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We review the concept of bailout embedding; a general process for obtaining order from chaotic dy-
namics by embedding the system within another larger one. Such an embedding can target islands of
order and hence control chaos. Moreover, a small amount of noise enhances this process.
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1. Introduction

“But how does it happen,” I said with admiration, “that you were able to solve
the mystery of the library looking at it from the outside, and you were unable
to solve it when you were inside?”

“Thus God knows the world, because He conceived it in His mind, as if from
the outside, before it was created, and we do not know its rule, because we live
inside it, having found it already made.”

Dialogue between Adso and William, in Umberto Eco’s The Name of the Rose,
Third Day: Vespers.

Many times we have a given system, we want to study it or modify its behaviour, but
we cannot get inside. We are thus obliged to do so from the outside. The way that this
is normally done consists of adding external degrees of freedom to which the system is
coupled; we have then a bigger system of which the old one is just one slice. This powerful
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idea has many incarnations, all involving immersing or embedding the original system in a
larger space. For example, control theory is founded on the idea that we give liberty to a
system by providing extra degrees of freedom, only to take it away by stiffening interactions
that enforce what is being controlled. In particular, chaos control is usually performed in
exactly this fashion [12]: extra degrees of freedom are used as a forcing to the system,
which are then subjected to the system’s behaviour by making the forcing a functional of
the recent history of the behaviour. In this manner, one can preserve desired features of the
dynamics, such as the existence of a fixed point, while completely changing the dynamics
around it (i.e., by making a formerly stable fixed point unstable). Two things should be
noted: (a) that this technique makes modifications on the basis of local observables, and
(b) that the dynamics of the original system are largely destroyed.

In this work we show how to embed a system within a larger space, in such a way
that the augmented dynamics both accomplishes a global measurement of certain proper-
ties of the system, and simultaneously forces it so as to take it away from behaviour we
do not want. A fundamental point is that, in order for the measurements to exist, they
must be made on an intact system; we achieve this by ensuring that a privileged slice of
our embedding leaves the original system completely untouched. We call this method a
bailout embedding for reasons that will promptly become clear. Bailout embedding may
be considered a general process to create order from disorder. With it chaos may be con-
trolled and islands of order encountered within a chaotic sea. The technique is applicable
to both continuous and discrete systems, and to both dissipative and conservative dynam-
ics. The addition of noise to a bailout embedding displays the quite remarkable feature
that it enhances the ability of the embedding to attain order. It is possible to define a type
of space-dependent temperature for the dynamics; with this, we can see that the chaotic
regions are hotter and the nonchaotic regions colder, and that the system evolves into the
colder regions.

The plan of the paper is as follows. In Sec. 2 we discuss embeddings and in Sec. 3
define the concept of a bailout embedding, and present an example of its use in finding
regular regions in chaotic dynamics. In Sec. 4 we add noise to the bailout embedding, and
show with a further example how its addition enhances the ordering effect. In Sec. 5 we
discuss the relevance of these findings to fields of investigation in which the emergence of
order from disorder is of interest, ranging from our previous work in fluid dynamics, to
speculations on other applications.

2. Embeddings

We say an object A is embedded within a larger object B when there is a mapping T :
A → B, called the embedding, such that T (A), the image of A under T , is somehow
completely equivalent to A in the appropriate sense. This usually entails at least there
being a T−1 whose restriction to T (A) is very well behaved, like 1-1 or diffeomorphic.
For example, manifolds may or may not be embedded within other larger manifolds: a
sphere can be embedded in R

3, but a Klein bottle cannot. Dynamical systems can also be
so embedded within larger dynamical systems. A differential equation on a space A given
by ẋ = f(x), x ∈ A, f ∈ T (A) is embedded within a differential equation in a larger
space B given by ẏ = g(y), y ∈ B, g ∈ T (B) through a function T : A → B if: (a)
A is properly embedded in B by T : T (A) ≡ A and T−1|T (A) is a diffeomorphism; and
(b) the Jacobian of T maps f to g: g = dT f . Thus, if an initial condition in B is chosen



December 20, 2002 9:25 WSPC/167-FNL 00084

Noise-Induced Order Out of Chaos by Bailout Embedding R163

exactly on T (A), the subsequent evolution will remain forever on T (A), and the orbits can
be pulled back diffeomorphically through T−1 to A. We call the embedding stable if a
perturbation normal to T (A) decays back to T (A); i.e., if T (A) is a stable attractor within
B.

