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Chapter 1

Introduction

1.1 Introduction

We present a detailed analysis of the so called Parrondo’s games. They were
originally devised as a pedagogical example of the flashing ratchet, but the re-
lation was merely qualitative. Basically it is based on the combination of two
games, both of them losing games when played alone, whereas if we combine
them either periodically or randomly we obtain a winning game.

In this work we establish a quantitative relation between the parameters
describing Parrondo’s games and the physical model of the Brownian ratchet.
In the following sections of the present Chapter we will introduce some basic
concepts on stochastic processes –Sec. 1.2–, Markov processes –Sec. 1.3–, and
we will also explain some basic concepts about information theory –Sec. 1.5–
that will be used in a next Chapter. We will also present briefly the theory
of Brownian motion and explain in more detail the flashing ratchet as well as
the ratchet effect in Chapter 2; in this Chapter we also explain in detail the
Parrondo’s games, as well as other versions that exist in the literature.

In Chapter 3 a new variation of the games is introduced: Parrondo’s games
with self–transition. Chapter 4 is dedicated to the relation between Par-
rondo’s games and the flashing ratchet model, showing that they can be re-
lated in a rigorous way; in Chapter 5 we will explain the relation between Par-
rondo’s games and information theory. Finally in Chapter 6 we will present
the main conclusions of the work.

1.2 Stochastic processes

Generally we can define a stochastic process as a system that evolves proba-
bilistically in time, or more explicitly, a system where there exists at least one
time–dependent random variable. Denoting this stochastic variable as X(t),
we can measure its actual value x1, x2, x3, . . . at different times t1, t2, t3, . . . and
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so we can obtain the joint probability density of the variable X(t)

P (x1, t1;x2, t2;x3, t3; . . .) (1.1)

which denotes the probability that we measured the value x1 at time t1, value
x2 at time t2,. . ., etc.

Using these probability density functions (PDF) we can also define condi-
tional probability densities through

P (x1, t1;x2, t2; . . . | y1, τ1; y2, τ2; . . .) =
P (x1, t1;x2, t2; . . . ; y1, τ1; y2, τ2; . . .)

P (y1, τ1; y2, τ2; . . .)
, (1.2)

where it’s been assumed that the times are ordered, i.e., t1 ≥ t2 ≥ t3 ≥ . . . ≥
τ1 ≥ τ2 ≥ . . ..

In order to have a stochastic process completely determined, we should
know all possible probability density functions of the kind of Eq. (1.1). For the
kind of processes that are determined solely by such a knowledge, they will
be known as stochastic separable process.

The simplest stochastic process is that of complete independence

P (x1, t1;x2, t2;x3, t3; . . .) =
∏

i

P (xi, ti) (1.3)

which means that the value of X at time t is completely independent of its
values at previous – or posterior – times.

The next step is to consider processes where the future state of the system
depends on its actual state. This kind of processes are known in the literature
as Markov processes.

1.3 Markov processes
This class of processes are characterized by the so called Markov property. A
Markov process can be defined as a stochastic process with the property that
for any set of successive times, i.e. t1 ≥ t2 ≥ t3 ≥ . . . ≥ τ1 ≥ τ2 ≥ . . ., one has

P (x1, t1;x2, t2; . . . | y1, τ1; y2, τ2; . . .) = P (x1, t1;x2, t2; . . . | y1, τ1). (1.4)

This previous statement means that we can define everything in terms of
simple conditional probabilities P (x1, t1 | y1, τ1). For instance, P (x1, t1;x2, t2 |
y1, τ1) = P (x1, t1 | x2, t2; y1, τ1)P (x2, t2 | y1, τ1) and using the Markov property
(1.4) we find

P (x1, t1;x2, t2; y1, τ1) = P (x1, t1 | x2, t2)P (x2, t2 | y1, τ1) (1.5)

and for the general case it can be written
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P (x1, t1;x2, t2;x3, t3; . . . xn, tn) = P (x1, t1 | x2, t2) P (x2, t2 | x3, t3) . . .

. . . P (xn−1, tn−1 | xn, tn) P (xn, tn) (1.6)

provided that t1 ≥ t2 ≥ t3 ≥ . . . ≥ tn.
There are many processes in nature where this property appears. One of

the most studied processes that has been described using this Markov prop-
erty is the Brownian motion, that we present next in more details.

1.3.1 Brownian motion
The botanist Robert Brown discovered in 1827 that small pollen particles sus-
pended in water were found to be in a very animated and irregular motion.
Initially it was supposed to represent some manifestation of life, though af-
ter some studies this option was rejected, as the same behavior was also ob-
served in other fine particles suspension –minerals, glass . . . . The solution
to this mysterious movement had to await a few decades, until a satisfactory
explanation came through the work of Albert Einstein in 1905 [1]. The same
explanation was independently developed by Smoluchowski [2], who was re-
sponsible for much of the later systematic development and for much of the
experimental verification of Brownian motion theory.

Einstein’s work had primarily two main premises:

• The motion of the particles is caused by the exceedingly frequent impacts
on the pollen grain of the incessantly moving molecules of liquid in which
it is suspended.

• The motion of these particles can only be described probabilistically in
terms of frequent and statistical independent impacts, due to the erratic
and irregular (and so complicated) movement that the particles carry
out.

This process is the best known example of Markov process. We have the pic-
ture of a particle that makes random jumps back and forth over a given set
of coordinates, for instance over the X–axis in one dimension. The jumps may
have any length, but the probability for large jumps falls off rapidly. More-
over, the probability is symmetrical in space and independent of the starting
point.

Hence, we can explain in a reduced form the basic steps that Einstein did
in order to derive his Brownian motion theory.

The first point to consider is that each individual particle executes a mo-
tion which is totally uncorrelated from the motion of all other particles; it
will also be considered that the displacement of the same particle, but taken
at different time intervals, are also independent processes – as long as these
time intervals are not taken too small.
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Then a characteristic time interval τ can be introduced, which is small
compared to the observation time intervals, but large enough so that the ap-
proximation of independent successive time intervals τ is correct.

Now we consider n particles suspended in a liquid. In a time interval
τ , the x–coordinate of the particles will increase by an amount ∆, where this
quantity may have different values – either positive or negative – for different
particles in the same time interval. We will also consider that there exists a
certain distribution law for ∆, given by the function φ(∆). The number of
particles that will shift his position with an interval between ∆ and ∆ + d∆
will be given by the expression

dn = nφ(∆) d∆ (1.7)

where
∫ ∞

−∞

φ(∆)d∆ = 1 (1.8)

The function φ is only distinct from zero for small values of ∆, and it also
follows the property

φ(∆) = φ(−∆) (1.9)

which implies that there exists no preferred direction of movement for the
particles.

We can now study how the diffusion coefficient depends on φ. Let P (x, t) be
the number of particles per unit volume at (x, t). We compute the distribution
of particles at time t+ τ from the distribution at time t. From the definition of
the function φ(∆), we can obtain the number of particles which at time t + τ
are found between the points x and x+ dx. One obtains

P (x, t+ τ) =

∫ ∞

−∞

P (x−∆, t)φ(∆)d∆. (1.10)

But since τ is very small, we can Taylor expand P (x, t+ τ)

P (x, t+ τ) = P (x, t) + τ
∂P

∂t
. (1.11)

Besides, we can also Taylor expand the function P (x−∆, t) in powers of ∆

P (x−∆, t) = P (x, t)−∆
∂P (x, t)

∂x
+

∆2

2!

∂2P (x, t)

∂x2
+ . . . (1.12)

Introducing the results from Eq. (1.11,1.12) into the integral Eq. (1.10) we
obtain the following expression

P +
∂P

∂τ
τ = P

∫ ∞

−∞

φ(∆) d∆− ∂P

∂x

∫ ∞

−∞

∆φ(∆) d∆ +
∂2P

∂x2

∫ ∞

−∞

∆2

2
φ(∆) d∆. (1.13)
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Due to the symmetry property Eq. (1.9), the odd terms of Eq. (1.13) – sec-
ond term, fourth term, etc. – vanish, whereas for the remaining terms, that
is, first term, third term, etc. each one is very small compared to the previous
one. Introducing Eq. (1.8) in the last equation, setting

1

τ

∫ ∞

−∞

∆2

2
φ(∆) d∆ = D, (1.14)

and keeping only the first and third terms on the right hand side,

∂P

∂t
= D

∂2P

∂x2
. . . . (1.15)

We can clearly identify the latter equation as the diffusion equation, and
D as the diffusion coefficient. The solution of the latter equation for an initial
condition at t = 0 given by n(x) = n δ(x) is

P (x, t) =
n√
4πD

e−
x2

4Dt√
t

(1.16)

which is a Gaussian function centered at the origin. Using this result we
calculate the averages

〈x〉 = 0 (1.17)

〈x2〉 = 2Dt. (1.18)

This result was derived by Einstein assuming a discrete–time assump-
tion, that is , that the impacts occurred only at times 0, τ, 2τ, . . . , and both
Eqs. (1.15,1.16) are to be regarded as only approximations, where τ is consid-
ered so small that t can be thought as being continuous.

1.3.2 Langevin’s equation
After Einstein presented his theory about Brownian motion, Langevin[3] pre-
sented another method quite different from Einstein’s work. In brief, his the-
ory can be explained as follows.

From statistical mechanics it was already known that the mean kinetic
energy of a Brownian particle at equilibrium should reach a value

<
1

2
mv2 >=

1

2
kT (1.19)

where T denotes the absolute temperature, k is the Boltzmann constant, m
the mass and v the velocity of the Brownian particle.

We can distinguish two different forces acting on the particle, namely,
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• A viscous drag. Supposing that the expression of the force is analogous
to the macroscopic hydrodynamic equation, for a low Reynolds number
we can write down the following expression for the drag force −6πηa dx

dt
,

η being the viscosity and a the diameter of the particle, assuming it to
be spherical.

• A fluctuating force ξ coming from the consideration of the impacts of the
fluid particles upon the Brownian particle. The unique consideration
about this force is that it can be either positive or negative with the
same probability. The ensemble may consist on many particles in the
same field, far enough from each other so that they cannot influence
mutually. Or it may also be considered as a unique particle, where the
time intervals between measurements are large enough not to influence
each other.

The stochastic properties of ξ are given regardless of the velocity v of the
particle. Its average vanishes, < ξ >= 0, and its autocorrelation function
reads

< ξ(t)ξ(t′) >= δ(t− t′) (1.20)

The latter expression comes from the consideration that successive collisions
are uncorrelated and practically instantaneous.

Writing down Newton’s equation of motion for the particle we get

m
d2x

dt2
= −6πηa

dx

dt
+ ξ (1.21)

This equation is usually known as Langevin equation. Multiplying Eq. (1.21)
by x, and after a little algebra we obtain

m

2

d2

dt2
(x2)−mv2 = −3πηa

d(x2)

dt
+ x ξ (1.22)

where v = dx
dt

. Averaging over a large number of particles and making use of
Eq. (1.19) we obtain an equation for < x2 >

m

2

d2

dt2
< x2 > +3πηa

d

dt
< x2 >= kT, (1.23)

where the term < xξ > has been set to zero due to the irregularity of the
fluctuating force ξ. This assumption implies that the variation suffered by
the x variable can be considered as independent from the variation that the
fluctuating force ξ experiences1

< xξ >=< x >< ξ > (1.24)
1This can be thought as equivalent to the assumption made by Einstein when he considers

that for a sufficiently large time interval τ , the displacements ∆ suffered by the Brownian
particle within two successive time intervals are independent.
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The general solution to Eq. (1.23) is
d

dt
< x2 >=

kT

3πηa
+ C e

−6πηat
m (1.25)

where C is an arbitrary constant.
Considering that the exponential in Eq. (1.25) decays very rapidly, we can

dismiss this term and so the solution for the average square distance < x2 >
reads

< x2 > − < x2
0 >=

(

kT

3πηa

)

t (1.26)

Now we can compare Eq. (1.26) with Eq. (1.18) to obtain the following
relation

D =
kT

6πηa
= µkT (1.27)

where µ is the mobility of the Brownian particle.
This important result, known as the fluctuation–dissipation theorem, re-

lates a quantity D pertaining to statistically unpredictable dynamical fluctu-
ations to a quantity which involves deterministic, steady state properties.

1.4 The Fokker–Planck equation
This section aims to be a brief explanation on how to obtain the time evolu-
tion of the probability density function for the system under consideration.
Its name comes from the work of Fokker [4] and Planck [5]. The former stud-
ied Brownian motion in a radiation field and the latter attempted to build a
complete theory of fluctuations based on it.

1.4.1 Derivation of the Fokker–Planck equation
If we consider a Markov process, we can write a master equation as

∂P (x, t)

∂t
=

∫

{W (x | x′)P (x′, t)−W (x′ | x)P (x, t)} dx′ (1.28)

where the term W (x | x′) denotes the transition probability between states x
and x′. P (x, t) denotes the probability of finding the system at position x at
time t, and must be normalized, that is

∫ ∞

−∞

dxP (x, t) = 1 (1.29)

If x corresponds to a discretized variable, the master equation takes the
form

dPn(t)

dt
=
∑

n

{Wnn′Pn′(t)−Wn′nPn(t)} . (1.30)
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Written in this form clearly the master equation is a gain–loss equation. The
first term on the right hand side of Eq. (1.30) corresponds to the gain of state
n due to transitions from different states n′ to n, whereas the second term is
a loss term due to the transitions from the state n to other states n′.

