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Abstract

This paper studies the effect of independent additive noise on the synchronous dynamics of large populations of globally
coupled maps. Our analysis is complementary to the approach taken by Teramae and Kuramoto [J. Teramae, Y. Kuramoto,
Strong desynchronizing effects of weak noise in globally coupled systems, Phys. Rev. E 63 (2001) 036210] who pointed out the
anomalous scaling properties preceding the loss of coherence. We focus on the macroscopic dynamics that remains deterministic
at any noise level and differs from the microscopic one. Using properly defined order parameters, an analytical approach is
proposed for describing the collective dynamics in terms of an approximate low-dimensional system. The systematic derivation
of the macroscopic equations provides a link between the microscopic features of the population (single-element dynamics and
noise distribution) and the properties of the emergent behaviour. The macroscopic bifurcations induced by noise are compared
to those originating from parameter mismatches within the population.
© 2005 Published by Elsevier B.V.
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1. Introduction

A large number of dynamical phenomena are accurately described by deterministic equations. In many cases,
however, the deterministic structure of the dynamics is altered by the presence of degrees of freedom others than
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those included in the equations. Such degrees of freedom cannot be explicitly formulated in the model because their
features and actual influence on the observable time evolution are not known. It is commonly assumed that their
effect on the deterministic dynamics can be accounted for by additive or multiplicative stochastic terms.

Besides studies of the effects of noise on a single low-dimensional dynamical system, it is only recently that
significant attention has been paid to the investigation of the influence of stochastic perturbations on large ensembles
of interacting dynamical elements[1,22]. Here we report on such investigations on large populations of globally
coupled nonlinear maps.

Such an interaction scheme, where each population element only feels the average state of the others, has been
widely used to model a range of physical, chemical and biological systems, such as arrays of semiconducting
elements (Josephson junctions)[43,28,44], electrochemical oscillators[42,15], or continuous-flow stirred tank
reactors containing yeast cells[7,6]. Globally coupled oscillators or maps also constitute a useful approximation for
a wider class of spatially extended systems, provided that the range of the interaction is sufficiently large[2]. This
may be the case for instance for swarms of flashing fireflies[45,46], in networks of neurons[38], cultured heart
cells[37], or mixed chemical reactions[27].

The interest in globally-coupled systems primarily arises from the a priori non-trivial relation between the
dynamics of one single element and the emergent behavior of the population, typically described by macroscopic
variables. Given that these macroscopic quantities are often more easily —and sometimes exclusively— accessible
to experimental measurements, the non-trivial relation between the two description levels is a central problem not
only in the modeling process, but also in the interpretation of experimental measurements. A number of studies have
dealt with the weak-coupling regimes of these noiseless systems. Particular attention has been paid to the emergence
of a macroscopic dynamics or “non-trivial collective behavior”[12,13,4,24,30,29,26,5,23,36,32,33]. Starting from
the uncoupled regime, where the mean field is the average of an infinite number of uncorrelated processes and
therefore constant, an increase in the coupling among the population elements causes the macroscopic observables
to depart from stationarity and to typically display complex collective dynamics, such as clustering and multistability.
In the strong-coupling limit, on the other hand, perfect synchronization of the individual elements is observed, a
regime of limited interest since the macroscopic evolution is then a trivial copy of the microscopic one.

This limit is the point of departure for the present study of the macroscopic dynamics of large populations
of globally and strongly coupled identical maps subjected to microscopic disorder (additive noise or parameter
mismatch). Indeed, starting from perfect synchronization offers the hope that the effects of microscopic disorder
can be disentangled from the subtleties of the collective regimes typical of the weak-coupling regime.

Apart from the early work of Nichols and Wiesenfeld[28] who studied how synchronous periodic dynamics is
affected by noise when the individual map is close to a bifurcation point, the only prominent study of the effect of
noise on the synchronous macroscopic dynamics of globally-coupled maps has been conducted by Teramae and
Kuramoto[39]. They showed that the unfolding of achaoticsynchronous behavior by weak noise is generically
characterized by “anomalous” multiscaling properties of the cloud of points representing the population in the local
phase space, in an approach typical of that developed in a series of important papers by Kuramoto and Nakao on
non-locally coupled systems[16–18]. Here we propose an alternative viewpoint on this indication that microscopic
additive noise interacts non-trivially with the dynamics of the population.

Starting from the perfect synchronization regime, we observe that the collective motion remains deterministic
and apparently low-dimensional at any noise level (up to finite-size effects), at odds with the case where the added
stochastic term is the same for every population element[24,29,41]. We present an analytical method for deriving
the collective behavior from the single element dynamics and the statistical features of the microscopic disorder[9].
Expanding in series the equation of motion of the “mean-field” (i.e. the average of our one-dimensional maps), we
obtain an infinite hierarchy of equations for macroscopic variables or order parameters. Our approach is independent
of the specific form of the map and of the noise distribution. In particular, the stochastic term needs not to be chosen
neither weak nor Gaussian. This method thus provides an answer to the problem of building macroscopic equations of
motion starting from the microscopic structure of the population, as discussed e.g. by Cencini et al.[3], and justifies
the use of specific systems as representatives of universality classes of noise-induced phenomena. The proposed
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approach is complementary to the moment expansion method applied in previous studies[11,30,40,31,22], where
the macroscopic equations are derived from the cumulant expansion of the Fokker-Planck or Perron-Frobenius
equation for the Langevin dynamics. Our approach differs from the moment expansion techniques in two aspects:
first, we do not start from the dynamics of the probability distribution function, but directly from the individual
dynamics; second, we do not impose any self-consistency condition, but closure of the equations relies on the
dependence on the coupling strength. On the other hand, the order parameter expansion is analogous in spirit to the
method recently proposed by Schimansky-Geier and coworkers[14,22].