Somewhat less trivially, the ordinary differential equation ẋ = f(x), x ∈ R can be
embedded in a larger differential equation by taking a derivative: ẍ = f ′(x)ẋ or also
ẍ = f ′(x)f(x). These two embeddings are inequivalent, though both contain the original
dynamical system; there are infinitely many such derivative embeddings that double phase-
space dimensionality by placing a first-order ordinary differential equation within a second
order one, and they can be quite inequivalent to one another. The derivative embedding
ẋ = f(x) → ẍ = ff ′ embeds the original differential equation within a conservative
system: ẍ = −∂xH , where H = −f2/2. How can a dissipative dynamical system be
embedded within a Hamiltonian system? It turns out that the fixed points of f are mapped
by the embedding to the maxima of H , which is negative definite. Thus the isopotentials
of H + ẋ2/2 ≡ 0 are the separatrices of these maxima; since they are defined through the
two ordinary differential equations ẋ = ±f(x), we see that our original dissipative system
has been embedded into the separatrices of the larger Hamiltonian system. This embedding
is intrinsically unstable since the former fixed points f(x) = 0, both stable and unstable,
are mapped to saddle points at the maxima of H . This transformation can be extended to
higher dimensions when f is curl free:

ẋi = fi(x) ⇒ ẍi =
d

dt
fi(x) =

n∑
j=1

∂

∂xj
fi(x)ẋj

=
n∑

j=1

fj
∂fi

∂xj
=

n∑
j=1

(
fj
∂fj

∂xi
+ fj

(
∂fi

∂xj
− ∂fj

∂xi

))

=
n∑

j=1

1
2
∂

∂xi
(fjfj) (1)

when ∂fi/∂xj − ∂fj/∂xi = 0. This condition is satisfied automatically by any f ≡ ∇V ,
though it only requires f ≡ ∇V if the space is simply connected. So any gradient flow
of the form ẋ = ∇V can be embedded within the conservative flow ẍ = 1

2∇|∇V |2. The
other derivative embedding, ẍ = f ′(x)ẋ is inequivalent since it is nonconservative.

Of course, embedding a system changes notions of stability, because stability refers
to perturbations, and in a larger system there are all of the old perturbations plus a batch
of new ones. So, even though all of the solutions of the original system are preserved,
by adding new directions away from the old solutions we may transform formerly stable
solutions into unstable ones in the larger setting. The trivial way to embed a system is
through a cross product; for instance, ẋ = f(x), x ∈ M is embedded within M × R as

ẋ = f(x) + g(x, y),
ẏ = αy, (2)

where g(x, y) is arbitrary except for requiring that g(x, 0) ≡ 0, which guarantees that for
y = 0 we have the original system. If α < 0 then y always dies out, and so we always
recover the original object; in this case, we can call the embedding itself stable, in the
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sense that any motion away from the embedded object takes us back. Stable derivative
embeddings can be constructed rather simply. Take, for instance,

d

dt
(u− f(x)) = −k (u− f(x)) ,

dx

dt
= u, (3)

of which the previous examples were the k = 0 limit. This embedding ensures that the
distance between the actual trajectory and the embedding diminishes exponentially with
time for any initial condition.

3. Bailout Embeddings

We define a bailout embedding as one of the form

d

dt
(u− f(x)) = −k(x) (u− f(x)) ,

dx

dt
= u, (4)

where k(x) < 0 on a set of orbits that are unwanted, and k(x) > 0 otherwise. Thus the
natural behaviour of a bailout embedding is that the trajectories in the full system tend to
detach or bail out from the embedding into the larger space, where they bounce around.
If, after bouncing around for a while, these orbits reach a stable region of the embedding,
k(x) > 0, they will once again collapse onto the embedding, and so onto the original
dynamical system. In this way we can create a larger version of the dynamics in which
specific sets of orbits are removed from the asymptotic set, while preserving the dynamics
of another set of orbits — the wanted one — as attractors of the enlarged dynamical system.
For the special choice of k(x) = −(γ + ∇f), these dynamics have been shown to detach
from saddle points and other unstable regions in conservative systems [1].