Planck derived the Fokker–Planck equation as an approximation to the
master equation (1.28). He expressed the transition probability W (x | x′) as a
function of the size r of the jump and of the starting point

W (x | x′) = W (x′; r), r = x− x′. (1.31)

Then (1.28) can be rewritten in the form
∂P (x, t)

∂t
=

∫

W (x− r; r)P (x− r, t)dr − P (x, t)

∫

W (x;−r)dr (1.32)

At this stage two assumptions are made,

• Only small jumps occur, i.e., W (x′; r) is a sharply peaked function of r
but varies slowly with x′. Then there will exist some δ > 0 such that

W (x′; r) ≈ 0 for | r |> δ (1.33)

W (x′ + ∆x; r) ≈ W (x′; r) for | ∆x |< δ. (1.34)

• The second assumption is that the solution P (x, t) also varies slowly with
x, making possible a Taylor expansion of the term P (x− r, t) in terms of
P (x, t) obtaining

∂P (x, t)

∂t
=

∫

W (x; r)P (x, t) dx−
∫

r
∂

∂x
{W (x; r)P (x, t)} dr

+
1

2

∫

r2 ∂
2

∂x2
{W (x; r)P (x, t)} dr − P (x, t)

∫

W (x;−r)dr. (1.35)

The first and fourth terms on the right hand side of Eq. (1.35) vanish, whereas
the other two remaining terms are named as

F (x) =

∫ ∞

−∞

rW (x; r)dr (1.36)

D(x) =

∫ ∞

−∞

r2W (x; r)dr, (1.37)

and they correspond to the first and second jump moments of W (x; r), respec-
tively. The first jump moment corresponds to the so called drift term –F (x)–,
and the second moment to the diffusion term –D(x) –. Then the final result is

∂P (x, t)

∂t
= − ∂

∂x
[F (x)P (x, t)] +

1

2

∂2

∂x2
[D(x)P (x, t)] (1.38)

In conclusion, we have derived the Fokker–Planck equation starting from the
master equation governing the transitions between different states from the
system.
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1.4.2 The Fokker–Planck equation in one dimension
For a one dimension we can write the following Fokker–Planck equation – as
derived in the previous section –

∂P (x, t)

∂t
= − ∂

∂x
[F (x, t)P (x, t)] +

1

2

∂2

∂x2
[D(x, t)P (x, t)] . (1.39)

Here the term F (x, t) is known as the drift term and it is obtained from a
potential as F (x, t) = − ∂V (x,t)

∂x
, and D(x, t) is the diffusion term. The stochastic

process whose probability density function obeys Eq. (1.39) is equivalent to
the stochastic process described by the Ito stochastic differential equation

ẋ = F (x, t) +
√

D(x, t) ξ(t) (1.40)

where ξ(t) is a gaussian white noise of mean zero and correlation given by
< ξ(t)ξ(t′) >= δ(t− t′).

Defining a probability current J(x, t) as

J(x, t) = F (x, t)P (x, t)− 1

2

∂

∂x
[D(x, t)P (x, t)] (1.41)

Eq. (1.39) can rewritten in the form of a continuity equation

∂P (x, t)

∂t
+

∂

∂x
J(x, t) = 0 (1.42)

1.4.3 Boundary conditions
The Fokker–Planck equation is a second–order parabolic differential equa-
tion, and in order to find a solution we need an initial condition as well as
some boundary conditions where the variable x is constrained. For a more
general case, in more than one dimension, we can write

∂tP (x, t) = −
∑

i

∂

∂xi
F (x, t)P (x, t) +

1

2

∑

i,j

∂2

∂xi∂xj
D(x, t) (1.43)

which can also be written as a continuity equation

∂P (x, t)
∂t

+
∑

i

∂

∂xi
Ji(x, t) = 0 (1.44)

Eq. (1.44) has the form of a local conservation law, and so it can be rewrit-
ten in an integral form. Considering a region R with boundary S we have

∂P (R, t)

∂t
= −

∫

S
dS n̂(x) · J(x, t) (1.45)
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where we have defined the total probability in the region R as P (R, t) =
∫

R
dxP (x, t), and n̂(x) is an outward vector pointing normal to S. Eq. (1.45) in-

dicates that the total loss of probability in the region R is given by the surface
integral of J(x, t) over the region R. The current J(x, t) also has the property
that a surface integral over any surface S gives us the net flow of probability
across that surface. Depending on the existing boundary conditions, we will
impose different conditions, such as

Reflecting barrier In this case there is no flow of probability through the
surface S, which can be thought of as the particle not leaving region R.
In this case it is required

n̂(x) · J(x, t) = 0, ∀x ∈ S (1.46)

Absorbing barrier For this case when the particle reaches one of either
boundaries, it is removed from the system. As a consequence, the prob-
ability of finding the particle in the boundary is strictly zero,

P (x, t) = 0,∀x ∈ S (1.47)

Periodic boundary conditions The process takes place in a closed interval
[a,b], where the two end points are identified with each other. This
implies the following set of conditions to be fulfilled

lim
x→b−

P (x + mL, t) = lim
x→a+

P (x + mL, t)

lim
x→b−

J(x + mL, t) = lim
x→a+

J(x + mL, t). (1.48)

where the quantity mL accounts for a displacement in any direction equal to
the periodicity of the system.

1.4.4 Stationary properties
For a homogeneous process, the drift and diffusion terms are time indepen-
dent. Then, returning to the 1D case, in the stationary state ∂P (x,t)

∂t
= 0 and so

P (x, t) = P s(x) becomes independent of time. From Eq. (1.39) we have

d

dx
[F (x)P (x)]− 1

2

d2

dx2
[D(x)P (x)] = 0. (1.49)

And using Eq. (1.42) we have dJ(x)
dx

= 0, whose trivial solution is given by
J(x) = J = Constant.

If the process takes place in the interval (a, b), it must be accomplished
that J(a) = J(x) = J(b) = J ; so if one of the boundary conditions is reflecting,
it means that both of them must be reflecting, and then J = 0.

If the boundaries are not reflecting, the condition of constant current re-
quires them to be periodic. In that case we may use the boundary conditions
given by (1.48).
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1.4.4.a Zero–current case

If J = 0, Eq. (1.49) can be rewritten as

F (x)P s(x) =
1

2

d

dx
[D(x)P s(x)] (1.50)

with solution
P s(x) =

N
D(x)

e2
R x

a dx′
F (x)
D(x) (1.51)

N being a normalization constant ensuring that
∫ b

a
dxP s(x) = 1.

1.4.4.b Periodic boundary conditions

For the case where we have a non–zero current Eq. (1.42) can be written as

F (x)P s(x)− 1

2

d

dx
[D(x)P s(x)] = 0 (1.52)

In this case the current J is completely determined by the boundary condi-
tions

P s(a) = P s(b) (1.53)

J(a) = J(b). (1.54)

For calculating the stationary probability density function P s(x) we can inte-
grate Eq. (1.52) to obtain

P s(x) = P s(a)

[∫ x

a
dx′

ψ(x′)
D(b)
ψ(b)

+
∫ b

x
dx′

ψ(x′)
D(a)
ψ(a)

D(x)
ψ(x)

∫ b

a
dx′

ψ(x′)

]

(1.55)

and the current is determined through

J =

[

D(b)

ψ(b)
− D(a)

ψ(a)

]

P s(a)
∫ b

a
dx′

ψ(x′)

(1.56)

1.4.5 Particle current
Once the stationary probability density function (1.55) and the probability
current (1.56) are obtained, the next quantity of interest is the particle current
< ẋ >, defined as the ensemble average over the velocities. Its relation with
the probability current J(x, t) is

J(x, t) :=< ẋ(t)δ(x− x(t)) > (1.57)

from where we derive
< ẋ >=

∫ ∞

−∞

dxJ(x, t) (1.58)

and using Eq. (1.42) can be written as

< ẋ >=
d

dt

∫ ∞

−∞

dx xP (x, t). (1.59)
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1.5 Information Theory
The information theory was introduced in the seminal paper by Shannon [6]
in 1948. Basically this work studies certain problems of the transmission of
messages through channels involving communication systems. Mainly these
communication systems can be divided in three categories: discrete, continu-
ous and mixed. By a discrete system it is meant one where the signal and the
message are a sequence of discrete symbols – for example, the telegraphy. A
continuous system is one where the message and the signal are both contin-
uous, e.g., the television. The last one is the mixed system, where both dis-
crete and continuous variables appear, for instance the pulse code-modulation
(PCM) for the transmission of speech.

The case of our interest here deals with discrete systems. Basically we
can distinguish three main parts: the information source, the communication
channel (through where the signal is transmitted) and the receiver. Generally,
a discrete channel will mean a system where a sequence of choices from a
finite set of elementary symbols α1, . . . , αn can be transmitted from one point
to another.

1.5.1 Discrete and ergodic sources
We can think of the information source as generating the message, symbol by
symbol. It will choose successively symbols according to certain probabilities
depending, in general, on preceding choices as well as the particular symbols
in question.

We may define an ergodic source as a source that generates strings of sym-
bols α1, α2, . . . with the same statistical properties. Thus the symbols frequen-
cies obtained from particular sequences will, as the length of the message
increase, approach definite limits independent of the particular sequence.

In some cases a message L that is not homogeneous statistically speaking,
can be considered as composed of pieces of messages coming from various pure
ergodic sources L1, L2, L3, . . . that is

L = Π1 L1 + Π2 L2 + Π3 L3 + . . . (1.60)

where Πi corresponds to the probability of the component source Li.

1.5.1.a Shannon Entropy

For a single source we may define the entropy as

H = −
∑

i

pj log(pj) (1.61)

where pj denotes the probability of emitting a given symbol αj. This quantity
was introduced by Shannon for measuring, in some sense, how much lack of
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information is produced by such a source. It can also be regarded as a measure
of how much “choice” is involved in the selection of the symbol emitted by the
source or of the uncertainty of the outcome.

The information entropy represents the average information content of a
message. Some of its most interesting properties are

1. H = 0 if and only if all the pi but one are zero, this one having the value
unity. Thus only when we are certain of the outcome does H vanish.
Otherwise H is positive.

2. For a given n, H is a maximum and equal to log n when all the pi are
equal, i.e.: 1

n
.

3. Any change toward equalization of the probabilities p1, p2, . . . , pn in-
creases H.

The Shannon entropy gives the minimum transfer rate – bit rate – at
which a message can be transmitted without losing any information content.
For instance, we can consider an information source that emits only two sym-
bols, either 1 or 0 with probability p and q = 1 − p respectively. The corre-
sponding expression for the entropy of the source reads

H = −p log p− q log q = −p log p− (1− p) log(1− p) (1.62)

In Fig. 1.1 we plot the entropy as a function of the probability p of emitting
the symbol 1. It can be appreciated how the entropy of the message generated
by the source acquires its maximum when p = 1

2
, corresponding to the value

where both symbols have the same probability of being emitted, and therefore
the uncertainty of the resulting message is maximum.

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

h

Figure 1.1: Plot of the variation of the entropy of the source when varying the probability p
of emitting symbol 1.
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If we now consider a source L, composed itself of a mixture of different
sources Li with probability Πi, the resulting entropy of the system will depend
on the entropy of each individual source in the following way

H =
∑

i

ΠiHi = −
∑

i,j

Πip
j
i log pji (1.63)

where pji denotes the probability of emitting a symbol αj by the source Li.

1.5.1.b Entropy of a message

Given a message composed of a set of symbols α1, α2, . . ., successive approxi-
mations of the actual entropy of the message can be obtained. As a first step,
it can be considered that all the symbols have been emitted by the source with
a fixed and independent probability. Therefore, we can measure the frequen-
cies of all the symbols of the alphabet present in the message, estimating from
them their probabilities using Eq. (1.61).

Next thing to consider are the so–called block entropies. We must calcu-
late the probabilities of words constructed with symbols from the alphabet
α1, α2, α3, . . . , αn, and thereafter obtain their corresponding block entropies

Hn = −
∑

α1,...,αn

p(α1, . . . , αn) log[p(α1, . . . , αn)]. (1.64)

This quantity measures the average amount of information contained in a
word of length n. From Eq. (1.64) we can then evaluate the differential en-
tropy

hn = Hn −Hn−1

= −
∑

α1,...,αn

p(α1, . . . , αn) log[p(αn|α1, . . . , αn−1)], (1.65)

that gives the new information of the n-th symbol if the preceding (n − 1)
symbols are known; p(αn|α1, . . . , αn−1) is the conditional probability for αn be-
ing conditioned on the previous symbols α1, . . . , αn−1. The Shannon entropy is
then

h = lim
n→∞

hn (1.66)

The latter expression gives the average amount of information per symbol if
all correlations are taken into account, and the limit approaches monotoni-
cally the actual value of h from above, i.e., all the hn are upper bounds on
h.

For a numerical estimation of Eq. (1.64) we must count the number of
times that the word α1, . . . , αn is contained in the message, and then obtain
its probability with nα1,...,αn

N
, where N is the total length of the message.

The actual problem of evaluating the Shannon entropy in this way is that
the number of possible words increases exponentially as the length of the
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word n increases. In order to obtain good statistical results when calculat-
ing the word probabilities we must have a sufficiently long message when
evaluating the probabilities of large words2, which in fact is a considerable
inconvenient.

There exist other ways of evaluating the entropy of a message. An inter-
esting algorithm developed by A. Lempel and J. Ziv [7] permits the calculation
of the entropy of a message, and it will be explained in the next section.

1.6 Lempel and Ziv algorithm
In 1977, Abraham Lempel and Jakob Ziv created the lossless3 compressor al-
gorithm LZ77. This algorithm is present in programs such as gzip,arj, etc. It
was later modified by Terry Welch in 1978 becoming the LZW algorithm, and
this is the algorithm commonly found today.

It was originally designed to obtain the algorithmic complexity of a bi-
nary string4 [8]. Basically it is a dictionary based or substitutional encod-
ing/decoding algorithm, creating a dictionary during the process of encoding
and decoding of a certain message.

For a useful example of how the algorithm5 works, we will encode/decode
the following binary string 10010110100111011100101, of length n = 23.

