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Bubbling and on-off intermittency in bailout embeddings
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We establish and investigate the conceptual connection between the dynamics of the bailout embedding of
a Hamiltonian system and the dynamical regimes associated with the occurrence of bubbling and blowout
bifurcations. The roles of the invariant manifold and the dynamics restricted to it, required in bubbling and
blowout bifurcating systems, are played in the bailout embedding by the embedded Hamiltonian dynamical
system. The Hamiltonian nature of the dynamics is precisely the distinctive feature of this instance of a
bubbling or blowout bifurcation. The detachment of the embedding trajectories from the original ones can thus
be thought of as transient on-off intermittency, and noise-induced avoidance of some regions of the embedded
phase space can be recognized as Hamiltonian bubbling.
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I. INTRODUCTION

Symmetry is a fundamental concept in science, both at
level of physical laws and when applied to specific appli
tions. In dynamics, the presence of symmetries may im
the existence of lower-dimensional submanifolds of the
phase space, which are dynamically invariant, because s
metric states must evolve into symmetric states. The mo
restricted to these invariant manifolds is often chaotic. T
occurs, for instance, in synchronized chaotic oscillators
in extended systems with spatial symmetry. The existenc
chaotic attractors in the restricted dynamics can have in
esting consequences for the behavior of the full system@1,2#.

An interesting question is whether the attractors on inv
ant manifolds are also attractors of the unrestricted dyn
ics. Consider the case in which a parameter controls the
namics transversal to the invariant manifold while leavi
unaffected the dynamics restricted to the invariant manif
@2#. Below a critical value of this parameter, the manifold
transversally stable and any attractor within it is also a glo
attractor. When the parameter exceeds the critical va
some invariant set embedded in the attractor becomes tr
versally unstable. Although most trajectories initially close
the attractor in the invariant manifold may still remain clo
to it, there is now a small set of points, in any neighborho
of the attractor, which diverges from the invariant manifo
Increasing the parameter still further, the full attractor b
comes transversally unstable. These two scenarios, na
bubbling and blowout bifurcations, may lead either to t
so-called riddled basins@3# or to a strong temporal burstin
termed on-off intermittency@1,4–6#, depending on the na
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ture of the dynamics away from the invariant manifold.
In the foregoing, we have supposed that both the

stricted and the unrestricted dynamics are dissipative. Bu
might envision a case in which the global dissipative dyna
ics have an invariant manifold on which the restricted d
namics is conservative; described, for example, by a Ham
tonian flow or a volume-preserving~Liouvillian! map. The
orbits on the invariant manifold then exhibit, instead of a
tractors, the typical Hamiltonian phase-space structure c
acterized by the coexistence of chaotic regions a
Kolmogorov-Arnold-Moser~KAM ! tori. However, since the
full dynamics are dissipative, a part or even the whole fam
of the restricted Hamiltonian orbits may be global attracto
Furthermore, a parameter can now control the transve
stability of the invariant manifold in the same way as
blowout bifurcations; but now governing which part of th
Hamiltonian dynamics is globally attracting, and which
not.

The aim of this work is to show that these dynamics a
observed in a physical system of finite-sized particles driv
by an incompressible fluid flow@7,8#, and have been har
nessed to work in the different context of the study of chao
dynamical systems in the technique of bailout embeddi
first introduced by us in Ref.@9#. In Sec. II we recall the
necessary background on bailout embeddings. In Sec. III
consider bubbling and blowout bifurcations and in Sec.
we relate bailout embeddings with blowout bifurcation
Section V follows with a discussion of the addition of noi
to a bailout embedding, and the occurrence of bubbling.
conclude in Sec. VI.

II. BAILOUT EMBEDDINGS

Given an arbitrary dynamical systemẋ5 f (x), we define
a bailout embedding as one of the form

d

dt
@v2 f ~x!#52k~x!@v2 f ~x!#,

~1!dx

dt
5v.

This is a dynamical system defined in the space of variab
x andv. Notice, though, that the original dynamics, satisf
©2003 The American Physical Society17-1
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CARTWRIGHT et al. PHYSICAL REVIEW E 68, 016217 ~2003!
ing ẋ5 f (x)5v, also solves Eqs.~1!. This implies thatv
5 f (x) defines an invariant submanifold for the bailout e
bedding. However, we can design an embedding to sa
the condition thatk(x),0 on a set of unwanted orbits of th
original dynamics whilek(x).0 on the others. We thu
force the unwanted orbits to be unstable in the larger dyn
ics even though they are stable in the original system. In
way, trajectories in the embedding tend to detach or bail
from the unwanted set of the original system, bounc
around in the larger space until eventually reaching a sta
region with k(x).0, where they may converge back on
trajectories of the original dynamical system. In other wor
by means of a bailout embedding we can create a la
version of the dynamics in which specific sets of orbits
removed from the asymptotic set, while preserving the
namics of another set of orbits, the wanted one, as attrac
of the enlarged dynamical system.