A striking application of Eq. (4) is to divergence-free flows, of which Hamiltonian
systems are the most important class. A classical problem in Hamiltonian dynamics is
locating Kolmogorov–Arnold–Moser (KAM) tori. Hamiltonian systems live between two
opposite extremes, of fully integrable systems and fully ergodic ones. Fully integrable
systems are characterized by dynamics unfolding on invariant tori. The KAM theorem
asserts that as a parameter taking the system away from integrability is increased, these
tori break and give rise to chaotic regions in a precise sequence; for any particular value
of this parameter in a neighbourhood of the integrable case, there are surviving tori. The
problem with finding them is that, the dynamics being volume-preserving, merely evolving
trajectories either forwards or backwards does not give us convergence onto tori.

It is not hard to extend flow bailout, Eq. (4), to maps in the obvious fashion [3]. Given
a map xn+1 = f(xn) the bailout embedding is given by

xn+2 − f(xn+1) = K(xn)(xn+1 − f(xn)), (5)

provided that |K(x)| > 1 over the unwanted set. (In the map system, almost any ex-
pression written for the ordinary differential equation translates to something close to an
exponential; in particular, stability eigenvalues have to be negative in the ordinary differ-
ential equation case to represent stability, while they have to be smaller than one in abso-
lute value in the map case). The particular choice of the gradient as the bailout function
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k(x) = −(γ + ∇f) in a flow translates in the map setting to K(x) = e−γ∇f . A classical
testbed of Hamiltonian systems is the standard map, an area-preserving map introduced by
Chirikov and Taylor. The standard map is given by

xn+1 = xn +
k

2π
sin(2πyn) (mod1),

yn+1 = yn + xn+1 (mod1), (6)

where k is the parameter controlling integrability.
In general, the dynamics defined by this map present a mixture of quasiperiodic mo-

tions occurring on KAM tori and chaotic ones, depending on where we choose the initial
conditions. As the value of k is increased the region dominated by chaotic trajectories
pervades most of the phase space except for increasingly small islands of KAM quasiperi-
odiciy. Since the only factor that decides whether we are in one of these islands or in the
surrounding chaotic sea is the initial condition of the trajectory, locating them may become
an extremely difficult problem for large values of the nonlinearity. Let us show, however,
that the bailout embedding may come to help by transforming the KAM trajectories into
global attractors of the embedded system.

In order to embed the standard map, we only need to replace f and K(x) in Eq. (5)
with the appropriate expressions. f stems directly from Eq. (6) and, in accordance with the
previous definitions, K(x) becomes

K(x) = e−γ

(
1 k cos 2πyn

1 k cos 2πyn + 1

)
. (7)

Therefore, the bailout embedding of the standard map is given by the coupled second-order
iterative system

xn+1 = un,

yn+1 = vn, (8)

un+1 − fx(un, vn) = e−γ (un − fx(xn, yn) + k cos 2πyn(vn − fy(xn, yn))) ,
vn+1 − fy(un, vn) = e−γ (un − fx(xn, yn) + (k cos 2πyn + 1)(vn − fy(xn, yn))) ,

where fx and fy are the components of the function f(xn, yn) = (fx(xn, yn), fy(xn, yn)).
Notice that due to the area preserving property of the standard map, the two eigenvalues