1.6.0.c Encoding process

First, we will partition the chain into words B1, B2, .. of variable block length
– Lempel & Ziv parsing –

10010110100111011100101 (1.67)

So we obtain the following words: B1 = 1, B2 = 0, B3 = 01, B4 = 011, B5 = 010,
B6 = 0111, B7 = 01110, B8 = 0101.

This words are then coded as (prefix+newbit) =(pointer to the last occur-
rence, newbit): (01) = (0 + 1) = (2, 1), (011) = (01 + 1) = (3, 1), (010) =
(01 + 0) = (3, 0), (0111) = (011 + 1) = (4, 1), (01110) = (0111 + 0) = (6, 0),
(0101) = (010 + 1) = (5, 1). We have then the following pairs

(0, 1) (0, 0) (2, 1) (3, 1) (3, 0) (4, 1) (6, 0) (5, 1) (1.68)

2the necessary length of the message also increments exponentially with n
3it assures that the original information can be exactly reproduced from the compressed

data
4Algorithmic complexity of a binary string is the length in bits of the shortest computer

program able to reproduce the string and to stop afterward
5we will make use of the LZ78 algorithm, which is simpler than its original LZ77
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Once the pairs for each Bj are obtained, we replace each pair (i,s) by the
integer Ij = 2i+ s.

(0, 1)→ I1 = 20 + 1 = 1 (3, 0)→ I5 = 23 + 0 = 6
(0, 0)→ I2 = 20 + 0 = 0 (4, 1)→ I6 = 24 + 1 = 9
(2, 1)→ I3 = 22 + 1 = 5 (6, 0)→ I7 = 26 + 0 = 12
(3, 1)→ I4 = 23 + 1 = 7 (5, 1)→ I8 = 25 + 1 = 11

(1.69)

Each integer Ij is then expanded to base two, and the binary expansions
are padded with zeroes on the left so that the total length of bits is dlog2(2j)e,
where the brackets d e denote the upper integer value of log2(2j). We obtain in
this way the strings Wj.

j Ij Binary string dlog2(2j)e Wj Binary string
1 1 1 dlog2(2)e = 1 W1 1
2 0 0 dlog2(4)e = 2 W2 00
3 5 101 dlog2(6)e = 3 W3 101
4 7 111 dlog2(8)e = 3 W4 111
5 6 110 dlog2(10)e = 4 W5 0110
6 9 1001 dlog2(12)e = 4 W6 1001
7 12 1100 dlog2(14)e = 4 W7 1100
8 11 1011 dlog2(16)e = 4 W8 1011

Finally we just need to concatenate the binary words Wj to obtain the en-
coded string: 1001011110110100111001011. Clearly, the length of the encoded
string is not much shorter than the original in this case, but it must be kept
in mind that the algorithm becomes optimal as the length of the string in-
creases6

1.6.0.d Decoding process

The decoding process is much simpler than the encoding. We just need to
know the size alphabet of the source that created the string. From the pre-
vious section we obtained the encoded string 1001011110110100111001011 with
an alphabet equal to 2.

The first thing to do is to divide the string in blocks of size dlog2(2j)e :
1 · 00 · 101 · 111 · 0110 · 1001 · 1100 · 1011; then convert these blocks into integer
form :1, 0, 5, 7, 6, 9, 12, 11 ; we divide by the size alphabet, 2 in this case, and
we keep the quotient q and remainder r, (q, r) : (0, 1), (0, 0), (2, 1), (3, 1), (3, 0),
(4, 1), (6, 0), (5, 1).

Finally we convert these pairs into words using the same formalism than
in the encoding process, and we join them to obtain the original binary string
10010110100111011100101.

6Because the length of the words Bj that will be substituted increases linearly with the
binary string, whereas the length of the words Wj increases logarithmically.
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1.6.0.e Properties of the LZ algorithm

An important property of the LZ algorithm is that it relates the compression
factor with the entropy of the compressed string.

Defining the compression factor (CF) as the ratio between the compression
length and the original length l(S) = n of a string S we have

CF =
c(S)

l(S)
=
c(S)

n
(1.70)

and defining the optimality ratio γ(n) as the ratio between the compression
factor and the entropy per character h of the source

γ(n) =
CF

h
(1.71)

it is said that the compression is asymptotically optimal if γ(n)→ 1 as n→∞.
Lempel and Ziv showed that their dictionary–based algorithms LZ77,

LZ78 give asymptotically optimal compression for strings generated by an
ergodic stationary process, that is, as the length of the file to compress n→∞
the ratio of the length of the compressed file with n tends to the entropy per
character h.

This algorithm together with the previous definitions explained above will
be used in Sec. 5 for establishing a relation between Parrondo’s games and
information theory.





Chapter 2

The Brownian ratchet

2.1 Brownian ratchet

2.2 Smoluchowski–Feynman ratchet
Is it possible to obtain useful work out of unbiased random fluctuations? In
the case of macroscopic devices we can find many ways of accomplishing this
task, for example a wind–mill, the self–winding wristwratch, etc. But when
dealing with the microscopic world, this case becomes more subtle. A clear ex-
ample of this problem was illustrated in the conference talk by Smoluchowsky
in Münster 1912 (and published as a proceedings–article in [9]) and later pop-
ularized and extended in Feynman’s Lectures on Physics [10].

2.2.1 Ratchet and pawl
The ratchet and pawl consists on an axis with a paddle located at one end,
and a circular saw with a ratchet–like shape on the other end, see Fig. 2.1
for details. This device is surrounded by a thermal bath at equilibrium at
temperature T . If left alone, the system would perform a rotatory Brownian
motion due to the collisions of the gas molecules with the paddles.

We can modify this picture by introducing a pawl in order to rectify this
random fluctuations. Hence in this way rotations would be favored in one
precise direction, allowing the saw–teeth to rotate clockwise – as depicted in
Fig. 2.1 –, whereas it would block the saw–teeth to rotate in the counter–clock
direction. So it seems that this gadget would perform a net rotation clockwise,
and if a weight is added to the axis it could even perform some work lifting
the weight.

Based on the previous reasoning we could conclude that the device con-
structed this way would constitute a perpetuum mobile of the second kind,
therefore violating the second law of thermodynamics. However, this naive
expectation is wrong. In spite of the asymmetry of the device, no preferred
motion is possible. The reason is the following: due to the microscopic size of
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Figure 2.1: Plot of the ratchet and pawl device.

the machine, not only the paddles are subjected to the fluctuations due to the
collisions with the gas particles, but also the pawl is exposed to them. These
collisions of the particles with the pawl would, occasionally, lift the pawl. Then
the ratchet could rotate counter–clockwise as it would not have any opposing
force. As a result the ratchet and pawl device would have no preferred direc-
tion of rotation. This Smoluchowski–Feynman’s ratchet and pawl device was
introduced as a pedagogic example of the second law of thermodynamics.

We can modify the previous picture by considering that the gas surround-
ing the paddles and the gas surrounding the ratchet are not at the same tem-
perature. In this case an equilibrium situation no longer exists. This second
model was introduced by Feynman [10], and later revised by Parrondo [11].

A simplified stochastic model known as Brownian ratchet will be presented
in the next section, capturing the essential features of the Smoluchowski–
Feynman’s ratchet and pawl device.

2.2.2 Brownian ratchet
We will consider the motion of a Brownian particle of mass m under the ef-
fect of a potential V (x, t) that can be time–dependent, a friction force −ηẋ(t),
a force F (t) exerted by an external agent and a stochastic force

√

D(x, t)ξ(t),
where D(x, t) = 2ηkBT (x, t) is the noise strength or noise intensity, propor-
tional to the temperature. Newton’s equation of motion for this system can be
expressed as

mẍ(t) + V ′(x, t) = −ηẋ(t) + F (t) +
√

D(x, t)ξ(t). (2.1)

The terms on the left hand side account for the deterministic, conservative
part, whereas the terms on the right hand side account for the dissipative
terms due to the interaction of the Brownian particle with its environment
and the external agent. Usually the time–dependent external force F (t) is
split in two terms, a constant term F and a time–dependent term y(t), and so
it can be written as F (t) = F + y(t).

The potential V (x, t) used in Eq. (2.1) must fulfill the following conditions
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• Periodicity. It must be periodic with period L, that is, V (x, t) = V (x+L, t)
for all x and t.

• Asymmetry. This asymmetry can be established in many ways, the sim-
plest consisting on spatial asymmetry, that occurs when for any value of
x there exists no ∆x such that V (−x, t) = V (x+∆x, t), in some sense this
condition accounts for some kind of spatial anisotropy. A typical example
of an asymmetric potential is

V (x, t) = V0

[

sin

(

2πx

L

)

+
1

4
sin

(

4πx

L

)]

·W (t). (2.2)

where the function W (t) represents the time dependence of the potential, if
there is any.

The stochastic force or thermal noise ξ(t) generally is considered to be
Gaussian white noise of zero mean < ξ(t) >= 0 and correlations

< ξ(t)ξ(s) >= δ(t− s) (2.3)

For the systems we will study, the inertia term mẍ(t) is negligible, and so
Eq. (2.1) can be written as

ηẋ(t) = −V ′(x(t), t) + F + y(t) +
√

D(x, t)ξ(t). (2.4)

The latter equation can be considered as a generalized equation describing
the dynamics of an overdamped Brownian particle.

2.2.2.a Reduced probability variables

As our interest is focused mainly on transport in periodic systems, we can
introduce the reduced probability density and reduced probability current as

P̂ (x, t) :=
∞
∑

n=−∞

P (x+ nL, t), (2.5)

Ĵ(x, t) :=
∞
∑

n=−∞

J(x+ nL, t). (2.6)

And from Eqs. (1.29,1.58) we get

P̂ (x+ L, t) = P̂ (x, t), (2.7)
∫ L

0

dxP̂ (x, t) = 1, (2.8)

< ẋ > =

∫ L

0

dxĴ(x, t) (2.9)
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As P (x, t) is solution of the Fokker–Planck equation (1.39), it follows from the
periodic condition introduced above, V (x, t) = V (x + L, t), that P (x + nL, t) is
also solution for any integer value n. Introducing expressions (2.5) and (2.6)
into the Fokker–Planck equation (1.39), it can be rewritten as a continuity
equation

∂P̂ (x, t)

∂t
+
∂Ĵ(x, t)

∂x
= 0 (2.10)

Ĵ(x, t) = F (x, t) P̂ (x, t)− 1

2

∂

∂x
[D(x, t) P̂ (x, t)] (2.11)

Therefore, in order to obtain the particle current is sufficient to solve the
Fokker–Planck equation (1.39) with periodic boundary conditions, together
with the initial conditions. Besides, operating with

∫ x0+L

x0
dx x . . . on both sides

of Eq. (2.10) we obtain

< ẋ >=
d

dt

[∫ x0+L

x0

dx xP̂ (x, t)

]

+ LĴ(x0, t), (2.12)

where x0 denotes the initial position of the particle. Essentially, we distin-
guish two contributions to the particle current: the first term on the right
hand side of Eq. (2.12) accounts for the motion of the center of mass, and the
second term is L times the reduced probability current Ĵ(x0, t) measured at
the reference point x0. If the reduced dynamics reach a steady state, char-
acterized by dP̂ (x,t)

dt
= 0, then the reduced probability current Ĵ(x0, t) = Ĵst

becomes independent of x0 and t, and the particle current becomes

< ẋ >= LĴst (2.13)

The particle current can also be calculated through the time-averaged
velocity of a single realization x(t) of the stochastic process described by
Eq. (2.1), i.e.

< ẋ >= lim
t→∞

x(t)

t
(2.14)

independent of the initial condition x(0).

2.2.2.b Ratchet effect

The so–called ratchet effect takes place when a given set of conditions are
accomplished.

• We must have a spatially periodic system.

• Second, there must be some asymmetry in the system, for example spa-
tial asymmetry.
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• Last but not least, our system must be out of equilibrium.

Depending on the way these conditions are accomplished, we will distinguish
different types of ratchets.

2.2.3 Classes of ratchets
There are two main groups of ratchets that can be derived from Eq. (2.4).
The first group considers those systems where the term y(t) = 0, these are
the pulsating ratchets; the second group considers those where W (t) = 0, and
they are known as tilting ratchets.

2.2.3.a Pulsating ratchets

Within this group, we can also distinguish the following types of ratchets

Fluctuating potential ratchets They are obtained when the time depen-
dence of the potential W (t) is additive, that is V (x, t) = V (x)[1 + W (t)].
This group contains as a special case the on–off ratchet, also known as
flashing ratchet, consisting on W (t) having only two possible values: +1
(ON state) and −1 (OFF state).

Travelling potential ratchets They have potentials of the form V (x, t) =
V (x−W (t)).

2.2.3.b Tilting ratchets

This group is characterized by W (t) = 0, and so the potential is time–
independent V (x, t) = V (x). Within this group we will distinguish three types
of ratchets depending on the time dependence of y(t) in Eq. (2.4)

Fluctuating force ratchets They are obtained when y(t) is a stochastic pro-
cess.

Rocking ratchet It is obtained when y(t) is periodic.

Asymmetrically tilting ratchet We explained before that one essential in-
gredient for the ratchet effect was the existence of an asymmetry in the
system. If our potential V (x) is symmetric the source of asymmetry can
be introduced through the term y(t), imposing it to be non–symmetric.

From all these different kinds of ratchets, we will now focus on the flashing
ratchet model and analyze it a little closer.
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Figure 2.2: Plot of the asymmetric potential (2.2) with the parameters L = 3 and V0 = 1.

2.2.4 The flashing ratchet
This system is characterized by a Brownian particle subjected to a potential
that is switched on and off either periodically or stochastically – depending
on the time dependence of the function W (t). This scheme was introduced by
Ajdari and Prost [12]. The model can be described through the equation

ηẋ(t) = −V ′(x(t)) [1 +W (t)] +
√

D(x, t)ξ(t) (2.15)

where V (x) is a spatially periodic and asymmetric potential, and usually a
potential such as the one in Eq. (2.2) is used – in Fig. 2.2 we can see a plot
of the potential for the parameters L = 3 and V0 = 1. The function W (t) is
restricted to two values ±1, switching on and off the potential, and D(x, t) =
2ηkBT (x, t) is the noise strength.