The paper is organized as follows. In the next section, we introduce the phenomenology ofnoise-induced
macroscopic bifurcationsof large populations of noisy chaotic maps. By means of numerical simulations, we show
how the addition of independent noise to each map modifies the mean-field behavior, and we discuss the microscopic
features corresponding to different couplings and noise intensities. This picture agrees with the phenomena of
noise-induced macroscopic bifurcations that have been studied in the context of continuous-time dynamical systems
[34,47]. Section3is devoted to the derivation of the finite-dimensional maps, or reduced systems, which approximate
the mean-field dynamics. The detailed analytical derivation through an expansion in order parameters can be found
in the appendices. In Section4 we compare the main features of the collective dynamics of a population of chaotic
maps to those exhibited by the reduced systems. In particular, we investigate the connection between our findings
and the anomalous scaling properties put forward by Teramae and Kuramoto. Section5 compares the effect of noise
to that of parameter mismatch (“quenched disorder”), and discusses the differences in deriving the reduced systems
in the two cases[8,10]. Section6 summarizes the main results of the paper, discusses the perspectives of our method
and points to a number of possible applications. Part of our results have been presented in[9].

2. Noise-induced collective regimes: phenomenology

Let us consider a population of globally-coupled maps in the formulation introduced by Kaneko[12]. Each
individual variable is ruled by the equation:

xj �→ (1 − K) f (xj) + K 〈f (x)〉 + ξj(t) j = 1, . . . N, (1)

wheref : R → R defines the single-element dynamics, which we require to be smooth for our analytical approach,
and 〈. . .〉 denotes averaging over the entire population. The stochastic termξj(t) is chosen at each time step,
independently for each population element, according to a distribution of zero average and with the assigned
momentsmq (the second of which will be denotedσ2). The coupling strengthK ranges from zero, when the
population elements are decoupled, to one, when every element is mapped, in the absence of noise, into the same
average value. Note that these equations can be recast into a form where the coupling constant can take any positive
value, a formulation that is commonly used in the case of globally coupled continuous-time systems.

Next, we use numerical simulations to show how the evolution of the average state variable, the mean-field
X = 〈x〉 = 1

N

∑N
j=1 xj, is affected by a change in the noise intensity, as measured by the varianceσ2 of the noise

distribution. Together with the coupling strengthK, σ2 will be taken as a control parameter for the analysis of the
macroscopic dynamics. As already mentioned, we focus on the strong coupling regimeK ∈ [Kc, 1] where the maps
synchronize perfectly in the absence of noise.

As one would expect by continuity, if only a small amount of noise is added, the population configuration will
be a small perturbation of the fully synchronous regime: the time series of each individual element remains close to
that of the mean-field, even in chaotic regimes. This is illustrated inFig. 1(a) for a population of 222 logistic maps
of the formf (x) = 1 − ax2 with the nonlinearity parametera = 1.57 chosen inside the chaotic region, subjected
to uniformly distributed noise of zero mean. (All examples presented in this paper will refer to a population of
logistic maps, while the application of our approach to populations with different microscopic features will be
addressed elsewhere.) When, instead, the noise is strong, the coherence of the motion within the population is
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Fig. 1. Time series of the mean-fieldX (black dots) and of one element of the population (open circles) forK = 1. Population ofN = 222 logistic
maps in the chaotic region (a = 1.57) with uniformly distributed noise, random initial conditions. (a) In the case of weak noise (σ2 = 0.05), the
dynamics is a small perturbation of the synchronous, chaotic, noiseless one; (b) In the case of stronger noise intensity (σ2 = 0.4), the mean field
attains a regular, periodic behavior while the time series of the single population element is scattered by noise.

lost. The evolution of any element is now blurred by the stochastic term, thus making it difficult to recognize any
underlying deterministic behavior from the detection of just one individual time series. Up to finite-size effects,
however, the mean field evolves deterministically. The regimes of macroscopic dynamics induced by noise are
neither synchronous, since the dynamics of the individual elements are not locked to each other, nor forcedly
coherent, in the sense that the distances between units and the mean-field are not always small.

It is remarkable that, when the noise is sufficiently intense, not only does the mean-field evolution appear to
remain low-dimensional, but it can be qualitatively different from the single-element uncoupled dynamics.Fig. 1(b)
shows for instance that, in the presence of microscopic noise, the mean-field can display regular cyclic behavior
in spite of the fact that every element of the population is itself chaotic and noisy. This phenomenon is related to
the fact that noise leads the trajectory of any individual element to stay away from the chaotic attractor, so that
its dynamics is mainly influenced by the structure (attractive and repulsive manifolds, basins of attraction) of the
single-element phase space in the proximity of the asymptotic solution. The coupling among the elements then let
these different processes interact so that the probability for one individual system to be mapped into a particular
region of its phase space is larger if many other individuals are mapped into similar regions. By averaging over the
whole population, the emergent collective dynamics will be mainly determined by how the phase space is structured
and, thus, by the global features of the single-element dynamics.

