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Dynamics of Coupled Self-Pulsating
Semiconductor Lasers
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Abstract—We introduce and analyze a model for the dynamics of
two coupled self-pulsating semiconductor lasers. We investigate the
role of the complex coupling coefficient in the static and dynamic
properties of the device. We find conditions for the emergence of co-
herent laser pulses, in which the two lasers display synchronous co-
herent self-pulsations (self-pulsating super modes). Nonlinear dy-
namics and two different routes to chaos are also individuated and
discussed.

Index Terms—Chaos, laser array, laser dynamics, self-pulsa-
tions, semiconductor lasers.

I. INTRODUCTION

I NTRACAVITY saturable absorption is a well-established
method to achieve pulsating output from a laser source. It is

used both in mode-locking and -switching techniques to pro-
duce such behavior. In the mode-locking (ML) technique [1],
several spectral optical modes cooperatively act to build-up a
laser pulse, once the stable continuous-wave (CW) operation is
inhibited by a saturable absorber. The -switching technique
can profit from the presence of a saturable absorber as well: the
pumping excites population inversion above the threshold value,
producing an increase in field intensity as soon as the unsatu-
rated gain overcomes the losses. The large increase in intensity
saturates the absorber, which in turn leads to large output powers
and to the saturation of the gain in the active zone. Owing to
the gain depletion, the intensity decays to the noise level and
the population inversion in the absorber decreases. The self-sus-
tained repetition of this process yields a regular train of pulses.
Spontaneous self -switching in semiconductor lasers was rec-
ognized in narrow proton-stripe edge-emitting semiconductor
lasers (EELs) [2], [3], due to the saturable absorption of the un-
pumped region surrounding the pumped waveguide. Since those
lasers were self-pulsating, this phenomenon was called self-pul-
sations (SP). SPs are intimately related to -switching; indeed,
SPs coincide to what is called passive -switching [4].

Laser pulses are useful in several applications, from optical
communications to nonlinear optics. In this view, SPs in semi-
conductor lasers were intensively investigated [5]–[8] and have
found commercial applications in optical-disk systems due to
their low sensitivity to optical feedback ([9, p. 190]); also, SPs
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were proposed for further applications in clock extraction sys-
tems [10] and in synchronization schemes for encoded commu-
nication [11], [12].

However, SPs in a single semiconductor laser are limited in
power to a few milliwatts and often display fluctuations and in-
stabilities that frustrate their potential applications, e.g., in op-
tical communications. A substantial improvement could come
from the achievement of synchronized (coherent) pulsed output
of many coupled laser sources. This study aims to improve the
understanding of pulsating behavior in coupled lasers in view of
the generation of high-power coherent laser pulses from semi-
conductor laser arrays.

In this paper, we introduce a model to describe the tem-
poral dynamics of the electric field and carrier populations
in two EELs—each given an unpumped saturable absorption
section—and laterally coupled through evanescent wave. The
structure resembles the well-known Twin-Stripe [13], but here
each stripe has two sections, an active one and an absorbing
one. The interelement field dynamics is the new feature with
respect to the well-known self-pulsating EELs. Our description
of the absorbing region relies on the standard one developed for
the two-section EEL [14]. The interelement optical coupling
is modeled as in [15]. Combining the two approaches, we are
able to investigate the dynamics of a laterally two-coupled
semiconductor laser, each stripe including a saturable absorber.
The case of two-coupled lasers is of particular interest since it
allows a complete analytical study and provides a good physical
insight in view of a more general study of a many-element
array of pulsating lasers, because all of the coherent behav-
iors (e.g., synchronized pulses) are likely to be present in the
many-element case as well.

This paper is organized as follows. In Section II, we present
a detailed description of the model. In Section III, we show the
results of the linear stability analysis and we characterize the
different dynamical regimes. In Section IV, we describe the the
routes to optical chaos. Finally, in Section V, we summarize this
paper.

II. MODEL

We consider a laser structure consisting of two adjacent
EELs, schematically depicted in Fig. 1. Each EEL has a first
pumped section providing gain (labeled ) and a second region
(labeled ) acting as a saturable absorber. Physically, the two
lasers are optically coupled due to diffraction, whereas in each
laser the pumped and absorbing regions are coupled to each
other by carrier diffusion. We neglect further sources of cou-
pling such as thermal ones and cross-carrier diffusion between
lasers 1 and 2.
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Fig. 1. Schematic picture of the device.

