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Chapter 1

Introduction

I
N May of 1960 Theodore H. Maiman succeeded for the very first time in His-
tory to maintain a laser action in a ruby crystal1. Since that milestone, the

investigation and use of the laser, both in fundamental and applied Physics,
has grown spectacularly. With 11 Nobel Prize winners who studied its most
fundamental properties or applications, and thousands of patents related to
its use in our daily life, the laser continues today revolutionizing industries
such as communications or medicine.

In the brief history of the laser it stands out the almost simultaneous an-
nouncement at the end of 1962 by groups from MIT, IBM, and General Re-
search Laboratories, the creation of the first semiconductor lasers. Its in-
vention opened a door to the miniaturization, cheapness, and consequently
massive use of this type of devices in multitude of applications we use in our
everyday life. This kind of lasers, besides of having very interesting proper-
ties for practical applications, shows a huge gain coefficient and an inherent
non-linearity that make them excellent candidates to develop dynamical in-
stabilities of high interest for academics and industry.

At the beginning of the laser era, to achieve a stable power, highly coli-
mated, and spectrally pure laser beam, at the same time that avoiding any
type of instability was the dream of any experimental researcher in laser ap-
plications. However, it took little time to realize that the laser constituted a
non-linear dynamical system able to generate a rich variety of behaviors and
that we could take advantage of it. Hence, in the present the understanding
and control of the different dynamical instabilities affecting a given type of
lasers form an important field of research, which includes methods and tech-
niques from dynamical systems theory to quantum optics. The generation
of ultra-short pulses, all-optical processing of information, creation of carrier
signals in the microwave range, or cryptography based on chaotic communica-
tions, are just a few examples of applications that benefitted from our present
control on the dynamics of lasers.

1Interestingly several investigators though to have demonstrated that by that time laser
emission could not be generated with ruby as amplifier medium.
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In this memoire we try to contribute to the study of the instabilities that
arise when a semiconductor laser is subject to a given type of perturbation.
Thus, the application of a modulation to the current supply of the laser, an
injection of light in its active region, or the insertion of a feedback loop, rep-
resent a few examples of external perturbations that are able to considerably
affect the behavior and characteristics of the laser. In special, in the forthcom-
ing chapters the dynamical consequences of bidirectionally couple two semi-
conductor lasers are studied. In this configuration of mutually coupled lasers,
the behavior of each laser depends on the state of the other through a given
interaction. In our case the coupling is optoelectronic, i.e., part of the light
emitted by each laser is detected and the photocurrent generated is added to
the bias current of the other laser. Both the absolute and relative dynamics
between the lasers, and the synchronization phenomenon will be evaluated
in this system. In spite of the fact that the results here presented have been
exclusively predicted for the coupling of semiconductor lasers, most of the
phenomena we investigate seem to be independent of the particular charac-
teristics of this type of laser and therefore they are expected to occur in more
general models of coupled oscillators with time delay. In fact, not only semi-
conductor lasers but neurons, chemical oscillators, or Josephson junctions are
just a few examples of non-linear systems, whose connection or coupling with
similar units may lead to a very rich dynamics.

While the dynamics of coupled oscillators have been extensively studied,
only recently have the effects of finite connection time, which naturally arise
from the finite propagation speed of the signals between the subsystems, been
taken into account. In our case, the time it takes the light emitted from a laser
to reach the photodetector plus the time it takes the transmission of the gen-
erated photocurrent to the other laser constitutes our interaction delay time
between the lasers. The inclusion of these delay times in a given model not
only introduces an infinite dimensional phase space[1] but also provides a
new source of possible instabilities. In this direction and due to its possible
consequences in physics, medicine, biology, and chemistry, an special atten-
tion has been recently captured by the phenomenon denominated “Death by
delay”[2, 3, 4, 5, 6] by which oscillation death of two coupled limit cycle oscil-
lators is induced through the delayed interaction between them. A new obser-
vation of this phenomenon, with no counterpart for instantaneously coupled
identical oscillators, is reported in the Results chapter.

In the forthcoming chapters we include the following material. In this
chapter we continue by presenting some basic concepts and tools used along
this investigation. These contains the stability analysis for fixed points in a
system of delay differential equations, some types of bifurcations and the most
relevant definitions associated to the phenomena of synchronization. Chap-
ter II, after introducing and modeling the system under study, collects the
main results of this research. These are focused on the properties of syn-
chronization between the lasers. The modification of the Arnold tongues (or



1.1 Once upon a laser 3

regions where both lasers pulse at the same frequency) with the delay be-
tween lasers and the prediction of localized synchronization in our system as
a consequence of a spontaneous symmetry breaking are subjected to analysis.
Moreover, we predict and experimentally found the “death by delay” effect in
our semiconductor laser setup. We show that when the lasers are subjected
to a delay feedback loop, the condition that a delay in needed in the coupling
line in order to observe the quenching phenomena is waived. Experimental
data confirming several theoretical predictions are also presented at the end
of the chapter. Finally, in the chapter devoted to concluding the memoire, we
summarize and highlight the most important results as well as we plot some
possible lines of continuing the work presented here.

1.1 Once upon a laser
Stimulated emission is the process by which light passing through a fluo-
rescent material can be amplified. The proposal of this mechanism in the
light-matter interaction by Albert Einstein in 1916 is usually considered the
beginning of the laser theoretical foundation. Einstein introduced the concept
of induced or stimulated emission when studying the thermal equilibrium of
a set of atoms with the electromagnetic radiation. He noticed that besides the
absorption and spontaneous emission of a photon by an atomic system, a new
process was necessary in order to recover from thermodynamical arguments
the Planck formula for the black body radiation. Thus, the concept by which
the encountering of an excited atom with a photon, which is resonant with
an atomic transition, causes the emission of an identical photon, was first
devised.

Although the first experimental evidence of stimulated emission was ob-
served by Ladenburg and Kopferman in 1928, the interest on this effect de-
creased among the physicists. The main reason was the apparent impossi-
bility of creating inverted populations with more atoms in the excited state
than the ground state so that absorption would not dominate the process and
stimulated emission could occur. In fact, it was clear that the Boltzmannian
distribution of occupation of energy levels assured that population inversion
could not occur in a system in thermodynamical equilibrium. An external
pumping of energy or the isolation of excited atoms could solve this problem
but it was necessary to wait until 1954 so that Charles H. Townes introduced
the key element for the light amplification development. His idea of placing
the amplifying medium inside a resonant cavity so that an oscillation could
start, provided that the gain of the stimulated emission could overcome the
cavity losses, would led to the first practical microwave amplification by stim-
ulated emission of radiation or maser2.

2Townes and the USSR physicists Basov and Prokhorov shared the Nobel Prize in Physics
in 1964 for developing the maser.
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The transition from the maser to the laser, or equivalently, from the mi-
crowave to the optical domain was far from being trivial. In a seminal paper
published in Physical Review in December of 1958, Townes and his postdoc-
toral assistant Arthur L. Schawlow described the first detailed proposal for
building a laser with the fundamental idea of a pair of mirrors facing each
other playing the role of the resonant cavity. The effect of the mirrors was
to select from the non-directional light of the fluorescent material only those
photons propagating along the cavity axis, and consequently made them to
pass through the amplifying medium several times by bouncing them back
and forth between the mirrors before they scape through a partially trans-
parent mirror, and hence generating an useful laser beam. The much smaller
wavelength of the visible light compared to the microwave and the problem of
finding the appropriate excitation media made the experimental development
of the laser an exciting and difficult one. But in May of 1960, the American
physicist Theodore H. Maiman eventually achieved the first laser action3 in a
pink ruby rod with its ends silvered placed in a spring-shaped flashlamp.

Later on, many different laser systems have been successfully built but
almost all of them (including the semiconductor laser that will be discussed
below) still consist of the same three ingredients than the first laser, namely,
a) an active medium hosting the stimulated emission, b) a pumping
source responsible of creating the necessary population inversion
and, c) a cavity providing a feedback and frequency selection mecha-
nism.

1.2 Semiconductor lasers

1.2.1 Introduction
John Von Newmann, one of the fathers of the quantum theory, was also the
first in proposing semiconductor materials as candidates to host light ampli-
fication as early as 1953. The idea of recombinating electron-hole pairs in
a p-n junction was culminated when the lasing action in semiconductors was
first reported in 1962 by four independent groups from MIT, IBM and General
Research Laboratories. The characteristics of this type of laser considerably
differed from the first laser developed only two years before and required of
an extraordinary effort. The pumping mechanism consisted in electronic in-
jection rather than the intense discharge of photons from a flashlamp as used
in the ruby laser. The discrete levels of energy between which the laser tran-
sition took place in the ruby had nothing to do with the energy bands of the
semiconductor materials. The laser cavity is also very special and exclusive
in a semiconductor laser and it is formed by the polished facets perpendicular

3The emission of this first laser was pulsating because of the three level nature of the ruby
system was unable to maintain a permanent population inversion.
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to the junction plane through the reflectivity that provides the index change
in the interface of the semiconductor material and the air.

In 1963 Kroemer in USA and Alferov and Kazarinov in USSR indepen-
dently suggested the crucial improvement of the heterostructure semiconduc-
tor laser. The heterostructure consists of placing the active material sand-
wiched between two semiconductor layers with a wider band gap. The huge
injection current reduction necessary to operate these new lasers and the im-
provement of characteristics such as the optical confinement were improved
so much by the heterostructure addition that with the advent of the first prac-
tical demonstration of this type of lasers in 1969, the semiconductor laser be-
came for the very first time the small, cheap and fast source of light widely
used today.

Of course, a lot of advances have taken place since those early days of the
semiconductor laser history, but here we only want to mention the break-
through supposed the introduction of the vertical cavity surface emitting
lasers (VCSEL’s) in 1979. From the design point of view, the main novelty
this laser introduced was the fact that the output of light was normal to the
junction plane, instead of parallel as in the conventional edge-emitter lasers.
Nowadays, this type of lasers are a hot topic of research and they offer a
much better performance for most of applications where a cheap, low power,
and compact source of light is needed. However, they suffer the problem of an
uncontrolled dynamics of the polarization of the light they emit. The study
of the mutual coupling of VCSEL’s is currently under investigation by the
author, as it is mentioned in the Conclusions chapter, as an extension of the
work on bidirectional setups presented here.