Between the two cases shown inFig. 1, a series of other macroscopic regimes is observed, ranging from (one or
two-band) chaos to cycles of different periods. This can be summarized in the bifurcation diagram of the mean-field
shown inFig. 2(a). (For even higher noise intensities, divergences occur if the single-element map is defined in
an interval, as is the case of the logistic map considered here. For unbounded noise distributions, one should in
principle consider maps of an unbounded variable.)

In spite of its resemblance with the bifurcation diagram of a single element, it is important to remember that
the macroscopic transitions observed inFig. 2(a) are directly caused by the presence of noise, while the population
parameters are left unchanged. Nonetheless, this macroscopic bifurcation diagram suggests that a low-dimensional
map might exist, whose bifurcations reproduce the qualitative changes of the mean-field dynamics. Section3 is
dedicated to the derivation of such an effective dynamical system. Note further that the observed macroscopic
bifurcations are similar to those observed for globally coupled maps with stochastic updating[25], where the
uncertainty on the mean field that every element experiences is given by the nature of the updating rather than by
an explicit noise term, and for coupled map lattices[20,21,19], where the fluctuation of the local field are due to
the existence of a finite correlation length.
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Fig. 2. Globally coupled logistic maps (a = 1.57) with additive uniform noise. (a) Bifurcation diagram of the mean-field asσ2 is varied at
maximal couplingK = 1. (b) Phase diagram in the (K, σ2) plane, indicating the first bifurcation lines of the period-doubling cascade (dots: full
system, lines: the reduced system to the second degree Eq.(8)).

The microscopic and statistical features of these noise-induced regimes are revealed by looking at three kinds
of probability density functions (pdfs): (i) the population (or snapshot) pdf, relative to the values assumed by the
individual maps at a specific time, (ii) the individual pdf and (iii) the mean-field pdf, computed over a large time
interval for one map of the population and for the mean field, respectively. In the regime of perfect synchronization,
the snapshot pdf is a delta peak centered on the value of the mean field, while the two time-averaged pdfs coincide and
give the probability measure of the single-element chaotic attractor. When noise is increased, the pdfs are in general
modified in a nontrivial manner by the interplay of noise, that tends to blur the individual dynamics and broaden both
the population and the individual pdfs, and coupling, that maintains a degree of coherence within the population.
As a first example, we consider the case where the coupling is maximal and the mean-field displays a period-two
cycle, as inFig. 1(b). It is easily seen from Eq.(1) that in this limit case the population is distributed exactly like the
stochastic term. Accordingly,Fig. 3(a) shows that the population of logistic maps previously considered is at any
time step uniformly distributed around the mean field (not shown). This is also reflected in the individual pdf if this
is computed at even and odd times separately (Fig. 3(b)). The fact that the individual pdf is slightly broader than the
instantaneous pdf and that the mean field pdf is not exactly concentrated on the values taken during the deterministic
motion is a consequence of finite size effects. These effects introduce fluctuations that vanish forN → ∞.

Let us now consider the case in which the coupling is not maximal, but still strong enough to ensure perfect
synchronization in the absence of noise. For the population considered here,K = 0.4 is right above the region
where two-cluster dynamics occurs. Again, an increase in the noise intensity leads to a seemingly low-dimensional
bifurcation diagram. The amount of noise necessary to let the system reach a periodic regime becomes smaller as
the coupling strength is decreased. IfK is sufficiently weak, a folded structure becomes visible in the first return
map of the mean-field, indicating that the macroscopic dynamics is actually embedded in a space of dimension
greater than one. The microscopic signature of the system is also significantly changed for intermediate coupling
strengths. If we considerK = 0.4 andσ2 = 0.015, where the mean field displays a period-2 cycle, like in the case
of maximal coupling discussed above, we notice immediately that the correspondence between the instantaneous
pdf and the noise distribution is lost (Fig. 3 (c)). The individual pdfs for odd/even times (Fig. 3 (d)) still reflect
the instantaneous pdf and the mean-field pdf is peaked around the values assumed during the cycle. If the noise
intensity is also reduced, so that both the coupling and the noise intensity are sufficiently weak, the possibility
of inferring the individual pdf from the instantaneous distribution is lost. Forσ2 = 0.003, indeed, the mean field
displays two-band chaos.Fig. 3(e) shows that the population distribution changes in time depending on the actual
position of the mean field on the macroscopic attractor. The individual pdfs for odd/even times (Fig. 3 (f)) still
allow us to recognize a periodicity in the motion, due to the presence of two bands, while the mean field pdf
corresponds to the probability measure of the macroscopic attractor.
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Fig. 3. Snapshot pdfs for two (a,c) and five (e) successive time steps and mean field and individual pdfs at even (dashed line) and odd (continuous
line) times (b,d,f) for the population ofFig. 1: (a–b) Maximal couplingK = 1 and noise varianceσ2 = 0.016. (c–d) intermediate couplingK = 0.4
and noise intensityσ2 = 0.015. The mean field displays a period-two cycle, as in (a–b): The interplay between coupling and nonlinearity of
the single-element dynamics leads to a nontrivial reshaping of the invidual pdf, that no longer reflects the shape of the noise distribution. (e–f)
intermediate couplingK = 0.4 and noise intensityσ2 = 0.003.