We assume that each unperturbed guide supports a single lon-
gitudinal mode, and thus the total transverse electric field is
written as a linear superposition of the unperturbed individual
waveguide fields and the residual radiation field is neglected
[14]. The analysis of diffraction-induced crosstalk in terms of
the coupling between modes of individual waveguides is for-
mally exact [16], but the ability to analyze such a problem is
restricted to weakly guiding structures which are sufficiently
well separated. The result of such analysis consists of a linear
complex coupling term between the two fields, which is quanti-
tatively individuated by the waveguide parameters (mainly the
distance between the waveguides). Indeed, the actual values of
the coupling parameters stem from the eigenvalue analysis of
the coupled waveguides and, in general, are found to be techno-
logically (or even device-) dependent. In our approach, we leave
those coupling terms as free parameters of our model. The spa-
tial wave propagation problem is therefore simplified in to rate
equations for the modal amplitudes. The equations governing
the optical and material variables read

(1)

(2)

(3)

where , , is the imaginary unit, is the
slowly varying complex amplitude of the electric field of the op-
tical mode supported by waveguide , and ( ) is the car-
rier inversion density between the conduction and valence bands
in the pumped (absorbing) regions of laser . The meaning and
typical values of the different parameters in the model (1)–(3)
are given in Table I; however, two important points are worth
mentioning. The dependence of the gain with the carrier density

has been substituted by a two-linear approximation by taking
different values of , , and depending on whether
the region or is considered. Second, we define a character-
istic volume of the regions and with

denoting the quantum-well (QW) thickness, is the wave-
guide thickness, and and are the lengths of the pumped
regions and absorbers, respectively. The parameter repre-
sents the fraction of the intensity of the electric field that lays in
regions and [6] and whose values are given by the integrals
of the spatial mode profile over regions and . By choosing
a standard expression for the spatial profile in the single longi-
tudinal and transverse-mode operation conditions (e.g., see [9,
p. 232]), one finds that , under the approxi-
mation that , where is the laser wavelength. Nor-
malization conditions impose . The two diffusion
times vary according to the volumes of the regions

[5], [6]. The linewidth enhancement factor describes
the phase-amplitude coupling mechanisms. As previously dis-
cussed, the coupling between the two self-pulsating lasers is
described in terms of the parameters and . The dissipa-
tive coupling term represents additional optical losses in the
region between the two lasers, where the two field modes in-
terfere. The conservative (or coherent) coupling of the two lo-
calized field modes by optical diffraction is represented by .
Finally, spontaneous emission processes are accounted through
two independent Langevin noise sources . We remark
that, in the model (1)–(3), the two lasers are individually de-
scribed by the simplest model for a semiconductor laser in-
cluding saturable absorptive effects: rate equations based on in-
dividual single-mode oscillations [17]. Moreover, for the sake of
completeness, a rigorous derivation of our model (1)–(3) would
rely on a consistent treatment of diffusion and diffraction effects
[18]. The main approximations that make our model consistent
with the full spatial approach are the same as discussed in [19]
and [20].

A. Dimensionless Model

For the sake of simplicity and numerical purposes, we rescale
the dynamical variables by

(4)

(5)

(6)

With these new variables, (1)–(3) reduce to

(7)

(8)

(9)

where

(10)



274 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 3, MARCH 2005

TABLE I
MEANING AND TYPICAL VALUES OF THE PARAMETERS

(11)

(12)

(13)

(14)

(15)

We have defined the transparency current as .
The rescaling is the same for lasers 1 and 2, so we have dropped
that index in (4)–(6), (12), and (13). Equations (7)–(9) are
written in a dimensionless form such that the dimensionless
time . The dot acting on the dynamical variables means
derivative with respect to . The rescaled dissipative ( ) and
conservative ( ) are now the coupling parameters. The effec-
tive injection currents, with respect to the transparency value,
are and . Carrier diffusion is present in the equations
through the coupling terms and .

The Langevin noise sources can be approximated by

(16)

where represents the fraction of the spontaneously emitted
photons that goes into the zone or of the lasing mode, and

are two independent complex Gaussian random numbers,
with zero mean and correlation

.