1.2.2 Semiconductor laser rate equations
Most of lasers are typically described through three macroscopic variables
consisting of the electric field, population inversion, and material polariza-
tion. Depending on the time scales in which the three variables decay, none
of them, one, or even two of these variables can be adiabatically eliminated.
A classification of lasers is made according to the number of variables elim-
inated. Hence, Class C lasers are those in which the three decay constants
are of the same order of magnitude and no adiabatic elimination of any of the
variables proceeds. In this case the three variables are needed to accurately
describe the main physical processes in the laser. In Class B lasers only one
of the variables is eliminated and two of them are still required to capture the
dynamics of the laser. Finally, in Class A lasers, only one variable governs
the evolution of the system. Since in a semiconductor the relaxation time for
the polarization is much shorter than for the rest of variables, it can be adia-
batically eliminated and the semiconductor laser falls into the Class B group.
Due to the complex nature of the electric field (E =

√
Seiϕ, where S is the

optical intensity and ϕ is the optical phase) we end up with three equations,



6 Chapter I

which can be deduced from Maxwell and Schrödinger equations after a series
of important approximations, describing the semiconductor laser

dS

dt
= (Γrmg − γc)S (1.1)

dN

dt
=

J

ed
− γsN − gS (1.2)

dϕ

dt
=

1

2
α(Γg − γc), (1.3)

where the N stands for the population inversion, γc is the photon decay rate,
γs is the carrier decay rate, J is the current density injection, and g = g(N, S)
is the gain function.

As we can see, for a solitary laser the optical phase is just an slave of the
population inversion and optical intensity variables, and as a consequence
the dynamics of the these variables are decoupled from the phase. This
means that a semiconductor laser cannot exhibit chaotic dynamics because
at least three ordinary differential equations are required in order to observe
that complex behavior, and only two equations are coupled in the system of
Eqs. (1.1)-(1.3). However, the effect of external perturbations on the semicon-
ductor laser introduces additional degrees of freedom able to excite very rich
complex dynamical states as bistability, excitability, or chaos. Among the di-
versity of ways of perturbing a laser, we point out the injection of light into
the active region of the laser, the feedback of light from the same laser into
its own active region, and the modulation of the current supply (J = J(t)).
Any of these modifications of the solitary laser setup is subject to a great deal
of analysis by the researchers because of intrinsic and applications interests.
In this work we study another kind of perturbation that consists of
the mutual coupling of two semiconductor lasers and that allow us
to study the phenomenon of synchronization, which is introduced in the
next section.

1.3 Synchronization
Once two oscillating objects (in our case semiconductor lasers) are connected
or coupled through any kind of weak interaction, these systems are usually
capable of adjusting of their rhythms of oscillation, or in other words to syn-
chronize. The fundamentals of this synchronization phenomena, which we
will study in forthcoming chapters for semiconductor lasers, were first noticed
by the great Dutch scientist Christiaan Huygens as early as 1665. While stay-
ing at bed for a couple of days watching two clocks hanging on a common sup-
port, Huygens observed “a wonderful effect that nobody could have thought
before” and which later on in his memoirs he described as
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... It is quite worth noting that when we suspended two clocks so
constructed from two hooks embedded in the same wooden beam,
the motions of each pendulum in opposite swings were so much in
agreement that they never receded the least bit from each other
and the sound of each was always heard simultaneously.

1.3.1 Definition

The modern concept of synchronization is an adjustment of rhythms of
oscillating objects due to their weak interaction. According to this def-
inition two objects are susceptible to synchronize when isolated they are able
to oscillate by themselves, i.e., they are self-sustained oscillators. It is impor-
tant to make clear that the resonance phenomena of forced systems that have
no rhythm on their own are not synchronization processes. Moreover, it is
necessary to stress that the interaction should be weak enough so that quali-
tatively each oscillator does not change its uncoupled dynamics. Otherwise, a
too strong coupling between subsystems can be understood as we are dealing
with a new unified system where each subsytem has not its own identity. It
is also important to note that the coupling between different oscillatory units
can be asymmetric. This is, the coupling strength may be not identical in
the two directions of the interaction. The extreme case is the unidirectional
coupling, where a system (master) influences another system (slave) but the
reverse is not true. In the general case, both units perturb the state of the
other and it is said that there is a mutual or bidirectional coupling.

In the following, the more important phenomena associated to the syn-
chronization concept are introduced as well as some basic definitions.

1.3.2 Frequency locking

The main hallmark of synchronization is the so-called frequency locking.
When uncoupled two oscillators use to exhibit a certain mistmach in their
natural frequencies or detuning ∆νo = νo2 − νo1. That is, the signal of each
system oscillates with a different frequency. However, once coupled if the
detuning is small enough both systems can oscillate at exactly the same fre-
quency for a finite range of detuning. This entrainment of frequencies to a
common value νf1 = νf2 = νf is known as frequency locking. The difference
in the natural frequencies or detuning susceptible to experience the locking
phenomena is dependent of the interaction strength κc between the oscilla-
tors. The region in the κc versus ∆νo plane where such a locking occurs is
usually called synchronization area or Arnold tongue. If the detuning pa-
rameter is very large, higher order synchronization regions may appear where
the ratio between frequencies after coupling occurs is a rational number, i.e.,
νf1/νf2 = q/p ∈ Q. We speak then of synchronization of order p : q.
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1.3.3 Phase locking
Besides the amplitude of a signal its phase is also a fundamental source of in-
formation. The phase is used to parameterize the limit cycle (attractor in the
phase space of the oscillatory system) on which the dynamics is taking place,
so that it grows monotonically and increase a value of 2π each full oscillation.
When the difference between the phases of two oscillators is bounded we say
they are phase locked. More generally, we can consider phase locking of order
p : q if |pφ1 − qφ2| < constant. Usually, when |φ1 − φ2| = 0 it is said that the
oscillators exhibit in-phase dynamics, and when |φ1−φ2| = π it is named anti-
phase dynamics, as in the original observation of Huygens with the pendula
swinging in opposition.

A generalization of the concept of phase φ(t) for an arbitrary signal x(t)
can be introduced via the construction of the complex analytical signal x(t) +
iy(t) = A(t) expiφ(t), where y(t) is the Hilbert transform of x(t)

y(t) =
1

π
P.V.

∫

∞

−∞

x(t′)

t − t′
dt′,

and P.V. stands for Cauchy principal value. Consequently, the same defini-
tions of phase synchronization are valid for this generalized phase and they
can be applied now for non-periodic or even chaotic signals.

1.3.4 Different kinds of synchronization
Several types of synchronization have been reported in the literature depend-
ing on the relationship that the signals x1(t), and x2(t) of two interacting sys-
tems may exhibit.

The simplest case occurs when two coupled systems generate an identical
output, x1(t) = x2(t). Far from trivial, it was noticed that this phenomena
could be observed even in chaotic systems and receives the name of identi-
cal or complete synchronization. This identical solution is just a form of
a more general type of synchronization called generalized, where a given
function F relates the two outputs x1(t) = F(x2(t)). When F is the identity the
identical synchronization is recovered. Localized synchronization stands
for the case in which both systems oscillate at common frequency but with
very different amplitudes. The term phase synchronization is usually re-
ferred to the case in which the phase difference between the two outputs is
bounded but their amplitudes stay uncorrelated. Another type of synchro-
nization that shows up in different setups is the lag synchronization. This
solution, which usually appears as an intermediate stage between the phase
and complete synchronization, is very common in subsystems interacting with
a time delay. The lag solution or synchronization stands for the equality of the
two output signals once one of them has been appropriately shifted in time,
i.e., x1(t) = x2(t−τ). Of course, some of the previous definitions can be adapted
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to more general cases as arrays of oscillators with a number of units larger
than two or even oscillatory media.

The degree of quality of most types of synchronizations (identical, local-
ized, and lag) is usually measured by computing indicators such as the cross-
correlation function

Γ(τ) =

∑

i [(x1(i) − x1)(x2(i − τ) − x2)]
√
∑

i(x1(i) − x1)2
√
∑

i(x2(i) − x2)2
.

This measures how similar are two temporal series once shifted by a lag τ .
On the other hand, phase synchronization is commonly detected by studying
the Hilbert phase difference. These two indicators are used in our study to
characterize the synchronization between two semiconductor laser outputs.
The evaluation of the generalized synchronization requires from more com-
plex techniques. For unidirectional couplings Abarbanel has shown how to
detect whether a functional relationship exists between the master and slave
systems through an auxiliary system approach[7].

1.3.5 Oscillation quenching

The effect of suppressing the oscillations of interacting systems due to its cou-
pling is known as quenching or oscillation death. The cease of the oscillatory
behavior in weakly coupled limit cycle arrays can induce important conse-
quences in both biological and physical systems. In fact, the appearance of
this phenomenon in some cell systems seems to be related to severe patholo-
gies such as different types of arrhythmias.

The basics of this effect can be investigated through the study of the two
coupled Stuart-Landau equations representing two mutually coupled limit
cycles[8]

Ȧ1 = (1 + iω1 − |A1|2)A1 + κc(A2 − A1) (1.4)

Ȧ2 = (1 + iω2 − |A2|2)A2 + κc(A1 − A2), (1.5)

where A1,2 represent the complex amplitudes of each system. Exploring the
coupling strength (κc) versus detuning (∆ = ω2 −ω1) plane, several dynamical
regimes can be obtained as shown in Fig. 2.1. In the figure, the quenching
region is limited by the locking and phase drift areas, and it is noticed that a
large detuning between the oscillators is needed in order to produce the death
effect. Consequently, two identical instantaneously coupled oscillators (∆ = 0)
are not allowed to experience a mutual quenching in their oscillations.
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Figure 1.1: Dynamical regimes in the coupling vs. detuning plane of two coupled oscillators.
I) Quenching region, II) locking area, and III) phase drift zone.

