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Abstract We discuss the use of intracavity type-II
second harmonic generation for all-optical processing of
images. Injecting an image in a pump beam linearly po-
larized and a homogeneous field in the orthogonally po-
larized pump it is possible to magnify the contrast and
to recognize the contour of any part of the image whose
intensity is above a tunable reference level. This can be
done using ideal planar cavities where all the fields are
resonant as well as in the more realistic situation where
only the fundamental fields are resonant and using cav-
ities with spherical mirrors.

PACS:42.30.-d, 42.65.Ky, 42.65.Pc

1 Introduction

Various techniques for image processing have been avail-
able in the last decades [1]. These techniques require first
the detection of the optical image by means of a two
dimensional array of photodetectors. In a second step,
the digital version of the image is processed numerically.
While this has proven to be quite flexible approach of-
fering many possibilities, there is still a real interest in
developing all-optical image processing schemes. In this
schemes the detection of the image is avoided, reducing
the errors due to an imperfect calibration of the indi-
vidual photodetectors, as well as the noise added by the
measurement process and subsequent electronic trans-
mission. These effects, which deteriorate the quality of
the image before processing, are, in the all optical case,
absent or postponed to the very end of the informa-
tion processing chain. Secondly, the maximal resolution
achievable, which is in digital image processing limited
by the density of pixels in the detection plane, is set,
in an all-optical scheme, only by diffraction. Finally, an
all-optical scheme takes advantage of parallelism, which
is a specific feature of optics. All-optical image process-
ing operations that have been demonstrated include fre-
quency transfer of an optical image from the infrared

to the visible domain [2,3], and from the visible to the
UV domain [4,5], as well as parametric amplification of
an UV image [6,7], and contrast inversion [8]. In these
schemes, an optical image at a frequency w is directly
injected into a nonlinear (NL) crystal illuminated with
a strong monochromatic pump wave at frequency w,, and
the processed image is formed in the output plane. As
a result of the nonlinearity of the crystal, the input im-
age will be, depending on some phase matching condi-
tion, either transferred to a higher frequency w + w, by
simple frequency addition [2-4], or amplified by photon
down conversion [6-8]. In the latter case the amplifica-
tion is accompanied by the formation of a phase con-
jugated (idler) image at the complementary frequency
wp —w. Considering the spatial dependence of the image
processing mechanism on the position of the object in
the transverse plane, the phase matching condition will
determine whether image processing will be efficient ei-
ther on a disk centered on the optical main axis of the
system, or on a ring of finite width. This latter regime is
also useful for selectively amplifying some Fourier com-
ponents of a given image, leading to contrast enhance-
ment or inversion.

Recently the use of nonlinear crystals inside a opti-
cal cavity rather in a propagation configuration has been
proposed. The fundamental difference is the existence of
instability thresholds which, if used appropriately, allow
for a nonlinear processing of the image. For example,
considering type-II second harmonic generation inside
an ideal planar cavity where all the fields are resonant, it
has been shown that it is possible to selectively enhance
the contrast of part of an image or to detect its contour
[9]. While this may be considered as a first prove of prin-
ciple, triple resonant planar cavities are quite unsuitable
for practical applications. Cavities where only the fun-
damental field is resonant or with spherical mirrors are
by far more easy to stabilize and operate. We consider
here the second harmonic generation inside these cavities



and study its possible applications for all-optical image
processing.

The paper is organized as follows. In section 2 we
introduce our theoretical model. Section 3 is devoted to
the case of Fabry Perot cavities with plane mirrors. We
review results obtained for triple resonant cavities [9].
In section 4 we address the case of non resonant second
harmonic field. Section 5 is devoted to the case of cavi-
ties with spherical mirrors. We summarize our results in
section 6.