The ratchet mechanism can be explained as follows. Imagine a landscape
with a couple of Brownian particles moving freely. At a certain instant, a
ratchet–like potential is switched on: W (t) = 1, and the particles (assuming
the thermal energy kBT to be much smaller than the potential amplitude) are
eventually confined to one of the potential wells located at x0, see Fig. 2.3.
When the potential is switched off: W (t) = −1, the particles are subjected
only to the thermal noise ξ(t) and start to diffuse.

If we let the particles diffuse for a large enough time interval, a small
fraction of them will reach the vicinity of the next potential well 1 at x0 +
L. Repeating this cycle many times, a net current of particles is obtained
〈ẋ〉 > 0. In Fig. 2.4 – left panel – we see the plot of the net current vs the
natural logarithm of the flip rate2 γ for a single Brownian particle. It can be

1due to the asymmetry in the potential of Fig. 2.3, is more likely that the particles will
reach the potential well located on the right than the one on the left, as the distance is
shorter in the former case.

2The flip rate γ accounts for the probability of switching the potential on or off per time
unit.
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a)
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c)

Figure 2.3: Three different stages of the on-off cycle for the case of the flashing ratchet. In
case a) the potential is on and the particles get trapped in a potential well; in stage b) the
potential is off and the particles spread due to diffusion; finally, in stage c) some particles
have diffused up to the vicinity of the next potential well, and so when the potential is on
again, there are a certain number of particles located in the next potential well. The flux of
particles due to the asymmetry in the potential in this case is to the right.

clearly identified the existence of an optimal switching rate that produces the
maximum current.

We can modify this picture introducing an external force F acting against
the particle. Even with this opposing force applied on the particle, the ratchet
effect is still present for sufficiently small values of F . We see in Fig. 2.4 –
right panel – how the current is positive and different from zero up to a value
of the applied force F = F0, being F0 the so–called stopping force. It is worth
noting that for this case, the particle is doing work against the external force
applied.

2.3 A discrete–time flashing ratchet : Parrondo’s
games

In many physical and biological systems, combining processes may lead to
counter-intuitive dynamics. For example, in control theory, the combination
of two unstable systems can cause them to become stable [13]. In the theory
of granular flow, drift can occur in a counter-intuitive direction [14, 15]. Also
the switching between two transient diffusion processes in random media can
form a positive recurrent process [16]. Other interesting phenomena where
physical processes drift in a counter-intuitive direction can be found (see for



26 Chapter II

0 2 4 6 8 10
log(γ)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

<
x>.

-2 0 2 4 6
F

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

<
x>.

Figure 2.4: Left panel: Plot of the average particle current versus the logarithm of the flip
rate. Right panel: Plot of the average particle current versus the applied external force F .

example [12, 17, 18, 19, 20].
The Parrondo’s paradox [21, 22, 23] is based on the combination of two

negatively biased games – losing games – which when combined give rise to a
positively biased game, that is, we obtain a winning game. This paradox is a
translation of the physical model of the Brownian ratchet into game-theoretic
terms. These games were first devised in 1996 by the Spanish physicist Juan
M. R. Parrondo, who presented them in unpublished form in Torino, Italy
[24]. They served as a pedagogical illustration of the flashing ratchet, where
directed motion is obtained from the random or periodic alternation of two re-
laxation potentials acting on a Brownian particle, none of which individually
produce any net flux.

These games have attracted much interest in other fields, for example
quantum information theory [25, 26, 27, 28], control theory [29, 30], Ising sys-
tems [31], pattern formation [32, 33, 34], stochastic resonance [35], random
walks and diffusions [36, 37, 38, 39, 40], economics [41], molecular motors
in biology [42, 43] and biogenesis [44]. They have also been considered as
quasi-birth-death processes [45] and lattice gas automata [46].

Parrondo’s two original games are as follows. Game A is a simple tossing
coin game, where a player increases (decreases) his capital in one unit if heads
(tails) show up. The probability of winning is denoted by p and the probability
of losing is 1− p.

Game B is a capital dependent game, where the probability of winning
depends upon the actual capital of the player, modulo a given integer M .
Therefore if the capital is i the probability of winning pi is taken from the
set {p0, p1, . . . , pM−1} as pi = pimodM . In the original version of game B, the
number M is set equal to three and the probability of winning can take only
two values, p1, p2, according to whether the capital of the player is a multi-
ple of three or not, respectively. The numerical values corresponding to the
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original Parrondo’s games [21] are:






p = 1
2
− ε,

p1 = 1
10
− ε,

p2 = 3
4
− ε,

(2.16)

where ε is a small biasing parameter introduced to control the three probabil-
ities. For a value of ε equal to zero, both games are fair games, whereas if ε is
small and positive both games are losing. In both cases, the combined game
results in a winning game.

Intuitively, we could think of a potential representing games A and B –
for the simplest case of ε = 0 – through the following reasoning: the winning
and losing probabilities for game A are independent of the site and equal to 1

2
.

Therefore it would be equally likely a forward or a backward transition. Then
the barriers of the potential that one would find would be of equal height, as
depicted in Fig. 2.5a.
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Figure 2.5: Left panel: schematic potential related to game A. Right panel: Schematic
potential related to game B.

For the case of game B, we must take into account the dependence of the
winning probabilities with the current capital of the player. When the capital
is multiple of three the winning probability is very small, i.e. p1 = 1

10
, this

translates into a high potential barrier between this site and the one located
on the right. However, for the sites that correspond to the capital of the player
not being multiple of three the winning probability is rather high, p2 = 3

4
,

and so the potential barriers must be placed in a way that it is favored a
forward transition than a backward transition. One possible way of depicting
the potential is found in Fig. 2.5b.

In Fig. 2.6 we can see a plot of the average gain for a player that alternates
between games A and B, either periodically or stochastically. For both kind of
alternations, it can be seen that the resulting game is a winning game. When
the player alternates periodically between games A and B, it follows a fixed
sequence of plays for game A and B. For example, the sequence [3, 2] implies
that the player will play game A three times in a row, followed by game B two
times. The case of random mixing between games is obtained as follows: the
player will decide on each time step if he plays game A or B with probability
γ and 1 − γ respectively3. In Fig. 2.6 we have plotted the random case for a

3From now on the randomized game will be referred to as game AB.
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value of γ = 1
2
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Figure 2.6: Plot of the average gain over 100 plays of either game A or B alone – both of
them losing games –, although any combination of them, either periodic or stochastic results
in a winning game. The notation [a, b] indicates, for the periodic case, that we play a times
game A, followed by b times game B. For the random case games A and B are alternated
with a probability γ = 1

2 .

2.3.1 Theoretical analysis of the games

One way of analyzing these games is through discrete–time Markov chains [54].
Each value of capital is represented by a state, and the transition probabili-
ties between these states are determined by the rules of the games. In this
section we will analyze the games A, B and the randomized game AB with
this technique in order to obtain the stationary probability distributions.

2.3.1.a Analysis of game B

The discrete–time Markov chain that represents game B is shown in Fig. 2.7,
where the states 0, 1 and 2 represent the value of capital modulo three. The
transition probabilities between these three states will be given by the win-
ning and losing probabilities for each state.

The set of equations that describe the evolution with the number of games
played –denoted by n– of the probabilities ΠB

0 , ΠB
1 and ΠB

2 of finding the capital
of the player in the state 0, 1 and 2 respectively are
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Figure 2.7: Diagram representing the different states of game B, as well as the allowed
transitions between these states.

ΠB
0 (n+ 1) = p2 ΠB

2 (n) + (1− p2) ΠB
1 (n) (2.17)

ΠB
1 (n+ 1) = p1 ΠB

0 (n) + (1− p2) ΠB
2 (n) (2.18)

ΠB
2 (n+ 1) = p2 ΠB

1 (n) + (1− p1) ΠB
0 (n). (2.19)

Defining the vector ΠB(n) =
[

ΠB
0 (n),ΠB

1 (n),ΠB
2 (n)

]T we can rewrite the pre-
vious set of equations in a matrix form as ΠB(n+1) = PBΠB(n), where we have
also defined a transition matrix for game B as

PB =





0 1− p2 p2

p1 0 1− p2

1− p1 p2 0



 (2.20)

Our objective is to obtain the stationary probabilities, that occurs when the
distribution of capital in the states 0, 1 and 2 does not change from one game
to the next. This implies that the distribution of probabilities is independent
of the number of games played n and invariant under the action of the matrix
PB, i.e., ΠB = PBΠB. So we have to solve the equation (I − PB)ΠB = 0. The
solution is

ΠB =
1

D





1− p2 + p2
2

1− p2 + p1p2

1− p1 + p1p2



 , (2.21)

where D = 3 − p1 − 2p2 + 2p1p2 + p2
2 is a normalization constant. Introducing

the probabilities for game B described in (2.16) for ε = 0 we obtain

ΠB =
1

13





5
2
6



 , (2.22)
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2.3.1.b Analysis for game A

For the simplest case of game A we can make use of the previous result ob-
tained for game B, as we need only to substitute the winning probabilities p1

and p2 by p. The result for the stationary probabilities ΠA obtained for ε = 0
is

ΠA =
1

3





1
1
1



 . (2.23)

A result that is in some sense logical, because due to the fact that all the
transition probabilities between states are the same, all the states will have
the same stationary probability.

2.3.1.c Analysis for the randomized game

Recalling that the randomized game is based on the combination of games A
and B with probability γ and 1 − γ respectively, we can define an equivalent
set of probabilities p′1, p′2 that define this combined game denoted by AB. This
probabilities are

p′1 = γ p+ (1− γ) p1 (2.24)

p′2 = γ p+ (1− γ) p2. (2.25)

And so we can also make use of the results obtained in Sec. 2.3.1.a with
the previous set of probabilities for obtaining the stationary probabilities of
the randomized game AB. For the case of ε = 0 and a mixing probability γ = 1

2

we obtain

ΠAB =
1

709





245
180
284



 . (2.26)

2.3.1.d Average winning probabilities

There are different ways of obtaining the average winning probabilities for
these games, or equivalently, the conditions under which the games are los-
ing, fair or winning. One of them uses the stationary probability distribution
obtained in the previous sections for games A, B and the randomized game
AB. The average winning probability pwin over all the states is then defined
as

pwin =
M−1
∑

i

pi Πi. (2.27)

Then, a game will be fair on average if pwin = 1
2
, losing if pwin < 1

2
and winning

if pwin > 1
2
. Substituting the set of winning probabilities (2.16) for ε = 0 and
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the stationary probabilities for games A, B and AB given by Eqs. (2.22),(2.23)
and 2.26 respectively, we obtain

pAwin =
1

2
(2.28)

pBwin =
1

2
(2.29)

pABwin = 0.5144. (2.30)

This reflects what we has been previously presented, where games A and
B are fair and the combined game AB is winning. For a more general case
the following set of conditions must be fulfilled in order to reproduce the same
effect

1− p
p

> 1 (2.31)

(1− p1)(1− p2)
2

p1p2
2

> 1 (2.32)

(1− p′1)(1− p′2)2

p′1p
′2
2

< 1. (2.33)

2.3.1.e Rates of winning

With the stationary probabilities obtained for the games it is possible to find
the rate of winning as a function of the number of games played, r(n). The
rate of winning can be obtained by subtracting the probability of losing from
the probability of winning. Thus, we have

d〈Xn〉
dn

≡ r =
M−1
∑

i=0

2 Πi pi − 1 (2.34)

For the simplest case of game A, the rate of winning is rA = 2p − 1. For
game B the corresponding rate of winning is rB = 2 p2 − 1 + 2 Π0 (p1 − p2).
Substituting the set of probabilities (2.16) with ε 6= 0 we obtain

rA = −2 ε (2.35)

rB = −1.74 ε+ 0.119ε2 +O(ε3) (2.36)

rAB = −1.74ε+ 0.119ε2 +O(ε3). (2.37)

It can be checked that for values of small and positive values of ε both rates
of winning of games A and B are negative, whereas the rate of winning for
the randomized game AB is positive.
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2.4 Other classes of Parrondo’s games
Although the original game B was based on a modulo rule, there are other
versions of Parrondo’s games where this rule has been replaced by a different
rule. For example, in [47] a rule based on the previous history of the player is
used; also combinations of two history dependent games can be found in [48].

Effects of cooperation between players in Parrondo’s games have been con-
sidered by Toral [50], where the probabilities of game B depend on the actual
state of the neighbors of the player. A redistribution of capital between the
players has been considered [51]. Other variations of collective games have
recently appeared [52, 53].

Regarding the way the games are alternated, we find chaotic alternation
instead of random alternation in [49]. In the following sections we will briefly
present some of these games.

2.4.1 History dependent games
These games combine two games: game A is identical to the capital dependent
games, for every state there will be a winning probability of p, and a losing
probability of 1 − p. However, instead of game B a new game B ′ is defined,
where the probabilities depend on the two previous results of winnings and
losings. If the subscript t− 1 refers to the previous game and t− 2 to the game
prior to that, depending on the previous results we will make use of different
coins, leading to different winning probabilities in each case,

time t− 2 time t− 1 Winning probability
Loss Loss p1

Loss Win p2

Win Loss p3

Win Win p4

(2.38)

These probabilities can be parameterized using the following set of proba-
bilities,

p =
1

2
− ε (2.39)

p1 =
9

10
− ε (2.40)

p2 = p3 =
1

4
− ε (2.41)

p4 =
7

10
− ε. (2.42)

These values for the probabilities reproduce the same effect than in the
capital dependent games, i.e. for ε = 0 both games are fair and for ε > 0
they are losing; however, any sort of combination between both gives rise to a
winning game, see Fig. 2.8.
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This parameterization gives Parrondo’s original numbers for the history dependent
games [42], which behave very similarly to the parameterization of the capital de-
pendent games in (1). That is, the games can be considered fair when ε = 0, losing
when ε > 0 and winning when ε < 0. The method of analysis for the games will
follow closely to that of the original capital dependent games.

