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Direct transition to high-dimensional chaos
through a global bifurcation
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PACS. 05.45.Jn – High-dimensional chaos.
PACS. 05.45.Xt – Synchronization; coupled oscillators.

Abstract. – In the present work we report on a genuine route by which a high-dimensional
(with d � 4) chaotic attractor is created directly, i.e., without a low-dimensional chaotic
attractor as an intermediate step. The high-dimensional chaotic set is created in a heteroclinic
global bifurcation that yields an infinite number of unstable tori. The mechanism is illustrated
using a system constructed by coupling three Lorenz oscillators. So, the route presented here
can be considered a prototype for high-dimensional chaotic behavior just as the Lorenz model
is for low-dimensional chaos.

Introduction. – The field of Nonlinear Dynamics has achieved a state of maturity in
the study and characterization of the transitions exhibited by low-dimensional dissipative dy-
namical systems [1]. In particular, transitions to chaotic behavior in these systems appear
to take place through a few well-known routes (or scenarios): the period doubling cascade,
the intermittency route, the routes involving the destruction of quasiperiodic tori or the cri-
sis route (see, e.g., [1–3] for a survey). Another possibility is that chaos appears through a
global connection to a fixed point [4], e.g. Shil’nikov or Lorenz chaos [5]. Characterizing these
scenarios is important because they present universal features, independently of the physical
system involved.

Contrastingly, not many studies have been published about the transitions to chaotic
attractors with dimension d > 3, i.e., high-dimensional chaos. Putting aside routes starting
from a low-dimensional chaotic attractor (for instance, in the transition to hyperchaos where
a second Lyapunov exponent becomes positive [6, 7]), only a few cases have been reported
in the literature. These involve generalizations of low-dimensional routes to chaos through
an extra oscillation: period doubling cascade of a torus [8] (instead of a limit cycle) or a
Lorenz-type homoclinic connection to a limit cycle [9] (instead of a fixed point). In these two
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cases the dimension of the high-dimensional chaotic attractor is (roughly) one unit above the
chaotic attractor arising from the corresponding low-dimensional route. In this framework,
the following relevant question arises: does there exist a bona fide direct transition to H-D
chaos? i.e. a mechanism that cannot be reduced to a low-dimensional route with an extra
oscillation (unlike in [8, 9])?

High-dimensional (d > 3) chaotic attractors live in spaces of large dimension d ≥ 4, and
the existence of routes to (H-D) chaos that cannot be envisaged from low-dimensionality is,
therefore, plausible. Strictly one should be speaking here of intermediate-dimensional rather
than high-dimensional attractors, as often in the literature the dimension is by far larger
than three. For instance, (very) high-dimensional attractors are usually related to the regime
of spatio-temporal chaos in representative nonlinear partial differential equations (like the
Kuramoto-Sivashinsky equation [10]). The aspect that marks an important difference here is
that these regimes have been characterized mostly using statistical techniques [11], while here
we are proposing, instead, a geometric analysis, for which the detailed study of phase spaces
of dimension, say, 4 and 5 is already quite a challenge. So, in this sense we present the first
example of a genuine route to H-D chaos, allowed by the high enough dimensionality of the
embedding space.

System and overall picture. – The model studied here consists of three Lorenz oscilla-
tors [5, 12] coupled unidirectionally. The evolution equations (an autonomous 9-dimensional
dynamical system) read:

ẋj = σ(yj − xj)
ẏj = R xj − yj − xj zj

żj = xj yj − b zj


 j = 1, . . . , N = 3 , (1)

where xj = xj−1 for j �= 1, introduces the coupling and periodic boundary conditions are
used: x1 = x3.

The study of (1) has been suggested by the results of the experiment with three cou-
pled Lorenz oscillators modeled by electronic circuits [13, 14]. By increasing R, synchronized
chaos among the three oscillators gives rise to high-dimensional chaos (a Chaotic Rotating
Wave, CRW [14,15]) and, finally, quasiperiodic and periodic behaviors. Here we focus on the
transition between “order” and H-D chaos, obtained when R is decreased.