2 The model

We consider a x® nonlinear crystal placed inside an op-
tical cavity. Assuming a type II phase matching, a second
harmonic field will be generated if the cavity is pumped
by two orthogonally lineal polarized fields F, and E,.
This system can be described by a set of equations sim-
ilar to those used in [10] for an optical parametric oscil-
lator:

0 B(r,¢,t) = —(kp +10p — 1 Lp)B(r, ¢,t)
—XAz(r, ¢, 1) Ay(r, b, t)
OpAp(ryd,t) = —(ka +104 —1ELA) AL (T, P, 1) (1)
+xAy(r, ¢, 0)B(r, ¢,t) + Ex(r, ¢,1)
Ot Ay(r,0,t) = —(ka +104 —1lLa)Ay(r, ¢, 1)
+xAL(r, 0, t)B(r,¢,t) + Ey(r, ¢,t)

where the longitudinal dependence of the fields is elim-
inated using the paraxial and the mean field approxi-
mations [11]. The transverse variables r and ¢ denote
the distance from the axis of the system and the an-
gular variable, respectively. A, and A, are the linearly
polarized intracavity field envelopes with fundamental
frequency w4 and B is the second harmonic field enve-
lope at frequency wg = 2w 4. X is the nonlinear coupling
strength, £ is the effective transverse mode spacing, k4
and kp are cavity linewidths for the fundamental and
second harmonic fields and 4 and dg are the respective
detunings.

The effect of diffraction and the geometry of the cav-
ity are taken in account by the differential operator

2 2
_ Wi r

L 2 1 =A B 2
k 4vl W3+a k ) ()

where Wi, = /(22,.¢)/wy, is the minimum waist of the
intracavity fields, z, is the common Rayleigh length of
the three fields, ¢ the speed of the light and V the
transverse Laplacian. The first term of Eq. 2 models dif-
fraction in the paraxial approximation while the 72 term
comes from the curvature of the mirror.
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Fig. 1 Steady states for second harmonic generation with
asymmetric homogeneous pumping and the geometrical con-
struction to illustrate the frequency transfer regime. On the
left we plot the stationary amplitude of the intracavity fields
for homogeneous asymmetric pumping as a function of |Ey|
for |Ey| =5 (0 =0, and 64 = 1). On the right we plot the
response of the system to a simple image (sketched on the
far right) where |E,| takes only the values Fy and E; with
FEo < E1 < |Ey|

3 Image processing in a planar cavity

We now consider the case in which £ — 0 while Wy — oo
in such a way that the product W2 converges to a fi-
nite value. The diffraction term in Eq.2 remains finite
while the term associated with the mirror’s curvature
term vanishes; so that case corresponds to an ideal pla-
nar cavity. Rescaling x4, — A, x4, — Ay, xB — B,

xE; — E;, xEy — Ey and gv;/f, V2. — V2,; and taking

ka = kg = 1 we recover the model for a planar cavity
[12-15]

0B = —(1+105)B + %ViB +14,4, (3)

Ay = —(14104)Ay +1V3 A, —1A;B+ E,  (4)
WAy = —(1+104)A, +1VIA, —1AB+ E, (5)

For pumps homogeneous in the transverse plane, E,
and E, can be taken as real fields without loss of gener-
ality. Typically, Egs. [3]-[5] have been considered for the
case of symmetrical pumping F, = E,, which maximizes
the production of second harmonic. In such case the ho-
mogeneous stationary steady state shows a polarization
instability for a pump above the critical value [12-16]:

E2 =201+ 62)Y2(1+6%)%2 +2(1 + 6%)(1 — 646B).
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For asymmetric homogeneous pumping E, # E, the
homogeneous steady state for |4,| is given by the solu-
tion of the polynomial