There is a remarkable example in nature where a bai
embedding describes the dynamics of a physical system.
motion of finite-sized neutrally buoyant spherical partic
suspended in an incompressible fluid flow embeds the
grangian dynamics of a perfect tracer satisfyingẋ5u(x),
whereu(x) is the Eulerian velocity field describing the flo
@10#. In the full model of the drag on a sphere@7#, this is a
highly nontrivial embedding. For example, the contributi
to the drag, known as a Basset-Boussinesq force, con
the difference between the fluid and particle accelerati
integrated over the whole trajectory. However, in the lim
where the particles are sufficiently small and the Bas
Boussinesq term can be disregarded, the dynamics redu
a bailout embedding of the form given in Eq.~1! with u(x)
playing the role off and k(x)52(g1“ f ), whereg turns
out to be the Stokes coefficient@8#. In this case, it appear
that the embedding~the finite-sized particle dynamics! de-
taches from the original dynamics~the passive scalar one!
near saddle points and other unstable regions of the b
volume-preserving flow, converging back only in the KA
islands that act now as attractors of the embedding. T
result generalizes immediately to any Hamiltonian
divergence-free flow using a similar form ofk(x), and can
be used as a method to target small KAM islands in th
types of systems@9#.

The notion of bailout embedding Eq.~1! can be extended
to maps in a rather obvious fashion@9,11#. Given a map
xn115 f (xn), the bailout embedding is given by

xn122 f ~xn11!5K~xn!@xn112 f ~xn!#. ~2!

Condition k(x),0 over the unwanted orbits has to be r
placed here byuK(x)u.1, because the deviations from th
original dynamics are multiplied byK in each iteration. The
particular choice of the gradient as bailout functionk(x)
52(g1“ f ) in a flow translates in the map setting
K(x)5e2g

“ f .
Let us illustrate the functioning of a map bailout embe

ding in the Hamiltonian framework by means of the pro
typical area-preserving standard map introduced by Chiri
and Taylor@12#. This map is defined on the two-dimension
torus by
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xn115xn1
k

2p
sin~2pyn![ f x~xn ,yn! ~mod1!,

~3!
yn115yn1xn11[ f y~xn ,yn! ~mod1!.

Parameterk, controlling the nonlinearity, takes the standa
map from the integrable limit atk50 to a highly chaotic
regime whenk@1. At intermediatek this map shows a mix-
ture of quasiperiodic trajectories on the KAM tori togeth
with chaotic ones, depending on where we set the ini
conditions. As the value ofk is increased, the region dom
nated by chaotic trajectories pervades most of the ph
space except for increasingly small islands of KAM qua
periodicity. Notice that the only factor that decides wheth
we are in one of these islands or in the surrounding cha
sea is the initial condition of the trajectory. Therefore,
order to locate one of these islands, it would be necessar
make the initial condition scan the whole phase space w
watching for quasiperiodicity in the resulting dynamics. In
bailout embedding, on the other hand, the KAM trajector
of the embedded system can be transformed into effec
global attractors in the extended phase space. The searc
KAM islands then becomes a matter of simply iterating t
bailout map forwards until its trajectories converge to tho
of the embedded one.

The bailout embedding of the standard map is obtained
simply replacingf in Eq. ~2! with the definitions from Eq.
~3!. Accordingly,K(x) in Eq. ~2! becomes

K~x!5e2gS 1 k cos~2pyn!

1 k cos~2pyn!11D . ~4!

These replacements then lead to the coupled second-o
iterative system

xn115un1 f x~xn ,yn!,

yn115vn1 f y~xn ,yn!,
~5!

un115e2g
„un1k cos~2pyn!vn…,

vn115e2g
„un1@k cos~2pyn!11#vn….

