here are probably the easiest to implement in a real system. In the CSK technique, the information is
introduced into the transitter by slightly modulating the imction current of the laser with the message one wants to transmit.
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Fig. 8. Eye diagrams for the CSKdification technique at 0.5 Gls& (left panel) and 1 Ghis (right panel). Upper diagrams are for the closed
loop scheme while the lower ones contain theutts corresponding to the open loop scheme.

It is the easiest way to encode information and has been used for decades to generate optical pulses. In the CM technique,
the chaotic carrier is modulated by the message at the tiiesifaser output. This techniquequres the use of an external
modulator driven by the message.

For simplicity, we consider here identical parameters andatimg conditions for the emitter and receiver systems. After the
transmission of a given message, the quality of the recoverpeastimated by looking at thge patterns obtained through
the corresponding message decryption process.

The encoded message wada21 pseudorandom non-return to zero (NRZ) bit sequence. In Fig. 8 we show the eye diagram
of the recovery message, obtained for the CSK encoding at 0.3<G#itd 1 Gbits for the closed (upper panels) and open loop
(lower panels) schemes. The modulation index is set to 5%xpsated, the quality of theye diagrams is better for the closed
loop scheme although theg$or the open loop have goaplality for both bit rates.

In Fig. 9 we show the eye diagram obtained for the CM encoding at 0.5 $hitd 1 Gbits for the closed loop scheme.

The modulation index is also fixed to 5%. For this encoding technique, numerical simulations have confirmed that the open
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Fig. 9. Eye diagrams for the CM codification technique at 0.5 Glieft panel) and 1 Ghis (right panel).

Fig. 10. Image transmission and recovery at 1 GhiCSK codification scheme has been used.

loop configuration seems to be unable to recover the message unless an extremely high coupling strength is allowed. This large
coupling might be obtained by, e.g., amplifying and filtering the signal when injecting it into the receiver. However, since the
effects of the amplification processes require a detailed study (see, e.g., [38,39]), out of the scope of this paper, CM encoding
in the open loop scheme has not been considered here.

As a final graphical example, we show in Fig. 10 the encoding/decoding of a picture of the Island of Mallorca, using the
CSK scheme. The left panel corresponds to the original image, the middle panel to the image that an eavesdropper would see

if he taps the transmission and the right panel corresponds to the recovered image. The recovery of the image looks (at least at
first sight) almost perfect.

6. Summary and conclusions

We have studied the synchronization properties of two unidirectionally coupled single mode semiconductor lasers. These
devices are interesting, not only for their fundamental aspects, but also as sources for optical chaos communication systems. For
the latter, a high dimensional and complex chaotic carrier is required to ensure the privacy of the encrypted information. We have
characterized the dimension and the entropy of the chaotic carriers by means of Lyapunov exponents, Kaplan—York dimension
and the Kolmogorov—Sinai entropy. We found a saturation of the latter with the feedback cavity length and strength, which
indicates the exisihce of an optimum value for this two parameté®e have also studied thgrechronization quality under
parameter mismatch and compared open versus closed loop performance. We found that open loop scheme is less sensitive to
parameter mismatch than the closed loop scheme. Chaos shift keying and chaos modulation have been shown as examples of
message encryption techniques. We found that closed loops receivers show better performance for extracting the message. In
fact for chaos modulation, the message can only be recovered by using closed loop receivers.



622 C.R. Mirasso et al. / C. R. Physique 5 (2004) 613-622

Acknowledgements

This work was supported by the OCCULT project (IST-2@¥5B83) and the Spanish MCyT and FEDER projects CONOCE
BFM2000-1108, SINFIBIO BMF2001-0341 and BFM2002-04369.