1.4 Delay

1.4.1 Delay differential equations
A fundamental fact in Physics is that any interaction in Nature is not in-
stantaneously transmitted but requires a given time to propagate. Thus, the
present state of any system depends on the past of the other systems which
is interacting with. This naturally leads to the introduction of a type of func-
tional equations named delay differential equations (DDE’s), where the evo-
lution of the variables at time t depend on the variables evaluated at earlier
times t − τ . For instance, the retarded potentials in electromagnetism com-
pute the scalar and vector potentials at time t with the charge and current
distributions at time t − r/c. In vacuum these read

V =
1

4πε0

∫

V ′

ρ(t − r/c)

r
dV ′, A =

µ0

4π

∫

V ′

J(t − r/c)

r
dV ′, (1.6)

where ρ and J are the charge and current density, respectively, and r is the
distance between the differential of volume (dV’) over which the integration
is being carried and the point at which the potentials are calculated. When
introducing these expressions into the Maxwell and Lorenz equations we end
up with a complicated set of equations where the delay τ = r/c appears inside
an integral expression. This kind of differential equations where a variable
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is evaluated at a continuum of delay times are known as distributed delay
differential equations.

Delay equations also appear in other fields like population dynamics.
There, the delays usually arise because of the interest in modeling latency
times in the creation of new individuals. A prototypical example of DDE gov-
erning the concentration of a given type of cell is the Mackey-Glass equation

ẋ(t) = −bx(t) +
ax(t − τ)

1 + x(t − τ)10
. (1.7)

This type of equations where only a finite number of delays appear are called
discrete delay differential equations.

Regarding the dimensionality of the phase space described by a set of DDE,
it should be noticed that the initial condition needed to univocally solve a DDE
is given by the past history of the delayed variables, i.e., x(t), ∀t ∈ (−τ, 0).
Since this is a continuum of points, the phase space of DDE is infinite-
dimensional in the same way that partial differential equations (PDE) are
also infinite-dimensional. Another important property that DDE’s share
with PDE’s is the fact that only one equation is needed in order to produce
chaotic behavior as opposite to what happens in ordinary differential equa-
tions, where at least three coupled equations are required.

The inclusion of such delay times in the interaction between different sub-
systems is responsible for a series of unexpected behaviors. One of the im-
portant examples is the ”death by delay” phenomenon by which two identical
coupled oscillators can drive each other to a zero-amplitude state by their mu-
tual delayed interaction. This effect was first investigated by Ramana et al.[2]
in 1998 through the study of the system of equations

Ȧ1(t) = (1 + iω1 − |A1(t)|2)A1 + κc(A2(t − τ) − A1(t)) (1.8)

Ȧ2(t) = (1 + iω2 − |A2(t)|2)A2 + κc(A1(t − τ) − A2(t)), (1.9)

where A1,2 represents the complex amplitude of each oscillator and τ is the
time delay in the interaction. Fig. 2.2 shows the diagram of the different dy-
namical states presented in the system. It can be observed that, as opposite to
the case of instantaneous coupled oscillators, no necessity of a large detuning
is now required in order to observe this quenching, and consequently a delay
in the coupling line opens the possibility to observe the oscillation death in
coupled identical systems.

The first experimental confirmation of the “death by delay” effect was ob-
tained in 2000 by Herrero and collaborators who studied the dynamics of two
mutually coupled thermo-optical cells[4]. To our knowledge we present in this
memoire the first experimental confirmation of this effect in a semiconductor
laser setup.
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Figure 1.2: Dynamical regimes in the coupling vs. detuning plane of two coupled oscillators.
I) Quenching region, II) locking area. The delay is set to τ = 10.

1.4.2 Stability
An important issue in any dynamical system delayed or not is the investiga-
tion of the stability of their steady-state solutions or fixed points. To this end
let us consider a given system of delay differential equations with discrete
delays

ẋ(t) = f (x(t),x(t − τ1), ...,x(t − τm); µ) , (1.10)

where x ∈ Rn, f is a function that depends on the instantaneous and delayed
variables, and a set of parameters µ. All the delays τi we consider here are
assumed to be positive.

The linearization of the system 1.10 around a trajectory x
∗(t) leads to the

so-called variational equation for the variable y(t) = x(t) − x
∗(t),

ẏ(t) = A0(t)y(t) +

m
∑

i=1

Ai(t)y(t − τi), (1.11)

where,

Ai(t) =
∂f

∂x(t − τi)
|(x∗(t),x∗(t−τ1),...,x∗(t−τm);µ). (1.12)
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When x
∗(t) = x

∗ correspond to an steady-state, an exponential ansatz for
y(t) leads the so-called characteristic equation,

det

(

A0 +

m
∑

i=1

Aie
(−λτi) − λI

)

= 0. (1.13)

The roots or eigenvalues λ of Eq. 1.13, which in general take complex val-
ues, rule the stability of the fixed point x

∗. The stability criteria reads that if
any root have positive real part, then the steady state is unstable. Only when
all the eigenvalues are on the left half plane of the complex plane, the fixed
point is asymptotically stable. The determination of the stability of a given
fixed point can be performed in different ways. These include the analytical or
numerical computation of the roots of Eq. (1.13), the use of complex integra-
tion for detecting unstable eigenvalues, or the finding of Lyapunov-Krasovkii
potentials. In this memoire we restrict ourselves to the analytical and nu-
merical study of the roots distribution because it can provide us much more
information. In fact, from an study of how the eigenvalues λ get unstable
when a given parameter is continuously changed, a lot of insight about the
dynamical system can be gained. This is one of our main goals that can be
achieved through the bifurcation theory whose most basic concepts are pre-
sented in the next section.

1.5 Basics of bifurcations
In this section we just attempt to review, without any kind of detail, some
of the most common bifurcations that appear in a dynamical system like
Eq. (1.10). Only local bifurcations of fixed points are considered here since
they are the only type of bifurcations we are interested in through all this
work.

Let us start by defining what we understand by local bifurcation. For bifur-
cation we mean a qualitative change in the asymptotic solutions of a dynam-
ical system when some parameter is continuosly changed. These are usually
related to the change of stability of existing objects or the birth and death of
asymptotic solutions. When the characterization of such a bifurcation can be
reduced to the study of a vicinity of a single point in the phase space, the bifur-
cation is said to be local, otherwise it is qualified as global. The identification
of the type of bifurcation a fixed point undergoes can be achieved by looking
at how the eigenvalues λ of the characteristic equation cross the imaginary
axis as some parameter is varied. Moreover, the symmetry of the dynamical
system will impose some restrictions on the type of bifurcation we can find.

First, we begin by describing some basic bifurcations of codimension one.
These are bifurcations where only one parameter is needed to be changed in
order to meet the bifurcation point.
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• Saddle-node. In this bifurcation a pair of fixed points (one attracting
and one unstable) appear simultaneously as a single control parameter
µ passes a threshold µ0. Near the bifurcation, the distance between the
newly created steady-states scales as (µ − µ0)

1/2. When the bifurcation
occurs at µ0, a real zero eigenvalue crosses the imaginary axis.

• Transcritical. It occurs when one stable and one unstable fixed point
collide at the bifurcation point µ0 and interchange their stability. After
the bifurcation occurs, the separation of the two fixed points varies lin-
early with µ − µ0. A real zero eigenvalue is also crossing the imaginary
axis at the bifurcation point.

• Pitchfork. As some control parameter is changed we pass from a single
stable fixed point to a situation where three fixed points are produced.
In the supercritical (subcritical) version of this bifurcation, the two new
steady-states are born stable (unstable) meanwhile the old fixed point
gets unstable. It is important to mention that this type of bifurcation
only appears in dynamical systems with an appropriate symmetry. A
real zero is crossing the imaginary axis at the bifurcation point µ0. When
instead of fixed points the bifurcating structures are limit cycles, the
phenomenom in named as spontaneous symmetry-breaking bifurcation.
This is due to the fact that in this bifurcation, the limit cycle that losses
the stability is symmetric under the symmetry of the dynamical system,
while the two new limit cycles created are asymmetric ones.

• Hopf. In the supercritical Hopf bifurcation, a previously stable fixed
point becomes unstable and a stable limit cycle is born. In the subcritical
case, the stable fixed point collides with an existing unstable limit cycle
at the bifurcation point and as a consequence the steady-state losses its
stability. In this type of bifurcations, the amplitude of the limit cycles
that is born at the bifurcation point grows as the square root of the dis-
tance of the control parameter to the bifurcation point, i.e., (µ − µ0)

1/2.
The fixed point that is involved in the bifurcation gets unstable when
a complex conjugate pair of eigenvalues cross the imaginary axis in the
complex plane. The imaginary part of these eigenvalues λ = ±iω gives
the angular frequency of oscillation of the periodic solution or limit cycle
newly created.

As we have seen, the three first types of bifurcations we have commented
occur through the unstabilization of a real zero that crosses the imaginary
axis. The symmetries and other constrains are the key elements when distin-
guishing which of the three bifurcations occurs.

Some codimension-two bifurcations, i.e., two control parameters need to
be simultaneously varied in order to meet the bifurcation point, are reviewed
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below. These bifurcations are sometimes interpreted as the collision or in-
tersection of two codimension-one bifurcations. In the following the list the
next three types of bifurcations because they are explicitely encountered in
the study of our setup,

• Takens-Bogdanov. In this bifurcation, a simple real eigenvalue and a
a pure imaginary pair, simultaneously cross to the real positive plane.
The unfolding, this is the characterization of the dynamical regimes in
the vicinity of the bifurcation point, has been shown to be extremely rich
in this kind of bifurcation.

• Gavrilov-Guckenheimer. They are identified by a double zero of the
characteristic equation. Then, two colliding zero eigenvalues crossing
the imaginary axis is the hallmark of this qualitative change in the
phase space. This bifurcation is usually interpreted as an accumula-
tion point of a Hopf bifurcation branch, i.e., a point in a family of Hopf
bifurcation where the imaginary part of the eigenvalues tends to zero.

• Hopf-Hopf. The intersection of two families of Hopf bifurcation lead to
this type of codimension two bifurcation, where two complex conjugate
imaginary eigenvalues are simultaneously becoming unstable. As in the
other codimension-two examples, a lot of different dynamical states ap-
pear in the neighborhood of this bifurcating point.