Notice that due to the area-preserving property of the s
dard map, the two eigenvalues of the derivative matrix m
multiply to one. If they are complex, this means that bo
have an absolute value of one, while if they are real, gen
cally one of them will be larger than one and the oth
smaller. We can then separate the phase space into el
and hyperbolic regions, corresponding to each of these
cases. If a trajectory of the original map lies entirely in t
elliptic regions, overall factore2g damps any small pertur
bation away from it in the embedded system. But, for chao
trajectories that inevitably visit some hyperbolic region
there exists a threshold value ofg such that perturbations
away from a standard-map trajectory are amplified instea
dying out in the embedding. As a consequence, trajecto
7-2
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BUBBLING AND ON-OFF INTERMITTENCY IN . . . PHYSICAL REVIEW E68, 016217 ~2003!
are expelled from the chaotic regions to finally settle in
safely elliptic KAM islands. This process can be seen clea
in Figs. 1~a,b!.

The temporal behavior of the departure of the bailo
embedding trajectory from the embedded dynamics is in
esting by itself. This departure is measured by compone
un and vn of Eq. ~5!. Over the evolution, the embeddin
visits, in turn, areas where convergence and divergence f
the original dynamics is reinforced. The result is typically
highly intermittent behavior where periods of exponentia
small values ofu andv alternate with periods with very larg
values of these components, as depicted in Fig. 1~c!. Except
for the fact that finally the fluctuations are bound to die ou
some stage, this behavior is reminiscent of the so-called
off intermittency taking place after a blowout bifurcation.
the following sections we investigate further the connect
between these two dynamical phenomena.

III. BUBBLING AND BLOWOUT BIFURCATIONS

The behavior of a bailout embedding can be analyzed
connection with bubbling and blowout bifurcations. The
bifurcations have been studied in dissipative dynamical s
tems which, due to symmetries or other constraints, have
invariant submanifold of the whole phase space that cont
an attractor of the global dynamics. In such situations,
may wish to study the stability of the invariant manifold wi
respect to small departures in a transversal direction. T
stability is indicated by the transversal Lyapunov expone
which is growth rateh' of a transversal perturbation ave
aged over a trajectory on the manifold. Specifically, we m
follow the evolution of an infinitesimal perturbationdn ,

FIG. 1. ~a! Chaotic trajectory of the standard map fork55,
covering practically the whole phase space except for a sm
period-2 KAM island.~b! Trajectory of a bailout embedding of th
standard map withe2g50.85. After wandering around the phas
space for a while, the trajectory finally settles inside the islands~c!
Deviation of the bailout embedding trajectory from the original d
namics showing transiently intermittent behavior as a function
time. The parameters here are the same as in~a! and ~b!.
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transversal to the invariant manifold, along attractor traj
tory Xn . The transversal Lyapunov exponent is then defin
as

h'5 lim
n→`

1

n
ln@dn /d0#. ~6!

If h',0 for all orbits in the manifold then any transvers
perturbation will eventually die out. In this case, if there is
unique topological attractor@13# for the dynamics restricted
to the manifold, it will also be a topological attractor for th
full dynamics.

The situation is far more complex if the attractor itself
transversally stable while one or more periodic orbits emb
ded in the attractor are not, so thath'.0 for these orbits.
When, as a consequence of changing a parameter, the sy
passes from the fully stable situation of the previous pa
graph to one in which some transversally unstable orbits
exist with the stable attractor, it is said that a bubbling bif
cation has taken place.

In the new-born regime, named bubbling, when a traj
tory visits the neighborhood of an orbit with positiveh' , a
transversal perturbation temporarily grows. If the attractor
the manifold is the only attractor of the system, this loc
relative instability is inconsequential; at most it spoils te
porarily the asymptotically safe convergence to the attrac
But, on the other hand, if the attractor is not unique, the lo
instability provides a gateway for a trajectory apparen
converging to the stable attractor to escape and end up
another attractor. In other words, the basin of attraction
one attractor is riddled by filaments of the basin of attract
of the other. Notice that this implies that the attractor is
longer of the topological type. It is, instead, a so-called M
nor attractor because it attracts trajectories with initial co
ditions in a set of positive Lebesgue measure, but there is
neighborhood of the attractor from which all trajectories a
attracted.

Even in the case where the attractor in the invariant ma
fold is unique, the bubbling regime has another interest
property that manifests itself when a small amount of no
is added to the deterministic dynamics. In the absence
noise, the overall negative transversal Lyapunov expon
implies that fluctuations away from the invariant manifo
are bound to asymptotically die out. A finite noise term, ho
ever, may be considered as a permanent source of finite-
fluctuations that now are amplified on the occasions wh
the dynamics passes near a transversally unstable orbit.
result is a kind of noise-sustained intermittency, where sh
intervals of relatively highly fluctuating transversal motio
alternate randomly with intervals where the motion occ
very close to the invariant manifold.