4.2. Results

The same counterintuitive result occurs when playing games A and B′, that is,
when playing the games individually they lose, but switching between them creates
a winning expectation. The switching can be either stochastic or deterministic as
shown by the selected games plotted in Fig. 17. Similarly, there are some initial
starting transients; the magnitude and shape depend on the initial conditions used,
i.e. LL, LW, WL or WW. The sequences shown in Fig. 17 are averaged from each
of the four possible starting conditions, thus eliminating much of the transient
behavior.
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Fig. 17. Progress when playing Parrondo’s history-dependent games. Simulations were performed
using the probabilities in (25) with ε = 0.003. A total of one million sample paths were averaged
using each of the four initial conditions a quarter of the time.

4.3. Analysis of the games

To analyze the history dependent games we need to manipulate their representation
into a workable DTMC. Upon doing so the same method can be employed as was
used for the capital dependent games. An alternative approach using a quasi-birth-
and-death process to represent the games is given in [29].

The discrete-time chain for game B′ is shown in Fig. 18. The states are periodic,
that is, each column-wise slice is identical. The rows represent the history of the
previous two games, which are {LL,LW,WL,WW}. It is the role of the rows to keep
track of the history for ‘each capital’ so that it knows what probability (i.e. coin) to
use for the next game. The amount of capital we possess is indicated by the column

Figure 2.8: Plot of the average gain of a single player versus the number of plays for Par-
rondo’s history dependent games A and B, as well as a periodic and a random combination of
them. Simulations were performed using the probabilities defined in (2.39) with ε = 0.003.

2.4.1.a Analysis of the games

We can also analyze these games in terms of discrete–time Markov chains.
Game A is exactly the same as in the capital dependent games, so we need
only to analyze the new game B ′. For this game we will distinguish four
different states, each one corresponding to a different history of wins and
losses of the player, see Fig. 2.9, and the transition probabilities will be given
by the winning probabilities {p1, p2, p3, p4} for every state.

WW

WLLL

LW

p
2

q2
q4

q3

1p

p
3

q1

p4

Figure 2.9: Diagram representing the different states of the history dependent game B, as
well as the allowed transitions between these states.
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The corresponding transition matrix for game B ′ is

PB′ =









1− p1 0 1− p3 0
p1 0 p3 0
0 1− p2 0 1− p4

0 p2 0 p4









(2.43)

with the rows and columns representing the four states LL, LW, WL and
WW, labelling from the top left corner.

When randomly mixing the games, the probabilities are given by p′i = γ p+
(1− γ) pi for i = 1, . . . , 4 and γ is the mixing probability.

The corresponding stationary probabilities Π0, Π1, Π2, Π3, and Π4 of finding
the player in any of the four states are

ΠB′

=
1

D′









(1− p3)(1− p4)
p1(1− p4)
p1(1− p4)
p1p2









. (2.44)

where D′ = p1p2 + (1 + 2p1 − p3)(1 − p4). Using the probabilities for game B ′

defined in (2.39) with ε = 0 we obtain

ΠB′

=
1

22









5
6
6
5









. (2.45)

Then the average winning probability (2.27) will be pB′

win = 5
22
· 9
10

+2
(

3
22
· 1

4

)

+
5
22
· 7

10
= 1

2

Finally, for a more general case the following set of conditions needs to be
fulfilled in order to reproduce the same effect

1− p
p

> 1,

(1− p3)(1− p4)

p1p2

> 1,

(1− p′3)(1− p′4)
p′1p

′
2

< 1. (2.46)

2.4.2 Collective games
As already mentioned, the collective games were introduced by Toral [50],[51].
In one version of these collective games [50] – cooperative games – one of the
games depends on the actual state of the neighbors of a given player i; the
other version of the collective games [51] – capital redistribution–, consist in
a redistribution of capital between a given set of players. We will now briefly
explain both games.
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2.4.2.a Cooperative games

It can be described as follows: a group of N players are arranged in a cir-
cle so each that player has two neighbors. Game A remains unchanged,
thus does not have any dependencies; game B depends on the state of the
neighbors to the left and right of a player. This gives the possible states as
{LL,LW,WL,WW}, where each pair is the previous state of the left and right
neighbor respectively. For each of these states, a different coin will be used by
a randomly selected player i according to the following table

player i− 1 player i+ 1 Winning probability
Loser Loser p1

Loser Winner p2

Winner Loser p3

Winner Winner p4

(2.47)

The games are classified according to the behavior of the total capital
C(t) =

∑

iCi(t). Therefore, a winning game is one for which the average value
of the total capital C(t) increases with time, and similarly for losing and fair
games. In Fig. 2.10 we can see the average gain per player 〈C(t)〉

N
for a set of

probabilities given by p = 0.5, p1 = 1, p2 = p3 = 0.16, and p4 = 0.7. We can
see how the same effect as in the previous games is again reproduced: play-
ing game A or B reports no winnings on average, whereas when alternating
between both the average capital per player increases with time.

Figure 2.10: Average capital per player, 〈C(t)〉
N

, versus time, t, measured in units of games
per player. The probabilities defining the games are: p = 0.5, p1 = 1, p2 = p3 = 0.16, p4 = 0.7.
These results show that game A is fair, game B is a losing game, but that when games A are
B are played in random succession (game AB) or in the [2, 2] alternation AABBAABB . . .,
the result is a winning game. We show in this graph results for N = 50, 100, 200 players.

2.4.2.b Capital redistribution between players

The novelty of these games is that game A has been substituted by different
versions A′ and A′′. Game A′ consists in player i giving away one unit of capi-
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tal to a randomly selected player; for game A′′, instead of giving it to a random
player, player i gives one unit of capital to one of its neighbors with a probabil-
ity that is proportional to the capital difference, i.e. the probability of player
i of giving one unit of capital to player i − 1 is p(i → i − 1) ∝ max[Ci, Ci±1, 0]
with p(i→ i− 1) + p(i→ i+ 1) = 1 and where Ci denotes the current capital of
player i.

The mechanism of plays can be described as follows: we have a set of N
players, and each time step a random player i is chosen for playing. In one
version of these collective games, he will choose to player either game A′ or
the capital dependent game B; another version involves choosing between
game A′ and the history dependent game B ′, already explained in a previous
section. A final version includes game A′′ and the capital dependent game B.

In Fig. 2.11 the evolution of the average capital per player is plotted versus
time for the three versions explained previously. In all the cases, the same
effect is reproduced, i.e., the combination of any version of game A with any
other of game B turns to be a winning game. This result emphasizes the
fact that it is better for an individual player to redistribute part of its capital
between other players.

Figure 2.11: Average gain per player for the collecitve Parrondo’s games based on the re-
distribution of capital between the players. Left panel: combination of new game A′ with
the original game B. Central panel: combination of new game A′ with the history dependent
game B′. Right panel: combination of new game A′′ with the original game B.
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Parrondo’s games with
self–transition

3.1 Parrondo’s games with self–transition
Games A and B appearing in the Parrondo’s paradox can be thought of as
diffusion processes under the action of a external potential. However, they
do not have the more general form of a natural diffusion process, because
the capital will always change with every game played, whereas in a general
diffusion process the particle can either move up or down or remain in the
same position at a given time. In this section we present a new version of
Parrondo’s games, where a new transition probability is taken into account.
We introduce a self-transition probability, that is, the capital of the player now
can remain the same after a game played with a probability ri, taken from the
set {r0, r1, . . . , rM−1} as ri = rimodM . Again, for simplicity, we will only consider
the case of M = 3 with just two possible self-transition probabilities, r1, r2,
depending only on the capital being a multiple of three or not.

As we will show, the significance of this new version is a natural evolution
of Parrondo’s games, which can now be rigorously derived from the Fokker-
Planck equation, based on a physical flashing ratchet model.

3.2 Analysis of the new Parrondo games with
self-transitions

3.2.1 Game A
We start with the new game A, where the probability of winning is p, the
probability of remaining with the same capital will be denoted as r, and we
lose with probability q = 1− r − p .

Following the same reasoning as [23] we will calculate the probability fj
that our capital reaches zero in a finite number of plays, supposing that ini-
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tially we have a given capital of j units. From Markov chain analysis [54] we
have that

• fj = 1 for all j ≥ 0, and so the game is either fair or losing; or

• fj < 1 for all j > 0, in which case the game can be winning because there
is a certain probability that our capital can grow indefinitely.

We are looking for the set of numbers {fj} that correspond to the minimal
non-negative solution of the equation

fj = p · fj+1 + r · fj + q · fj−1 , j ≥ 1 (3.1)

with the boundary condition
f0 = 1 . (3.2)

With a subtle rearrangement, (3.1) can be put in the following form

fj =
p

1− r · fj+1 +
q

1− r · fj−1 . (3.3)

Whose solution, for the initial condition (3.2), is fj = A · [(1−p−r
p

)j − 1] + 1,
where A is a constant. For the minimal non-negative solution we obtain

fj = min

[

1,

(

1− p− r
p

)j
]

. (3.4)

So we can see that the new game A is a winning game for

1− p− r
p

< 1, (3.5)

is a losing game for
1− p− r

p
> 1, (3.6)

and is a fair game for
1− p− r

p
= 1. (3.7)

3.2.2 Game B
We now analyze the new game B. Like game A, we have introduced the prob-
abilities of a self-transition in each state, that is, if the capital is a multiple
of three we have a probability r1 of remaining in the same state, whereas if
the capital is not a multiple of three then the probability is r2. The rest of the
probabilities will follow the same notation as in the original game B, so we
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have the following scheme







mod(capital, 3) = 0→ p1, r1, q1

mod(capital, 3) 6= 0→ p2, r2, q2.
(3.8)

As in the case of game A, we will follow similar reasoning as [23] but for
game B. Let gj be the probability that the capital will reach the zeroth state
in a finite number of plays, supposing an initial capital of j units. Again, from
Markov chain theory we have

• gj = 1 for all j ≥ 0, so game B is either fair or losing; or

• gj < 1 for all j > 0, in which case game B can be winning because there
is a certain probability for the capital to grow indefinitely.

For j ≥ 1, the following set of recurrence equations must be solved:

g3j = p1 · g3j+1 + r1 · g3j + (1− p1 − r1) · g3j−1, j ≥ 1
g3j+1 = p2 · g3j+2 + r2 · g3j+1 + (1− p2 − r2) · g3j, j ≥ 0
g3j+2 = p2 · g3j+3 + r2 · g3j+2 + (1− p2 − r2) · g3j+1, j ≥ 0 .

(3.9)

As in game A, we are looking for the set of numbers {gj} that correspond to
the minimal non-negative solution. Eliminating terms g3j−1, g3j+1 and g3j+2

from (3.9) we get

[p1p
2
2 +(1−p1−r1)(1−p2−r2)2] ·g3j = p1p

2
2 ·g3j+3 +(1−p1−r1)(1−p2−r2)2 ·g3j−3 .

(3.10)
Considering the same boundary condition as in game A, g0 = 1, the last

equation has a general solution of the form g3j = B·
[

(

(1−p1−r1)(1−p2−r2)2

p1p22

)j

− 1

]

+

1, where B is a constant. For the minimal non-negative solution we obtain

g3j = min

[

1,

(

(1− p1 − r1)(1− p2 − r2)2

p1p2
2

)j
]

. (3.11)

It can be verified that the same solution (3.11) will be obtained solving (3.9)
for g3j+1 and g3j+2, leading all them to the same condition for the probabilities
of the games.

As with game A, game B will be winning if

(1− p1 − r1)(1− p2 − r2)2

p1p2
2

< 1, (3.12)
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losing if
(1− p1 − r1)(1− p2 − r2)2

p1p2
2

> 1, (3.13)

and fair if
(1− p1 − r1)(1− p2 − r2)2

p1p2
2

= 1. (3.14)

3.2.3 Game AB
Now we will turn to the random alternation of games A and B with probability
γ. This will be named as game AB. For this game AB we have the following
(primed) probabilities

• if the capital is a multiple of three
{

p′1 = γ · p+ (1− γ) · p1,
r′1 = γ · r + (1− γ) · r1, (3.15)

• if the capital is not multiple of three
{

p′2 = γ · p+ (1− γ) · p2,
r′2 = γ · r + (1− γ) · r2. (3.16)

The same reasoning as with game B can be made but with the new prob-
abilities p′1, r′1, p′2, r′2 instead of p1, r1, p2, r2. Eventually we obtain that game
AB will be winning if

(1− p′1 − r′1)(1− p′2 − r′2)2

p′1p
′2
2

< 1, (3.17)

losing if
(1− p′1 − r′1)(1− p′2 − r′2)2

p′1p
′2
2

> 1, (3.18)

and fair if
(1− p′1 − r′1)(1− p′2 − r′2)2

p′1p
′2
2

= 1. (3.19)

The paradox will be present if games A and B are losing, while game AB
is winning. In this framework this means that the conditions (3.6), (3.13) and
(3.17) must be satisfied simultaneously. In order to obtain sets of probabilities
fulfilling theses conditions we have first obtained sets of probabilities yielding
fair A and B games but such that AB is a winning game, and then introduc-
ing a small biasing parameter ε making game A and game B losing games,
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but still keeping a winning AB game. As an example, we give some sets of
probabilities that fulfill these conditions:

(a) p = 9
20
− ε, r = 1

10
, p1 = 9

100
− ε, r1 = 1

10
, p2 = 3

5
− ε, r2 = 1

5
,

(b) p = 9
20
− ε, r = 1

10
, p1 = 509

5000
− ε, r1 = 1

10
, p2 = 7

10
− ε, r2 = 1

20
,

(c) p = 9
20
− ε, r = 1

10
, p1 = 3

25
− ε, r1 = 2

5
, p2 = 3

5
− ε, r2 = 1

10
,

(d) p = 1
4
− ε, r = 1

2
, p1 = 3

25
− ε, r1 = 2

5
, p2 = 3

5
− ε, r2 = 1

10
.