The phase diagram of our system in the (K, σ2) parameter plane is summarized inFig. 2(b). For sufficiently
large noise intensity and coupling strength, the macroscopic dynamics is cyclic and of period two. By decreasing
the noise intensity or increasing the coupling (for sufficiently low noise) the macroscopic dynamics undergoes a
period-doubling bifurcation cascade, leading to regimes of collective chaos. For coupling strength weaker than those
displayed inFig. 2(b), the system shows clustering and multistability. Moving towards the limit of the synchronous
(noiseless) regime, the population pdf becomes bimodal or multimodal and its moments take values significantly
larger than those of the noise distribution. This transition to clustered solutions, where the population is divided
into subgroups placed at finite distance, is related to the anomalous scaling properties reported by Teramae and
Kuramoto, see Section4. We note finally that these findings are in agreement with those of Shibata, Chawanya
and Kaneko[35] who observed that very weak noise is sufficient to drastically reduce the dimensionality of the
macroscopic dynamics at weak coupling.

3. Order parameter expansion

In this section we present our order parameter expansion and its truncation to finite-dimensional systems. The
method is formally analogous to that formulated in our recent publications[8,10] for populations with parameter
mismatch, but relies on different closure assumptions based on the different microscopic properties of the noisy
system. These differences and their implications will be discussed in Section5. We only present here the main ideas
behind our derivation and refer the reader toAppendix Afor details.

The iterate of the mean-field can be formally computed by averaging the individual dynamics Eq.(1) and by
performing the change of variables:xj = X + εj. In this way, the dynamics of the oscillators around the mean-field
is decoupled from the deterministic behaviour of their average. By expanding in series the single-element mapf
around the mean-field, one obtains:

X �→ 〈f (x)〉 = f (X) +
∞∑

q=1

1

q!
Dqf (X)〈εq〉 + 〈ξ〉 (2)
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whereDpf is thep-th derivative of the single-element dynamics, and the last term, reflecting finite-size fluctuations,
vanishes in the infinite-size limit for zero-mean noise distributions. Note thatX is coupled to other macroscopic
variables, namely to the moments of the population instantaneous pdf, defined by:

�q := 〈εq〉 q ∈ N. (3)

From now on we will refer to these macroscopic observables asorder parameters. This is not only to avoid
confusion with the noise distribution moments, but also to stress that these are the degrees of freedom relevant
for a macroscopic description. Moreover, as will be shown in Section5, in the more general case in which the
elements are not identical, the same expansion leads to order parameters that do not coincide with the moments of
the population pdf.

The iterates of the order parameters can be computed by following the same scheme of variable change and
averaging the iterates of the displacementsεj, obtained after a Taylor expansion of the individual maps. This yields:

�q �→
q∑

i=0

(
q

i

)
(1 − K)i

〈
(ξ − 〈ξ〉)q−i


 ∞∑

p=1

1

p!
Dpf (X)(εp − �p)




i〉
.

Observing that, as a consequence of the fact that the displacementsεj and the noise are uncorrelated variables,
〈h(X, ε)ξq〉 = 〈h(X, ε)〉〈(ξ − 〈ξ〉)q〉, and taking the limitN → ∞, the equations for the order parameters become:

�q �→ mq +
q∑

i=1

(
q

i

)
(1 − K)i mq−i

〈 ∞∑
p=1

1

p!
Dpf (X)(εp − �p)




i〉
,

wheremq = 〈(ξ − 〈ξ〉)q〉 is theq-th moment of the noise distribution.
Such equations compose an infinite-dimensional dynamical system describing the evolution of all order param-

eters, formally equivalent, in the infinite-size limit, to the original system. The dependence of these equations on
powers of (1− K) allows us to truncate them in the region of strong coupling. We call such a truncation to then-th
power in (1− K) the reduced system of n-th degree. In Appendix Awe demonstrate that for any polynomial map
of degreeP the reduced system atn-th degree is a map withn independent variables (the mean fieldXand the order
parameters form the second to then-th) and (n − 1)P slaved variables (the order parameters from numbern + 1 to
numbern P). The remaining order parameters are constantly equal to the moments of the noise distribution. The
reduced system to then-th degree can thus be cast in the form:




X �→ f (X) +
n∑

q=2

Aq(X)�q

�q �→ mq +
q∑

i=1

(
q

i

)
(1 − K)i mq−i �i(X, �2, . . . �n) q = 2, . . . n

(4)

where the functionsAq and�i of the mean-field and of the order parameters relevant to the chosen approximation
level contain the first 2P moments of the noise distribution as population-level parameters. As illustrated inAppendix
A, such expressions can be systematically derived in two steps: first, one writes the order parameters�n+1 . . . �nP

as linear combinations of�2 . . . �n, then these are plugged into Eq.(2) and into the firstn terms of Eq.(4).
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As a first example, consider the reduced system of zeroth degree:

X �→ f (X) +
∞∑

q=1

1

q!
Dqf (X) mq. (5)

This scalar map accounts exactly for the macroscopic dynamics when the coupling is maximal (see, e.g.Fig. 2)
and provides a first approximation for the dynamics at very strong coupling.