of the derivative matrix must multiply to one. If they are complex, this means that both have
an absolute value of one, while if they are real, generically one of them will be larger than
one and the other smaller. We can then separate the phase space into elliptic and hyperbolic
regions corresponding to each of these two cases. If a trajectory of the original map lies
entirely on the elliptic regions, the overall factor exp(−γ) damps any small perturbation
away from it in the embedded system. But for chaotic trajectories that inevitably visit some
hyperbolic regions, there exists a threshold value of γ such that perturbations away from
a legal standard map trajectory are amplified instead of dying out in the embedding. As
a consequence, trajectories are expelled from the chaotic regions to finally settle in the
safely elliptic KAM islands. This process can be seen clearly in Fig. 1. As the value of γ is
decreased, the number of trajectories starting from random initial conditions that eventually
settle into the KAM tori increases.
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Fig. 1. The bailout process can find extremely small KAM islands. The standard map for k = 7 has a chaotic sea
covering almost the entire torus, except for a tiny period-2 KAM torus near position (0, 0.6774). 1000 random
initial conditions were chosen and iterated for 20 000 steps; the next 1000 iterations are shown.(a) Original map,
(b) γ = 1.4, (c) γ = 1.3, (d) γ = 1.2.

A Hamiltonian system does not usually just satisfy volume conservation, but also will
conserve the Hamiltonian itself. Given a flow ẋ = f(x) with a conserved quantity E ≡ 0,
then f · ∇E = 0. However, building a bailout embedding by the procedure above does
not lead to dynamics that satisfy Ė ≡ 0, because the bailout embedding should be 2n− 2
dimensional. This is clearly undesirable in the case of Hamiltonian systems, so we may
derive a bailout embedding that will obey a conservation law. The bailout equation can be
written

ẍ = (∇f − γ) · (ẋ− f) + ∇f · ẋ ≡ u. (9)

We need to correct this acceleration so that it stays on the second tangent space of the
E ≡ 0 surface. Let us call the raw bailout acceleration u. The second derivative ẍ has to
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Fig. 2. (a) and (c), A bailout embedding of the Hénon–Heiles Hamiltonian finds a KAM torus in the flow, without
energy conservation and with energy conservation in the process, respectively. (b) and (d), the Hénon–Heiles
energy E against time in each case. In (a) and (b) there is one trajectory plotted, while in (c) and (d), two initial
conditions with the same energy are used.

satisfy ẍ · ∇E + ẋ · ∇∇E · ẋ = 0, so we can modify u to

ẍ = u− u · ∇E
|∇E|2 ∇E − ∇E

|∇E|2 ẋ · ∇∇E · ẋ. (10)

This equation, given that we start on ẋ · ∇E = 0, will then preserve this property. In Fig. 2
we illustrate the effect with the Hénon–Heiles Hamiltonian H = 1/2(x2 +y2 +p2x +p2y)+
x2y − y3/3, which displays a conservative dynamics given by the Hamilton equations

ẋ =
∂H

∂px
, ṗx = −∂H

∂x
,

ẏ =
∂H

∂py
, ṗy = −∂H

∂y
. (11)

The bailout embedding can be written as:

Ẋ = A+ f(X),
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Ȧ = Ẍ −∇f · Ẋ. (12)

where X = (x, y, px, py), and the acceleration Ẍ is given by Eq. (10) or Eq. (9), with
and without the constant energy modification respectively. Figures 2a and 2c show with
a Poincaré section how a bailout embedding of a Hénon–Heiles flow ends up on a KAM
torus, in each case. Figures 2b and 2d show energy against time for the same trajectories.
Figure 2b shows a series of plateaux punctuated by rapid energy jumps, while in Fig. 2d,
which includes the constant-energy modification, there are no jumps.

In contrast to the two-dimensional case, in three-dimensional volume-preserving (Li-
ouvillian) maps the incompressibility condition only implies that the sum of the three in-
dependent eigenvalues must be zero. This less restrictive condition allows for many more
combinations, and a richer range of dynamical situations may be expected. As an example,
consider the bailout embedding of the ABC map [5], a non-Hamiltonian system given by

f = fABC : (xn, yn, zn) −→ (xn+1, yn+1, zn+1), (13)

where

xn+1 = xn +A sin zn + C cos yn (mod2π),
yn+1 = yn +B sinxn+1 +A cos zn (mod2π), (14)

zn+1 = zn + C sin yn+1 +B cosxn+1 (mod2π).