As the same parameter responsible for the bubbling bi
cation is increased further, a second threshold is commo
reached: a value at which the full attractor of the invaria
manifold becomes transversally unstable. This transition
called a blowout bifurcation. Now, intermittent bursts of m
tion, away from the manifold, are unavoidable unless a v
close matching of the initial condition of the trajectories
made to situate the trajectory on that manifold. It is enou
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f
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CARTWRIGHT et al. PHYSICAL REVIEW E 68, 016217 ~2003!
to have a very small uncertainty in the initial condition
sustain the fluctuations. The regime, called on-off interm
tency, has now been reached.

This behavior is illustrated by the well studied example
a system of two identical dissipative He´non maps

x~n11!5TS x~n!

y~n!
D[S y~n!112ax2~n!

bx~n!
D , ~7!

coupled through diffusive type of interaction@14#:

x1~n11!5T„x1~n!…1«@T„x2~n!…2T„x1~n!…#,
~8!

x2~n11!5T„x2~n!…1«@T„x1~n!…2T„x2~n!…#.

Obviously, manifold (x1 ,y1)5(x2 ,y2) is dynamically in-
variant and hosts the same attractor as the individual
coupled maps; Fig. 2~a! displays the attractor. In Fig. 2~b! we
show the temporal behavior of the mismatch between thx
coordinates of each map for an« value for which the com-
puted transversal Lyapunov exponent is positive, i.e., in
regime of on-off intermittency. The relevance of this e
ample here is to show the strong similarity with the behav
reported in Fig. 1~c!. However, it should be remarked th
while the wild fluctuations ofx12x2 in the present case
never cease to occur, the fluctuations ofun in the former only
last for a finite period of time, until the trajectory finall
settles within a KAM torus.

IV. BAILOUT EFFECT AND BLOWOUT BIFURCATION

The discussion in Sec. III concerns dissipative syste
This is important in the sense that the invariant submanif

FIG. 2. ~a! The Hénon attractor for the individual uncouple
maps witha51.4 andb50.3. ~b! Time evolution forx12x2 show-
ing on-off intermittency.
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under consideration may contain an attracting set for tra
tories starting either in the manifold itself or in the rest of t
phase space.

In order to show that the bailout effect corresponds to
occurrence of a blowout bifurcation, we again consider
specific example of the standard map. The phase space
the bailout embedding of this problem is four dimension
with coordinates (xn ,yn ,un ,vn), and its dynamics was de
fined in Sec. II. It is clear from the construction of the em
bedding thatun5vn50 is an invariant two-dimensional sub
manifold of the four-dimensional phase space; ifun5vn
50 at n50, Eqs.~5! imply that this is so for alln.0.

We now consider again the dynamics of infinitesimal p
turbations (dun ,dvn) transverse to the invariant manifold. I
order to compute the transversal Lyapunov exponent, one
to take a trajectory on the invariant manifold and plug it in
the linearized equations for the perturbations. Notice that
last two Eqs.~5! are linear inu andv, and therefore repre
sent also the evolution ofdun and dvn . Note also that the
trajectories on the invariant manifold are the trajectories
the original standard map obtained by settingu andv to zero
in the first two Eqs.~5!. Plugging a typical chaotic solution
(xn ,yn) of the standard map into the last two we compute
transversal Lyapunov exponenth' by settingdn5$@dun#2

1@dvn#2%1/25$un
21vn

2%1/2 in Eq. ~6!.
Figure 3~a! shows a plot ofh' versus parametere2g for a

specific chaotic trajectory of the standard map. We see
h' increases with increasinge2g, changing sign at the criti-
cal value ofg5gc'0.3. One can say that at this value,
Hamiltonian version of a blowout bifurcation occurs. Let
clarify the special characteristics imposed by the Ham
tonian dynamics. By definition,h' is an average over the
whole chosen chaotic trajectory, and therefore the chang
its sign has the same implications as in the case of the
sipative dynamics in so far as that particular chaotic regio
concerned. There are, however, two main differences. F
in the Hamiltonian case, no trajectory, and in particular,
chaotic trajectory, is an attractor. Therefore, the positiven
of the transversal Lyapunov exponent only has an effect
the trajectories starting in the corresponding chaotic reg
on the invariant manifold. On the other hand, in Hamiltoni
systems one typically encounters a very complex coexiste
of chaotic regions with nearly integrable ones, the KAM
lands, and the correspondingh' are completely unrelated
since no trajectory can visit both regions. As a conseque
one can typically find that while trajectories are forced