Eq.(5)naturally contains the interplay between nonlinearities of the uncoupled map, represented by the derivatives
of the single-element dynamics, and the features of the noise distribution, given by its moments. In particular, it
allows us to infer that, if the single-element dynamics is polynomial, only a finite number of the noise distribution
momentsmq will influence the macroscopic dynamics. This induces a relation of equivalence onto the space of the
distributions for the stochastic term. These distributions can thus be divided into classes on the bases of their effect
on the mean-field.

Being independent ofK, the reduced system to zeroth degree obviously cannot describe the change in the
bifurcation values when the coupling is lowered, and higher degree truncations need to be considered. With zero-
average symmetric noise distributions (such as envisaged here), only even-degree order parameters come into play.

The reduced system to the second degree is the first truncation that displays an explicit dependence on the coupling
constantK. Such a truncation differs from the Gaussian approximation of the population pdf, commonly used for
closing cumulant expansions[47], by which the population pdf is approximated as being completely characterized
by its first two moments. Our closure assumptions are instead based on the strength of the coupling and take into
account also for cases in which neither the noise distribution nor the snapshot pdfs are Gaussian. However, in the
truncations at lowest degree, the equations obtained with the two different assumptions may coincide.

In order to compute the two-dimensional reduced system, we exploit the recurrence relation for the order pa-
rameters:

�q+2 = mq+2 − (q + 2)(q + 1)

q(q − 1)

mq

mq−2
(mq − �q)

that can be derived from Eq.(A.1). This allows us to express every order parameter as a function of�2 through the
computation of a telescopic sum, that yields:

�q = mq − q(q − 1)

2
mq−2(σ2 − �2). (6)

One of the consequences of the last equation is that all the odd order parameters are given by the corresponding
moments of the noise distribution.

Eq.(4) can be rewritten, expliciting the squared term, as:

�q �→ mq + q(q − 1)

2
(1 − K)2mq−2

∞∑
p,r=1

1

p! r!
[Dp f (X)][Dr f (X)]�p+r

− q(q − 1)

2
(1 − K)2mq−2


 ∞∑

p=1

1

p!
Dp f (X)�p




2

.

Substituting in this last equation the recurrence Eq.(6), one gets the two-dimensional reduced system:{
X �→ f (X) + α0(X) + α1(X)�2

�2 �→ σ2 + (1 − K)2[γ0(X) + γ1(X)�2 + γ2(X)�2
2].

(7)
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The nonlinear dependence from the mean field is contained into the coefficients:

α0(X) =
∞∑

q=2

1

q!
Dqf (X)

[
mq −

(
q

2

)
mq−2σ

2

]

α1(X) = 1
2

∞∑
q=2

1

(q − 2)!
Dqf (X)mq−2

γ0(X) = −[α0(x)]2 + β0(X) − β1(X)σ2

γ1(X) = β1(X) − 2α0(X) α1(X)

γ2(X) = −[α1(X)]2,

with:

β0(X) =
∞∑

q,p=1

mq+p

q!p!
[Dq f (X)][Dp f (X)]

β1(X) =
∞∑

q,p=1

mq+p−2

q!p!

(
q + 2

2

)
[Dq f (X)][Dq f (X)]

These terms originate according to the nonlinearities of the single-element dynamics and to the moments of
the noise distribution. Iff is a polynomial of degreeP, the highest moment of the noise distribution that occurs as
a population-level parameter ism2P , while the moments of higher orders are unimportant to this approximation
level.

The reduced systems obtained by successive approximations of the order parameter expansion provide the link
between the microscopic properties of the population and the mean field dynamics. In the following section, we
only consider truncations up to the fourth degree for quadratic maps, but an algorithm can easily be implemented
for computing the reduced system atn-th degree for an arbitrary polynomial map.

The formalism introduced here allows us to conclude that the higher the nonlinearity of the single-element
dynamics is, the stronger the noise intensity must be to observe its effect on the macroscopic dynamics. A second
important conclusion that can be drawn from the order parameter expansion is that the microscopic map determines
which of the noise distribution moments the mean field behaviour is sensitive to. These two facts suggest that even
if only averaged observables are accessible, information about the features of the single-element dynamics can be
inferred from purely macroscopic measurements.

4. Macroscopic bifurcation diagram and anomalous fluctuations

In this section we show that the reduced systems are able to capture the main properties of the collective dynamics.
In fact, as will be reported elsewhere, the quality of the agreement goes well beyond these main properties, and the
reduced systems account, as their degree is increased, for finer and finer features of the collective dynamics.

Fig. 2(b) displays the bifurcation lines of the reduced system of second degree for the population of logistic maps
considered in the previous section. In this case Eq.(7) is the two-dimensional map:{

X �→ 1 − aX2 − a�2

�2 �→ σ2 + (1 − K)2a2[m4 − 6σ4 + (4X2 − �2 + 6σ2)�2]
(8)
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The dependence of the reduced system on the variance and kurtosis of the noise distribution, as well as on
the coupling strength, is seen to reflect the qualitative changes in collective behaviour that are observed for the
population.

