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We present the first numerical study of spinodal decomposition in polymer mixtures in three dimen-
sions for Flory-Huggins-de Gennes free energy, numerically integrating the time-evolution equations
for the conserved order parameter. We study the time dependence of the domain size as well as the pair
correlation function and structure factors for several quench temperatures. The results indicate that the
growth law for the characteristic domain size is independent of the final quench temperature in contra-
diction with the recent experiments on model polymer systems. As well, it is shown that dynamical scal-

ing is valid at sufficiently late times.

PACS numbers: 64.60.My, 05.70.—a

The phenomenon of spinodal decomposition is the sub-
ject of many theoretical and experimental investigations
in the field of small molecule or atomic systems, such as
binary alloys, fluid mixtures, and inorganic glasses.! In
recent years, such studies are also attracting much
theoretical and experimental interest in the field of poly-
mer mixtures, >~ due to the ease with which the different
regions of the phase diagram can be probed for widely
varying time scales. The important objectives in the
study of phase separation in polymer mixtures are (1) to
look for universality in the kinetics of phase separation,
i.e., to find whether the laws found for dynamics of small
molecule systems work for polymeric systems as well,
and (2) to discover possible unique characteristics origi-
nating from the presence of long-chain molecules.

The theoretical understanding of the process of phase
separation,! in small molecule systems, is based mainly
on the Cahn-Hilliard-Cook® (CHC) formulation, which
starts from the nonlinear Langevin equation with a Ginz-
burg-Landau-type free energy. Analytical studies of
this field-theoretic model® have been reasonably success-
ful in describing the early-time behavior of the phase
separation process but, due to their approximate nature,
they are not as useful in the late stages. In the absence
of analytical studies, numerical simulation plays a useful
role in our ability to understand and to predict the late-
time behavior of such a system. Numerical studies’'°
have suggested that the characteristic size of the do-
mains shows a Lifshitz-Slyozov-type growth law (in-
dependent of the final temperature of quench, as long as
this final temperature is much smaller than the critical
temperature) and that the structure factor and the pair
correlation functions show scaling forms at late times.

Recent experiments on the phase separation of isotopic
polymer mixtures'' have been interpreted to imply that
(1) the growth law depends on the final temperature of
quench and (2) the scaling behavior found in studies of
small molecules does not seem to be valid. The authors
of this paper also suggested that the so-called “violation™
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of universal scaling is possibly due to the choice of the
Ginzburg-Landau-type free energy in the theoretical
studies, whereas the “true” free-energy functional for
polymer mixtures is given by a Flory-Huggins-de
Gennes expression. However, we note that in other stud-
ies with different polymer mixtures,>'>!3 scaling was
suggested to hold for time scales similar to that of Ref.
11.

Analytical studies of spinodal decomposition in poly-
mer mixtures have been carried out by several authors'4
for early-time regimes. However, no such calculation is
available for late times. It seems then, at this point, nu-
merical simulations will continue to play a major role in
understanding the late-time behavior of the phase sepa-
ration process in polymer mixtures. Monte Carlo simu-
lation techniques have been used to study early stages of
phase separation in a lattice model of polymer mixtures
in two and three dimensions.!” However, no similar
study exists for the field-theoretic model with a
Flory-Huggins-de Gennes free energy for the polymer
mixtures.

In this Letter, we want to fill this gap by reporting re-
sults of a detailed numerical study in three dimensions
starting from a full Flory-Huggins-de Gennes-type free
energy and numerically integrating the time evolution
equation of the conserved order parameter. We have
carried out the simulations to late time and averaged
over a large number of runs, for several final quench
temperatures. We use a finite-difference scheme for
both the spatial and temporal derivatives and compute,
among other quantities, the structure factor and the pair
correlation functions. We find that dynamical scaling is
satisfied for both the pair correlation function and the
structure factor at sufficiently late times, and that the
growth law for the domain size is independent of the
final temperature of quench.