FIG. 3. For the bailout embedding of the standard map withk
51.5, the transverse Lyapunov exponenth' vs. ~a! parametere2g

for 0.5<e2g<1 and ~b! the initial condition y0P@20.5,0.5#,x0

520.5 for e2g50.85.
7-4
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BUBBLING AND ON-OFF INTERMITTENCY IN . . . PHYSICAL REVIEW E68, 016217 ~2003!
diverge from the invariant manifold in some regions th
may reconverge onto it in some others.

To demonstrate that this is the situation with the bailo
embedding of Hamiltonian systems, we study the behavio
the transversal Lyapunov exponent as a function of the in
conditions in the bailout-embedded standard map. We c
pute h' for a given value ofg above the bifurcation and
initial conditions uniformly distributed on the one
dimensional line defined byy0P@20.5,0.5#,x0520.5.
Since the dynamics in the invariant subspace are Ha
tonian, the line of initial conditions cuts both chaotic are
and KAM surfaces. Figure 3~b! shows the transversa
Lyapunov exponent along this line, making it evident tha
is positive for most chaotic trajectories, but negative in
regular regions where the embedding finally converges.

By construction, the bailout embedding of any dynami
system does not possess global attractors other than tho
the invariant manifold. This is crucial to ensure that t
blowout bifurcation leads to on-off intermittency. Howeve
the Hamiltonian nature of the dynamics restricted to the
variant manifold implies the coexistence of sets of orbits t
are transversally unstable with other sets that are not.
bedding trajectories starting in the neighborhood of the
variant manifold are repelled from it and bounce around
phase space, coming back to the invariant manifold and
verging away from it in an intermittent fashion, until the
eventually arrive close enough to one of the transvers
stable sets to become trapped. The on-off intermittency
played in this case is therefore only transient, as we
appreciate in Fig. 4.

Lastly, we note that on decreasingg, progressively more
orbits on the invariant manifold become transversally u
stable, and the number of trajectories, starting from rand
initial conditions, that eventually settle into the KAM tori i
this way increases, as we anticipated in Sec. II.

V. BLOWOUT BIFURCATIONS IN THE PRESENCE
OF NOISE: BUBBLING AND AVOIDANCE

The alteration of the dynamical behavior around bubbl
and blowout bifurcations in the presence of imperfect sy
metry and noise has been studied by several authors@2,4–
6,15#. Among the many observed effects, it is particula

FIG. 4. Time evolution ofun for a randomly selected initia
condition, forg<gc . Transient on-off intermittency is clearly see
before the embedding finally collapses inside the KAM tori.
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important for our purposes to recall that the addition of no
to a system that experiences a blowout bifurcation may l
to dynamics qualitatively similar to on-off intermittency, bu
appearing before the actual blowout bifurcation has
curred. This regime has been dubbed bubbling@2# because its
onset is associated with the occurrence of a bubbling bi
cation.

In turn, the properties of bailout embeddings in the pr
ence of a small amount of white noise have been stud
@16,17#. The noisy bailout embedding of a map is defined

xn115 f ~xn!,
~9!

xn122 f ~xn11!5e2g
“ f uxn

@xn112 f ~xn!#1jn,

where, as before, the gradient of the map has been take
the bailout function. The additional noise termjn here is
supposed to have the statistics

^jn&50,
~10!

^jn jm&5«~12e22g!dmnI .

It has been shown that as the bailout parameter is chan
while keeping the noise intensity fixed, two regimes displa
ing increasingly strong modulations of the invariant dens
appear@16#. At first the bailout is globally stable, but fluc
tuations around the stable embedding are restored tow
the stable manifold at different rates, thereby acquiring d
ferent expectation values at different points on the manifo
This behavior leaves a mark on the invariant density that
be described by means of a mechanism similar to spati
modulated temperature@18,19#. Indeed, the transversal fluc
tuations can be shown to be locally proportional to the no
amplitude with a space-dependent prefactor that only
pends on dynamical quantities. The dynamics thus prefe
escape the hot regions of the invariant manifold~the phase
space of the embedded system! and to freeze onto the cold
ones. This is balanced in a nontrivial fashion by mixing
the map, to create interesting scars in the invariant den
This regime has been called avoidance. As the bailout
rameter is changed, the noise prefactor eventually dive
and the embedding loses stability at some points. This is
stage described in Sec. II, in which the embedding trajec
ries detach from those of the original system; to distinguis
from the avoidance regime it has been termed detachm
@16#.