For low coupling intensities, that is approaching the region where the synchronous regime becomes unstable for
the noiseless maps, the agreement between the reduced and the full system deteriorates up to the point where the
solutions of Eq.(8) diverge. One then needs to consider higher-degree truncations, which indeed, account better for
the actual dynamics. For the large-coupling region shown inFig. 2(b), however, the improvement is hardly visible
and the second-degree reduced system provides a satisfactory description of the collective dynamics.

Strikingly, the quality of the second-degree reduced system is such that this simple two-dimensional map also
accounts for the onset of the anomalous scaling properties uncovered by Teramae and Kuramoto[39]. In Fig. 4(a) we
first show that anomalous scaling is observed for globally coupled noisy logistic maps, in agreement with the claims
of universality made by these authors. Note, though, that anomalous scaling is only observed over afinite range
of noise strengths: the anomalous behaviour sets in for sufficiently large, although weak, noise, and disappears
for noise fluctuations of order one, i.e. of the order of the size of the attractor. We interpret thenormal scaling
observed at very weak noise as being due to the fact that the individual pdf is maintained below the critical scale
that separates microscopic from macroscopic chaos, as defined by Cencini et al. in[3]. Below this scale, noise
does not alter the structure of the macroscopic phase space, so that normal scaling is observed. When the cloud
of points becomes large enough to cause, for instance, the connection of two neighboring folds of the noiseless
system invariant manifolds, the mean-field attractor undergoes a macroscopic bifurcation. We trace the origin of

Fig. 4. Anomalous scaling in populations of globally-coupled noisy logistic maps. (a) variance of the individual pdf vs. noise strength. From top
to bottom curve:K = 0.3, 0.31, 0.315, 0.32, 0.33, 0.35 and 0.4 (population of about 218 maps). For the smallest coupling, the second moment
tends to a constant value, an indication of the existence of clustered solutions. (b) Ratio between the second moment of the snapshot distribution
and the noise distribution varianceσ2 (from top to bottomK = 0.32,0.34,0.36,0.38,0.4,0.42 and 0.46). These data have been obtained by direct
simulation of the Perron-Frobenius operator; (c) same as (b) but from simulations of Eq.(8) (from top to bottomK = 0.34, 0.36, 0.38, 0.4, 0.42
and 0.46). For too low coupling (e.g.K = 0.32) the reduced system diverges.
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anomalous scaling back to such macroscopic (albeit possibly infinitesimally small) noise-induced changes which
are typically accompanied by intermittent behavior. As already mentioned, the reduced system to second degree is
sufficient to explain the appearance of anomalous fluctuations in the second moment of the individual pdf, i.e. the
order parameter�2. In Fig. 4(b,c), we compare the full and the reduced system by plotting the ratio between the
second moment of the instantaneous distribution for the population andσ2, the variance of the noise. The agreement
is quantitative, and improves in the region of low coupling when the reduced system to fourth degree is considered
(not shown). It is not clear whether our finite-dimensional reductions of the full infinite-dimensional system are
able to exhibit anomalousscaling; indeed the region where scaling is observed over many decades is limited to the
proximity of the transition to clustering/loss of full synchrony, where our low-degree approximations fail.

5. Collective dynamics of populations with different kinds of microscopic disorder

Parameter mismatch and noise are often viewed as two fundamental ways of representing microscopic disorder.
In the first case, the mismatch within the population is traced back to the existence of a time-independent distribution
in the properties of single-elements. In the second case, the difference among individuals is due to some dynamical
processes that cannot be described at the chosen observation level and are generically described by noise terms. The
persistence of the main features of the population dynamics after the introduction of a small amount of individual
diversity and/or noise is usually regarded as a proof of the robustness of a phenomenon and, consequently, of its
relevance in the description of real-world systems. Here, we propose to use the order parameter expansion approach
to perform a systematic comparison between the effects of these two sources of disorder. The reduced system
for noisy maps derived in Section3 is compared to that obtained, under different closure assumptions[8,10], for
populations with parameter mismatch. To this aim, we draw the microscopic disorder according to the same assigned
distribution in both cases.

The equations describing populations with parameter mismatch have the same form as those with additive noise
Eq.(1):

xj �→ (1 − K)f (xj) + K 〈f (x)〉 + pj j = 1, . . . N, (9)

but the additive termpj ∈ R is now assigned once and for all. According to the choice we made for the case of noisy
maps, we consider a uniform disorder distribution with meanp0 = 0, varianceσ2 and kurtosism4. The parameters
pj will be taken equally spaced on the support of such a distribution in order to let the bifurcation diagram be
insensitive to the fluctuations related to a resampling.

To obtain the equations governing the mean field evolution, we apply again an order parameter expansion by
averaging Eq.(1) and by performing the change of variablesεj = xj − X. Analogously to what was done in the
more general case of a dependence off on the distributed parameter[10], the expansion can be closed under
the assumption that the collective dynamics is coherent. The coherency condition‖xj − X‖ � 1 states that the
population dynamics keeps all the individuals within a small neighborhood of the mean field state. This assumption
allows us to neglect terms of degree larger than one inεj, independently of the population size.