AalAy " + [4(1 = ) Aa — | B[] A, ° +

2044Q + Aap(|E.* — 2|E,[*)]]A,|°

+2{24% AL Aup — QIEy|* — 24% 5| EL[*}|A, [*

HAGAL + 24, A A (| Eo|? = 2|Ey|*)] |42

—ALALIE, P =o0. (6)
where Ay = 1404, Ap =1+6%, Aap=1—040p and

Q= (64+0p)*+ 3A% 5. Once |4,| is known, |A,| and
| B| are given by

|4, = Ap|Fal
v |Ay‘2+2AAB|Ay|+AAAB
Az?|A4,|?
|13‘2 — | | ‘ y| (7)

Ap

Fig.1 shows the typical dependence of the station-
ary solutions for the intracavity fields |A.|, |4,| and
|B| on E, when E, is fixed to a given value, in this
case B, = 5. For small E,, the functions A,(E,) and
B(E,) take small values while A, (E,) is large and close
to Ey,/(1414d4). All of them are single valued. When E,
approaches E, the system displays bistability. A, (E,)
and Ay(E;) become S shaped and B(FE,) closes over
itself. For large E, all the functions become again sin-
gle valued but now A, (E,) > A,(E;). The existence
of three steady-state solutions of Egs. 3-5 in a region of
finite width centered on E, = FE, is closely related to
the polarization instability occurring in the symmetrical
pumping case. If fact,this S shape can be observed only
if By > Eqs

In the following we consider the effects produced on
an image inserted in the system as spatial variations in
the intensity of the x-polarized pump field along with
an homogeneous pump FE,. Tuning the amplitude of the
homogeneous pump it is possible to achieve different
regimes of operation. In a first regime the image can
be transferred from the fundamental to the second har-
monic. In a second regime it is possible to enhance its
contrast and to detect the contour of the image [9]. Fur-
thermore, it is also possible to filter noise eventually
present in the image.

3.1 Frequency transfer

We consider the injection of a very simple 1-dimensional
image in which the amplitude of the x-polarized signal
|E,(x)| takes only two real values Fy and F; along the
transverse coordinate x, as shown in Fig. 1(|E,| > Eq >
Ep). At each spatial point the intracavity fields A, ,(x)
and B(zx) tend to take the stationary values shown in
Fig.1 corresponding to homogeneous pumps of ampli-
tude Ey and FE7, despite the spatial coupling caused by
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Fig. 2 Frequency transfer. The left column shows (from top
to bottom) the spatial distribution of amplitude of the in-
put image |E;|, and the amplitude of the intracavity fields
|Az|, |Ay| and |B|. The gray scale of goes from the minimum
(white) to the maximum (black) of each field. The right col-
umn shows a transversal cut of the fields along the dashed
line on the top left panel. We have considered E,; = 5 (shown
as dashed line on the top right panel).

diffraction. This coupling becomes relevant for image de-
tails on the scale of the diffraction length. As sketched in
Fig. 1, if |E,| remains well below |E,|, A, never leaves
the lower branch of the curve A, (|Ey|), so A, repro-
duces the spatial distribution of the input image |E,]|.
The y-polarized intracavity field A, shows the negative
of the image. More important, the second harmonic field
B reproduces | E,|, so the image in the fundamental field
is transferred to the second harmonic. As the image is
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Fig. 3 Geometrical construction to illustrate the contrast
enhancement and contour recognition regime. On the left we
plot the stationary amplitude of the intracavity fields for ho-
mogeneous asymmetric pumping as a function of |E,| for
|Ey = 5|. On the right we plot the response of the system to
a simple image (sketched on the far right) where |E| takes
only the values Ey and E; with Ey < |Ey| < Ei.

encoded in the z-polarized fundamental field and B is
y-polarized, there is simultaneously a transfer in the po-
larization of the image. These effects are shown in a more
realistic 2d-image in Fig. 2 where an image of constant
amplitude 1 is put on top of a plane wave background
with amplitude F, = 3. In this image can be seen that
as an effect of the diffraction the edges of the image
are soften. The image in the intracavity and second har-
monic fields can be considered as the union of two dif-
ferent stationary states and the oscillatory tails of the
front connecting the two states induce some distortion
near the border. Nevertheless the image is quite well re-
produced as seen in Fig.2.