B. Stationary Solutions

In the following, we assume symmetric operation conditions
and . The electric field solution of (7)–(9)

is expressed as . We start our discussion by
looking at the symmetric stationary solutions (SSs), i.e.,

, , and . We find two types of SSs
(resembling the super-modes in the twin-stripe [15] structure):

, in-phase (IP), and , out-of-phase (OP). The
emission frequency (in units) is , where
the sign ( ) stands for an IP (OP) solution [labeled as IP
(OP) supermodes in the following]. By defining , the
stationary carrier inversions are in turn given by

(17)

(18)

by dropping for simplicity the index , and and satisfy
gain clamping condition , where
and the sign ( ) stands for an IP (OP) solution. This leads to
a quadratic equation for that reads

(19)

The first laser threshold is defined as the pump value for which
the off-solution loses stability. By taking in
(17)–(18) and imposing the gain clamping condition, we find
that the threshold currents for the two solutions OP and IP are
given by

(20)

Equation (20) can be interpreted as follows. There is an increase
in threshold current due to the absorption ( ) and due to
the carrier diffusion from region 1 to region 2 ( ), while the
threshold decreases if the inverse carrier flux is favored ( ).
Either for or , (19) has only one physical solu-
tion (positive root) for . For sufficiently intense
absorbing conditions, three solutions appear in a narrow range
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of currents producing a hysteresis cycle [8], [17]:
stable solutions with , high-power solutions, and interme-
diate-power solutions that result in unstable states.

III. LINEAR ANALYSIS

A linear stability analysis of the two SSs of the system (7)–(9)
can be carried out by introducing a small perturbation, yielding

(21)

(22)

(23)

where is a complex perturbation of the field amplitude, and
and are real-value perturbations of the carrier variables.

Upon substituting (21)–(23) into the equations of the model
(7)–(9) and linearizing, we obtain a set of coupled linear dif-
ferential equations for the perturbations which, written for the
variables , ,
and , , decou-
ples into two subsets. The first subset determines the
stability of the intensities of the two supermodes, whereas the
second subset describes the stability of the relative
phase, as discussed below.

A. Intensity Stability of the Supermodes and Self-Pulsation
Conditions

The actual dimension of the subset is 3 3, due to
the presence of an invariant global phase, that implies the con-
stant presence of a zero eigenvalue. Therefore, by introducing

, we have

(24)

(25)

(26)

which determines the stability of the intensities (see the dis-
cussion below) of each supermode. The characteristic equation
for the eigenvalues of the linearized system (24)–(26) obey a
third-order polynomial

(27)

In this expression,

(28)

(29)

(30)

By applying the Routh–Hurwitz criterion, when the condition
is fulfilled, the total intensity loses stability through

a Hopf bifurcation, giving rise to intensity pulsations at fre-
quency . By taking advantage of the small values of

and , as in [21], the condition is well approx-
imated by

(31)

Fig. 2. Thresholds given by (20) and Hopf bifurcation boundaries given by
(31) for IP (solid) and OP (dashed) supermodes.

Substituting the solutions for reported in (17)–(18) and
solving (19) for as function of , (31) gives two values of

( ) that bound the Hopf-bifurcation locus for the IP
and OP supermodes, respectively. Notice that the location of the
Hopf bifurcation does not depend on the imaginary part of the
coupling . It is also independent of the -factor. The study in
[21] reported coefficients of the secular determinant describing
the intensity linear stability in a single self-pulsating EEL, in-
cluding nonlinear recombination effects. Considering only one
laser, our coefficients (28)–(30) revert to those ones of [21]
when nonlinear recombination effects are neglected. The subset
(24)–(26) turns out to be very similar to the single self-pulsating
laser case. The difference relies in the fact that our case presents
two stationary symmetric solutions (IP and OP supermodes),
and this is due to the coupling between the two sources.

The stability boundaries of the intensity subset (24)–(26) are
shown in Fig. 2 as function of the dimensionless real part of
the coupling and scaled pumping. The corresponding values for
the real part of physical coupling can be calculated using
(15) while the physical pumping is given by (12). In region 1,
both supermodes are below threshold, and there is no stimu-
lated emission. In region 2, the OP supermode is above threshold
while IP is below threshold. However, the OP intensity is un-
stable, therefore a pulsating emission of the OP supermode is
expected. In region 3, the situation is reversed around and a pul-
sating IP emission is expected. In region 4s both IP and OP su-
permodes are above threshold and allowed to pulsate. In region 5
(6), the OP (IP) supermode pulsates, whereas the IP (OP) super-
mode reaches a steady state (CW operation). In region 7, both
supermodes reach a steady state. The self-pulsation frequency
calculated above is shown in Fig. 3 for the two supermodes. The
parameters are given in Table I.