Chapter 2

Results

2.1 The system

T
HE system under study in this work consists of two semiconductor lasers
mutually coupled. However, there are different ways we can choose in or-

der to couple or link the dynamics of two semiconductor lasers (see Fig. 2.1).
One of the most popular is the coherent optical coupling, which consists of
the injection of the light coming from a laser into the active region of other
laser, assuming a coherent interaction between the injected and the intracav-
ity fields. This kind of interaction in master-slave or unidirectional schemes
has been found very useful in applications such as frequency stabilization or
secure communications. On the other hand, in the incoherent optical cou-
pling, the light being injected into the laser active region does not interfere
with the intracavity field, and that injection is only supposed to decrease the
level of available carriers. This type of interaction is usually achieved by in-
jecting light with an orthogonal polarization to the junction plane of the laser
being injected, since two fields with orthogonal polarization cannot interfere.
Finally, in the optoelectronic interaction, the light from a laser is converted
into photocurrent and this electronic flow is used to drive the bias current
of the other laser. This latter type of interaction (optoelectronic) is the one
studied here.

In order to study synchronization in our mutually coupled system of semi-
conductor lasers, we pointed out in the former chapter that it is very impor-
tant that when isolated both systems should exhibit a certain type of dynam-
ics by themselves. However, when uncoupled a semiconductor laser operates
in steady-state emission for the intensity (the oscillating electric field E(t) is
not a variable of our problem since due to the optoelectronic nature of the cou-
pling only the intensity |E|2 is relevant). Consequently, if we want to study
the synchronization properties of our two laser system, we need to perturb
each solitary laser in order to excite a certain type of dynamics before we cou-
ple them. We found that a very convenient way to do so consists of introducing
a feedback loop for each semiconductor laser. Here, the feedback loop is also
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Figure 2.1: Scheme of the different types of injection for a semiconductor laser.

chosen to be of optoelectronic nature, and consequently part of the light ex-
tracted from a laser is converted in photocurrent and injected into its own
current supply. With the addition of a feedback loop we gain an extraordinary
control and tunability on the dynamics of each laser when isolated. For exam-
ple, by changing the feedback strength and length, we are able to switch from
constant, oscillatory, pulsating, or even chaotic behavior.

Consequently, we consider the system sketched in Fig. 2.2, composed by
two identical single-mode distributed feedback semiconductor lasers subject
to optoelectronic coupling and feedback. This setup corresponds to the experi-
mental situation described in Ref. [9]. The optical power emitted by each laser
is detected, amplified, and added to the bias current of its counterpart (opto-
electronic coupling) and to its own injection current (optoelectronic feedback).
These contributions of the feedback and mutual interaction photocurrents are
delayed due to the finite propagation time of the optical and electrical signals.

The dynamics of the photon and carrier densities in each laser is described
by the single-mode semiconductor laser rate equations appropriately modified
in order to include the coupling and feedback terms. The bidirectional opto-
electronic coupling is accounted for by adding, in the carrier rate equations,
the delayed photocurrent generated by a laser into the injection current of its
counterpart. In a similar way, the effect of the optoelectronic feedback loops
is taken into account in each laser by adding to the bias current the delayed
photocurrent generated by itself.

The optical phase does not play any role due to the insensitivity of the
photodetectors to the phase of the electrical field. Hence, the rate equations
for the evolution of the photon and carrier densities in both lasers read [10]
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Figure 2.2: Scheme of two lasers subject to optoelectronic feedback and mutual coupling.
LD: laser diode; PD: photodetector; A: electrical amplifier.

dS1

dt
= −γc1S1 + Γg1S1 (2.1)

dN1

dt
=

J1

ed
+ ξf1

S1(t − τf1) + ξc1S2(t − τc1) (2.2)

−γs1
N1 − g1S1 (2.3)

dS2

dt
= −γc2S2 + Γg2S2 (2.4)

dN2

dt
=

J2

ed
+ ξf2

S2(t − τf2) + ξc2S1(t − τc2) (2.5)

−γs2
N2 − g2S2, (2.6)

where S1,2 is the intracavity photon density, N1,2 is the carrier density, and g1,2

is the material gain. The subindices 1,2 distinguish between the two lasers.
ξc1,2 (ξf1,2) stand for the coupling (feedback) strengths, which are proportional
to the responsivity of the photodetectors and the amplification factor of the
respective amplifiers. T1,2 (τ1,2) are the coupling (feedback) delay times. Other
parameters appearing in the rate equations are the bias current density J ,
the cavity decay rate γc, the spontaneous carrier relaxation rate γs, the con-
finement factor of the laser waveguide Γ, the electron charge e, and the ac-
tive layer thickness d. For simplicity, spontaneous emission noise sources
have been neglected. It is also important to note that an infinite bandwith
photodetector-amplifier response is assumed.

Numerical calculations and experimental measurements show that, in a
wide operation range, the material gain has a linear dependence on both the
carrier and photon densities. Therefore, g(N, S) is expanded as

g ≈ g0 + gn(N − N0) + gp(S − S0), (2.7)
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where g0 = γc/Γ is the material gain at the solitary threshold, gn = ∂g/∂N >
0 is the differential gain parameter, gp = ∂g/∂S < 0 is the nonlinear gain
parameter, N0 is the carrier density at threshold, and S0 is the free-running
intracavity photon density when the lasers are decoupled from feedback or
mutual interactions. The parameters gn and gp are taken to be approximately
constants.

After introducing Eq. (2.7) into Eqs. (2.1)-(2.6) and defining the dimension-
less variables s̃ ≡ (S − S0)/S0, ñ ≡ (N − N0)/N0, J̃ = (J/ed − γsN0)/γsN0 and
κc ≡ ξcΓ/γc, and κf ≡ ξfΓ/γc, the rate equations read

ds̃1

dt
=

γc1γn1

γs1
J̃1

ñ1(s̃1 + 1) − γp1
s̃1(s̃1 + 1), (2.8)

dñ1

dt
=

γs1
γp1

γc1

J̃1s̃1(1 + s̃1) + γs1
κf1

J̃1 [1 + s̃1(t − τ1)] + γs1
κc1J̃1 [1 + s̃2(t − T2)]

−γs1
ñ1 − γs1

J̃1s̃1 − γn1
ñ1(1 + s̃1), (2.9)

ds̃2

dt
=

γc2γn2

γs2
J̃2

ñ2(s̃2 + 1) − γp2
s̃2(s̃2 + 1), (2.10)

dñ2

dt
=

γs2
γp2

γc2

J̃2s̃2(1 + s̃2) + γs2
κf2

J̃2 [1 + s̃2(t − τ2)] + γs2
κc2J̃2 [1 + s̃1(t − T1)]

−γs2
ñ2 − γs2

J̃2s̃2 − γn2
ñ2(1 + s̃2), (2.11)

where the differential and nonlinear carrier relaxation rates are defined as
γn ≡ gnS0 and γp ≡ −ΓgpS0, respectively. It is worth noting that since
S0 = J̃γsN0Γ/γc, both γn and γp are related to the bias current. The val-
ues of the parameters are those used in Ref. [10], i.e., γc = 2.4 × 1011 s−1,
γs = 1.458 × 109 s−1, γn = 3J̃ × 109 s−1, and γp = 3.6J̃ × 109 s−1. The relaxation
oscillation frequency is calculated as fr = 1

2π
(γcγn + γpγs)

1/2, and the dimen-
sionless coupling and feedback strengths read

κc,f = ac,f
ηcαmΓ

2ngγc

ηext , (2.12)

ac,f being the coupling and feedback amplifier multiplication factors, respec-
tively, η the quantum efficiency of the photodetectors, ηext a parameter that
takes into account additional external losses, c the speed of light in vacuum,
αm are the laser facet losses and ng the group refractive index. For a typical
case (η = 0.5, ηext = 1, αm = 48 cm−1, ng = 3.5, γc = 0.24 ps−1 and Γ = 0.3) κc,f is
of the order of ∼ 0.1, when ac,f is fixed to 1. Then, the magnitude of κc (or κf )
can be easily modified just by changing the corresponding amplification factor
or the external attenuation. In addition, the sign of κc (or κf ) can be reversed
by subtracting the generated photocurrent from the bias instead of adding it.
In this paper, we consider both positive and negative values for the coupling
and feedback strengths.
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2.2 Stability and bifurcation analysis
As usual in nonlinear dynamical systems, a bifurcation study of the fixed
points or equilibria allows us to collect a great deal of information about the
different dynamical regimes that can rise in the setup under investigation. In
this section, we locate and discuss the stability of the fixed points of the sys-
tem of Eqs. (2.8)-(2.11). We analyze the role of the different coupling strengths
and delay times and construct several stability diagrams.

For the sake of clarity, we reduce the number of free parameters by assum-
ing two device-identical lasers under symmetric operation. Hereafter, we as-
sume identical bias currents (J̃1 = J̃2 ≡ J̃ ), coupling strengths (κc1 = κc2 ≡ κc),
feedback strengths (κf1

= κf2
≡ κf ), and feedback loop delays (τ1 = τ2 ≡ τ ).

These approximations are realistic due to the large degree of symmetry of the
lasers used in the experiments [9]. Moreover, it is well known that this kind
of degenerate conditions give rise to the organizing centers of the dynamics.
For the numerical examples given in this section the bias current taken is
J̃ = 1/3.