3.2 Contrast enhancement and contour recognition

Let us consider again the simple 1-d image where |E,]|
takes only two values Ey and E; along the transverse co-
ordinate but now the lower value Ej is below E, while
the higher value F; is above, as shown in Fig.3 (E; >
Ey > |Ey|). In this case the multivalued dependence of
Az (|Es|), Ay(|Ey)| and B(|E|) comes into play. If E is
larger than the upper end of the hysteresis cycle and Ey
is smaller than the lower end, A, (]E,(x)|) has to jump
from the lower to the upper branch, while A, (|E,(z)]|)
has to jump from the upper to the lower branch. This
will give rise to a sharp spatial variation of A, and A,. In
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Fig. 4 Contrast enhancement and contour recognition. The
left column shows (from top to bottom) the spatial distribu-
tion of amplitude of the input image |E5|, and the amplitude
of the intracavity fields |A.|, |4y| and |B|. The gray scale of
goes from the minimum (white) to the maximum (black) of
each field. The right column shows a transversal cut of the
fields. We have considered |E,| = 5.

fact for vanishing intracavity fields as initial condition, it
is not necessary to fully cross the hysteresis cycle to have
a jump. With those initial conditions where |E;| < |Ey|
the system locally selects the steady state solution with
small value for |A,| and a large value for |4, |, while it se-
lects the steady state solution with a large value for |A,|
and a small value for |A,| where |E;| > |E,|. Therefore,
the reference value |E,| plays in fact the role of an effec-
tive threshold and the jump already occurs if | E, | crosses
|Ey| as sketched in Fig.3. In the region where |E,(x)| is
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Fig. 5 Scanning of a 2 dimensional gray scale image. The
left column shows the input image |E,(r, ¢)| and the homoge-
neous reference level | Ey | plotted as a regular grid. The right
column shows the amplitude of the z-polarized fundamental
intracavity field A.(r, ¢) From top to bottom |E,| takes the
values 6, 5 and 4.

larger than the reference level |E,|, |A;| has a large value
compared with the zones where |E,(z)| < |E,|; so the
contrast in this field appears enhanced with respect to
the contrast in the input fields (Fig.3). The amplitude
|A,| takes lower values where |E,| < |E,| leading to an
image which is inverted with respect to the input (Fig.3).
At the crossing points |E,| = |Ey| the second harmonic
field B displays a sharp peak, since locally |A,| ~ |A,];
i.e. the system goes trough the symmetric steady-sate so-
lution characterized by a higher intracavity second har-
monic field than the asymmetric stable ones. As a con-
sequence the second harmonic field displays the contour
of the input image Fig.3. The effects are shown for two
dimensional case in Fig.4 where the last row shows the
contour recognition. Image processing is slightly affected
by diffraction effects in two dimensions, which tends to
smooth out sharp angles in the input image and sets a
minimum contrast below which no contrast enhancement
can occur.

It should be emphasized that the previous results
show that for a given image different processing capa-
bilities are possible tuning the amplitude of the homo-
geneous field |E,|. This is even more interesting when
considering images which are composed of many levels

of intensity, as in a gray scale image. In that sense, if
the homogeneous pump |E,| is set to a value larger than
|E.(r,¢)| for any r and ¢ then the frequency transfer
process will take place and the whole image will be dis-
played by the second harmonic frequency field B(r, ¢).
If |E,| is decreased, then the parts of the image where
|Ey(r, )| > |E,| will undergo a contrast enhancement
process. As illustrated in Fig.5 for a 2-dimensional im-
age the intracavity field |A,| is largely enhanced in these
spatial regions. Simultaneously the amplitude of the sec-
ond harmonic field |B| shows the contour of the region
whose contrast has been enhanced. The amplitude of the
homogeneous pump acts as a tunable reference level and
placing it at different values allows for the selective en-
hancement (and selective contour detection) of different
parts of the figure (see Fig.5)

