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Bubbling and on-off intermittency in bailout embeddings
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We establish and investigate the conceptual connection between the dynamics of the bailout embedding of
a Hamiltonian system and the dynamical regimes associated with the occurrence of bubbling and blowout
bifurcations. The roles of the invariant manifold and the dynamics restricted to it, required in bubbling and
blowout bifurcating systems, are played in the bailout embedding by the embedded Hamiltonian dynamical
system. The Hamiltonian nature of the dynamics is precisely the distinctive feature of this instance of a
bubbling or blowout bifurcation. The detachment of the embedding trajectories from the original ones can thus
be thought of as transient on-off intermittency, and noise-induced avoidance of some regions of the embedded
phase space can be recognized as Hamiltonian bubbling.
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I. INTRODUCTION ture of the dynamics away from the invariant manifold.
In the foregoing, we have supposed that both the re-
Symmetry is a fundamental concept in science, both at thétricted and the unrestricted dynamics are dissipative. But we

level of physical laws and when applied to specific applica-_might envision a case in which the global dissipative dynam-

tions. In dynamics, the presence of symmetries may implycS have an invariant manifold on which the restricted dy-

the existence of lower-dimensional submanifolds of the fullP@MICS is conservative; described, for example, by a Hamil-
tonian flow or a volume-preservin@.iouvillian) map. The

: e i . h YMrbits on the invariant manifold then exhibit, instead of at-
metric states must evolve into symmetric states. The motiog, .14y the typical Hamiltonian phase-space structure char-

restricted to these in\_/ariant mani.folds is oﬁen ch_aotic. Thiszcterized by the coexistence of chaotic regions and
occurs, for instance, in synchronized chaotic oscillators anq,(olmogorov-ArnoId-Moser(KAM) tori. However, since the
in extended systems with spatial symmetry. The existence afj|l dynamics are dissipative, a part or even the whole family
chaotic attractors in the restricted dynamics can have intefof the restricted Hamiltonian orbits may be global attractors.
esting consequences for the behavior of the full sy§te®.  Furthermore, a parameter can now control the transversal
An interesting question is whether the attractors on invaristability of the invariant manifold in the same way as in
ant manifolds are also attractors of the unrestricted dynamblowout bifurcations; but now governing which part of the
ics. Consider the case in which a parameter controls the dyHamiltonian dynamics is globally attracting, and which is
namics transversal to the invariant manifold while leavingnot.
unaffected the dynamics restricted to the invariant manifold The aim of this work is to show that these dynamics are
[2]. Below a critical value of this parameter, the manifold is observed in a physical system of finite-sized particles driven
transversally stable and any attractor within it is also a globaPy an incompressible fluid flo7,8], and have been har-
attractor. When the parameter exceeds the critical valudessed to work in the different context of the study of chaotic
some invariant set embedded in the attractor becomes trandynamical systems in the technique of bailout embedding,
versally unstable. Although most trajectories initially close to!!rSt introduced by us in Ref.9]. In Sec. Il we recall the
the attractor in the invariant manifold may still remain close€cessary background on bailout embeddings. In Sec. Il we

to it, there is now a small set of points, in any neighborhooocons'der bubbling and blowout bifurcations and in Sec. IV

. . . . : we relate bailout embeddings with blowout bifurcations.
of the qttractor, which dlverggs from the invariant manIfOId'Section V follows with a discussion of the addition of noise
Increasing the parameter still further, the full attractor be-

. to, a bailout embedding, and the occurrence of bubbling. We
comes transversally unstable. These two scenarios, nam%ﬂnclude in Sec. VI

bubbling and blowout bifurcations, may lead either to the
so-called riddled basin3] or to a strong temporal bursting Il. BAILOUT EMBEDDINGS
termed on-off intermittency1,4—6, depending on the na- )
Given an arbitrary dynamical systexs=f(x), we define
a bailout embedding as one of the form
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ing x="f(x)=v, also solves Eqs(1). This implies thatv _ ) _
=f(x) defines an invariant submanifold for the bailout em- Xn+1=Xn+ 5—SIN(2mYy ) =fx(Xp,yn) (Mod),
bedding. However, we can design an embedding to satisfy 3)
the condition thak(x) <0 on a set of unwanted orbits of the —v + —f d1

original dynamics whilek(x)>0 on the others. We thus Ynea=YotXne1=Fy(n o) - (modd).