2.2.1 Location of fixed points
The conditions we impose to find the fixed points are s̃1(t) = s̃1st, s̃2(t) = s̃2st,
ñ1(t) = ñ1st, and ñ2(t) = ñ2st, which provide four different fixed points. The
first solution (FP1), s̃1st = −1, ñ1st = J̃ , s̃2st = −1, and ñ2st = J̃ , defines the
“OFF” state of the lasers. When operating in this fixed point neither laser
is emitting light from their facets. There exist two additional fixed points
(FP2 and FP3), which correspond to the case in which one laser is emitting
while the other is switched-off. These solutions represent the two possible
asymmetric steady states. The solution for the F.P. 2 is

s̃1st =
κfγcγn

γcγn(1 − κf ) + γpγs
,

ñ1st = J̃
γpγs

γcγn
s̃1st,

s̃2st = −1,

ñ2st = J̃ (1 + κc + κcs̃1st) , (2.13)

while the solution for the F.P. 3 is obtained by simply interchanging the
subindices 1 and 2. Finally, the steady-state conditions allow for one more
fixed point defining the “ON” state of both lasers (F.P. 4):

s̃1st = s̃2st =
(κc + κf)γcγn

(1 − κc − κf )γcγn − γpγs
,

ñ1st = ñ2st = J̃
γpγs

γcγn
s̃1st. (2.14)
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The first goal we focus on is the construction of the stability charts associ-
ated to the different fixed points. We mainly study the stability diagrams in
the coupling versus feedback strength plane (κc vs. κf ), and in the coupling
time versus feedback time plane (T vs. τ ). A detailed analysis of the bifurca-
tions will directly lead us to the construction of such stability diagrams.

In general this bifurcation study can be performed through the computa-
tion of the eigenvalues λ of the characteristic equation of system Eqs. (2.8)-
(2.11) z(λ, µ) = 0, once linearized around a fixed point, as a function of a given
set of parameters µ.

We proceed by locating in the parameter space spanned by κc, κf , τ , and
T ≡ (T1 + T2)/2 different types of bifurcations. We remark that T is the rel-
evant bifurcation parameter instead of T1 and T2 since only the sum of these
delays appear the characteristic equation [11].

2.2.2 Stability of the symmetric fixed point FP1
First, we treat the stability of FP1, which can only be destabilized through
a real eigenvalue. It can be analytically demonstrated from the characteris-
tic equation that the FP1 losses its stability at exactly the same bias current
than in the solitary case. That is, both have the same threshold (J̃ = 0). This
fact agrees with the naive interpretation that threshold reduction in semi-
conductor lasers subject to optical injection or feedback, only occurs though
the coherent interaction of the intracavity and injected fields. From the fixed
point picture, the loss of stability of FP1 occurs through a transcritical bifur-
cation when FP1 collides with FP4.

2.2.3 Stability of the symmetric fixed point FP4
For the other symmetric steady state (FP4), we separate the cases where a
real or complex eigenvalues are crossing the imaginary axis.

Real eigenvalues

The analysis of the characteristic equation yields the condition to obtain a
real zero eigenvalue (λ = 0) as

κc − κf = −1 − γpγs

γcγn
. (2.15)

This leads to the condition that inside the region defined by the inequality
κc−κf < −1−γpγs/γcγn in the coupling versus feedback strengths plane, there
is at least one eigenvalue of FP4 with a positive real part, and consequently
the fixed point is unstable. We notice that this condition is independent on the
time delays, that is to say, regardless of the values of T and τ the simultaneous
constant-wave (CW) operation of both lasers is unstable.
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While discussing the transition of real eigenvalues to the right hand side
of the complex plane, we can take advantage and analyze a codimension-two
kind of bifurcation known as the Takens-Bogdanov bifurcation. The Takens-
Bogdanov (TB) points are found by demanding a double zero root of the char-
acteristic equation (z(λ) = ∂z/∂λ = 0). These points must simultaneously
fulfill Eq. (2.15) (z(λ) = 0) in addition to the following relationship (∂z/∂λ = 0)

γpγs(γn + γp + γs) + κfγ
2
c γ

2
nτ +

γcγn [γn + γp + (1 − κc − κf )γs + κfγpγsτ)]

= Tκcγcγn(γcγn + γpγs). (2.16)

In order to locate the TB points, we may fix a value for κf , whereas κc is
obtained from Eq. (2.15). For κf and κc given, Eq. (2.16) provides a linear re-
lationship between the two time delays τ and T . Moreover, we have to impose
the physical requirement of the positiveness of the time delays involved in
such codimension-two points. Once one of the bifurcation points is located we
know from previous studies[12] that very rich dynamical regimes exist in the
vicinity of that point, such as the phenomenon of excitability. We also notice
that the nature of this codimension-two bifurcation points as an accumulation
point of a Hopf curve has been numerically checked.

Complex eigenvalues

A bit more complicated than the previous case is the detection of bifurcations
involving complex eigenvalues. We can use different approaches for locating
bifurcations in DDE’s. Recently, a Matlab package[13] has been developed in
order to study the bifurcations of fixed points and limit cycles in DDE’s by
using numerical techniques on the characteristic equation and monodromic
equation for steady-states and periodic orbits, respectively. Another possibil-
ity is just to numerically explore the parameter space under study and try to
identify the different dynamical regimes. However, when possible, is always
better the use of exact computations which lead to analytical criteria. To our
purposes, we make use of both analytical techniques and extensive numerical
simulations.

Let us begin by writing down the characteristic equation for the FP4. Due
to the symmetric solution we are considering, where both lasers are identical
and the system equations exhibit a clear Z2-symmetry (we can interchange
laser 1 and 2), the characteristic equation factorize as follows

(

ue−λτ + pλ2 + qλ + y − ve−λT
) (

ue−λτ + pλ2 + qλ + y + ve−λT
)

= 0, (2.17)

where u, v, p, q, and r involved coefficients that depend on κc, κf , and J̃ .
We start by considering the zeroes of the two factors of equation 2.17 after
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imposing pure imaginary eigenvalues λ = iω. Then, the eigenfrequencies
must satisfy the equation

ue−iωτ − pω2 + iqω + y ∓ veiωT = 0, (2.18)

which is divided in real and imaginary parts as follows

u cosωτ − pω2 + y = ±v cos ωT = 0 (2.19)

−u sin ωτ + qω = ∓v sin ωT = 0, (2.20)

from where it is easy to eliminate the coupling delay time T after squaring
and adding Eqs. (2.19)-(2.20). After this, the resulting equation for ω reads

ω4 + b ω2 + c + (d ω2 + e) cos(ωτ) + f ω sin(ωτ) = 0, (2.21)

where the coefficients are involved functions of the parameters

bΛ2 = 2 (−1 + κc + κf ) γc
3 γn

3 + γp
2 γs

2
(

(γn + γp)
2 + 2 γn γs + γs

2
)

+ 2 γc γn γp γs

(

(γn + γp)
2 − ((−2 + κc + κf) γn + γp) γs − (−1 + κc + κf) γs

2
)

+ γc
2 γn

2
(

(γn + γp)
2 − 2 ((−1 + κc + κf ) γn − (−2 + κc + κf) γp) γs

+ (−1 + κc + κf)
2 γs

2
)

,

cΛ2 = −
(

(γc γn + γp γs)
2 ((−1 + κc

2 − κf
2
)

γc
2 γn

2 − 2 γc γn γp γs − γp
2 γs

2
))

,

dΛ = −2 κf γc γn (γc γn + γp γs) ,

eΛ2 = −2 κf γc γn (γc γn + γp γs)
3,

fΛ2 = −2 κf γc γn (γc γn + γp γs) (− (γc γn (γn + γp)) + (−1 + κc + κf ) γc γn γs

− γp γs (γn + γp + γs)) ,

Λ ≡ (−1 + κc + κf) γc γn − γp γs .

Then, in order to construct the stability diagram of FP4 it is of central
importance to determine the regions in the coupling versus feedback plane
where a real solution for Eq. (2.21) exists. The set of points in the κc vs. κf

plane where no real solution for ω exists regardless the delay times τ and T ,
is called the delay independent stable region (DISR). Consequently, within
that region any possible combination of feedback and coupling delay times
is unable to destabilize the CW emission of the lasers on the FP4. On the
contrary, there also exists some points of in the κc vs. κf plane where the
existence of a real solution for ω depends on the specific values of the feedback
and coupling delay times. Such a zone is the delay-dependent stable region
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(DDSR), and there one can always find a proper combination of delay times
that induces oscillations through a Hopf bifurcation. Finally, we can define
the delay independent unstable region (DIUR), where no matter the delay
times we chose the system is unstable when operating on FP4. In this case,
the condition given in Eq. (2.15) defines an area where an eigenvalue with
positive real part exists independently of τ and T , and as a consequence FP4
is unstable.

To the purpose of finding the before-mentioned regions, we will not solve
the transcendent equation (2.21) by numerical methods. Instead, we will be
able to find analytical conditions on its coefficients. Let us consider the left-
hand side of Eq. (2.21) as a function of the two variables ω and τ . Then, once
fixed κc and κf , we need to scan the plane ω versus τ and check whether at
least a real root of the Eq. (2.21) exists. If no zero can be found we can assure
that the values used for κc and κf correspond to a DISR point because inde-
pendently of τ and T no Hopf instability can perturb FP4. On the other hand,
if such a zero is found, the Hopf bifurcation is obtained for a precise value
of the coupling and feedback times and the stability of FP4 becomes delay
dependent (DDSR). The only exception to the former discussion is produced
when dealing with values of κc and κf that fall inside the DIUR zone described
by Eq. (2.15). There, FP4 is unstable independently whether we found a zero
of Eq. (2.21) because a real eigenvalue has already crossed the imaginary axis
and become unstable.

In principle, the task of looking for roots should be done by numerical solv-
ing Eq. (2.21). However, a clever way to inspect the ω vs. τ plane that can
lead us to analytical conditions on the coefficients for the existence of roots, is
through the family of hyperbolas ωτ = h = constant. On each of these curves,
Eq. (2.21) is simply reduced to a fourth-order polynomial, for which the con-
ditions for its coefficients to have no real solutions are known [14, 15, 16]. For
each value of h, the polynomial obtained from the left-hand side of Eq. (2.21)
is written as P (ω) = ω4 + rω2 + sω + t. Since we are dealing with fourth
order polynomials with real coefficients, the number of real roots of each of
these polynomials will be zero, two, or four. Which of these cases occurs can
be determined by computing the discriminants of the polynomial from its re-
sultant matrix. After having obtained the following polynomial discriminants
from the central minors of the resultant matrix of the polynomial P (ω) with
its derivative P ′(ω) [17]

∆1 = 1,

∆2 = −r,

∆3 = −2r3 − 9s2 + 8rt,

∆4 = −4r3s2 − 27s4 + 16r4t + 144rs2t

−128r2t2 + 256t3,
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the conditions on the coefficients for obtaining a given number of roots is col-
lected in Table 2.1.