3.3 Noise filtering

Another interesting effect arises when the image inserted
is superimposed with a random field, creating a noisy im-
age. In this case the system shows noise filtering prop-
erties, and the images at the fundamental and second
harmonic fields have a lower noise level than the input
image. The noise filtering effect arises as an interplay be-
tween the diffraction and the nonlinear interaction [9].
It appears both in the frequency transfer regime and in
the contour recognition regime but it is more effective in
the second case, when the nonlinearities play a more im-
portant role and the contrast of the image is enhanced,
as can be seen from Figs. 6 and 7.

4 Single resonant planar cavities

We next consider the casein which the second harmonic
field is not resonant with the natural frequency of the
cavity as it is often the case in practical situations. We
do this by adiabatically eliminating the second harmonic
variable B, B = 1A, A,/(1+1p) so the Egs.(3), (5) and
(4) become

DAy = —(1 4184 Ay +1V2A4, + A b )
t4x A T Tz 1+Z§3 x
2 424,
0:Ay = —(1+104)Ay +:V7 A, + ——— + E, (9)
].+Z($B

The steady state homogeneous solutions remain the
same, so that the previous discussion remains valid. In
particular, contrast enhancement can be performed as
before if the input image |E,| crosses the reference level
|Ey| as shown in Fig. 8 for a 2-dimensional noisy im-
age processed by numerical integration of Egs.(8) and
(9). The noise-filtering properties are still present in this
case. Furthermore, the contour recognition operation can
also be performed by measuring the product |A;||A4,]
which is proportional to the second harmonic field am-
plitude that has been adiabatically eliminated. This is
illustrated in the bottom panels of 8.
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Fig. 6 Noise filtering in the frequency transfer regime. The
left column shows (from top to bottom) the spatial distribu-
tion of amplitude of the input image |F;|, and the amplitude
of the intracavity fields |As|, |Ay| and |B|. The gray scale of
goes from the minimum (white) to the maximum (black) of
each field. The right column shows a transversal cut of the
fields. We have considered |Ey| = 5.

5 Cavities with spherical mirrors

The previous section dealt with the ideal case of a cav-
ity with plane mirrors whose realization is a nontrivial
experimental challenge. Cavities with spherical mirrors
are more stable and a more common experimental frame-
work. We consider here a model for a cavity with spher-
ical mirrors in quasi-confocal configuration. From a fun-
damental point of view, the introduction of curved mir-
rors breaks the translational invariance, which is an in-
convenient for the processing of an image. Spatial points
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Fig. 7 Noise filtering in the contrast enhancement regime.
The left column shows (from top to bottom) the spatial dis-
tribution of amplitude of the input image |E,|, and the am-
plitude of the intracavity fields |Ag|, |Ay| and |B|. The gray
scale of goes from the minimum (white) to the maximum
(black) of each field. The right column shows a transversal
cut of the fields. We have considered |E,| = 5.5.

of the image where the field takes the same value and
which would otherwise be treated in the same way are
now treated differently if they are located at different
distances from the optical axis.

To describe this system we use the full set of Eqs.3-5.
In particular we consider a cavity characterized by the
following parameters: § = 1, o = 0, £ = 0.005, w4 =1
and wQB = 0.5 which correspond to a quasi-confocal con-
figuration [10]. Due to the geometry of the cavity the
pump fields have to decay to zero when r — oco. We
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Fig. 8 Contrast enhancement and contour recognition in a
single resonant planar cavity. The left column shows (from
top to bottom) the spatial distribution of amplitude of the
input image |E5|, and the amplitude of the intracavity fields
|Az|, |Ay| and the product |Az||Ay|. The gray scale of goes
from the minimum (white) to the maximum (black) of each
field. The right column shows a transversal cut of the fields.
We have considered |E,| = 5.5.

consider a super-Gaussian holding beam which has a
large plateau around the optical axis where we can su-
perimpose the image. The input fields are: Ey(r,¢) =

EOyexp(_TA/wg)v and I, (’I“, ¢) = I(T‘, ¢)+E0x€zp(_r4/wg)v

where w, = 300 and I(r,®) is an image as it has been
considered in the planar cavity case. The input intensity
levels are chosen such that they correspond to a regime
where nonlinear effects are important.