force the unwanted orbits o be L_mstable.m. the larger dynan.barametek, controlling the nonlinearity, takes the standard
ics even though they are stable in the original system. In th'?nap from the integrable limit ak=0 to a highly chaotic

way, trajectories in the embedding tend to detach or bail ou}egime wherks1. At intermediatek this map shows a mix-

from th_e unwanted set of th? original system, bounCIngture of quasiperiodic trajectories on the KAM tori together
around in the larger space until eventually reaching a stable. h chaoti d di h he initial
region with k(x)>0, where they may converge back onto with chaotic ones, depending on where we set the initia
trajectories of the or’i inal dynamical system. In other Wordscondmons. As the value dt is increased, the region domi-
b Jmeans of a bailgut em{)e ddin wye caﬁ create a lar e‘r}ated by chaotic trajectories pervades most of the phase
vgrsion of the dynamics in which g ecific sets of orbits a?espace except for increasingly small islands of KAM quasi-
removed from tr}:e asvmototic set \?vhile reserving the d periodicity. Notice that the only factor that decides whether
namics of another setyofrt))rbits thé wante% one asgattract)(;}ge are in one of these islands or in the surrounding chaotic
; ' ' sea is the initial condition of the trajectory. Therefore, in
of the enlarged dynamical system.

. : . order to locate one of these islands, it would be necessary to
There is a remarkable example in nature where a bailou

. . . : ake the initial condition scan the whole phase space while
embedding describes the dynamics of a physical system. The : P . .

. S ; . _watching for quasiperiodicity in the resulting dynamics. In a
motion of f'ﬂ'te's'?ed neutrall_y buoy_ant spherical partICIesbailout embedding, on the other hand, the KAM trajectories
suspended in an incompressible fluid flow empeds the LaE)f the embedded system can be transformed into effective
grangian dynamics of a perfect tracer satisfymgu(x),  global attractors in the extended phase space. The search for
[10]. In the full model of the drag on a sphelfg], this is &  pajlout map forwards until its trajectories converge to those
highly nontrivial embedding. For example, the contribution of the embedded one.
to the drag, known as a Basset-Boussinesq force, contains The hajlout embedding of the standard map is obtained by
the difference between the fluid and particle accelerationgimply replacingf in Eq. (2) with the definitions from Eq.
integrated over the whole trajectory. However, in the limit(3) Accordingly, K(x) in Eq. (2) becomes
where the particles are sufficiently small and the Basset-

Boussinesq term can be disregarded, the dynamics reduce to 1 k cog 27ry,)

a bailout embedding of the form given in E@.) with u(x) K(x)=e™” "
playing the role off andk(x)=—(y+ Vf), wherey turns

out to be the Stokes coefficief8]. In this case, it appears

that the embeddingthe finite-sized particle dynamicsle- Thesg replacements then lead to the coupled second-order
taches from the original dynamidshe passive scalar ope Iterative system

near saddle points and other unstable regions of the basic

1 kcog2mwy,)+1/" @

volume-preserving flow, converging back only in the KAM Xn+1= Un T Fx(Xn,Yn),

islands that act now as attractors of the embedding. This

re;sult generalizes |mmed|ate.ly_ to any Hamiltonian or Yo+1=UnF fy(Xn,Yn),

divergence-free flow using a similar form &fx), and can (5)

be used as a method to target small KAM islands in these
types of system§9].

The notion of bailout embedding E¢L) can be extended
to maps in a rather obvious fashidf,11]. Given a map
Xnt1=f(Xy), the bailout embedding is given by

Upr1=€ Y(u,+kcog2my,)vy),
Uni1=€ Y(u,+[kcog2my,)+1]v,).

Notice that due to the area-preserving property of the stan-
Xnt2— T (X 1) =KX ) [ Xne1— F(X) ] (2)  dard map, the two eigenvalues of the derivative matrix must
multiply to one. If they are complex, this means that both
Condition k(x) <O over the unwanted orbits has to be re-have an absolute value of one, while if they are real, generi-
placed here byK(x)|>1, because the deviations from the cally one of them will be larger than one and the other
original dynamics are multiplied bl in each iteration. The smaller. We can then separate the phase space into elliptic
particular choice of the gradient as bailout functik(x) and hyperbolic regions, corresponding to each of these two
=—(y+Vf) in a flow translates in the map setting to cases. If a trajectory of the original map lies entirely in the
K(x)=e "Vf. elliptic regions, overall factoe™” damps any small pertur-
Let us illustrate the functioning of a map bailout embed-bation away from it in the embedded system. But, for chaotic
ding in the Hamiltonian framework by means of the proto-trajectories that inevitably visit some hyperbolic regions,
typical area-preserving standard map introduced by Chirikothere exists a threshold value ¢f such that perturbations
and Taylor{12]. This map is defined on the two-dimensional away from a standard-map trajectory are amplified instead of
torus by dying out in the embedding. As a consequence, trajectories
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transversal to the invariant manifold, along attractor trajec-
tory X, . The transversal Lyapunov exponent is then defined
as