Let us now show that the avoidance regime is a Ham
tonian manifestation of bubbling. For this purpose, we fi
investigate the behavior of the finite-time transver
Lyapunov exponenth' for a bailout parameter below th
onset of detachment. In Fig. 5 we have plotted a histogr
showing the values of such an exponent computed fo
thousand different initial conditions for the bailout embe
ding of the standard map in a regime where relatively la
7-5
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CARTWRIGHT et al. PHYSICAL REVIEW E 68, 016217 ~2003!
KAM islands coexist with broad chaotic regions. The calc
lations were carried out over a large number of iteratio
Notice first that the histogram is composed of two pea
centered around negative values ofh' . The most negative
peak corresponds to initial conditions lying within KAM is
lands where the embedding is known to be stable even
larger values of the bailout parameter. The second p
closer to zero but still negative, corresponds to initial con
tions within the chaotic sea. Notice that this peak has a
that includes positive values ofh' . On an average, howeve
h' is clearly negative even if it is restricted to the individu
peaks. Moreover, both peaks converge to Dirac distribu
functions supported at negative values as the computa
time for h' increases. This behavior is the signature o
bubbling type of bifurcation within the chaotic region: a fe
individual unstable orbits acquire positive transversal ex
nents while the whole chaotic trajectory is still transversa
stable.

The similarity of the bubbling and avoidance regimes
illustrated in Fig. 6 with the same embedding of the stand
map. The bailout parameter is the same as in Fig. 5,
below the onset of detachment. Figures 6~a,b! represent the
noise-free situation: the embedding trajectory coincides w
a chaotic trajectory of the embedded system, and this c
cidence is stable. In this situation, any initial mismatch tra
versal to the invariant manifold decays irreversibly to ze
In Figs. 6~c,d!, on the other hand, a small amount of noi
has been added to the embedding in the way indicated in
~9!. We can see that as a consequence of this noise term
one hand the boundaries of the chaotic region have bec
fuzzier and on the other, a bursting mismatch between
embedding and the original system is now sustained o

FIG. 5. For a parameter setting below the blowout bifurcati
e2g50.65, a histogram of the finite-time transverse Lyapunov
ponenth' computed from 1000 initial conditions randomly chos
in the phase space of the standard map withk51.5. Although the
asymptotic value ofh' for trajectories on the chaotic sea is slight
negative, at finite times there are many trajectories that experie
repulsion from the invariant subspace, reflected by the sprea
this histogram into the positive region.
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time. This noise-driven intermittent behavior is typical
systems in a bubbling regime.

VI. CONCLUSIONS

We have demonstrated here that two distinct dynam
behaviors, previously studied as unrelated phenomena,
different manifestations of a common situation. The blowo
bifurcation, which arises naturally in the synchronization
chaotic oscillators, or in continuum systems with spat
symmetry, is usually accompanied by undesirable phen
ena, such as riddled basins or on-off intermittency, that s
the synchronism@20–22#. The difference between these sc
narios and bailout embedding is the Hamiltonian nature
the dynamics restricted to the invariant manifold in the lat
case. The nonexistence of an attractor in the invariant m
fold in a bailout embedding permits one to avoid these
desirable phenomena, and at the same time allows on
exploit them. This is done by transforming a selected se
orbits into global attractors for the dynamics, allowing t
embedding to target islands of order within the chaos.

One interesting outstanding issue is whether the sca
behavior, found in the intermittent dynamics of attractors e
periencing bubbling and blowout bifurcations, has a coun
part in the Hamiltonian case. This is a nontrivial question
two reasons. One is the transient nature of Hamiltonian
off intermittency~the bailout effect! and the other is the fac
that the statistics of the intermittent behavior of these s
tems under the action of noise is strongly sensitive to
statistics of KAM island sizes, which is highly nonuniversa
This strongly affects the typical time scale of transient int
mittency in the absence of noise. We shall explore th
problems in future.

,
-

ce
of

FIG. 6. For the same parameters as in Fig. 5@~a! and ~c!, re-
spectively#, a trajectory of the standard map with and without t
added noise term;~b! and~d! the time evolution of the mismatchun

in both cases.
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