Depending on the parameter values, this map possesses two quasi-integrable behaviours:
the one-action type, in which a KAM-type theorem exists, and with it invariant surfaces
shaped as tubes or sheets; and the two-action type displaying the phenomenon of resonance-
induced diffusion leading to global transport throughout phase space [7]. In an application
of bailout embedding to the first case we find an interesting generalization of the behaviour
already found in two dimensions; particle trajectories are expelled from the chaotic regions
to finally settle in the regular KAM tubes, as shown in Fig. 3. In the two-action case, no
regular regions separated by barriers exist, and the map dynamics lead to global diffusion
over all the phase space. In this case there exists a resonant structure that controls the dy-
namics. This structure can be easily recovered with the use of noise in a bailout embedding,
as we shall see below.

4. Noisy Bailout Embeddings

In this Section we study the properties of bailout embeddings in the presence of an ex-
tremely small amount of white noise [4]. We show that there are two stages to the modula-
tion of the invariant density in the small-noise limit. At first the bailout is everywhere stable,
but fluctuations around the stable embedding may be restored towards the stable manifold
at different rates and thus acquire different expectation values. These fluctuations leave a
mark on the invariant density through a mechanism similar to spatially modulated temper-
ature [2, 10], namely, the dynamics prefer to escape the hot regions. This is balanced in a
nontrivial fashion by mixing in the map to create interesting scars in the invariant density.
As the bailout parameter is changed, the noise prefactor can diverge, and the embedding
loses stability at some points, so honest-to-goodness detachment ensues.

The study of Hamiltonian systems is hampered by the uninteresting features of the er-
godic measures: if the system is ergodic, then it is Lebesgue automatically; if it is not, then
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(a) (b)

Fig. 3. A bailout embedding of the ABC map in the one-action regime demonstrates how it seeks out the regular
regions of KAM tubes. For a homogeneous distribution of initial conditions we plot only the last 1000 steps of
the map evolution for different values ofγ: (a) γ = 2, (b) γ = 0.5. The images represent the [0,2π] cube in the
phase space.

it does not have a unique invariant measure to begin with: in the case of KAM systems,
the measure disintegrates into a millefeuille of KAM tori and ergodic regions. The addi-
tion of a small amount of white noise — i.e., coupling to a thermal bath — renders the
system automatically ergodic, and a unique stable invariant measure (in the Sinai–Ruelle–
Bowen sense [6, 11]) appears; but it is still the Lebesgue measure, and thus all properties
to be studied are necessarily higher order. This is even a problem for plotting what the
phase space looks like. Bailout embeddings allow the use of measure-theoretical studies
in Hamiltonian systems, by permitting the dynamics to leave nontrivial shadows upon an
invariant measure.

We study the bailout embedding

xn+2 − f(xn+1) = e−γ∇f |xn(xn+1 − f(xn)) + ξn (15)

of a dynamical system xn+1 = f(xn), in which as before we have used the gradient of the
map as the bailout function. New here is the noise term ξn, with statistics

〈ξn〉 = 0,
〈ξn ξm〉 = ε(1 − e−2γ) δmn I. (16)

We can separate this two-step recurrence into two one-step recurrences

xn+1 = f(xn) + δn, (17)

δn+1 = e−γ∇f |xnδn + ξn. (18)

Note that now the second equation is affine, being linear in the δ plus a homogeneously
added noise process, so it could be solved analytically for δ if we knew what the x were
in the past. Under the assumption that the δ are infinitesimally small, we get the classical
orbits xn+1 = f(xn), and we can explicitly write down the solution for the δ

δn+1 = ξn + e−γ∇f |xn (19)

×
(
ξn−1 + e−γ∇f |xn−1

× (ξn−2 + e−γ∇f |xn−2(ξn−3 + . . .)
))
,
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or, after unwrapping,

δn+1 = ξn + e−γ∇f |xnξn−1 (20)

+ e−2γ∇f |xn∇f |xn−1ξn−2

+ e−3γ∇f |xn∇f |xn−1∇f |xn−2ξn−3 + . . . ,

which may be written more compactly as

δn+1 =
n∑

j=0

(
ξn−je

−jγ

j∏
k=0

∇f |xn−k

)
. (21)

Then, given that the ξ are uncorrelated, the expectation value of δ2 is given as the sum of
the squares of the terms, or

〈δ2〉
〈ξ2〉 =

∞∑
j=0

(
e−jγ

j∏
k=0

∇f |xn−k

)2

, (22)

where the 〈·〉 are averages over the ξ process. Clearly, as γ → ∞ this expression tends to
1.