1
h, = lim ~In[ 8,/ 8], 6)

n—o

0.0 0.5 1.0

n

If h, <0 for all orbits in the manifold then any transversal
10 perturbation will eventually die out. In this case, if there is a
4 unique topological attractdrl 3] for the dynamics restricted

3 to the manifold, it will also be a topological attractor for the
] full dynamics.

The situation is far more complex if the attractor itself is
transversally stable while one or more periodic orbits embed-
ded in the attractor are not, so that>0 for these orbits.
When, as a consequence of changing a parameter, the system
passes from the fully stable situation of the previous para-
graph to one in which some transversally unstable orbits co-

FIG. 1. (a) Chaotic trajectory of the standard map for=5, exist with the stable attractor, it is said that a bubbling bifur-
covering practically the whole phase space except for a smaltation has taken place.
period-2 KAM island.(b) Trajectory of a bailout embedding of the In the new-born regime, named bubbling, when a trajec-
standard map witte” =0.85. After wandering around the phase tory visits the neighborhood of an orbit with positibe , a
space for a while, the trajectory finally settles inside the isla@ls. transversal perturbation temporarily grows. If the attractor in
Deviation of the bailout embedding trajectory from the original dy- the manifold is the only attractor of the system, this local
namics showing transiently intermittent behavior as a function ofyg|ative instability is inconsequential; at most it spoils tem-
time. The parameters here are the same dg)iand (b). porarily the asymptotically safe convergence to the attractor.

But, on the other hand, if the attractor is not unique, the local
are expelled from the chaotic regions to flnally settle in th&nstab”ny provides a gateway for a trajectory apparent|y
Safely eIIiptiC KAM islands. This process can be seen C|ear|)bonverging to the stable attractor to escape and end up on
in Figs. Xa,b. another attractor. In other words, the basin of attraction of

The temporal behavior of the departure of the bailout-one attractor is riddled by filaments of the basin of attraction
embedding trajectory from the embedded dynamics is interof the other. Notice that this implies that the attractor is no
esting by itself. This departure is measured by componentgnger of the topological type. It is, instead, a so-called Mil-
u, andv, of Eqg. (5). Over the evolution, the embedding nor attractor because it attracts trajectories with initial con-
visits, in turn, areas where convergence and divergence frofjitions in a set of positive Lebesgue measure, but there is no
the original dynamics is reinforced. The result is typically aneighborhood of the attractor from which all trajectories are
highly intermittent behavior where periods of exponentially attracted.
small values ofiandv alternate with periods with very large  Even in the case where the attractor in the invariant mani-
values of these components, as depicted in Fig. Except  fold is unique, the bubbling regime has another interesting
for the fact that finally the fluctuations are bound to die out atproperty that manifests itself when a small amount of noise
some stage, this behavior is reminiscent of the so-called ons added to the deterministic dynamics. In the absence of
off intermittency taking place after a blowout bifurcation. In noise, the overall negative transversal Lyapunov exponent
the following sections we investigate further the connectiorimplies that fluctuations away from the invariant manifold

(1) 750 1500
n

between these two dynamical phenomena. are bound to asymptotically die out. A finite noise term, how-
ever, may be considered as a permanent source of finite-time
IIl. BUBBLING AND BLOWOUT BIFURCATIONS fluctuations that now are amplified on the occasions when

