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Bailout Embedding as a Blowout Bifurcation
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We show that the bailout embedding of a Hamiltonian dynamical system provides an
example of blowout bifurcation with conservative dynamics on the invariant manifold. The
detachment of the embedding trajectories from the original ones can thus be thought of as
transient on-off intermittency.

§1. Introduction

Symmetry plays an important role in physics from fundamental formulations
of basic principles to concrete applications. In dynamics, for instance, symmetries
usually imply the existence of lower dimensional submanifolds of the full phase space
that are dynamically invariant because symmetric states must evolve into symmet-
ric states. Often the motion restricted to these invariant manifolds (IM) is chaotic.
This happens for example, in some extended systems with spatial symmetry or
in synchronized chaotic oscillators. There, the existence of chaotic attractors in
the restricted dynamics has interesting consequences for the behavior of the full
system. 1),2)

One interesting question is whether the attractors on IM’s are also attractors of
the unrestricted dynamics. Ashwin et al. !) examine the situation where a parameter
controls the dynamics transversal to the IM while having no effects on the restricted
dynamics. Below a critical value of this parameter, the manifold is transversally
stable and any attractor there is also a global attractor. Increasing the parameter
some invariant set embedded in the attractor become transversally unstable. While
most trajectories initially close to the attractor in the IM may still remain close
to it, there is now a small set of points in any neighborhood of the attractor that
diverge from the IM. When the parameter exceeds a critical value, the full attractor
becomes transversally unstable. This scenario, named blowout bifurcation, may lead
either to the so-called riddled basins or to a strong temporal bursting called on-off
intermittency 2 depending on the nature of the dynamics away from the IM.

We have so far assumed that both the restricted and the unrestricted dynamics
is dissipative. We might envision, however, a situation where a global dissipative
dynamics has an IM where the restricted dynamics is conservative, i.e. described, for
example, by a Hamiltonian flow or a volume-preserving map. The orbits on the IM
should now exhibit the typical Hamiltonian phase space structure characterized by
the coexistence of Kolmogorov-Arnold-Moser (KAM) tori and chaotic regions instead
of attractors. However, since the full dynamics is dissipative it may happen that part
or even the whole family of the restricted Hamiltonian orbits be global attractors.
Moreover, it would also be possible that a parameter controls the transversal stability
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of the IM in the same way as in blowout bifurcations but now governing which part
of the Hamiltonian dynamics is globally attracting and which part is not.

The main purpose of this paper is to show that this kind of behavior has been
actually observed in a natural system — finite size impurities driven by an incom-
pressible flow — and put constructively to work in the different context of the study
of chaotic dynamical systems by means of the technique of bailout embedding.

§2. Bailout embedding

In contrast to the symmetry induced restriction of a dynamics to an IM of lower
dimensions, dynamical systems can also be embedded into other dynamics on a
larger dimensional phase space. For instance the so-called bailout embedding of an
arbitrary dynamical system & = f(x) is defined as

d

7 (&= f(@) = —k(z) (& — f()). (21)

Making k(x) < 0 on a set of unwanted original orbits ensures that these will be
unstable orbits of the larger dynamics. The trajectories of the embedding then
detach or bail out from the unwanted ones of the original system wandering in
the larger phase space until they reach region with k(x) > 0, where they converge
back to trajectories of the original dynamical system. In this way we can create a
larger version of the dynamics in which specific sets of orbits are removed from the
asymptotic set, while preserving the dynamics of another set of orbits — the wanted
one — as attractors of the enlarged dynamical system.

A remarkable example in nature is the dynamics of passive scalars in incompress-
ible flows which is indeed embedded in the dynamics of finite size neutrally-buoyant
spherical particles with the special choice k(z) = (v + V£).?% It has been shown
that the embedding — the finite size particles — detach from the original dynamics
— the passive scalars — near saddle points and other unstable regions of the base
flow, converging back only in the KAM islands that are now attractors in the em-
bedding. Applying the same form of k(x) to any Hamiltonian or divergence-free flow
we can devise a method to target small KAM island. We can also define the bailout
embedding of an arbitrary mapping dynamics® z,,.1 = f(z,) as

Tnt2 — [(@n+1) = K(@n)(@nt1 — flzn)), (2:2)
provided that |K(z)| > 1 over the unwanted set. The particular choice of the gradient
as the bailout function k(z) = —(v+Vf) in a flow translates now to K(z) = e 7V f.