While the simple geometrical construction used in
section 5 can not be directly applied here, since there
are no homogeneous steady state solutions, we found
numerically that the amplitude of the y-polarized super-
Gaussian beam plays again the role of setting a refer-
ence level. If the amplitude of the xz-polarized image do
not cross the amplitude of the y-polarized beam, then a
(weak) image is transferred to the y-polarized second
harmonic. This corresponds to the frequency transfer
regime.

If a part of the image field crosses the value of the ref-
erence beam then contrast enhancement operation over
that part of the image takes place as before. This is illus-
trated in Fig. 9. The upper panels show an x-polarized
input field for a 2d image inserted on top of a super-
Gaussian holding beam with Fy, = 5. The y-polarized
reference beam is taken as a super-Gaussian with Fy, =
5.5. For all spatial points the image is above the reference
level. The middle panels show the z-polarized intracav-
ity field. The contrast of the image is clearly enhanced.
Therefore the same contrast-enhancement operation ob-
tained with planar cavities can be performed in cavities
with spherical mirrors. The fact that the image is in-
serted on top of a super-Gaussian holding beam does not
preclude any of the nonlinear operations since the refer-
ence beam is also a super-Gaussian. What really matters
is the fact that locally the amplitude of the image su-
perimposed to the holding beam crosses the amplitude
reference beam. The main restriction comes from the
fact that to achieve nonlinear effects the image should
be placed on the central part or the beam where the
input fields are strong enough.

Contour recognition operations can also be performed
as before. As shown in fig. 10, the second harmonic field
displays the contour of the image. Although now this
contour is on top of a super-Gaussian beam, it is still
clearly distinguishable.

Noise filtering effects do exist in cavities with spher-
ical mirrors but the effect is smaller than in the planar
cavity because the coefficient of the Laplacian term in
2, which takes into account diffraction, depends on the
minimum waist of the intracavity fields. For the configu-
ration considered here this coefficient takes a lower value
than in the planar mirror case.

6 Summary

We have shown that intracavity second harmonic gener-
ation can be used for all-optical image processing. Op-
erating in a linear regime it is possible to transfer an
image from the fundamental to the second harmonic fre-
quency. More important, by taking advantage of the sys-
tem bistability it is possible to magnify the contrast in
the fundamental field of any part of the image whose
intensity is above a given reference level while simulta-
neously the second harmonic field displays the contour
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Fig. 9 Contrast enhancement in a quasi-confocal cavity. The
left column shows (from top to bottom) the spatial distribu-
tion of amplitude of the input image | E,|, and the amplitude
of the intracavity fields |A4|, |A4y| and |B|. For each field
the gray scale goes from zero (white) to the field maximum
(black). In the right column a transversal cut of the fields
is shown. The dashed line on the top right panel shows the
profile of |Ey|

(0)

Fig. 10 Contour recognition in a quasi-confocal cavity for
the image shown in the first row of Fig.9. The amplitude of
the second harmonic field |B| is shown as a gray scale on the
left panel and as a 3d plot on the right panel. The gray scale
goes from zero to the maximum of | B].
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of the same part of the figure. Furthermore, the refer-
ence level can be tuned allowing for a complete scan of
the image and the cavity acts as a noise filtering device.
This can be done using planar cavities both in the case
where all the fields are resonant an in the case where
only the fundamental harmonics are resonant as well as
in the more common situation of cavities with spherical
mirrors.
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