A high-frequency periodic component (a rotating wave into the ring) is present along
the route. Hence, to reduce the dimensionality of the problem, most of our presentation
is based on an appropriate Poincaré section: Im(X1) = 0, Im(Ẋ1) > 0 (we use the dis-
crete Fourier modes, suggested by the circulant symmetry of the system, defined as Xk =
1/N

∑
xj exp[2πi(j − 1)k/N ]; analogously for y and z coordinates). Figure 1 depicts the co-

ordinates X0 of the intersections of the trajectories into the different attractors. For large R,
the system exhibits a Periodic Rotating Wave (PRW) [13, 14, 16], which is a periodic motion
with 2π/3 phase difference between adjacent oscillators. This state exhibits a pitchfork bi-
furcation at Rpitch ≈ 39.25, in which the single PRW attractor leads to two twin asymmetric
PRW attractors. By further decreasing R, the system exhibits two consecutive Hopf bifurca-
tions at Rh1 ≈ 35.26 and Rh2 ≈ 35.0955 giving rise to two stable symmetry related 3D tori [17].
The robust existence of T

3 attractors as well as the absence of appreciable frequency lockings
in the T

2 attractors stems from: 1) The disparity of the frequencies, such that resonances
correspond to rationals with large denominators (and therefore narrow Arnol’d tongues [18]);
2) The cyclic symmetry of the system: the absence of lockings is a general feature of modu-
lated rotating waves (like our T

2) in systems with rotational symmetry [19], so although this
result only holds exactly in the continuum limit, one expects some inhibition of the lockings.
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Fig. 1 – Bifurcation diagram representing the X0 coordinates of the intersection with the Poincaré
section (see text) as a function of the parameter R. The logarithmic scale has been adopted in the x-
axis to better resolve attractors existing in quite different ranges. Parameters in eq. (1): σ = 20, b = 3.

The H-D chaotic attractor appears at Rbc ≈ 35.09384, and as may be seen in fig. 1 the
dynamics recovers the reflection symmetry lost in the pitchfork bifurcation. The dimension
of the chaotic attractor can be estimated by means of a direct calculation of the correlation
dimension [20] that yields D2 = 3.96 ± 0.05, for R = 35.05. Therefore, we must envisage a
route that is able to create a chaotic attractor with dimension around four. Taking this into
account, we list some evidences that allowed us to understand the mechanisms involved in the
creation of the H-D chaotic attractor:

1) We observe that the average chaotic transient diverges at Rbc. The divergence follows
a power law, typical for boundary crises [21], that convert chaotic attractors into chaotic
transients: 〈τ〉 ∼ (R − Rbc)γ , γ = −1.53± 0.06.

2) The T
3 attractors disappear at twin saddle-node bifurcations [22] at Rsn ≈ 35.09367.

Therefore, as Rsn < Rbc, there exists a small range of coexistence between the 3D tori and
the H-D chaotic attractor. Then, we conclude that the T

3 attractors are not involved in the
birth of the chaotic attractor.

3) A value Rexpl ≈ 35.11 is found to define a transition below which there are chaotic
transients (in which, for some initial conditions, the trajectory approaches both T

2 attractors,
in a non-periodic manner, before being eventually attracted by one of them). We observed
that this point coincides (at least approximately) with a reordering of the unstable manifolds
of the PRWs.

Theoretical analysis. – These evidences lead us to conclude that the transition from
periodic to chaotic behavior occurs following the set of bifurcations shown in fig. 2. It includes
the creation of the H-D chaotic set in a “heteroclinic explosion” followed by its conversion
into an attractor through a boundary crisis.
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Fig. 2 – Diagram representing schematically the transitions from synchronized chaos (left) to a PRW
(right).

Figure 3 illustrates geometrically the route to H-D chaos (note that we consider a Poincaré
section that reduces the dimensions of all the attractors by one): the centered PRW (a)
becomes unstable through a pitchfork bifurcation (a→b) and two symmetry-related PRWs
appear (b). At a supercritical Hopf bifurcation (b→c) the 2D tori appear. When R is fur-
ther decreased the 2D tori become focus-type, and, as a result, the unstable manifold of the
asymmetric PRW forms a “whirlpool” [23] when approaching the T

2 (d). At Rexpl a double
heteroclinic connection between the asymmetric PRWs and the symmetric one occurs (e). At
this point the chaotic set, with a dense set of unstable 3D tori, and thus a dimension above 4, is
created. In (f) the two simplest unstable 3D tori are represented with dotted lines; because of
the heteroclinic birth one of the frequencies of these tori is very small (formally zero at Rexpl).
Notice that the plot shows several forbidden intersections of manifolds that are unavoidable
because of the projection onto R

3 (analogous “visual” effect occurs when the Lorenz system
is projected onto R

2, x -z plane). Twin secondary Hopf bifurcations (f→g) render unstable

a) b) c) d)

e)e) f) g) h)