We observe that the role of the dissipative coupling coeffi-
cient is to give different losses to the two supermodes IP and
OP, therefore splitting the lines describing the oscillation onset
and absorber saturation of each solution. The complete infor-
mation about the supermode selection and stability is given by
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Fig. 3. Self-Pulsation frequency for the (a) IP and (b) OP supermodes.

the merging of the stability properties of the intensity and of the
phase subset, which is the object of the next subsection.

B. Phase Stability of the Supermodes

The second linear subset represents the effect of a perturba-
tion enhancing the difference between the dynamic variables of
the two lasers, thus gives informations about the phase stability
of the supermodes. It reads

(32)

(33)

(34)

(35)

where ( ) stands for the stability of the IP (OP) supermode.
The phase stability depends explicitly on both the real and the
imaginary part of the coupling as well as on the -factor. In fact
it is the interplay between the coupling coefficients ( ) and the

-factor that determines the selection of the phase relationship
between the two individual fields, and consequently the super-
mode selection. The subset (32)–(35) yields a fourth-order char-
acteristic polynomial, that we analyze by numerical methods.
We compute the phase stability boundaries for both IP and OP
supermodes in the plane versus . We first consider the case

, and . The OP supermode turns out to be always

Fig. 4. Stability diagram in the plane " Vs A . (A) Stable in-phase output
(stable IP supermode). (B) Pulsating in-phase output (pulsating IP supermode).
(C) and (D) Unstable regions. (E) Below threshold. The diagram is relative
to the IP solution. The black solid lines have the same meaning as in Fig. 2.
The OP solution is always unstable for this parameter choice. " = �0:1 and
the remaining parameters are the same as in Table I .

Fig. 5. Stable IP CW outputs (stable IP supermode). A = 6, " = 1:4, and
" = �0:1.

unstable. Fig. 4 shows the stability diagram for the IP super-
mode in the ( , ) plane. There are four regions in which the
dynamics is qualitatively different. In region A, both subsystems
(24)–(26) and (32)–(35) are stable. Therefore, the system shows
stable CW-in-phase fields (stable IP supermode), the intensity
of the electric field in each laser reaches a steady state
(see Fig. 5), and the relative phase of the two fields goes to zero
after a transient. The carriers reach the stationary value given
by (17) and (18). In region B, the absorber is no longer satu-
rated, the subsystem (24)–(26) is unstable, and pulsating output
takes place. Formally, the self-pulsating solution arises as a con-
sequence of a homoclinic bifurcation at threshold [5], which
leads to the onset of a closed loop in the phase space [22], phys-
ically accounting for the field-medium energy exchange during
the pulse. Increasing the pump current , e.g., moving from
region B toward region A of Fig. 4, the limit cycle shrinks and
disappears through a Hopf bifurcation. As discussed in the pre-
vious subsection, the Hopf bifurcation locus does not depend
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Fig. 6. IP pulsating outputs. Pulsating IP supermode. A = 3, " = 1:4, and
" = �0:1.

Fig. 7. Chaotic behavior with unsaturated absorber. A = 4, " = 0:4, and
" = �0:1.

on and is displayed as a horizontal solid line in Fig. 4. The
subsystem (32)–(35) is stable, so that the intensity of the two
lasers pulsates synchronously, namely, both lasers emit inten-
sity pulses at the same time. Furthermore, both lasers emit co-
herently, with the same electric field phase. Fig. 6 shows the
pulsating IP supermode: the intensity of the electric field in each
laser reaches a stationary pulsating regime, and the relative
phase of the two fields goes to zero. We remark that regimes in
regions A and B are coherent regimes. Therefore, the intensity
of the superposition of the two fields is four times
the intensity of the single source.

In regions C and D, the phase instability associated to the
unstable eigenvalues of the subsystem (32)–(35) leads to the
emergence of a complex nonlinear dynamics, in which chaotic
behaviors take place (see Fig. 7). This is explained in Section IV.
In region E, the IP solution is below threshold of
(20), and the output intensity drops to zero.