The reduced system for parameter mismatch has the form:


X �→ f (X) + 1
2[dxf (X)]2 �2

W �→ σ2 + (1 − K) dxf (X)W

�2 �→ σ2 + 2 (1− K)dxf (X)W + (1 − K)2
{
[dxf (X)]2 �2 + 1

4[dxxf (X)]2(m4 − �2
2)
}

.

(10)

Hence, the mean field is coupled to the second moment of the snapshot distribution�2 = 〈ε2
j〉, which is, in turn,

influenced by the “shape” order parameterW = 〈pj εj〉 [10]. As for the reduced system Eq.(8), obtained in the
case of noise, the population-level parameters that naturally emerge in the expansion as macroscopically relevant
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Fig. 5. Period-doubling bifurcation lines for the population of noisy maps studied in Section2 (full system, dots and reduced system to the
second degree Eq.(8), dotted lines) and for Eq.(9) (population ofN = 64 logistic maps, squares and reduced system Eq.(11), dashed lines).
The bifurcation parameters are the variance of the parameter or noise distributionσ2 and the coupling strengthK. In the top-right region of the
diagram the mean field is stationary for both forms of disorder, while for still largerσ2 the macroscopic dynamics diverges.

are the coupling strengthK and the moments, namely the varianceσ2 and fourth momentm4, of the parameter
distribution.

In the case of logistic mapsf (x) = 1 − ax2 the reduced system to second order Eq.(10) is:


X �→ 1 − aX2 − 2a�2

W �→ σ2 − 2a(1 − K)XW

�2 �→ σ2 − 4a(1 − K)XW + a2(1 − K)2[m4 + (4X2 − �2)�2]

. (11)

For maximal coupling, this description converges to the same scalar equation as obtained for noisy populations.
In this limit, the shape parameter and the population variance become uncoupled and coincide. From a microscopic
point of view, this corresponds to the fact that the snapshot pdf forK = 1 in both cases equals the distribution of
disorder, that is solidly displaced with the mean field motion (hence,Fig. 3a and b provide a microscopic picture
valid for both sources of disorder). The only difference is that in the case of parameter mismatch the oscillators
maintain the order of their arrangement, while in the case of noise they randomly exchange their positions at each
time step. A straightforward consequence of this is that even if the macroscopic dynamics is indistinguishable
for infinite population size, in the case of noise it depends essentially on the number of elements composing the
population, while this dependence is much weaker for parameter diversity. In the following, we discuss why this
difference exists for every value of the coupling.

When the coupling is less than maximal, on the other hand, we expect to observe differences in the macroscopic
regimes induced by parameter mismatch and noise. These differences can be visualized by plotting in the plane
(σ2, K) the period doubling bifurcation lines for the mean field motion (Fig. 5). While for weaker couplings a low
intensity of noise is sufficient to drive the system out of the chaotic region, the opposite happens if the microscopic
disorder is due to a diversity in the parameters. Indeed, in this case the region where the mean field displays
chaotic behaviour becomes larger for smallerK. This property of the macroscopic dynamics is captured by the
reduced system Eq.(10), whose bifurcation lines provide a good quantitative approximation of those determined
by numerically simulating the population.

As mentioned above, another important difference between the two sources of microscopic disorder is the
dependence of the collective dynamics on the population size. This is captured by the difference in the condition of
validity of the reduced systems that describe the macroscopic dynamics. As pointed out in Section3, the derivation
of Eq.(4) is based on the assumption that the population is infinitely large, while the mean field of finite populations
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Fig. 6. Snapshot pdfs (at two successive time steps) (a–b) and mean field and individual pdfs (c–d) for a macroscopic period-two regime in
populations of logistic maps with (a–c) parameter mismatch (σ2 = 0.6, K = 0.9) and (b–d) additive noise (σ2 = 0.4, K = 0.7).

undergoes fluctuations that scale as 1/
√

N. On the other hand, Eq.(4) has been derived without making any
assumption on the system size, but rather under the hypothesis that the collective regimes are coherent. Hence,
in the case of parameter mismatch the system size is expected to play a minor role for the qualitative features of
the macroscopic dynamics. The weak dependence on the system size of the mean field behaviour for populations
with parameter mismatch is confirmed by the numerical simulations and can be understood by looking at the
characteristics of the snapshot distribution.Fig. 6 (a) and (b) display the instantaneous pdfs for the populations
with parameter mismatch and additive noise in regimes where the mean field has a period-two attractor. If the
disorder is due to parameter mismatch, the shape of the instantaneous pdf is little affected by the number of points
that identify its profile, along which the oscillators maintain their ordered configuration. If noise is present, on the
other hand, reducing the population size alters the shape of the instantaneous pdf at every time step, broadening it
with respect to the infinite-size limit distribution, and, hence, affecting the mean field dynamics in an unpredictable
way.