Fig. 3 – Representation (a Poincaré section projected on R
3) of the proposed heteroclinic route

to create the high-dimensional chaotic attractor. Black and gray points correspond to stable and
unstable fixed points (cycles in the global phase space), respectively.
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Fig. 4 – The four largest Lyapunov exponents (λi=1−4) as a function of R. Four regions can be
distinguished according to their spectra. Note that in the chaotic region we obtain λ2 � λ3 � 0 and
λ1 � |λ4| which implies, according to the Kaplan-Yorke conjecture, an information dimension D1 � 4.

the 2D tori and give rise to two stable 3D tori (g). For smaller R, the unstable manifolds of
the asymmetric PRWs do not connect to the stable 3D tori (h), and the chaotic set becomes
attracting. This last step (g→h) is analogous to the boundary crisis occurring in the Lorenz
system [21]. Finally, it is to be stressed that the reflection symmetry plays a fundamental role;
whereas the existence of stable T

3 is not needed (focus-type T
2 suffice to induce whirlpools

that finally become 2D heteroclinic connections, Fig. 3(d,e)).

Lyapunov spectrum. – Let us see now how the route shown above relates to the Lyapunov
spectrum. Figure 4 shows the leading Lyapunov exponents (LEs) in the transition from pe-
riodic behavior to chaos. Please, notice that a similar Lyapunov spectrum has been obtained
considering N = 4 and a more general coupling (cf. fig. 5(a) in [8]). In the chaotic region only
one exponent is positive whereas two vanish and one of the negative LEs is close to zero. It is re-
markable that λ1 � |λ4|, which implies D1 � 4, according to the Kaplan-Yorke conjecture [24].

Also, the fifth to ninth (non-leading) LEs for the chaotic attractor and the twin 3D tori
are very similar (see table I) which suggests that the 3D tori and the H-D chaotic attractor
“live” in the same four-dimensional subspace (as we have implicitly assumed above). And
thus, thinking in terms of some kind of generalization of the Birman-Williams theorem [26],

Table I – The five smallest Lyapunov exponents for both, chaotic (CRW) and three-frequency
quasiperiodic (T3), attractors coexisting at R = 35.0938.

λi(CRW) λi(T
3)

λ5 = λ6 −5.255 −5.203
λ7 = λ8 −18.612 −18.652

λ9 −24.273 −24.290



D. Pazó et al.: Direct transition to high-dimensional chaos etc. 181

the template of the chaotic attractor can be visualized as a 4D branched manifold. In the
same way, the (butterfly) Lorenz attractor may be understood as a two-dimensional branched
manifold, with a “tear point” at the origin [27].

Further remarks and conclusions. – Some further comments are in order with respect
to the relation between the LEs and the geometric sketch depicted in Fig. 3. It shows a
mechanism, through heteroclinic connections, to create a chaotic attractor containing an in-
finity of unstable tori (UT) —recall that only the two simplest ones are drawn— instead of
unstable periodic orbits (UPOs). If, as it occurs in our system, there is an additional fre-
quency, 3D-UT are created instead. In consequence, there are three neutral directions and
the chaotic attractor should have three null LEs. Figure 4 shows instead two vanishing and
one slightly negative LEs. This shift is a consequence of the fact that a generic perturbation
on the mechanism shown in fig. 3 will destroy its symmetry (and consequently its simplicity).
In analogy to previous works [28, 29] dealing with the effect of non-symmetric terms on the
normal form of codimension-two points, we expect (generic) homoclinic connections to replace
heteroclinic connections. A double (“figure-eight”) homoclinic to the symmetric PRW as well
as homoclinic connections to the asymmetric PRWs will occur [30] Consequently, in the per-
turbed scenario an infinity of UT (instead of 3D-UT) are created. This explains the absence
of a third vanishing Lyapunov exponent. But it is important to emphasize that as long as the
exact mechanism is closely related to the one shown in fig. 3, the largest negative LE is close
enough to zero (|λ4| < λ1) to get an information dimension above four.

In this letter, we have reported the creation of a high-dimensional chaotic (but not hyper-
chaotic) attractor without intermediate low-dimensional chaos. The structure of the global
bifurcations, underlying this route, leads to the emergence of a chaotic attractor with dimen-
sion D1 � 4 (or D1 � 3 if the fast rotating wave present all along the route is considered to
increase trivially the dimension in one unit). A characteristic of the emerging chaotic attractor
is the presence of a very low-frequency component, reminiscent of the heteroclinic birth of the
chaotic set (this may have been observed in fluid convection experiments [32]). We believe
that the knowledge of the direct routes to high-dimensional chaos may lead to a re-thinking
of previous experimental results, as well as to understand and design future experiments.
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