For example, the gradient bailout embedding of the Hamiltonian standard map
k.
Tni1 = T+ 5—sin(2myn) = fo(wn,yn),  (modl)
Yn+l = Yn + Tny1 = fy(xna yn) (mOdl) (2'3)

— where k is the parameter controlling integrability — becomes:

T+l = Up + fm(xna yn)v Un+1 = e’ (u?’b + k?COS(ZT(‘yn) : U?’L) )
Yntl = Up + fy(xm yn)a Un+1 = e’ (un + (k‘COS(27Tyn) + 1) ’ Un) . (2'4)
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The most remarkable feature of this embedding is the fact that while all the
original trajectories of (2-3) are also trajectories of the embedding, only the KAM
tori of the former are asymptotically approached by the ones of the latter. This
phenomenon has been extensively described in Refs. 6),7).

§3. Bailout embeddings as blowout bifurcations

We now show the connection between the bailout effect and blowout bifurcations,
in the example of the standard map. We first notice that by construction u,, = v, =0
define a two-dimensional IM in the four dimensional phase space of the embedded
dynamics, i.e. if u, = v, =0 at t = 0, Eq. (2:4) implies that u, = v, = 0 at any
t > 0). We then consider the evolution of small perturbations (duy,dv,) transverse
to the IM and compute the transversal Lyapunov exponent defined as

hJ_ = lim 1 . ln[5j/50], (31)
n—oon

with §; = {[6u;]* + [67)]-]2}% as a function of the parameter exp(—vy). Figure 1(a)
shows the results of this computation for a specific chaotic trajectories of (2-3).
Notice that h increases with exp(—+) and changes sign at v =~ 0.3 indicating that
this trajectory experience there a blowout bifurcation. This value is coincidental
with the onset of the bailout effect. Since the dynamics on the invariant subspace is
Hamiltonian, h; depends nontrivially on the initial conditions. In Fig. 1(b) we have
plotted h for a fixed v above the bifurcation and initial conditions along a line that
cuts through several chaotic regions and KAM islands. Notice that h| changes sign
correspondingly being negative in the KAM islands, in accordance to the fact that
the embedding finally settles there.

When the dynamics on the IM is dissipative with a unique global attractor lying
on it, a blowout bifurcation is the onset of an instability named on-off intermit-
tency: the system occasionally burst away from the former attractor to later return
for relatively long stays. In the presence of other attractors out of the IM, the
bifurcation usually riddles the basin of the attractor in the manifold with sections

Q) 0.4 [T TT————— 0,26 1)
0.21 1 o0k 3
< o0} 1< oo ]
02 1 01f E
* 1 5
04 i 02E. 1 v iy
05 06 07 08 09 10 04 02 00 02 04

e’ YO

Fig. 1. (a) The transverse Lyapunov exponent h, versus the parameter exp(—y) for 0.5 <
exp(—y) < 1. (b) hy versus the initial condition yo € [—0.5,0.5], 20 = —0.5 for exp(—7) = 0.85.
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of the basin of the others letting the sys-
tem eventually escape to one of them
to never come back. The bailout effect
is distinctive in that the dynamics on
the IM is conservative which technically
does not allow for attractors. The em-
bedding is also intended not to have any
other global attractors than those lying
in the IM. Hence, the blowout bifurca-
tion cannot lead to riddled basins. It
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leads instead to a transient motion that
Fig. 2. Time evolution for u, showing a tran- resembles on-off intermittency produced
sient on-off intermittency until the embed- by the orbits in the IM that are transver-

ding converges to a KAM island. sally unstable. However, when the dy-

namics returns to the IM at an orbit that is transversally stable, it remains there for
ever. This is illustrated in Fig. 2.

§4. Conclusion

We have shown that the workings of the bailout embedding can be seen as
a Hamiltonian instance of blowout bifurcations. In systems such as synchronized
chaotic oscillators, blowout bifurcations lead to undesirable phenomena like riddled
basins or on-off intermittency that spoil the synchronism.® 19 In contrast, the
bailout embedding positively exploits the presence of such a bifurcation and its
associated on-off intermittency to force a system to avoid chaotic trajectories and
target KAM islands of order for control purposes.
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