In the regime in which γ � 0 and 〈ξ2〉 � 1, the 〈δ2n+1〉 ≈ 〈ξ2〉 � 1 and hence the
trajectories collapse upon the classical orbits: xn+1 = f(xn) + δn ≈ f(xn). Under these
circumstances, the embedding is always stable, and there is no detachment. In this regime
we can compute explicitly the above expression Eq. 22 which depends only on the current
value of the position:

T (x) =
〈δ2〉
〈ξ2〉 =

∞∑
j=0

(
e−jγ

j∏
k=0

∇f |f−k(x)

)2

. (23)

Thus T (x) defines a sort of temperature for the fluctuations δ.
As long as the δ are infinitesimally small, they do not — and cannot — affect the x

dynamics, which has collapsed unto the classical trajectories; thus they do not affect the
invariant density P (x) either, and hence P (x) is asymptotic to the Lebesgue measure. For
infinitesimally small 〈ξ2〉, as γ is made smaller, the sum acquires more and more terms
because the prefactor e−jγ decays more and more slowly. For any value of γ, the products
of the gradients grow or shrink roughly as the exponential of the Lyapunov exponent times
j. Thus, when γ equals the local Lyapunov exponent at x, the series defining T (x) stops
being absolutely convergent at x and may blow up. As γ is lowered further, more and more
points x have local Lyapunov exponents greater than γ and so T (x) formally diverges at
more and more points x.

Where T (x) = ∞ it means that 〈δ2n〉 is finite even if 〈ξ2〉 is infinitesimally small. Thus
the embedding trajectories have detached from the actual trajectories, and the approxima-
tions given above break down. Detachment is the process that was first envisioned as being
characteristic of bailout embeddings [1,3]. However, by employing noise in the embedding
and carefully controlling its use, we can see the process that occurs before detachment. If
T (x) is finite and smaller than 1/〈ξ2〉, then we have a regime in which the δs behave as a
noise term added to the classical trajectories: xn+1 = f(xn) + δn with 〈δ2n〉 = 〈ξ2〉T (x).
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Fig. 4. Noisy bailout embedding histograms (left) and temperature plots (right) for standard map nonlinearity
parameter k = 1.5, noise parameter ε = 10−8, and bailout parameter (a), (b), γ = 0.7; (c), (d), γ = 0.65; (e),
(f), γ = 0.6; (g), (h), γ = 0.55; and (i), (j), γ = 0.5. The striped histogram colour scale runs from yellow at
high densities to cyan at low densities, while the temperature colour scale runs from red (high) to blue (low).
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(a) (b)

Fig 5. A noisy bailout embedding displays the temperature amplitude for the (a) two-action and (b) most chaotic
cases in the ABC map. The images are the [0,2π]×[0,2π] region in the xy axis, for a slice in the z direction
corresponding to the values z ∈[0,0.49].

We have, alas, lost the whiteness of the process, since δn+1 and δn are not any longer
statistically independent. However, this is in this case a second-order effect compared
with the fact that the noise process amplitude, being modulated as a function of position,
will immediately lead to inhomogeneous coverage by the dynamics: hot regions will be
avoided while cold regions will preserve the dynamics. All of this is in a context in which
the embedding is essentially stable throughout. Thus this process is not detachment per se,
but rather avoidance.