Table 2.1: Real zeroes of a quartic polynomial.

Number of real roots Multiplicity Discriminant conditions
0 0 ∆4 > 0 ∩ (∆3 ≤ 0 ∪ ∆2 ≤ 0)
0 0 (∆4 = ∆3 = 0) ∩ ∆2 < 0
2 1,1 ∆4 < 0
2 2 ∆3 < 0 ∩ ∆4 = 0
4 1,1,1,1 ∆2 > 0 ∩ ∆3 > 0 ∩ ∆4 > 0
4 1,1,2 ∆2 > 0 ∩ ∆3 > 0 ∩ ∆4 = 0
4 2,2 ∆2 > 0 ∩ (∆3 = ∆4 = 0) ∩ s = 0
4 1,3 ∆2 > 0 ∩ (∆3 = ∆4 = 0) ∩ s 6= 0
4 4 ∆2 = ∆3 = ∆4 = 0

Thus, by varying the value of h from 0 to 2π we can analytically obtain a
series of regions in the κc vs. κf space (remember that these strengths are
related to the polynomial coefficients) where no root can be found and con-
sequently provide the delay-independent stable region or DISR zone. Since
the DIUR region is determined by the condition given in Eq. (2.15), we obtain
the DDSR region as the complementary set to the union of DISR and DIUR.
Fig. 2.3 summarize and collects the results concerning the stability of FP4 in
the coupling versus feedback strengths.
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Figure 2.3: Stability diagram in the κc vs. κf plane for FP4, showing the delay-independent
stable region (DISR), the delay-dependent stable region (DDSR), and the delay-independent
unstable region (DIUR). The boundary between the DDSR and DIUR defines the transcritical
line.
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It is important to notice that κc and κf play a highly symmetrical role
when defining the DISR zone. That is, either increasing the magnitude of the
coupling or feedback strength we are able to enter into the DDSR regardless
the sign of these interactions. However, concerning the DIUR zone it is very
important the sign of the strengths considered. For instance, only with a very
negative coupling or very large positive feedback we enter into the DIUR zone.
So, we see how an inhibitory coupling and an excitatory feedback complement
each other in order to destabilize the symmetric FP4. A naive interpretation
of the destabilizing role of the inhibitory coupling in our system is that it tends
to stablish a kind of competition between both lasers, so a very high negative
coupling strength eventually favors the operation in one of the asymmetric
states of the system.

So far, we have identified the effect of the different strength constants in
the stability of the system, regardless of the specific values that the delay
times could take. Next, we fix the coupling and feedback strengths and focus
on the role of the delay times. Once a solution of the characteristic equation
(2.21) is obtained, the critical coupling delay time Tc for which at least a pair of
conjugate eigenvalues lie on the imaginary axis provides the Hopf bifurcation
points. We remember that the coupling delay time, which had been eliminated
from Eqs. (2.19)-(2.20), can be easily recovered from the same equations. Tak-
ing into account the periodicity associated to the coupling delay time T , due
to the fact that it only appears as the argument of trigonometric functions, Tc

is written down as

Tc(ω) =
1

ω

(

arctan
g(κc, κf , τ, ω)

h(κc, κf , τ, ω)
+ mπ

)

, (2.22)

where m ∈ Z, and g and h are defined by the following expressions

g ≡ [γpγs(γn + γp + γs) + γcγn(γn + γp − (−1 + κc + κf)γs)]ω

+ κfγcγn(γcγn + γpγs) sin(ωτ),

h ≡ −γ2
cγ

2
n + γpγs(ω

2 − γpγs) − γcγn

[

2γpγs + (−1 − κc + κf )ω
2
]

+ κfγcγn(γcγn + γpγs) cos(ωτ).

The Hopf curves have been calculated in Fig. 2.4 for the case κc = κf =
0.25. At the intersection of these Hopf curves, we identify the double Hopf
codimension-two points where two pairs of purely imaginary conjugate eigen-
values exist.

In order to complete our investigation of codimension-two bifurcations
we proceed by locating the Gavrilov-Guckenheimer points (GG) in the pa-
rameter space. We recall that in order to detect that type of bifurcations
we must demand a single zero eigenvalue in addition to a purely imagi-
nary eigenvalue pair. Hence, we need to satisfy simultaneously the condi-
tions given by Eq. (2.15) and Eq. (2.22). For instance, if we take a feedback
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Figure 2.4: Hopf curves and stability diagram in the T vs. τ plane for FP4. The oblique lines
indicate the regions where the fixed point is stable. At the crossing of the Hopf curves, a dou-
ble Hopf codimension-two bifurcation takes place. Both the feedback and coupling strength
are fixed at 0.25.

strength κf , Eq. (2.15) implies that the coupling strength has to be set to
κc = κf − 1 − γpγs/(γcγn). If the feedback delay time is τ , then we obtain from
Eq. (2.21) a set of real positive solutions ωk. If we substitute ωk into Eq. (2.22),
we find a set of coupling delay times Tk associated with each GG point. We can
add or subtract multiples of π/ωk to Tk in order to construct another GG point,
although we stress that only positive values of Tk are physically meaningful.
As happens with the other codimension-two bifurcation points we detected,
the richness of dynamical states that is found around these points is huge.

2.2.4 Stability of the asymmetric fixed points FP2 and
FP3

The study of the stability of the asymmetric steady states FP2 and FP3
through the characteristic equation turns out to be challenging for any an-
alytical treatment. Nevertheless, we have undertaken extensive numerical
simulation of Eqs. (2.8)-(2.9) for analyzing their stability. The stability charts
for FP2 and FP3 are equivalent and presented in Fig. 2.5. The boundary be-
tween DIUR and DDSR defines the transcritical line as in Fig. 2.3. However,
we note that both regions are interchanged in the figures. Therefore, over
that boundary there exists an exchange of the stability between the FP4 and
the asymmetric fixed points FP2 and FP3. Moreover, there also exists a small
delay-independent stable region (DISR) bounded by the critical line given by
Eq. (2.15) on one side, and by the minimum feedback coefficient that is able
to excite oscillations in the solitary laser case (κf ∼ 0.24), on the other side.

By now we have provided insight into the stability and bifurcation of the
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Figure 2.5: Stability diagram in the κc vs. κf plane for FP2 and FP3, showing the delay-
independent stable region (DISR), the delay-dependent stable region (DDSR) and the delay-
independent unstable region (DIUR).

steady-states. This analysis will be useful in the next section in order to char-
acterize the “death by delay” phenomenon as well as some general phenomena
in the theory of coupled oscillators. The prediction of these phenomena in our
laser system allows for a direct translation into observable scenarios and ex-
perimental verification.

2.3 Dynamical behavior
In this section, we investigate the dynamical behavior of the lasers acting
as two delayed coupled self-sustained oscillators. We address the oscillation
death, frequency-locking and synchronization properties.

2.3.1 Death by delay
We use a proper combination of the feedback strength and feedback delay
times in order to force each laser to operate as a limit cycle oscillator when
uncoupled. Under this situation, we inspect the role of the coupling delay
time T in the dynamics. In particular, we investigate the phenomenon of
oscillation death, by which the coupling between the two oscillators induces
the quenching of the limit cycles through a collapse to the zero amplitude state
[2, 9, 8, 18]. When delay is absent in the coupling term, a large dispersion or
detuning in the natural frequencies of the oscillators is required to observe
this phenomenon, besides the requirement that the coupling must be diffusive
[8, 19, 20]. Only recently, Ramana et al. [2] showed that these restrictions can
be relaxed if the coupling contains a delay. This effect, commonly known in
the literature as “death by delay”.
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Since the feedback loops are also delayed, we must investigate the role of
three parameters, namely, the coupling strength κc, and the two delay times
T and τ on the oscillation quenching. We tackle the problem by computing
the Hopf curves for the FP4 in the κc vs. T plane (Eqs. (2.21)-(2.22)), and the
direction of transition of the eigenvalues when crossing the imaginary axis.

Figure 2.6: Hopf curves and “death islands” (shadowed regions) in the κc vs. T plane for
FP4 for several values of the feedback delay time. From top to bottom the feedback delays
are 1200, 1125, 1050, and 975 ps. The feedback strength and injection current are set at
κf = 0.3 and J̃ = 0.1, respectively.

Following this procedure, we are able to find closed regions in the param-
eter space κc − T where the FP4 is stable, thus inducing the death of the
oscillations. These regions surrounded by a supercritical Hopf line are called
“death islands”. Fig. 2.6 illustrates the location of the “death islands” for
κf = 0.3 when the feedback delay time is varied from τ = 975 to τ = 1200 ps.
Under these conditions, both lasers oscillate with a fundamental period ∼ 600
ps when uncoupled.

For feedback delay times below τ = 925 ps, not shown in the figure, it
is meaningless to talk about “death islands” since the lasers are stable even
when decoupled. “Death islands start to appear when the solitary lasers un-
dergo self-sustained oscillations at τ ∼ 950 ps. Several “death islands” can be
observed at the lower panel of Fig. 2.6, computed for τ = 975 ps, which are
regularly, although not completely, spaced. The existence of multiple islands
when varying T has been experimentally demonstrated [9]. We can observe
that the size of these islands decrease when the coupling delay time T in-
creases, until they completely disappear for T & 1500 ps. The different layers
in the figure correspond to different feedback delay times τ . Interestingly,
the number of islands and their size continously decrease when increasing τ ,
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until they completely disappear for τ > 1225 ps. In summary, we have demon-
strated that the “death by delay” phenomenon appears in a wide parameter
range in our system. However, we remark that the feedback delay time τ has
to be close to a Hopf points of the uncoupled lasers in order to observe this
phenomenon.