the dynamics passes near a transversally unstable orbit. The

The behavior of a bailout embedding can be analyzed imesult is a kind of noise-sustained intermittency, where short
connection with bubbling and blowout bifurcations. Theseintervals of relatively highly fluctuating transversal motion
bifurcations have been studied in dissipative dynamical sysalternate randomly with intervals where the motion occurs
tems which, due to symmetries or other constraints, have avery close to the invariant manifold.
invariant submanifold of the whole phase space that contains As the same parameter responsible for the bubbling bifur-
an attractor of the global dynamics. In such situations, oneation is increased further, a second threshold is commonly
may wish to study the stability of the invariant manifold with reached: a value at which the full attractor of the invariant
respect to small departures in a transversal direction. Thimanifold becomes transversally unstable. This transition is
stability is indicated by the transversal Lyapunov exponentcalled a blowout bifurcation. Now, intermittent bursts of mo-
which is growth rateh, of a transversal perturbation aver- tion, away from the manifold, are unavoidable unless a very
aged over a trajectory on the manifold. Specifically, we mayclose matching of the initial condition of the trajectories is
follow the evolution of an infinitesimal perturbatiod,, made to situate the trajectory on that manifold. It is enough
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1 FIG. 3. For the bailout embedding of the standard map With
=1.5, the transverse Lyapunov exponéntvs. (a) parametee™”
for 0.5<e” <1 and (b) the initial conditionyye[—0.5,0.5,X,
=-—0.5fore”7=0.85.

under consideration may contain an attracting set for trajec-
tories starting either in the manifold itself or in the rest of the
phase space.
In order to show that the bailout effect corresponds to the
0 400 800 1200 1600 2000 occurrence of a blowout bifurcation, we again consider the
" specific example of the standard map. The phase space for
FIG. 2. (@ The Heon attractor for the individual uncoupled the bailout embedding of this problem is four dimensional,
maps witha=1.4 ando=0.3. (b) Time evolution forx, —x, show-  with coordinates X,,,y,,U,,v,), and its dynamics was de-
ing on-off intermittency. fined in Sec. Il. It is clear from the construction of the em-
bedding thati,=v,=0 is an invariant two-dimensional sub-
to have a very small uncertainty in the initial condition to manifold of the four-dimensional phase space;ujf=v,
sustain the fluctuations. The regime, called on-off intermit-=0 atn=0, Egs.(5) imply that this is so for alh>0.

tency, has now b_ee_n reached. _ We now consider again the dynamics of infinitesimal per-
This behavior is illustrated by the well studied example ofturbations ¢u, ,v,) transverse to the invariant manifold. In
a system of two identical dissipative hien maps order to compute the transversal Lyapunov exponent, one has

to take a trajectory on the invariant manifold and plug it into
the linearized equations for the perturbations. Notice that the

C_[x(m)) y(n)+1-ax*(n) last two Eqs.(5) are linear inu andv, and therefore repre-
X(n+1)=T y(n) - bx(n) ’ @) sent also the evolution afu, and év,. Note also that the
trajectories on the invariant manifold are the trajectories of
coupled through diffusive type of interacti¢h4]: the original standard map obtained by settingndv to zero

in the first two Eqgs(5). Plugging a typical chaotic solution
(Xn,Yn) of the standard map into the last two we compute its
X1 (N+1)=T(X1(N))+e[T(Xx(N)) = T(Xa(N))], transversal Lyapunov exponeht by setting 8,={[ du,]?
®)  +[dv, Y= {ui+v3}Y?in Eq. (6).
Figure 3a) shows a plot oh, versus parameter ? for a
Xo(N+1)=T(Xx(n))+e[T(x1(N)) =T (xx(N))]. specific chaotic trajectory of the standard map. We see that
h, increases with increasing ?, changing sign at the criti-
Obviously, manifold &;,y;)=(x5,y,) is dynamically in- cal value ofy=y.~0.3. One can say that at this value, a
variant and hosts the same attractor as the individual unHamiltonian version of a blowout bifurcation occurs. Let us
coupled maps; Fig.(2) displays the attractor. In Fig(®) we  clarify the special characteristics imposed by the Hamil-
show the temporal behavior of the mismatch betweenxthe tonian dynamics. By definitionh, is an average over the
coordinates of each map for anvalue for which the com- Whole chosen chaotic trajectory, and therefore the change in
puted transversal Lyapunov exponent is positive, i.e., in théls sign has the same implications as in the case of the dis-
regime of on-off intermittency. The relevance of this ex- sipative dynamics in so far as that particular chaotic region is
ample here is to show the strong similarity with the behaviorconcerned. There are, however, two main differences. First,
reported in Fig. Ic). However, it should be remarked that in the Hamiltonian case, no trajectory, and in particular, no
while the wild fluctuations ofx;—x, in the present case chaotic trajectory, is an attractor. Therefore, the positiveness
never cease to occur, the fluctuationsigin the former only ~ of the transversal Lyapunov exponent only has an effect on

last for a finite period of time, until the trajectory finally the trajectories starting in the corresponding chaotic region
settles within a KAM torus. on the invariant manifold. On the other hand, in Hamiltonian

systems one typically encounters a very complex coexistence
of chaotic regions with nearly integrable ones, the KAM is-
lands, and the correspondiriy are completely unrelated
The discussion in Sec. Il concerns dissipative systemssince no trajectory can visit both regions. As a consequence,
This is important in the sense that the invariant submanifoldbne can typically find that while trajectories are forced to