Another conclusion that can be drawn by looking atFig. 6 (a) and (b) is that the snapshot distribution reflects
the source of microscopic diversity that underlies collective behaviour. Thus, given a certain mean-field dynamics
one should be able, in principle, to identify the character of the microscopic disorder by looking at the statistical
properties of the instantaneous distribution. This is even more evident if we compare the individual pdfs, obtained
from the time series of an individual map within the populations with different nature of microscopic disorder.Fig.
6 (c) and (d) illustrate this in the case when the two populations possess qualitatively similar macroscopic regimes,
that is they are both periodic of period two. Correspondingly, the mean field pdf consists in two Dirac delta functions
centered on the values assumed by the cycle. Although the two populations cannot be distinguished at a macroscopic
level, the difference is evident if one considers the individual pdfs. In the case of parameter mismatch, the probability
distribution of an individual time series is identical to the mean field pdf, but centered on shifted values. This is
a consequence of the fact that one oscillator in the population maintains its position relative to the population
average. When the disorder is due to noise, on the other hand, the individual pdf is broad, since the trajectory of
one individual within the population is blurred by the stochastic term. Having access to a macroscopic-level and a
microscopic-level observable, such as the time series of the average and of one element within the population, these
differences can be used to identify the kind of disorder that is the main determinant of the emergent population
dynamics.
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6. Discussion

In this paper, we have described the transition from full synchronization to disorder-induced collective
dynamics in large populations of globally coupled maps, a prototype for the study of systems with many
degrees of freedom. The influence of microscopic variability on the macroscopically accessible degrees of
freedom is particularly relevant in modeling biological populations and in the interpretation of experimental re-
sults.

Here we have mostly treated the case of additive noise, and focused on its influence on the collective dynamics,
a viewpoint complementary to that adopted by Teramae and Kuramoto[39]. We argued that noise induces changes
in the macroscopic dynamics which are probably at the origin of the anomalous scaling properties reported by
these authors.

We have presented the systematic derivation of finite-dimensional reduced systems which were showed to
account quantitatively and with increasing accuracy for the collective dynamics of the full system. The reduced
systems link the dynamics of the mean-field to microscopic properties of the population, such as the single-element
dynamics parameters and the moments of the noise distribution. Remarkably, the reduced systems were shown to
exhibit anomalous scaling themselves. We believe this is because both the full and the reduced system share the
folded, fractal phase-space structure at the origin of the macroscopic bifurcations leading to anomalous scaling. This
conjecture should be addressed in the future, in an effort to link the scaling properties of the collective dynamics
attractors to the anomalous scaling of the population distribution.

Finally, we addressed the effects on the collective dynamics of strongly coupled maps of different sources
of microscopic disorder. The results obtained on the noise-induced mean-field bifurcations have been compared
to those obtained when the noise is “quenched”, that is when there is a parameter mismatch within the pop-
ulation. Even though in both cases the macroscopic dynamics is qualitatively modified as the disorder is in-
creased, these changes differ in general depending on the origin of the microscopic disorder and we argued that
this can be used in the interpretation of experimental data, even when only macroscopic observables are accessi-
ble.

The analytical approach presented in this paper allows us to derive in a systematic manner macroscopic equations
ruling the effective dynamics of populations of globally and strongly coupled dynamical system. Although here we
only presented results relative to maps, we envisage that a similar approach might be applied to continuous-time
systems.
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Appendix A. Order parameter expansion for noisy maps

From Eq.(4), one can see that, if the map is a polynomial of orderP and the expansion is truncated to then-th
degree in (1− K), then the mean-field is coupled to the order parameters from the second to theP-th. The iterates
of suchn − 1 variables contain order parameters from the second up to thenP-th degree. The dimensionality of
the macroscopic map is hence equal tonP, while the remaining infinite degrees of freedom, of larger degree, are
constantly equal to the moments of the noise distribution.

We now demonstrate that such anP-dimensional truncation can be simplified further and reduced to a system of
n equations independently of the degree of nonlinearity of the single-element dynamics. In order to show this, let
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us define the vector� containing the terms that multiply (1− K)i (i < nP) in the following way:

�1 = 0

�i =
〈[∑P

p=1
1
p!D

pf (X)(εp − �p)
]i〉

i = 2, . . . , nP.

Let us call� = {�1, . . . �nP } the vector collecting the firstnPorder parameters andm the vector composed by
the corresponding moments of the noise distribution. We will show that only the firstn − 1 order parameters are
independent variables in the macroscopic dynamics, while the other elements of the vector� can be expressed as
linear combinations of appropriate functions of the first ones.

The truncation ton-th degree of Eq.(4) can be written as:

� −m �→ C�, (A.1)

whereC is annP × nP matrix whose entries are:



Cq,i =

(
q

i

)
(1 − K)imq−i q = 2, . . . , n P i < min{q, n}

Cq,q = (1 − K)q 2 ≤ q ≤ n

Cq,i = 0 otherwise.

The truncation of the equations for the order parameters have a number of constants of motion equal to the
dimension of ker(C). Hence, it can be reduced by means of a linear transformation to a system whose dimension
equals the rank ofC. It is easy to see thatC has rank smaller or equal ton − 1, since the first column and all the
columns with indexi ∈ {n + 1, . . . n P} have only null entries. Moreover, the rank ofC is exactlyn − 1 since all
then − 1 diagonal elements with indexi ∈ {2, . . . n} are nonzero as long asK < 1.

Hence, then − 1 order parameters of second ton-th degree are independent variables coupled to the mean field, so
that the reduced system is of dimensionn. The order parameters ofn + 1-th tonP-th degree are dependent variables
and their dynamics is slaved to that of the reduced system. Such slaved degrees of freedom can be obtained as linear
combinations of the independent order parameters by projecting Eq.(A.1) onto the null space, and solving a set of
(n − 1)P equations in the same number of variables.
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