(3.20)

3.3 Properties of the Games

3.3.1 Rate of winning
If we consider the capital of a player at play number n, Xn modulo M , we can
perform a Discrete Time Markov Chain (DTMC) analysis of the games with
a state-space {0, 1, . . . ,M − 1} (c.f. [55]). For the case of Parrondo’s games we
have M = 3, so the following set of difference equations for the probability
distribution can be obtained [56]:

P0,n+1 = p2 · P2,n + r1 · P0,n + q2 · P1,n

P1,n+1 = p1 · P0,n + r2 · P1,n + q2 · P2,n

P2,n+1 = p2 · P1,n + r2 · P2,n + q1 · P0,n

(3.21)

which can be put in a matrix form as Pn+1 = T ·Pn, where

T =





r1 q2 p2

p1 r2 q2
q1 p2 r2



 (3.22)

and

Pn =





P0,n

P1,n

P2,n



 . (3.23)

In the limiting case where n → ∞ the system will tend to a stationary
state characterized by

Π = T ·Π (3.24)
where limn→∞ Pn = Π.

Solving (3.24) is equivalent to solving an eigenvalue problem. As we are
dealing with Markov chains, we know that there will be an eigenvalue λ = 1
and the rest will be under 1 [54]. For the λ = 1 value we obtain the follow-
ing eigenvector giving the stationary probability distribution in terms of the
games’ probabilities.

Π ≡





Π0

Π1

Π2



 =
1

D





(1− r2)2 − p2 · (1− p2 − r2)
(1− r1)(1− r2)− p2 · (1− p1 − r1)
(1− r1)(1− r2)− p1 · (1− p2 − r2)



 (3.25)
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where D is a normalization constant given by

D = (1− r2)2 +2(1− r1)(1− r2)− p2(2− p2− r2− r1− p1)− p1(1− p2− r2). (3.26)

The rate of winning at the n–th step, has the general expression

r(n) ≡ E[Xn+1]− E[Xn] =
∞
∑

i=−∞

i · [Pi,n+1 − Pi,n] . (3.27)

Using these expressions and by similar techniques to those employed in [57]
it is possible to obtain the stationary rate of winning for the new games intro-
duced in the previous section. The results are, for game A:

rstA = 2p+ r − 1 (3.28)

and for game B

rstB = 2p2 + r2 − 1 + [q2 − p2 + p1 − q1] · Π0

=
3

D
(p1p

2
2 − (1− p1 − r1)(1− p2 − r2)2) (3.29)

where D is given by (3.26).
It is an easy task to check that when r1 = r2 = 0 we recover the known

expressions for the original games obtained by [55]. To obtain the station-
ary rate for the randomized game AB we just need to replace in the above
expression the probabilities from (3.15) and (3.16).

Within this context the paradox appears when rstA ≤ 0, rstB ≤ 0 and rstAB > 0.
If, for example, we use the values from (3.20d) and a switching probability
γ = 1/2, we obtain the following stationary rates for game A, game B and the
random combination AB:

rstA = −2ε,

rstB =
−ε (441− 120ε+ 1000ε2)

231− 40ε+ 500ε2
, (3.30)

rstAB =
93− 9828ε+ 1920ε2 − 32000ε3

2 (2499− 320ε+ 8000ε2)
.

which yield the desired paradoxical result for small ε > 0.
We can also evaluate the stationary rate of winning when both the prob-

ability of winning and the self-transition probability for the games vary with
a parameter ε as p = p − ε

2
and r = r + ε, so that normalization is preserved.

Using the set of probabilities derived from (3.20d), namely p = 1
4
− ε

2
, r =

1
2

+ ε , p1 = 3
25
− ε

2
, r1 = 2

5
+ ε , p2 = 3

5
− ε

2
, r2 = 1

10
+ ε, the result is:

rstA = 0,

rstB =
−ε (21− 20ε)

2 (77− 200ε+ 125ε2)
, (3.31)

rstAB =
31− 164ε+ 160ε2

2 (833− 2600ε+ 2000ε2)
,
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again a paradoxical result.
A comparison between the expressions for the rates of winning of the orig-

inal Parrondo games [55] and the new games can be done in two ways. The
first one consists in comparing two games with the same probabilities of win-
ning, say original game A with probabilities p = 1

2
and q = 1

2
and the new

game A with probabilities pnew = 1
2
, rnew = 1

4
and qnew = 1

4
. In this case we can

think of the ‘old’ probability of losing q as taking the place of the self-transition
probability rnew and the new probability of losing qnew. In this way we obtain a
higher rate of winning in the new game A than in the original game – remem-
ber that the new game A has an extra term r in the rate of winning compared
to the original rate, and this extra term is what gives rise to the higher value.
The same reasoning applies for game B, leading to the same conclusion.

The other possibility could be to compare the two games with the same
probability of losing. In this case, we follow the same reasoning as before, but
now we can imagine the ‘old’ probability of winning as replacing the winning
and self-transition probabilities of the new game. What we now obtain is a
lower rate of winning for the new game compared to the original one. An easy
way of checking this is by rewriting (3.28) and (3.29) as

rstA = p− q (3.32)

rstB =
3

D
(p1p

2
2 − q1q2

2).

So for the same value of q but a lower value of p we obtain a lower value for
the rates of game A and B.

We now explore the range of probabilities in which the Parrondo effect
takes place. We restrict ourselves to the case M = 3 and γ = 1/2 used in the
previous formulae.

The fact that we have introduced three new probabilities complicates the
representation of the parameter space as we have six variables altogether,
two variables {p, r} from game A and four variables {p1, r1, p2, r2} coming from
game B. In order to simplify this high number of variables, some probabilities
must be set so that a representation in three dimensions will be possible. In
our case we will fix the variables {r, r1, r2} so that the surfaces can be repre-
sented in the parameter space {p, p1, p2}.

In Fig. 3.1 we can see the resulting region where the paradox exists for
the variables r = 1

4
, r1 = 1

8
and r2 = 1

10
. Some animations have shown that

the volume where the paradox takes place, gradually shrinks to zero as the
variables r, r1 and r2 increase from zero to their maximum value of one.

Another interesting fact that we have encountered, which remains an open
question, is the impossibility of obtaining the equivalent parameter space to
Fig. 3.1 with the fixed variables p, p1, p2 and with the parameter space vari-
ables r, r1, r2 instead – it is possible to obtain the planes for games A and B,
but not for the randomized game AB.
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p1

1

Figure 3.1: Parameter space corresponding to the values r = 1
4 , r1 = 1

8 and r2 = 1
10 . The

actual region where the paradox exists is delimited by the plane p1 = 0 and the triangular
region situated at the frontal face, where all the planes intersect.

3.3.2 Simulations and discussion

We have analyzed the new games A and B, and obtained the conditions in
order to reproduce the Parrondo effect. We now present some simulations to
verify that the paradox is present for a different range of probabilities – see
Fig. 3.2. Some interesting features can be observed from these graphs. First
it can be noticed that the performance of random or deterministic alternation
of the games drastically changes with the parameters.

We use the notation [a, b] to indicate that game A was played a times and
game B b times. The performance of the deterministic alternations [3, 2] and
[2, 2] remain close to one another, as can be seen in Fig. 3.2. However the
alternation [4, 4] has a low rate of winning because as we play each game
four times, that causes the dynamics of games A and B to dominate over the
dynamic of alternation, thereby considerably reducing the gain.

The performance of the random alternation is more variable, obtaining in
some cases a greater gain than in the deterministic cases – see Fig. 3.2c.

In figures (3.3a) and (3.3b) a comparison between the theoretical rates of
winning for games A, B and AB given by (3.30) and (3.31) and the rates ob-
tained through simulations is presented. It is worth noting the good agree-
ment between both results.

It is also interesting to see how evolves the average gain obtained from the
random alternation of game A and game B when varying the mixing param-
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Figure 3.2: Average gain as a function of the number of games played coming from nu-
merical simulation of Parrondo’s games with different sets of probabilities. The notation [a, b]
indicates that game A was played a times and game B b times. The gains were averaged over
50 000 realizations of the games. a) Simulation corresponding to the probabilities (3.20a) and
ε = 1

500 ; b) probabilities (3.20b) and ε = 1
200 ; c) probabilities (3.20c) and ε = 1

200 ; d) probabili-
ties (3.20d) and ε = 1

200 .
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Figure 3.3: Comparison of the theoretical rates of winning – dashed lines – together with
the rates obtained through simulations – solid lines. All the simulations were obtained by
averaging over 50 000 trials and over all possible initial conditions. a) The parameters corre-
spond to the ones used in equations (3.30). b) The parameters correspond to the ones used in
equations (3.31).
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Figure 3.4: Comparison between the theoretical and the simulation for the gain vs gamma,
for the following set of probabilities : p = 1

3 , r = 1
3 ; p1 = 3

25 , r1 = 2
5 and p2 = 3

5 , r2 = 1
10 . The

simulations were carried out by averaging over 50 000 trials and all possible initial conditions.

eter γ. In Fig. 3.4 we compare both the experimental and theoretical curves.
As in the original games, the maximum gain obtained for this set of param-
eters is obtained for a value around γ ∼ 1

2
[56]. For other sets of the game

probabilities, though, the optimal γ differs from γ = 1
2
.



Chapter 4

Relation between Parrondo’s
games and the Brownian ratchet

In this chapter we will obtain a quantitative relation between the variables
defining a game and the physical variables that determine the Brownian
ratchet. Depending on the game considered a different formulation will be
obtained : it will be shown that the original Parrondo’s games can be derived
from a Langevin equation with additive noise, whereas the Parrondo’s games
with self–transition come from a description using multiplicative noise.

4.1 Additive noise
A discrete time τ can be introduced by considering that every coin toss in-
creases τ by one. If we denote by Pi(τ) the probability that at time τ the
capital is equal to i, we can write the general master equation

Pi(τ + 1) = ai−1Pi−1(τ) + ai0Pi(τ) + ai1Pi+1(τ) (4.1)

where ai−1 is the probability of winning when the capital is i − 1, ai1 is the
probability of losing when the capital is i + 1, and, for completeness, we have
introduced ai0 as the probability that the capital i remains unchanged (a possi-
bility not considered in the original Parrondo games). In accordance with the
rules described before, the probabilities {ai−1, a

i
0, a

i
1} do not depend on time and

they satisfy ai+1
−1 + ai0 + ai−1

1 = 1 which ensures the conservation of probability:
∑

i Pi(τ + 1) =
∑

i Pi(τ).
It is a matter of straightforward algebra to write the master equation in

the form of a continuity equation:

Pi(τ + 1)− Pi(τ) = − [Ji+1(t)− Ji(t)] (4.2)

where the current Ji(τ) is given by:

Ji(τ) =
1

2
[FiPi(τ) + Fi−1Pi−1(τ)]− [DiPi(τ)−Di−1Pi−1(τ)] (4.3)
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and Fi = ai+1
−1 −ai−1

1 , Di = 1
2
(ai+1

−1 +ai−1
1 ). This form is a consistent discretization

of the Fokker–Plank equation[58] for a probability P (x, t)

∂P (x, t)

∂t
= −∂J(x, t)

∂x
(4.4)

with a current

J(x, t) = F (x)P (x, t)− ∂[D(x)P (x, t)]

∂x
(4.5)

with general drift, F (x), and diffusion, D(x). If ∆t and ∆x are, respectively,
the time and space discretization steps, such that x = i∆x and t = τ∆t, it is
clear the identification

Fi ←→
∆t

∆x
F (i∆x), Di ←→

∆t

(∆x)2
D(i∆x) (4.6)

The discrete and continuum probabilities are related by Pi(τ)↔ P (i∆x, τ∆t)∆x

and the continuum limit can be taken by considering thatM = lim
∆t→0,∆x→0

(∆x)2

∆t
is a finite number. In this case Fi ↔M−1∆xF (i∆x) and Di ↔M−1D(i∆x).

From now on, we consider the case ai0 = 0 (this corresponds to the original
Parrondo’s games). Since pi = ai+1

−1 we haveDi ≡ D = 1/2, Fi = −1+2pi and the
current Ji(τ) = −(1 − pi)Pi(τ) + pi−1Pi−1(τ) is nothing but the probability flux
from i − 1 to i. The stationary solutions P st

i are found solving the recurrence
relation (4.3) for a constant current Ji = J with the boundary condition P st

i =
P st
i+L:

P st
i = Ne−Vi/D

[

1− 2J

N

i
∑

j=1

eVj/D

1− Fj

]

, J = N
e−VL/D − 1

2
∑L

j=1
eVj/D

1−Fj

. (4.7)

N is the normalization constant obtained from
∑L−1

i=0 P
st
i = 1. In these expres-

sions we have introduced the potential Vi in terms of the probabilities of the
games1

Vi = −D
i
∑

j=1

ln

[

1 + Fj−1

1− Fj

]

= −D
i
∑

j=1

ln

[

pj−1

1− pj

]

(4.8)

The case of zero current J = 0, implies a periodic potential VL = V0 = 0.
This reproduces again the condition

∏L−1
i=0 pi =

∏L−1
i=0 (1 − pi) for a fair game.

In this case, the stationary solution can be written as the exponential of the
potential P st

i = Ne−Vi/D. Note that Eq. (4.8) reduces in the limit ∆x → 0

to V (x) = −M−1
∫

F (x)dx or F (x) = −M ∂V (x)
∂x

, which is the usual relation
between the drift F (x) and the potential V (x) with a mobility coefficient M .