We consider a mixture of two polymer species, 4 and
B, with chain lengths N4=Ng=N and subunit size
ag=ap=1. We start from the equation relating the
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time variation of the conserved concentration field ¢(r,?)
to the functional derivative of a (coarse-grained) free-
energy functional plus a thermal noise in the following
way:
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1
where M is the mobility, assumed to be a constant. In
order to study spinodal decomposition in polymer mix-
tures, we choose, for Flel, the full Flory-Huggins—de
Gennes free energy (in units of k3 T) given by!*

where
f(w(r))=#[<pln‘p+(l—‘P)ln(l—¢)]+x¢(l—¢). 3)

x is the temperature-dependent Flory interaction param-
eter, and the thermal noise n(r,?) satisfies the fluctuation
dissipation theorem:

(e, ), 1)) =—2MV35(c—1r')6Gt —1'),
where ( - - - ) denotes an ensemble average.

In experimental studies,*''"!3 one defines a rescaled
wave vector q and a rescaled time 7 as q=k/k>3 and
t=Dopp(km)?t. k5 and D,y can be calculated from
the linear theories as (km)?=%(y—z,) and D,y
=2M(y—ys), where y;=x(T'=T.)=2/N. In our nu-

1 | ) o) merical studies, we have used the following rescaled vari-
Flel =fdr Sl + 360(1 —¢) vel?|, ables: x=(y—x;)"?r and 7, =2M (3 —x,)%. Thus one
| finds from Egs. (1)-(3) in terms of these reduced vari-
ables,
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where the new noise £ satisfies
Ex,1)EX, 1) =—V28(x—x")6(t; —7})

and e=(y—y,) %

For the system studied in Ref. 11, the critical temper-
ature and the y parameter are known !¢ and these values
are used as the input for the numerical studies. Thus by
varying y one can faithfully mimic the quench procedure
at different final temperatures. We have taken yx
=0.326/T—2.3%x10 ~*, T, =62°C and the quench tem-
peratures 25, 40, 49, and 54.5°C. With these input pa-
rameters, we have numerically integrated Eq. (4) on a
simple cubic lattice of size 50 with periodic boundary
conditions. We have performed the numerical integra-
tion up to 7; =500 using a time step of 0.01. In order to
average over the noise, we have performed twenty runs
for each quench temperature. The specific details of the
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FIG. 1. The maximum of the structure factor k in units of
kS vs rescaled time 7 shown in a log-log scale for several
quench temperatures. The growth-law exponent (0.28 £ 0.01),
computed for 50 < r=< 1000, is independent of the quench
temperature.

numerical integration will be given elsewhere. !’

In order to study the growth law for the domain size
and to examine the issue of scaling, we computed the
spherically averaged structure factor S(k,7;) and the
spherically averaged pair correlation function g(x,7;).
We have defined the domain size Rg(n) as the coordi-
nate of the first zero of g(x,7,). We have alsc computed
the location of the maximum of S(k,7,), kn(t;). Our
results for k,, are plotted in Fig. 1, for several values of
the quench temperature, where we plot the data in a
log-log scale in units of k3 versus rescaled time t, in or-
der to compare with experimental results. Similarly, re-
sults for R, are plotted in Fig. 2 in units of (k%) ~!vs =.
The determination of k,, is more unreliable than that of
Rg, because k,, is computed by locating the maximum of
the structure function, whereas R, is found by comput-
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FIG. 2. The characteristic domain size R, calculated from
the pair correlation function (see text) in units of (k3) ~', plot-
ted against rescaled time t for several quench temperatures.
The qualitative behavior is the same as in Fig. 1.
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ing the zero of the pair correlation function. Particularly
at late times, the maximum of S(k,7) is not precisely
defined (see Fig. 3) due to the discretization of the Bril-
louin zone in a finite lattice such as considered here.
This explains the small bends in the k,, vs 7 curves for,
say, 7> 500. Another source of error is the statistical
fluctuation of data coming from different runs. For the
domain-size measures, the statistical errors are of the or-
der of 5%. A complete analysis of the errors will be
given elsewhere. !’