An interesting feature in Fig. 2.6 is the fact that one of the “death islands”
reaches the T = 0 axis for the case in which the feedback delay time is set
around 975 ps. This fact occurs for feedback delays τ in the range (950-1025)
ps. These observations were also independently confirmed by the direct com-
putation of the eigenvalues of the characteristic equation with the MATLAB
package for analysis of delay differential equations DDE-Biftool [13]. There-
fore, there is an apparent contradiction with the above mentioned arguments
that no identical oscillators can drive each other to a zero amplitude state in
the absence of delay in the coupling. However, in our setup we do observe the
quenching of two identical oscillators even for zero delay in the coupling. The
apparent controversy arises from the special origin of the pulsating behavior
in our laser system, which is induced by a feedback term with its own delay
time. Hence, we conjecture that a delay is necessary in the equations in order
to observe the death effect for identically coupled oscillators, regardless of its
origin is in the coupling or feedback line. It is worth noting that the preceding
studies of “death by delay” [2, 19, 4, 21] considered systems containing time
delay in the coupling interaction but no delayed feedback loops were taken
into account.

We have analyzed the behavior of the laser outputs when moving into dif-
ferent “death islands”. For the case τ = 975 ps and κc = −0.2 in lower panel in
Fig. 2.6, we vary the coupling delay from T = 50 ps to T = 0 ps. In this case,
the change in T causes a mutual drift to the zero amplitude state through a
series of in-phase pulses with a decreasing exponential envelope. Fig. 2.7
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Figure 2.7: (a) Quenching of the oscillations when the coupling delay in changed (T = 50 ps
7→ T = 0 ps). The temporal series of laser 2 has been vertically displaced for clearness reasons.
(b) Top: eigenvalues at T = 50 ps; bottom: eigenvalues at T = 0 ps. The bias, feedback
coefficient, and feedback delay time correspond to those of the lower panel in Fig. 2.6. The
coupling is fixed at κc = −0.2.
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Figure 2.8: (a) Quenching of the oscillations when the coupling delay in changed (T = 350

ps 7→ T = 250 ps). The temporal series of laser 2 has been vertically displaced for clear-
ness reasons. (b) Top: eigenvalues at T = 350 ps; bottom: eigenvalues at T = 250 ps. The
bias, feedback coefficient, and feedback delay time correspond to those of the lower panel in
Fig. 2.6. The coupling is fixed at κc = −0.2.

Typical “death by delay” quenching was also confirmed when changing the
coupling delay time from T = 350 ps to T = 250 ps, which corresponds to a
jump into the second island of lower panel in Fig. 2.6. However, this time the
oscillations cease through a series of anti-phase pulses as seen in Fig. 2.8.

The reason for this phase behavior is associated with the formation of
phase and anti-phase limit cycles when T increases. We will provide a de-
tailed description of this phenomenon in the next section.

Then the most important result we have obtained in this section is that
in order to observe the amplitude quenching effect between coupled oscilla-
tors, neither an asymmetry nor a delayed coupling is strictly necessary if the
oscillators are subject to a delayed feedback loops.

2.3.2 Synchronization
The entrainment or synchronization between the lasers is studied in three
different situations. For identical lasers, we first consider the case of coupled
limit cycle oscillators, and secondly we address the synchronization of chaotic
oscillators. Finally, we analyze the role of slightly asymmetric operation of
the lasers. The different types of synchronization are characterized by two
figures of merit, namely, the correlation degree between amplitudes and the
relative phase of the oscillations.

2.3.2.a Identical systems

Several phenomena related with the synchronization concepts appear in our
multiple delayed system. Starting from a configuration in which both lasers
are self-sustained oscillators due to their own feedback loop, we study the am-
plitude and phase synchronization between the laser intensities as a function
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of the coupling strength and delay time. The amplitude correlation between
the signals is characterized through the maximum of the cross-correlation
function, while the phase synchronization is studied by means of the analyti-
cal signal concept constructed with the aid of the Hilbert transform [22].
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Figure 2.9: Top: bifurcation diagram for s̃1 (black) and s̃2 (grey) when changing T . Middle:
maximum of the cross-correlation function Γ. Bottom: mean Hilbert phase difference ∆φH .
The feedback parameters are κf = 0.3 and τ = 1 ns, while the coupling strength is fixed at
κc = −0.1. The bias is set to J̃ = 1/3.

First, we describe the different dynamical regimes observed when chang-
ing the T . In Fig. 2.9, we show from top to bottom the bifurcation diagram of
the laser intensities when T is varied, the maximum of the cross-correlation
function, and the mean Hilbert phase difference between the laser signals.
Interestingly, we can observe how increasing the coupling delay time a se-
quence of symmetry-breaking or pitchfork bifurcations for limit cycles occurs.
The breaking of the Z2-symmetry under the interchange of laser 1 and 2 in
the Eqs. (2.8)-(2.9) leads to localized synchronization between the two lasers
[23, 24]. This is, for instance, observed at T ∼ 120 ps. Before that point,
the two lasers operate in an in-phase symmetric limit cycle and both lasers
display oscillations with the same amplitude. After the bifurcation, the sys-
tem operates in one of the two newly created asymmetric limit cycles, where
each laser pulses with a different amplitude but at the same frequency. The
localized synchronization is also characterized by a non-zero relative phase
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between the two oscillators. By continuing the delay coupling time these
asymmetric limit cycles bifurcate to a torus and a quasi-periodic dynamics
with different amplitude is observed for each laser. Further increasing the
bifurcation parameter a transition to a more complex behavior occurs, where
both lasers show irregular oscillations with similar amplitudes and exhibit an
anti-phase dynamics. We observe how for larger delays the system tends to
operate in an anti-phase limit cycle and further increasing of T this limit cycle
undergoes the same type of bifurcations than the ones commented for the pre-
vious in-phase limit cycle. This kind of structure going from an in-phase limit
cycle to an anti-phase limit cycle and vice versa is repeated as T increases,
and consequently several islands of localized synchronization, quasi-periodic
dynamics, and in-phase and anti-phase pulsating behavior are found. A plot
of the symmetric and the two asymmetric limit cycles created at the pitchfork
bifurcation that occurs at T ∼ 500 ps is shown in Fig. 2.10.

S1

ALC

ALC

SLC

S
2

Figure 2.10: Portrait of the limit cycles involved in the spontaneous symmetry-breaking
bifurcation. SLC and ALC stand for symmetric limit cycle and asymmetric limit cycle, re-
spectively. The SLC is plotted when is still stable at T = 496 ps, while the ALC are showed
just after the bifurcation takes place at T = 498 ps.

Then, and depending on the initial conditions, the perfectly symmetric
system spontaneously tends to operate in one or other of the asymmetric
limit cycles. The point here is that in either of these asymmetric limit cy-
cles, the amplitude of the oscillations in each laser is different, as is shown in
Fig. 2.11. There lies the localized synchronization concept by which two mu-
tually coupled systems can exhibit synchronized oscillations with different
amplitudes. We also note that by increasing further the coupling delay larger
ratios between the amplitudes of both lasers can be achieved, as is illustrated
in Fig. 2.12.

The correlation degree, defined as the maximum of the cross-correlation
function, is relatively high (0.96 – 1) for the entire bifurcation diagram. The
correlation degree is almost perfect during the in-phase and anti-phase limit
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Figure 2.11: Temporal series of the lasers when operating in the SLC and ALC. The time
traces has been vertically displaced for clearness reasons. Top: the lasers oscillating with in-
phase dynamics on the SLC; middle: the lasers are operating in one of the ALC and pulsating
with different amplitudes; and bottom: changing the initial conditions the lasers operate in
the other ALC. Solid line: laser 1; dashed line: laser 2.
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Figure 2.12: Increasing the coupling delay time to T = 530 ps, the ratio between amplitudes
becomes as large as 2. Solid line: laser 1; dashed line: laser 2.

cycles whereas a small drop in correlation can be observed during the localized
synchronization.

Different type of structures and dynamical regimes show up when the bi-
furcation parameter considered is the coupling strength. Fig. 2.13 shows the
bifurcation diagram, maximum of the cross-correlation function, and phase
difference between the two laser signals as a function of the coupling rate
κc. Starting from an uncoupled configuration at the point κc = 0, the phase
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Figure 2.13: From top to bottom: bifurcation diagram for s̃1 and s̃2 when changing κc, max-
imum of the cross-correlation function Γ, and mean Hilbert phase difference. The feedback
parameters are κf = 0.3 and τ = 1 ns, while the coupling delay time is fixed at T = 500 ps.

difference depends on the initial conditions and has been set at zero for con-
venience. Upon increasing the coupling strength we observe how the two
oscillators remain in an in-phase limit cycle. Further increasing the coupling
strength leads to a sudden transition to quasi-periodic behavior in both lasers
whose phase difference slightly oscillates around π. After this island of quasi-
periodic behavior, which appears from κc = 0.04 to κc = 0.047, a regime with
anti-phase periodic oscillations is reached. The amplitude of this limit cy-
cle grows with the coupling strength until it reaches the value κc = 0.2. Be-
yond that value a complex dynamics develops. For slightly negative couplings,
κc ∈ (−0.03, 0), we obtain an anti-phase dynamics. When decreasing the cou-
pling rate from zero the system enters into a chaotic behavior area which
ends with a symmetry-restoring bifurcation around κc ∼ −0.1. Before this
point is reached the two lasers have passed through a regime of localized syn-
chronization with a phase difference approaching zero as the coupling tends
to the symmetry-restoring bifurcation point. In-phase oscillatory behavior is
then observed until the coupling value is decreased down to κc = −0.15. Be-
yond this point and at least until the minimum coupling strength we studied
(κc = −0.3) the two lasers oscillate with very different amplitudes, but more
important the laser with smaller amplitude enters into a period-two state
while the one with larger amplitude remains in a period-one state. This con-



2.3 Dynamical behavior 37

stitutes the second type of asymmetric dynamical regime we have identified
for this perfectly symmetric system. We notice that associated to the sudden
jump to these asymmetric limit cycles there is a discontinuous change in the
amplitude and frequency of the oscillations in both lasers. It is also worth
noting that the type of phase dynamics (in-phase or anti-phase) is not univo-
cally determined by the sign of the coupling interaction as it happens with the
simple Adler equation describing the phase difference in non-delayed coupled
oscillators.