IV. BAILOUT EFFECT AND BLOWOUT BIFURCATION
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important for our purposes to recall that the addition of noise
to a system that experiences a blowout bifurcation may lead
to dynamics qualitatively similar to on-off intermittency, but
appearing before the actual blowout bifurcation has oc-
curred. This regime has been dubbed bubbiZidecause its
onset is associated with the occurrence of a bubbling bifur-
cation.

In turn, the properties of bailout embeddings in the pres-
ence of a small amount of white noise have been studied
[16,17. The noisy bailout embedding of a map is defined as

0 1000 2000 3000 4000 5000 6000

n
FIG. 4. Time evolution ofu, for a randomly selected initial Xn+1= F(Xn),
condition, fory=<1y, . Transient on-off intermittency is clearly seen 9

before the embedding finally collapses inside the KAM tori.

Xn+2— f(Xn+1) =e 7Vf|xn[xn+1_ f(xn)] + ‘fny
diverge from the invariant manifold in some regions they
may reconverge onto it in some others. .

To demonstrate that this is the situation with the bailout\/\/here’.as before_, the grad|ent_ .Of the map has been tgken as
embedding of Hamiltonian systems, we study the behavior o}he bailout function. The ad_dmonal noise teréy here is
the transversal Lyapunov exponent as a function of the initia?’Uppose<j to have the statistics
conditions in the bailout-embedded standard map. We com-
pute h, for a given value ofy above the bifurcation and (£)=0,
initial conditions uniformly distributed on the one-
dimensional line defined byyye[—0.5,0.9,xo=—0.5.
Since the dynamics in the invariant subspace are Hamil-
tonian, the line of initial conditions cuts both chaotic areas
and KAM surfaces. Figure (B) shows the transversal |t has been shown that as the bailout parameter is changed
Lyapunov exponent along this line, making it evident that itwhile keeping the noise intensity fixed, two regimes display-
is positive for most chaotic trajectories, but negative in théing increasingly strong modulations of the invariant density
regular regions where the embedding finally converges.  appear{16]. At first the bailout is globally stable, but fluc-

By construction, the bailout embedding of any dynamicaluations around the stable embedding are restored towards
system does not possess global attractors other than thosetife stable manifold at different rates, thereby acquiring dif-
the invariant manifold. This is crucial to ensure that theferent expectation values at different points on the manifold.
blowout bifurcation leads to on-off intermittency. However, This behavior leaves a mark on the invariant density that can
the Hamiltonian nature of the dynamics restricted to the inpe described by means of a mechanism similar to spatially
variant manifold implies the coexistence of sets of orbits thamodulated temperatufd 8,19. Indeed, the transversal fluc-
are transversally unstable with other sets that are not. Emuations can be shown to be locally proportional to the noise
bedding trajectories starting in the neighborhood of the inamplitude with a space-dependent prefactor that only de-
variant manifold are repelled from it and bounce around theyends on dynamical quantities. The dynamics thus prefer to
phase space, coming back to the invariant manifold and diescape the hot regions of the invariant maniféilie phase
verging away from it in an intermittent fashion, until they space of the embedded systeamd to freeze onto the cold
eventually arrive close enough to one of the transversallynes. This is balanced in a nontrivial fashion by mixing in
stable sets to become trapped. The on-off intermittency dishe map, to create interesting scars in the invariant density.
played in this case is therefore only transient, as we carhis regime has been called avoidance. As the bailout pa-
appreciate in Fig. 4. rameter is changed, the noise prefactor eventually diverges

Lastly, we note that on decreasing progressively more and the embedding loses stability at some points. This is the
orbits on the invariant manifold become transversally unstage described in Sec. Il, in which the embedding trajecto-
stable, and the number of trajectories, starting from randorfies detach from those of the original system; to distinguish it
initial conditions, that eventually settle into the KAM tori in from the avoidance regime it has been termed detachment
this way increases, as we anticipated in Sec. Il. [16].