1In this, as well as in other similar expressions, the notation is such that
∑0

j=1 = 0.
Therefore the potential is arbitrarily rescaled such that V0 = 0.
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The inverse problem of obtaining the game probabilities in terms of the
potential requires solving Eq. (4.8) with the boundary condition F0 = FL

2:

Fi = (−1)ieVi/D

[

∑L
j=1(−1)j[e−Vj/D − e−Vj−1/D]

(−1)Le(V0−VL)/D − 1
+

i
∑

j=1

(−1)j[e−Vj/D − e−Vj−1/D]

]

(4.9)
These results allow us to obtain the stochastic potential Vi (and hence the cur-
rent J) for a given set of probabilities {p0, . . . , pL−1}, using (4.8); as well as the
inverse: obtain the probabilities of the games given a stochastic potential, us-
ing (4.9). Note that the game resulting from the alternation, with probability
γ, of a game A with pi = 1/2, ∀i and a game B defined by the set {p0, . . . , pL−1}
has a set of probabilities {p′0, . . . , p′L−1} with p′i = (1 − γ)1

2
+ γpi. For the Fi’s

variables, this relation yields F ′
i = γFi, and the related potential V ′ follows

from (4.8).
We give now two examples of the application of the above formalism. In

the first one we compute the stochastic potentials of the fair game B and
the winning game B ′, the random combination with probability γ = 1/2 of
game B and a game A with constant probabilities, in the original version of
the paradox[21]. The resulting potentials are shown in Fig. 4.1. Note that the
potential for game B takes different values at each point i mod 3 even though
the probabilities were equal for i = 1, 2 mod 3. The resulting asymmetry in
the potential is the required one for the existence of the ratchet effect. On the
other hand, the potential of the combined game B ′ has a non-zero mean slope
as it corresponds to a winning game.
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Figure 4.1: Left panel: potential Vi obtained from (4.8) for the fair game B defined by
p0 = 1/10, p1 = p2 = 3/4. Right panel: potential for game B′, with p′0 = 3/10, p′1 = p′2 = 5/8
resulting from the random alternation of game B with a game A with constant probabilities
pi = p = 1/2, ∀i.

2The singularity appearing for a fair game VL = V0 in the case of an even number L might
be related to the lack of ergodicity explicitely shown in [43] for L = 4. In this case additional
conditions on the potential are required for the existence of a fair game[59]
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Figure 4.2: Left panel: Ratchet potential (2.2) in the case L = 9, A = 1.3. The dots are the
discrete values Vi = V (i) used in the definition of game B. Right panel: discrete values for
the potential V ′

i for the combined game B′ obtained by alternating with probability γ = 1/2
games A and B. The line is a fit to the empirical form V ′(x) = −Γx+αV (x) with Γ = 0.009525,
α = 0.4718.

The second application considers as input the potential (2.2), which has
been widely used as a prototype for ratchets[60, 61]. Using (4.9) we obtain a
set of probabilities {p0, . . . , pL−1} by discretizing this potential with ∆x = 1,
i.e. setting Vi = V (i). Since the potential V (x) is periodic, the resulting game
B defined by these probabilities is a fair one and the current J is zero. Game
A, as always is defined by pi = p = 1/2, ∀i. We plot in Fig. 4.2 the potentials for
game B and for the game B ′, the random combination with probability γ = 1/2
of games A and B. Note again that the potential V ′

i is tilted as corresponding
to a winning game B ′. As shown in Fig. 4.3, the current J depends on the
probability γ for the alternation of games A and B.
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γ

Figure 4.3: Current J resulting from equation (4.7) for the game B′ as a function of the
probability γ of alternation of games A and B. Game B is defined as the discretization of the
ratchet potential (2.2) in the case A = 0.4, L = 9. The maximum gain corresponds to γ = 0.57.
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4.2 The case of L even
A problem arises when finding the probabilities pi using (4.9) for a periodic
potential (corresponding to a fair game) when the number of points L is even.
This is obvious since the periodicity condition VL = V0 gives a zero value for
the denominator (−1)Le2(V0−VL)−1 in (4.9). In order to be able to find solutions
for the probabilities, the numerator has to vanish as well. This is equivalent
to the condition:

∑

k

e−2V2k =
∑

k

e−2V2k+1 (4.10)

which, in terms of the stationary probabilities, becomes:
∑

k

P st
2k =

∑

k

P st
2k+1. (4.11)

This condition implies that one can have a fair game in the case of an even
number L only if the probability of finding an even value for the capital equals
that of finding an odd value. To our knowledge, this curious property, which
emerges naturally from the relation between the potential and the probabili-
ties, has not been reported previously.

It turns out that one has to be careful when discretizing a periodic poten-
tial V (x) in order to preserve this property. Otherwise, there will be no equiv-
alent Parrondo game with zero current. The simple identification Vi = V (iλ)
might not satisfy this requirement, but we have found that a possible solution
is to shift the origin of the x-axis, i.e. setting Vi = V ((i + δ)λ) for a suitable
value of δ. For example, in Fig. 4.4 we plot the difference

d(δ) =
∑

i

e−2V ((2i+δ)λ) −
∑

i

e−2V ((2i+1+δ)λ) (4.12)

as a function of δ in the case of the potential (2.2) and λ = 1/4 (which corre-
sponds to L = 4 points per period). We see that there is only one value that
accomplishes d(δ) = 0, namely δ = −0.068616.

Once the proper value of δ is found, it follows from Eq. (4.9) that there are
infinitely many solutions for the probabilities. They can be found by varying,
say, p0, such that for each value of p0 we will get a set of probabilities pi.
Solutions satisfying the additional requirement that pi ∈ [0, 1], ∀i, will exist
only for a certain range of values of p0 ∈ [0.0025, 0.68]. Some of the different
solutions are plotted in Fig. 4.5. Some numerical values are :

• p0 = 0.125, p1 = 0.8167766, p2 = 0.3927740, p3 = 0.7082539

• p0 = 0.25, p1 = 0.6335531, p2 = 0.5289900, p3 = 0.6070749

• p0 = 0.3525, p1 = 0.4833099, p2 = 0.6406871, p3 = 0.5241081

• p0 = 0.50, p1 = 0.2671062, p2 = 0.8014221, p3 = 0.4047168
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crossing is at δ = −0.068616.
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Figure 4.5: Multiple solutions for the probabilities pi obtained with equation (4.8) for a
potential like (2.2) with A = 0.3 , λ = 1

4 , δ = −0.068616 varying the value of p0. The continuous
line corresponds to the “optimal” solution, p0 = 0.3525 (see the text).

An additional criterion to chose between the different sets of probabilities
is to impose the maximum “smoothness” in the distribution of the pi’s. For
instance, one could minimized the sum

∑L−1
i=0 (pi+1 − pi)2. In our example this

criterion yields p0 = 0.3525 and the other values follow from the previous table.

4.3 Multiplicative Noise
We go now a step forward, and calculate how these previous expressions ob-
tained for the stationary probability, current and the defined potential vary
when we consider the case ai0 6= 0 (which is equivalent to ri 6= 0). As we
stated before, considering this term implies that the player has now a certain
probability of remaining with the same capital after a round played.
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The drift and diffusion terms now read

Fi = ai+1
−1 − ai−1

1 = 2pi + ri − 1 (4.13)

Di =
1

2
(1− ai0) =

1

2
(1− ri) (4.14)

It can be appreciated that now both terms, the diffusion Di as well as the drift
Fi, may vary on every site. Using Eq. (4.3) and considering the stationary case
Pi(τ) = Pi together with a constant current Ji = J , we get

P st
i =

J
1
2
Fi −Di

−
( 1

2
Fi−1 +Di−1

1
2
Fi −Di

)

· P st
i−1. (4.15)

The previous equation has a general form xi = ai + bixi−1, from which a
solution can be derived as xn = [

∏n
k=1 bk] · x0 +

∑n
j=1 aj ·

[

∏n
k=j+1 bk

]

. Applying
the latter result to the stationary probability we have

P st
n =

[

n
∏

k=1

Dk−1 + 1
2
Fk−1

Dk − 1
2
Fk

]

· P st
0 − J

n
∑

j=1

1

Dj − 1
2
Fj

[

n
∏

k=j+1

Dk−1 + 1
2
Fk−1

Dk − 1
2
Fk

]

(4.16)

We can solve for the current J using Eq. (4.15) together with the periodic
boundary condition P st

L = P st
0

J =
P st

0 ·
(

∏L
k=1

[

1
2
Fk−1+Dk−1

Dk−
1
2
Fk

]

− 1
)

∑L
j=1

1
Dj−

1
2
Fj

∏L
k=j+1

[

1
2
Fk−1+Dk−1

Dk−
1
2
Fk

] (4.17)

An effective potential can be defined in a similar way to its continuous
analog as

Vi = −
i
∑

j=1

ln

(

1 + 1
2

Fj−1

Dj−1

1− 1
2

Fj

Dj

)

= −
i
∑

j=1

ln

( pj−1

1−rj−1

1−pj−rj
1−rj

)

. (4.18)

It is important to note that, as in the previous case ai0 = 0, the potential
must verify periodic conditions V0 = VL when the set of probabilities define
a fair game. It is an easy task to check that using Eq. (4.18) together with
the periodic boundary condition, what we obtain is the fairness condition for
a given set of probabilities defining a game with self–transition[62] , that is

L−1
∏

k=1

pi =
L−1
∏

k=1

qi =
L−1
∏

k=1

(1− pi − ri) (4.19)
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By means of Eq. (4.18) we can obtain the stationary probability (4.16) and
current (4.17) in terms of the defined potential as

P st
n = e−Vn





D0 · P st
0

Dn

− J
n
∑

j=1

eVj

Dn

(

1− 1
2

Fj

Dj

)



 (4.20)

J =
P st

0

[

D0 −DL · eVL
]

∑L
j=1

eVj
„

1− 1
2

Fj
Dj

«

(4.21)

These are the new expressions which, together with Eqs. (4.13) and (4.14)
allow us to obtain the potential, current and stationary probability for a given
set of probabilities {pi, ri, qi} defining a Parrondo game with self–transition.
We will now show that the set of Eqs. (4.18),(4.20),(4.21) can be related in a
consistent form with the continuous solutions corresponding to the Fokker–
Planck equation of a process with multiplicative noise [63].

Given a Langevin equation with multiplicative noise

ẋ = F [x(t), t] +
√

B[x(t), t] · ξ(t) (4.22)

interpreted in the sense of Ito, we can obtain its associated Fokker–Planck
equation given by Eq. (4.4) recalling that D(x, t) = 1

2
B(x, t). The general solu-

tion for the stationary probability density function P (x, t) is given by

P st(x) =
e
R x Ψ(x)dx

D(x)
·
[

N − J
∫ x

e−
R x′ Ψ(x′′)dx′′dx′

]

(4.23)

where N is a normalization constant and Ψ(x) = F (x)
D(x)

. Making use of the
periodicity and the normalization conditionP (0) = P (L) and

∫ x

0
P (x)dx = 1 we

obtain the following expressions for N and J

N = P (0) ·D(0) J =
P (0) ·

(

D(0)−D(L)e
R L
0 Ψ(x)dx

)

∫ L

0
e−

R x′

0 Ψ(x′′)dx′′dx′
(4.24)

Comparing the discrete equations for the current and stationary probabil-
ity (4.20-4.21) with the continuous solutions (4.23-4.24) we have the following
equivalences

P st
0 ·D0 ≡ P (0) ·D(0) (4.25)

Dj ≡ D(x) (4.26)

eVn ≡ e
R x Ψ(x)dx (4.27)

n
∑

j=1

eVj

(

1− 1
2

Fj

Dj

) ≡
∫ x

e−
R x′ Ψ(x′′)dx′′dx′ (4.28)
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It is clear the identification of the terms in Eqs. (4.25) and (4.26). Now we
need to demonstrate the equivalence given by Eqs. (4.27) and (4.28). If we
define a discretised function as ψj =

Fj−1

Dj−1
and we use the Taylor expansion

up to first order of the logarithm ln (1 + x) ≈ x already used in the previous
section we get

Vn = −
n
∑

j=1

ln

(

1 + 1
2
ψj−1

1− 1
2
ψj

)

≈ −1

2

n
∑

j=1

(ψj−1 + ψj) =

= −
(

1

2
ψ0 +

n−1
∑

k=1

ψk +
1

2
ψn

)

(4.29)

n
∑

j=1

eVj

1− 1
2
ψj

=
n
∑

j=1

eVj−ln (1− 1
2
ψj) ≈

n
∑

j=1

e−
1
2(
Pj

k=1[ψk−1+ψk]−ψj) =

=
n
∑

j=1

e−( 1
2
ψ0+

Pj
k=1 ψk+ 1

2
ψj)+ 1

2
ψj (4.30)

It can be clearly seen that Eq. (4.29) corresponds to the numerical integra-
tion of the function Ψ(x) defined previously, but with a ∆ = 1 (the difference
in the sign is due to the way we have defined our potential). It can be demon-
strated that when ∆ 6= 1 both expressions agree up to first order in ∆,

Vn∆ = −∆

(

1

2
ψ0 +

n−1
∑

k=1

ψk +
1

2
ψn

)

(4.31)

In the case of Eq. (4.30) what we obtain is nearly the Simpson’s numerical
integration method but for an extra term. As in the previous case, when
∆ 6= 1 then we have up to a first order an extra ∆ term,

n
∑

j=1

eVj∆

1− 1
2
ψj∆
≈ ∆ ·

n
∑

j=1

e−∆( 1
2
ψ0+

Pj
k=1 ψk∆+ 1

2
ψj∆)+ 1

2
∆ψj∆ (4.32)

So when ∆ → 0 the contribution of the extra term can be neglected as
compared to that of the sum.