Changing the precise value of does not change qualita-
tively the stability diagram. For smaller values of , the in-
stability regions widens, whereas it shrinks for larger values of

.

For and , the IP supermode is always unstable.
The stability diagram of the OP supermode has different regions
whose shape is the same as in Fig. 4 but changing .
In this case, region A corresponds to stable CW out-of phase
fields: the intensity of each laser reaches a steady state while
the relative phase goes to so that the total intensity vanishes.
Region B corresponds to a regime in which the electric field of
each laser reaches a stationary pulsating regime in which both
lasers emit intensity pulses synchronously. However, the relative
phase goes to , thus, while the intensity of each individual laser
is self-pulsating and pulses are synchronous, the total intensity
vanishes.

For and , the OP supermode is always stable
while the IP supermode is always unstable. For and

, the situation is reversed: the OP supermode is always
unstable while the IP supermode is always stable. Thus, if
and have the same sign, no chaotic behavior is found, and
only coherent regimes are displayed.

IV. CHAOTIC BEHAVIOR

Chaotic attractors arise in semiconductor lasers due to phase
instabilities related to extra degrees of freedom, such as ex-
ternal injection [23], feedback [24], or mutual coupling as in
the present case. However, the specific route to chaos depends
on the specific structure. In our system, chaos originates from
the interplay of the -factor and the imaginary part of the cou-
pling . Indeed, when either or , no chaotic
behavior occours. Physically, the -factor reverts the intensity
pulsations to phase pulsations, while induces supplementary
phase oscillations. In our system, there are two different chaotic
attractors, depending on whether the absorber is saturated or not.
Indeed, in the unstable regions C and D of Fig. 4, two different
routes to chaos are found.

In region C the two lasers are pulsating with an irregular am-
plitude and phase. When crossing from region B to region C, the
IP supermode has an instability coming from the relative phase
subset (32)–(35). Therefore, the instability is in a direction
transverse to the subspace embedding the intensity pulses. This
leads to a regime where both lasers emit chaotic intensity pulses
which are desynchronized. The total intensity reflects the sum
of the two incoherent chaotic dynamics (see Fig. 7), showing
large pulses separated by practically vanishing intensity.

When crossing from region A to region D, the IP supermode
also has an instability coming from the relative phase subset
(32)–(35). In this case, since no pulses were present in region
A, the emerging regime is characterized by large-amplitude ex-
cursions in the direction transverse to the intensity subspace fol-
lowed by decaying oscillations over the stable subspace of the
IP solution (see Fig. 8)

Regions C and D are separated by the Hopf-bifurcation locus
shown as a horizontal solid line at in Fig. 4. Thus,
intrapulse oscillations decay toward a fixed point in region D,
whereas they approach a limit cycle (the one generated by the
Hopf bifurcation) in region C. Both scenarios (in regions C and
D) lead to the emergence of a chaotic behavior with different
attractors (see Fig. 9). Notice that, for the chaotic attractor of
region C, the total intensity shows large excursions departing
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Fig. 8. Chaotic behavior with saturated absorber. A = 6, " = 0:4, and
" = �0:1.

Fig. 9. (a) Map of the chaotic attractor with unsaturated absorber (region C of
Fig. 4). The parameters of the system are A = 4 and " = 0:5. (b) Map of
the chaotic attractor with saturated absorber (region D in Fig. 4). A = 6 and
" = �0:1.

from zero while in region D the total intensity never vanishes;
on the contrary, excursions are departing from the previously
stable stationary solution.

V. SUMMARY

We have introduced a model for the fields and carrier dy-
namics of two laterally coupled EELs, each containing an un-
pumped region acting as a saturable absorber. From analytical
and numerical analysis, we demonstrated that coherent self-sus-
tained pulsations with different relative phase relationships be-
tween the electric field in the two lasers are possible (self-pul-
sating in-phase or out-of-phase supermodes) for a wide range
of parameters of the considered device. We have found two
coherent regimes: stable CW in-phase and out-of-phase super-
modes and in-phase and out-of-phase pulsating super-modes,
where the the intensity of the superposition of the two fields is
four times the intensity of the single field. This could represent
a promising result in view of the possibility of synchronizing
a many-element array of pulsating lasers. In addition, we have
found and discussed two different routes to optical chaos.
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