In Figs. 1 and 2 we see that the growth-law exponent
is independent of the quench temperature. This result is
consistent with the claimed universal scaling of Refs. 12
and 13, but not with that of Ref. 11, where a quench-
depth-dependent growth-law exponent is suggested for
early to intermediate stages. The growth-law exponent
calculated from the slope of these log-log plots is given
by 0.28 =0.01. This value of the growth exponent is in
excellent agreement with the experimental result for in-
termediate to “transition” times.'® We point out that the
physical mechanism governing the late-time behavior in
the model corresponds to the so-called transition times in
experimental systems, whereas the real-late-time behav-
ior seen in the experiments is governed by hydrodynamic
interactions. We also find that the peak of the structure
factor S(k=k,,,7) yields an effective growth-law ex-
ponent of 0.85+0.02,'” in good agreement with recent
experiments.'® However, we note that the exponents
found from the log-log plots are probably effective ex-
ponents, since one expects'® that the growth law for
domain size R(7) is given by R(z) =a+b1". A fit to
this expression of the R, data between 7=450 and 7
=2250 yields n=0.33+0.01 for 7=25°C and n
=0.33+0.02 for T=49°C. This value of the exponent
suggests that the Lifshitz-Slyozov mechanism describes
the growth of domains in this time regime. We do not
expect any change in the value of n at later times, since
hydrodynamic interactions?® are ignored in the present
model.

FIG. 3. Plot of the scaling function defined in Eq. (5) for
the spherically averaged structure factor. Scaling is satisfied
only at late times, i.e., t= 1350. The lines are spline fits which
serve as a guide to the eye.
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The dynamical scaling Ansatz predicts that at late
times the structure factor should scale as

S(k,t) =k 3F(k/kn) . (5)

In order to study the scaling hypothesis we plot the
data for the structure factor in Fig. 3, for several re-
scaled times 7 after the quench. If the scaling hypothesis
Eq. (5) is correct, all the data in Fig. 3 should fall on a
single master curve. However, we note that the scaling
hypothesis works only at very late time, as shown in this
figure. In Fig. 3 the structure factor data are shown only
for the quench temperature 25 °C, but the same qualita-
tive picture is found for all the other quench tempera-
tures.

In order to study the functional form of the scaling
curve, we plot the structure factor data in a log-log
graph in Fig. 4. It is again clear from this figure that the
scaling hypothesis works only at very late times (z
= 1350) when all the curves fall on top of each other.
Calculations over much larger times are necessary to
study the scaling behavior more accurately. However, it
is still interesting to note that the scaling function exhib-
its a weak shoulder around k = 2k,,(z) which has also
been observed in the most recent experimental sys-
tems. 2% The straight line in Fig. 4 is the fit to the data
for large-k values. We find that for large k, the scaling
function goes as k 36 which is close to the expected
Porod’s law behavior (k ~*). In recent experimental
studies'>!® it has also been found that for late times the
scaling function behaves as k ~* for large k.

In summary, we have studied the phase separation be-
havior in polymer mixtures by starting from the Flory-
Huggins-de Gennes free-energy functional and numeri-
cally integrating the corresponding evolution equation
for the conserved order parameter. We have carried out
the calculations to late times and observe that the growth
law for the characteristic domain size is independent of
the quench depth contrary to Ref. 11. Nevertheless, our
results are consistent with the claims of several other ex-
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FIG. 4. Plot of the scaling function [Eq. (5)], in a log-log
scale. The straight line is a fit to the data for large k, with a
slope of —3.6.
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perimental investigations on different polymer mixtures.
We also find that the dynamical scaling hypothesis is
satisfied for both the structure factor and the pair corre-
lation functions. However, scaling seems to be valid only
at very late times. It will be interesting to carry out the
calculations for a much larger time and for larger lattice
sizes to study the scaling behavior more accurately.
Also, it remains to be seen whether the quench-
depth-dependent growth law observed in Ref. 11 arises
from a wave-vector-dependent Onsager coefficient and/
or a composition-dependent y. We plan to address these
questions in future publications.
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