We can also perform the inverse process, that is, to obtain the set of prob-
abilities {pi, ri, qi} for a given potential Vi. If we call An = pn−qn

pn+qn
, we need only

to solve Eq. (4.18) for An obtaining

An = (−1)n · eVn

[

∑L
j=1(−1)j(e−Vj − e−Vj−1)

(−1)L · eV0−VL − 1
+

n
∑

j=1

(−1)j ·
(

e−Vj − e−Vj−1
)

]

(4.33)

Once these values are obtained, we must solve for the probabilities to-
gether with the normalization condition pi + ri + qi = 1. As we have a free
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parameter in the set of solutions, we can fix the ri values on every site and
the rest of parameters can be obtained through

pi = 1
2
(1 + Ai)(1− ri) (4.34)

qi = 1
2
(1− Ai)(1− ri). (4.35)

In this way what we have is a method for inverting an effective potential,
fixing a parameter that in our case is the diffusion in every site (remember
that the parameter ri is related to the diffusion coefficient by Eq. (4.14) or
equivalently the temperature.

The fact that we can obtain different sets of probabilities, both describing
different dynamics but coming from the same potential V (x), it is not surpris-
ing if we take into account that a system with multiplicative noise is equiva-
lent, in the sense that both have the same stationary probability distribution,
to another system with additive noise

ẋ = F (x) +D(x) · ξ(t) −→ ẋ = F̄ (x) + ξ(t) (4.36)

but with a renormalized drift term F̄ (x) given by F̄ (x) = −∂V̄
∂x

where F (x) =

−∂V
∂x

and V̄ =
∫ F (x)

D(x)
dx+ lnD(x).



Chapter 5

Parrondo’s games and
Information theory

Recently, Arizmendi et. al [64] have quantified the transfer of information –
negentropy – between the Brownian particle and the nonequilibrium source
of fluctuations acting on it. These authors coded the particle motion of a flash-
ing ratchet into a string of 0’s and 1’s according to whether the particle had
moved to the left or to the right respectively, and then compressed the re-
sulting binary file using the Lempel and Ziv algorithm [7]. They obtained in
this way an estimation of the entropy per character h, as the ratio between
the lengths of the compressed and the original file, for a sufficiently large file
length. They applied this method to estimate the entropy per character of the
ergodic source for different values of the flipping rate, with the result that
there exists a close relation between the current in the ratchet and the net
transfer of information in the system. The aim of this Chapter is to apply this
technique to the discrete–time and space version of the Brownian ratchet, i.e.,
Parrondo’s games.

5.1 Parrondo’s games and Information Theory
Some previous works in the literature have related Parrondo’s games and
information theory. Pearce, in Ref. [65], considers the relation between the
entropy and the fairness of the games, and the region of the parameter space
where the entropy of game A is greater than that of B and AB. Harmer et. al
[57] study the relation between the fairness of games A and B and the entropy
rates considering two approaches. The first one calculates the entropy rates
not taking into account the correlations present on game B, finding a good
agreement between the region of maximum entropy rates and the region of
fairness. The second approach introduces these correlations, obtaining lower
entropy rates and no significant relation between fairness and entropy rates
for game B.

In this section we aim to relate the current or gain in Parrondo’s games
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with the variation of information entropy of the binary file generated using
techniques similar to those of Ref. [64]. We will present the numerical results
coming from simulations of the different versions of Parrondo’s games: in the
cooperative games[50, 51], one considers an ensemble of interacting players;
in the history dependent games[47, 48], the probabilities of winning depend
on the history of previous results of wins and loses; finally, in the games with
self–transition[62], there is a non–zero probability ri that the capital remains
unchanged (not winning or losing) in a given toss of the coins. Finally, we
offer, in Sec. 5.3, a theoretical analysis that helps to understand the behaviour
observed in the simulations.

5.2 Simulation results
We have performed numerical simulations of the different versions of the
games. In every case, the evolution of the capital of the player has been con-
verted to a string of bits where bit 0 (resp., 1) corresponds to a decrease (resp.,
increase) of the capital after δt plays of the games. It will be shown that the
delay time δt between capital measurements is a relevant parameter.

An estimation of the entropy per character, h, is obtained as the compres-
sion ratio obtained with the gzip (v. 1.3) program, that implements the Lem-
pel and Ziv algorithm, although it has been stressed by some authors that
this is not the best algorithm one can find in the literature. The simplicity
in the use of this algorithm (as it is already implemented “for free” in many
operating systems) is an added value, as it will become apparent in the follow-
ing when we consider strings of symbols generated by more than one ergodic
source. As suggested in Ref.[64], we expect that the negentropy, −h, which
accounts for the known information about the system, is related in some way
with the average gain in the games.

In Fig. 5.1 we compare the average gain in game AB with the value of the
entropy difference ∆h = h(γ = 0)− h(γ) as a function of the probability γ and
for different delay times δt. We find indeed a qualitative agreement between
the increase in the gain and the decrease in entropy as the γ parameter is
varied. This decrease in the entropy of the system implies that there exists an
increase in the amount of known information about the system. Notice that
the compression rate depends on δt, and that the γ value for which there is the
maximum decrease in entropy agrees with the value for the maximum gain
in the games. This agreement is similar to the one observed when applying
this technique to the Brownian flashing ratchet[64].

Similar results are obtained in other cases of Parrondo’s games. For in-
stance, in the right panel of Fig. 5.1 we compare the average gain and the
entropy difference in the games with self–transition[62]. Again in this case
the maximum gain coincides with the γ value for the minimum entropy per
character for all values of δt.

Finally, in Fig. 5.2 we present the comparison in the case of the history
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Figure 5.1: Comparison of the average gain per game (solid line) with the entropy difference
∆h (symbols) as a function of the switching rate γ, for several values of the delay time δt, as
shown in the legend, and the following versions of the Parrondo’s paradox:
Left panel: Original Parrondo’s combination of games A and B with probabilities: p = 1

2 ,
p0 = 1

10 and p1 = 3
4 .

Right panel: Parrondo’s combination of games A and B including self–transitions. The values
for the probabilities are: p = 9

20 , r = 1
10 , p0 = 3

25 , r0 = 2
5 , p1 = 3

5 and r1 = 1
10 (see Ref.[62] for

the choice of these parameters).
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Figure 5.2: Same as Fig. 5.1 in other versions of Parrondo’s paradox:
Left panel: History dependent games, alternating between two games with probabilities:
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10 , p2 = p3 = 1
4 , p4 = 7

10 ; q1 = 2
5 , q2 = q3 = 3

5 and q4 = 2
5 (see Ref.[47] for the choice of

these parameters).
Right panel: Cooperative Parrondo’s games with probabilities: p = 1

2 , p1 = 1, p2 = p3 = 16
100 ,

p4 = 7
10 and N = 150 players (see Ref.[50] for the choice of these parameters).
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Figure 5.3: Comparison between the theoretical value obtained for the Shannon entropy –
solid line – with the numerical values – circles – obtained with the gzip algorithm for a single
source emitting two symbols with probability p.

dependent games [47] (left panel), and cooperative games [50] (right panel),
showing all of them the same features as in the previous cases. We conclude
that there exists a close relation between the entropy and the average gain.
In the next section we will develop a simple argument that helps explaining
this relation.

5.3 Theoretical analysis
As stressed in Sec. 5.1, the entropy per character of a text produced by an
ergodic source is1 H = −∑i pi · log(pi), where pi denotes the probability that
the source will emit a given symbol αi, and the sum is taken over all possible
symbols that the source can emit. For instance, if we consider game A as
a source of two symbols, 0 (losing) and 1 (winning) , the Shannon entropy
according as a function of the probability p of emitting symbol 1 (i.e. the
probability of winning) is given by Eq. (1.62). In Fig. 5.3 we compare this
expression with the compression factor h obtained using the gzip algorithm.
As shown in this figure, in this case of a single source, the compression factor
of the gzip algorithm does give a good approximation to the Shannon entropy.

From now on, we restrict our analysis to the case of the original Parrondo’s
paradox combining games A and B, as explained in the previous section. The
combined games AB can be considered as originated by two sources depending
on whether the capital is a multiple of 3 or not. The probability of emitting
symbol 1 when using the first source is q0, whereas the same probability is q1
when using the second source.

1Units are taken such that all logarithms are base 2.
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Figure 5.4: Plot of Shannon negentropy (solid line) for the combination game AB according
to expression (5.1), together with the numerical values (circles) obtained with the compres-
sion factor of the gzip algorithm in the case when δt = 1 step.

We first consider the case δt = 1, i.e. we store the capital after each single
play of the games. According to the expression (1.63) for the entropy of a
mixed source, the Shannon entropy for the combined game AB is:

H = −Π0[q0 log(q0) + (1− q0) log(1− q0)]− (1−Π0)[q1 log(q1) + (1− q1) log(1− q1)]
(5.1)

being Π0 the stationary probability than in a given time the capital is a multi-
ple of 3. This can be computed using standard Markov chain theory, with the
result[56]:

Π0 =
1− q1 + q2

1

3− q0 − 2q1 + 2q0q1 + q2
1

(5.2)

In Fig. 5.4 we compare the Shannon entropy H given by the previous for-
mula with the numerical compression factor h as a function of the probability
γ of mixing games A and B. Although certainly not as good as in the case of
a single game, in this case, the gzip compression factor gives a reasonable
approximation to the Shannon entropy of the combined game AB. It is worth
noting that in this case of δt = 1 the entropy increases with γ, corresponding to
a decrease of the information known about the system. In order to relate the
entropy difference with the current gain, we need to consider larger values
for δt.

For δt À 1 the system gradually loses its memory about its previous state.
Therefore, the different measures are statistically independent and they can
be considered as generated by a single ergodic source. For this single source,
the probability of winning after one single play of the games is pw = Π0 q0 +
(1− Π0) q1. However, we are interested in calculating the winning probability
p> after δt plays. In order to have a larger capital after δt plays it is necessary
that the number of wins overcomes the number of losses in single game plays.
The distribution of the number of wins follows a binomial distribution and the
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Figure 5.5: Plot of Shannon entropy difference ∆h = h(γ = 0)− h(γ) according to formulas
(5.4) and (5.3) for δt = 500 (solid line) and δt = 1000 (dashed line) together with the numerical
curves obtained with the compression ratio of the gzip algorithm for the same values of
δt = 500 (circles) and δt = 1000 (squares).

probability p> is given by:

p> =

δt
2
∑

k=0

(

δt
k

)

· pδt−kw · (1− pw)k. (5.3)

The corresponding Shannon entropy for this single source is:

H = −p> · log(p>)− (1− p>) · log(1− p>). (5.4)

We compare in Fig. 5.5 the Shannon entropy coming from this formula and
the one obtained by the compression ratio of the gzip program for two differ-
ent values of δt = 500, 1000. In both cases, there is a reasonable agreement
between both results. Moreover, as shown in Figs. 5.1 and 5.2 the entropy
follows closely the average gain of the combined games.



Chapter 6

Conclusions

We have introduced in Chapter 3 a new family of Parrondo’s games with a new
probability, i.e., the self–transition probability, of which the original Parrondo
games are a special case with self-transitions set to zero. New discrete–time
Markov chain analysis for this new games were presented in Sec. 3.2, showing
that Parrondo’s paradox still occurs if the appropriate conditions are fulfilled.
New expressions for the rates of winning have been obtained in Sec. 3.3, with
the result that within certain conditions a higher rate of winning than in
the original games can be obtained. We have also studied how the parameter
space where the paradox exists changes with the self-transition variables, and
conclude that the parameter space corresponding to the original Parrondo’s
games is a limiting case of the maximum volume – as the self-transition prob-
abilities increase in value the volume shrinks to zero. However, it is worth
noting that despite the volume decreases with increasing the self-transition
probabilities, the rates of winning that can be obtained are higher than in the
original Parrondo’s games.

In Chapter 4 we have written the master equation describing the Par-
rondo’s games as a consistent discretization of the formalism of the Fokker–
Planck equation for an overdamped Brownian particle. In this way we can
relate the probabilities of the games {p0, . . . , pL−1} to the dynamical potential
V (x). Our approach yields a periodic potential for a fair game and a tilted
potential for a winning game. The resulting expressions, in the limit ∆x → 0
could be used to obtain the effective potential for a flashing ratchet as well as
its current. This relation also works in two ways: we can obtain the physical
potential corresponding to a set of probabilities defining a Parrondo game, as
well as the current and its stationary probability distribution. Inversely, the
probabilities corresponding to a given physical potential can also be obtained.
Our relations work both in the cases of additive noise or multiplicative noise,
showing that the former case is equivalent to the original Parrondo’s games,
whereas the latter corresponds to the Parrondo’s games with self–transition
probability.

With the relations introduced for the cases of additive and multiplicative
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noise, we have now a precise and of general validity connection between in-
dividual Brownian ratchets and single Parrondo’s games. This work confirms
Parrondo’s original intuition based on a flashing ratchet is correct with rigour.

Finally, in Chapter 5, we have quantified the amount of the transfer of
information (negentropy) in the case of Parrondo’s games, considered as a
discrete–time and space version of the flashing ratchet. This effect takes
place in every existing version of the games analyzed, showing its robust-
ness, and it is the equivalent of the same result obtained in the case of the
Brownian ratchets. In the case of the original Parrondo’s paradox mixing two
games, A and B, we have computed the entropy by considering that the capital
originates from a combination of two ergodic sources, reflecting the different
winning probabilities when the capital is a multiple of three or not. We have
shown that the entropy behaves very differently for low and high values of the
delay parameter δt, while for δt = 1 there is a monotonic dependence on the
switching parameter γ, the relation between the gain and the current is only
apparent for large values of δt. Our paper offers a new and hopefully enlight-
ening approach to understand Parrondo’s paradox. This approach differs (and
complements) from previous works[65, 57] in that we consider the capital of
the player as the information source.
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• Models de cooperació basats en agents. M. San Miguel. UIB, 2003 [3
credits]
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