An important point we have already considered is the study of the relative
dynamics between the two lasers when they operate as self-sustained oscilla-
tors. Regarding this point, we have numerically observed that both in-phase
and anti-phase dynamics appear for both positive and negative coupling coef-
ficients at certain values of the coupling delay time T . However, by increasing
the feedback strength and the delay time we can force the lasers to operate
in a chaotic regime even when they are uncoupled. In contrast to what oc-
curs in the optically coupled face-to-face semiconductor lasers [25], we find
that the isochronal (zero-lagged) solution between the two lasers is stable in
a wide range of operation. This means that the two lasers are simultane-
ously exhibiting the same chaotic oscillations even they are spatially sepa-
rated. This is shown in Fig. 2.14, where the synchronization return plot and
the cross-correlation function between the laser intensities are shown. We
can see there that the maximum of autocorrelation occurs at zero time shift
between the intensity signals, in agreement with the experimental findings
[9].
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Figure 2.14: Top: chaotic temporal series of the lasers intensities after coupling; middle:
synchronization plot; bottom: cross-correlation function Γ between the two chaotic outputs.
When uncoupled, both lasers operate in the chaotic regime due to their feedbacks loops with
κf = 0.4 and τ = 3.5 ns. The coupling strength is κc = 0.05 while the coupling delay is
T = 3.85 ns.
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2.3.2.b Slightly mismatched systems: Arnold Tongues

Another fundamental aspect in coupled dynamical systems is its locking be-
havior. In particular the frequency locking properties of two coupled oscilla-
tors is a subject of wide interest for both theoretical and practical applications.
In fact, the phenomenon of adjusting the internal rhythms of a system by an
external or mutual perturbation is one of the most investigated effects in the
synchronization concept [20]. Here, we are interested in studying the effect of
the coupling delay time on these locking properties. In particular, we focus on
the dependence of the Arnold tongues size (or frequency locking regions in the
coupling strength versus detuning plane) on the coupling delay time between
lasers. To this end, we retake the configuration of two isolated lasers that are
self-pulsating due to their feedback loops. By changing the delay feedback
time in one of the lasers, a detuning between the frequencies of their periodic
solutions can be easily induced by hardly changing their amplitudes.

Fig. 2.16 shows the difference of the frequencies of the lasers after couple
them as a function of the uncoupled detuning. Each curve in the figure cor-
respond to different delay times in the coupling line. The plateau exhibited
by these curves amounts to the width of the Arnold tongues at the coupling
strength we are considering. The strong dependence on T is quite evident.

Figure 2.15: Difference of frequencies of the oscillations of the lasers once coupled as a
function of the detuning. T=0 (squares), T = 1/4ν0 (crosses), T = 1/2ν0 (asterisks), T = 3/4ν0

(diamonds), and T = 1/ν0 (triangles), where ν0 is the frequency of oscillations when the
lasers are uncoupled at zero detuning. The feedback and coupling strengths are κf = 0.3, and
κc = 0.1, respectively. The bias is J̃ = 1/3.

Now, varying the coupling strength we numerically compute the width of
the former plateaus. This enable us to construct the complete Arnold tongue,
which is shown in Fig. 2.16 for different coupling delay times. We recall that
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within the Arnold tongue both coupled lasers lock their oscillations into a
single frequency. The main result here is the capability of the coupling delay
time to modify the width of the Arnold tongues by a factor that can be as large
as three. We notice that for any possible application where a good locking
state between lasers is required, the effect of the delay time can be quite
important on its robustness. Another interesting feature is that a non-zero
value of T is able to enlarge the frequency locking zone as compared with the
zero-delay-time case. This feature is, for instance, not contemplated in the
simple Kuramoto description of two interacting delayed oscillators. In the
latter, although the coupling delay time produce multistability, a variation of
its value is unable to increase the size of the Arnold tongue with respect to
the zero-delay case [26], unless a frustration phase parameter is included.
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Figure 2.16: 1:1 Arnold tongues for different coupling delay times. a), b), c), d), e), and f)
panels correspond to T = 0, 1/4, 1/2, 3/4, 1, and 2 times the natural period of the oscillations
when the lasers are uncoupled, which is about 348 ps. The feedback strength is κf = 0.3. The
bias is J̃ = 1/3.

In the next section, we turn into the experimental verification of some
of the most relevant behaviors that have been theoretically and numerically
predicted in this section, namely, the amplitude quenching or “death by delay”
and the isochronous chaotic synchronization.

2.4 Experimental Results
In the experiments, the lasers are InGaAsP/InP single-mode DFB lasers both
operating at 1.299 µm wavelength and temperature stabilized at 21 ◦C. The
two lasers, which are chosen from the same wafer, are closely matched in their
characteristics to be highly identical. The photodetectors are InGaAs pho-
todetectors with a 6-GHz bandwidth, and the amplifiers are Avantek SSF86
amplifiers with 0.4 − 3 GHz bandpass characteristics. The laser intensities
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measured by the photodetectors are recorded with a Tektronix TDS 694C dig-
itizing real-time sampling oscilloscope with a 3-GHz bandwidth and a digitiz-
ing rate up to 1 × 1010 Samples/s. Both the coupling and feedback strengths
are easily adjusted by changing the attenuation of the optical power in the
coupling and feedback lines, respectively. The coupling and feedback delays
are also adjusted by varying the optical path lengths of these lines.

Starting with an experimental scheme similar to that sketched in Fig. 2.2,
we are able to experimentally reproduce the “death by delay” effect when
varying the coupling delay time as it was first observed in Ref. [9] for semi-
conductor laser setups. When uncoupled, both lasers exhibit an oscillatory be-
havior due to their feedback loops. However, as soon as the coupling strength
and delay are adjusted to make the system fall into a “death island”, an ampli-
tude shrinkage in the oscillations is observed. Fig. 2.17 shows the dynamical
states of the two lasers before, inside, and after passing over a “death island”,
as T is varied from 14.95 ns to 15.45 ns. Due to experimental limitations,
no shorter delays were able to be explored, although it is expected that the
quenching of the oscillations can be found for shorter delays. Multiple “death
island” are found as predicted by the theoretical analysis although they con-
tinue to appear for larger delay times than expected from the analysis of the
idealized model of Eqs (2.1)-(2.6).

Within the same experimental setup, and just by choosing appropriate
strengths and delays in such a manner that both lasers are driven to a chaotic
state, we can also study the issue of the chaos synchronization between lasers
[9]. Fig. 2.18 shows the synchronization plot and the cross-correlation func-
tion between the two laser outputs for coupling delay times of T1 = T2 = 15.4
ns. It is clear from the figure that both lasers exhibit highly correlated chaotic
oscillations. The maximum of the cross-correlation function is located at the
zero-lag point and is as high as 0.9. If we allow for different coupling delay
times in each one of the coupling lines between lasers (i.e., T1 6= T2), then we
also observe how the largest peak of the correlation function shifts away from
the center by a magnitude of |(T2 − T1)/2| and with a direction dependent on
which coupling delay time is shorter.

These experimental results agree qualitatively with the results obtained
from numerical simulations, and provide the verification that the most inter-
esting features predicted in this system are robust enough to be observed in
a real system.
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Figure 2.17: From top to bottom, sequence of dynamical states showing the evolution of
the laser characteristics before, inside and after passing through a death island, respectively.
The coupling delay time T is varied from 14.95 ns to 15.45 ns.
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Chapter 3

Conclusions

3.1 Conclusions
In summary, we have theoretically investigated the nonlinear dynamics and
synchronization properties of two bidirectionally coupled semiconductor lasers
subject to optoelectronic feedback loops. We have presented analytical and nu-
merical studies for this system from which we highlight the following points:

• The stability analysis performed provides a first understanding of the
mechanisms leading to instability, and the exact role played by the dif-
ferent parameters (coupling and feedback strengths and delay times) in
such a process.

• In particular, we have found a new scenario for the quenching of the
oscillations that occurs in the absence of delay time in the coupling line
and even for identical oscillators. We attribute this interesting behavior
to the inclusion of delayed feedback loops, which physically act as an
additional memory effect in the system.

• We have concentrated on the synchronization properties of both lasers
when they operate as limit cycle oscillators. We have investigated the
synchronization scenario that occurs upon increase of the mutual cou-
pling strength and coupling delay time. When varying the coupling de-
lay time, we have identified a sequence for the formation of in-phase,
and anti-phase limit cycles separated by symmetry-breaking bifurca-
tions leading to localized synchronization between the lasers. We have
also considered the slightly mismatched operation of the lasers. We have
seen that a delay time in the coupling between the lasers may improve
the capability to lock their oscillations.

• Analytical and numerical predictions are in qualitative agreement with
the experimental findings of “death by delay” and synchronization sce-
nario that have been reported in Ref.[9].
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• For future work on this setup, it would be interesting to consider several
asymmetries in the system such as different delay times and asymmetric
coupling strengths between the lasers. Finally, the study of the unfold-
ing of the various codimension-two points and some global phenomena
like excitability[27] in our laser setup could be quite interesting.

In a similar configuration we have already started the investigation of the
mutual coupling of vectorial oscillators. Taking the so-called spin-flip model
we study the synchronization between the polarization of the light emitted
by two mutually coupled VCSEL’s. Several polarization switchings induced
by the coupling or detuning have been numerically observed. Interesting re-
sults concerning the polarization diffusion in synchrony between two perfect
isotropic VCSEL’s are now studied. Moreover, and taking advantage of the po-
larization bistability that this type of laser exhibits, we have in mind the ex-
ploration of the effect of the delay in the mutual interaction between bistable
systems. In particular, we are interested in the synchronization properties
of the jumps between the potential wells in the two lasers, either induced by
noise or modulation of the barrier depth. That is, we want to study the syn-
chronization of jumps in coherence and stochastic resonance systems.

Finally, the extension of some of the synchronization results we have consid-
ered here to a larger number of coupled lasers is of great interest. We have
also performed some preliminary numerical simulations concerning this is-
sue. They show that the number of units and topology of the network of lasers
being coupled is of fundamental importance in the synchronization properties
and future work will be with no doubt focused on the investigation of this and
related topics.
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