References

[1] L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64 (1990) 821.
[2] L.M. Pecora, T.L. Carroll, Phys. Rev. A 44 (1991) 2374.
[3] K.M. Cuomo, A.V. Oppenheim, Phys. Rev. Lett. 71 (1993) 65.
[4] P. Colet, R. Roy, Opt. Lett. 19 (1994) 2056.
[5] C.R. Mirasso, P. Colet, P. Garcia-Farmdez, IEEE Photon Technol. Lett. 8 (1996) 299.
[6] V. Annovazzi-Lodi, S. Donati, A. Scire, IEEE J. Quantum Electron. 32 (1996) 953.
[7] K. White, J. Moloney, Phys. Rev. A 59 (1998) 2422.
[8] G.D. VanWiggeren, R. Roy, Science 279 (1998) 1198.
[9] L. Larger, J.P. Goedgebuer, F. Delorme, Phys. Rev. E 57 (1998) 6618.
[10] S. Sivaprakasam, K.A. Shore, Opt. Lett. 24 (1999) 466.
[11] I. Fischer, Y. Liu, P. Davis, Phys. Rev. A 62 (2000) 011801.
[12] A. Uchida, T. Ogawa, F. Shinozukkl. Kannari, Phys. Rev. E 62 (2000) 1961.
[13] F. Rogister, A. Locquet, D. Pieux, M. Sciamanna, O. Deparis, P. Megret, M. Blondel, Opt. Lett. 26 (2001) 1486.
[14] S. Tang, H.F. Chen, J.M. Liu, Opt. Lett. 26 (2001) 1489.
[15] S. Tang, J.M. Liu, Opt. Lett. 26 (2001) 1843.
[16] J.-M. Liu, H.-F. Chen, S. Tang, IEEE J. Quantum Electron. 38 (2002) 1184.
[17] S. Tang, J.M. Liu, IEEE J. Quantum Electron. 39 (2003) 708.
[18] A. Sanchez-Diaz, C.R. Mirasso, P. Colet, P. Gafeernandez, IEEE J. Quantum Electron. 35 (1999) 292.
[19] A. Locquet, F. Rogister, M. Sciamanrd. Megret, P. Blondel, Phys. Rev. E 64 (2001) 045203.
[20] J. Revuelta, C.R. Mirasso, P. Colet, leduera, IEEE Photon. Technol. Lett. 14 (2002) 140.
[21] C.R. Mirasso, J. Mulet, C. Masollel EEE Photon. Technol. Lett. 14 (2002) 456.
[22] R. Vicente, T. Perez, C.R. Mirasso, IEEE J. Quantum Electron. 37 (2002) 1198.
[23] R. Lang, K. Kobayashi, IEEE J. Quantum Electron. 16 (1980) 347.
[24] D. Lenstra, B. Verbeek, A. Den Boef, IEEE J. Quantum Electron. 21 (1985) 674.
[25] J. Cohen, D. Lenstra, IEEE J. Quantum Electron. 25 (1989) 1143.
[26] J. Cohen, D. Lenstra, IEEE J. Quantum Electron. 27 (1991) 10.
[27] J. Eckmann, D. Ruelle, Rev. Mod. Phys. 57 (1985) 617.
[28] H. Kantz, T. Schreiber, dhlinear Time Series Analysis, Cambridge University Press, 2000.
[29] J.D. Farmer, Physica D 4 (1982) 366.
[30] R. Vicente, J. Dauden, P. Colet, R. Toral, in: Physics and Siimualaf Optoelectronic Devices Xin: SPIE Proc., vol. 4986, 2003, p. 452.
[31] J.P. Goedgebuer, L. Larger, H. Porte, Phys. Rev. Lett. 80 (1998) 2249.
[32] S. Boccaletti, L.M. Pecora, A. Pelaez, Phys. Rev. E 63 (2001) 0662191.
[33] C. Masoller, Phys. Rev. Lett. 86 (2001) 2782.
[34] H.U. Voss, Phys. Rev. E 61 (2000) 5115.
[35] S. Sivaprakasam, E.M. Shahverdiev, P.S. Spencer, K.A. Shore, Phys. Rev. Lett. 87 (2001) 0154101.
[36] A. Locquet, C. Masoller, QMirasso, Phys. Rev. E 65 (2002) 56205.
[37] T. Heil, J. Mulet, I. Fischer, C. Mirasso, M. Peil, ®olet, W. Elsaser, IEEE J. Quantum Electron. 38 (2002) 1162.
[38] D. Kanakidis, A. Argyris, D. Syvridis, IEEE J. Lightwave Tech. 21 (2003) 750.
[39] A. Argyris, D. Syvridis, IEEE J. Lightwave Tech., 2004, in press.