We can illustrate this best in the context of the standard map acting as before as the
base flow. Figure 4 shows side by side the visit histogram — the invariant measure —
(left-hand side) together with the corresponding space-dependent temperature (right-hand
side) for a decreasing sequence of the bailout parameter γ and fixed values of the standard-
map nonlinearity and noise parameters. While, for γ larger than 0.55, the temperature is
a well-defined function of the space coordinates, it shows signs of divergence — the red
regions, which become larger as γ decreases — for γ smaller than 0.55. On the other hand,
however, the invariant measure displays features related to the structure of T on both sides
of this transition, i.e., even before detachment occurs.

As we anticipated at the end of the previous Section, the noisy bailout can give us useful
information about the dynamics in a non-Hamiltonian context as well. In Fig. 5 we show
how it works for the ABC map in those instances in which the parameters values lead to
a two-action type map or even to a completely chaotic one. In the first case, Fig. 5a, the
noisy bailout allows us to recover the resonant structure of the two-action ABC map; the
main property of its dynamics. In Fig. 5b we apply noisy bailout to a generic chaotic case
in which we do not have any information about the phase space structure. We obtain a
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representative picture of how the phase space looks; note, for example, that the invariant
manifolds are clearly very twisted.

5. Discussion

Embedding is a technique with the potential to be applied to many fields of research. One
instance is that in which global or long-range measurements are made by use of auxiliary
variables. In this case our original systemX is used as a forcing for another system Y ; it is
the internal dynamics of Y that keep a memory of what is being measured. The most ele-
mentary and best studied instance of this are infinite impulse response filters (IIRFs) [9,13].
A trivial example is given by yi+1 = αyi +(1−α)xi, where the xi are observations of our
system; the yi then keep running averages with an exponential memory of the input, i.e.,
an arbitrarily long memory has been achieved on the basis of the extra degrees of freedom
added. Another example is the calculation of a Lyapunov exponent, the decay constant
that measures how perturbations grow or shrink around a given trajectory of a dynamical
system. If the system X is given by the ordinary differential equation ẋ = f(x), then per-
turbations δx around a given solution x(t) of this equation will evolve as ḋx = ∇ f |x(t)dx,
an inhomogeneous linear equation. This calculation is numerically accomplished by keep-
ing track of the compound matrix; hence, by adding extra degrees of freedom to a system,
we can compute all Lyapunov exponents of the trajectory, a dynamically important global
measure of a system’s behaviour. Note that the dynamical behaviour of the system Y per-
mits in general extremely complex calculations.

Bailout embeddings constitute a subclass of embeddings with much utility for obtain-
ing order from chaotic systems. Here, as in previous work, we have provided examples
of the use of bailout embeddings for finding regularity — quasiperiodic orbits — in both
Hamiltonian maps [3,4] and flows [1], and in the more general setting of volume-preserving
maps [5]. We have also demonstrated that the addition of a small amount of noise enhances
the bailout process in a nontrivial fashion [4]. With noisy bailout we can define an effective
space-dependent temperature, with which we can appreciate that the system evolves into
the colder regions of the flow. We have shown in other works the applicability of bailout
embeddings to fluid dynamics, where they describe the dynamics of small neutrally buoy-
ant particles in both two [1], and three-dimensional [5] incompressible fluid flows. Such
flows are conservative systems, and learning in many evolutionary games can also be put
into a conservative form [8]. In particular, the rock–paper–scissors game, which is the
simplest non-trivial model for a network of interacting entities — which may be species,
economies, people, etc — none of which is an outright winner in competition between the
three (scissors beat paper, rock beats scissors, but paper beats rock), displays Hamiltonian
chaos [14]. Could bailout embeddings contribute to learning in evolutionary games? Cer-
tainly, as we have seen, a bailout embedding allows chaos to be controlled by targeting
zones of order within the phase space of the system. An entity using a bailout embedding
to conduct its strategy of competition could take advantage of this dynamical mechanism;
it could perturb the system to control it to attain a learning capability. We may speculate
that such a process could occur in nature; it could be useful in evolutionary game theory, in
Lotka–Volterra population dynamics, in voter dynamics, or possibly even in human learn-
ing. While the latter ideas are purely speculative, bailout embeddings provide a general
mechanism capable of creating order from chaotic systems, which is even more effective
in the presence of noise.
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