Let us now show that the avoidance regime is a Hamil-
tonian manifestation of bubbling. For this purpose, we first
investigate the behavior of the finite-time transversal
Lyapunov exponenh, for a bailout parameter below the

The alteration of the dynamical behavior around bubblingonset of detachment. In Fig. 5 we have plotted a histogram
and blowout bifurcations in the presence of imperfect symshowing the values of such an exponent computed for a
metry and noise has been studied by several aufifyds-  thousand different initial conditions for the bailout embed-
6,15. Among the many observed effects, it is particularly ding of the standard map in a regime where relatively large

(10
<§n §m>=8(1_e72y) Omnl -

V. BLOWOUT BIFURCATIONS IN THE PRESENCE
OF NOISE: BUBBLING AND AVOIDANCE
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FIG. 5. For a parameter setting below the blowout bifurcation,
e ¥=0.65, a histogram of the finite-time transverse Lyapunov ex-
ponenth, computed from 1000 initial conditions randomly chosen
in the phase space of the standard map Withl.5. Although the
asymptotic value oh, for trajectories on the chaotic sea is slightly FIG. 6. For the same parameters as in Fid(& and (c), re-
negative, at finite times there are many trajectories that experiencgpectively, a trajectory of the standard map with and without the
repulsion from the invariant subspace, reflected by the spread afdded noise tern{p) and(d) the time evolution of the mismatal,
this histogram into the positive region. in both cases.

0 1x10% 2x10?
n

KAM islands coexist with broad chaotic regions. The calcu-time. This noise-driven intermittent behavior is typical of
lations were carried out over a large number of iterationsSYS€MS in & bubbling regime.

Notice first that the histogram is composed of two peaks

centered around negative valueshof. The most negative VI. CONCLUSIONS

peak corresponds to initial conditions lying within KAM is-

lands where the embedding is known to be stable even for We have demonstrated here that two distinct dynamical

larger values of the bailout parameter. The second peall\:)ehaviors, previously studied as unrelated phenomena, are

closer to zero but still negative, corresponds to initial cong;-different manifestations of a common situation. The blowout

tions within the chaotic sea. Notice that this peak has a tgififurcation, which arises naturally in the synchronization of

that includes positive values bf . On an average, however, chaotic osgillators, or in CO”“U““”‘ systems with spatial
h, is clearly negative even if it is restricted to the individual symmetry, is usually accompanied by undesirable phenom-

peaks. Moreover, both peaks converge to Dirac distributio ena, such as riddled basins or on-off intermittency, that spoail

funct ted at " | th i The synchronismi20—22. The difference between these sce-
unctions supported at negauve values as the computalion,ins ang pailout embedding is the Hamiltonian nature of

time for h, increases. This behavior is the signature of ayo dynamics restricted to the invariant manifold in the latter
bubbling type of bifurcation within the chaotic region: a few c55e "The nonexistence of an attractor in the invariant mani-

individual unstable orbits acquire positive transversal exposfg|d in a bailout embedding permits one to avoid these un-
nents while the whole chaotic trajectory is still transversallygesirable phenomena, and at the same time allows one to
stable. exploit them. This is done by transforming a selected set of
The similarity of the bubbling and avoidance regimes isorbits into global attractors for the dynamics, allowing the
illustrated in Fig. 6 with the same embedding of the standaré&mbedding to target islands of order within the chaos.
map. The bailout parameter is the same as in Fig. 5, i.e., One interesting outstanding issue is whether the scaling
below the onset of detachment. Figurds,b represent the behavior, found in the intermittent dynamics of attractors ex-
noise-free situation: the embedding trajectory coincides wittperiencing bubbling and blowout bifurcations, has a counter-
a chaotic trajectory of the embedded system, and this coirpart in the Hamiltonian case. This is a nontrivial question for
cidence is stable. In this situation, any initial mismatch transtwo reasons. One is the transient nature of Hamiltonian on-
versal to the invariant manifold decays irreversibly to zero.off intermittency(the bailout effectand the other is the fact
In Figs. Gc,d), on the other hand, a small amount of noisethat the statistics of the intermittent behavior of these sys-
has been added to the embedding in the way indicated in Egems under the action of noise is strongly sensitive to the
(9). We can see that as a consequence of this noise term, aiatistics of KAM island sizes, which is highly nonuniversal.
one hand the boundaries of the chaotic region have becanihis strongly affects the typical time scale of transient inter-
fuzzier and on the other, a bursting mismatch between thenittency in the absence of noise. We shall explore these
embedding and the original system is now sustained oveproblems in future.
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